
NETWORK TRAFFIC 
SIMULATION AND ASSIGNMENT: 
SUPERCOMPUTER APPLICATIONS 

Hani S. Mahmassani, R. Jayakrishnan, 
Kyriacos C. Mouskos, and Robert Herman 

RESEARCH REPORT CRAY-SIM-1988-F 

May 1988 

CENTER FOR TRANSPORTATION RESEARCH 

BUREAU OF ENGINEERING RESEARCH 
THE UNIVERSITY OF TEXAS AT AUSTIN 

) 



ACKNOWLEDGEMENTS 

Principal funding for this study came from a grant from Cray Research Inc. 

Additional funding and computer time was provided by the Department of Civil 

Engineering, Bureau of Engineering Research at the University of Texas at Austin. 

Computing resources for this work were provided by The University of Texas System 

Center for High Performance Computing (CHPC). 

We are grateful for the help of consultants at the CHPC in the process of 

implementing and vectorizing the codes used in this study. In particular, the help of 

Jeanette Garcia is gratefully acknowledged. In addition, Spiros Vellas' contribution to the 

vectorization of the network equilibrium assignment routines has been invaluable. 

The single-class network equilibrium assignment code used in this study is a 

modified version of a code initially provided by Dr. Fred Mannering, presently at the 

University of Washington, who modified a program originally supplied by 

Dr. Stella Dafermos at Brown University. 

We are grateful to Dr. James C. Williams, presently at the University of Texas at 

Arlington, for the advice on getting the modified CDC version of NETSIM to run and on 

interpreting on some of his earlier data files and modifications to the program that he had 

implemented while a graduate student at the University of Texas at Austin. 

The preparation and production of this report has been coordinated by 

Mrs. Carla F. Cripps. 

i 



PREFACE 

This report presents the results of a study conducted to assess the potential offered 

by supercomputer architectures in solving large-scale network problems that arise in 

transportation systems analysis and planning. Two principal problems are addressed: 

1) the microscopic simulation of vehicular traffic in urban street networks, and 2) the 

computation of equilibria in congested transportation networks. 

The first problem arises in traffic science research and traffic engineering practice 

when it is desired to simulate traffic network conditions by keeping track of the movement 

and maneuvers of individual vehicles. Microscopic simulation codes have been available 

for many years; however, their applicability has been limited to very small portions of an 

area's network. Furthermore, earlier use of microscopic simulation for fundamental 

research into the characterization of network traffic behavior has been limited to contrived 

potentially unrealistic small networks. The objectives of the work presented herein are 

1) to demonstrate the ability to consider large realistic urban traffic networks using 

supercomputer capabilities, 2) to provide some computational experience with such 

applications, and 3) to examine several research questions pertaining to network traffic 

theory using this enhanced capability to solve large congested networks. 

The second problem addressed in this study arises in transportation analysis and 

planning when it is desired to determine the vehicular and/or passenger flows using each 

link of a particular urban network. It is known as the traffic assignment problem, and the 

solution sought by the algorithm considered herein satisfies "User Equilibrium" conditions. 

In addition to its inherent importance in transportation planning, the network equilibrium 

assignment algorithm is an essential routine in codes for the more general network design 

problem. In this study, we report on the results of limited local modifications of the code 

aimed at removing obstacles to its vectorization in order to take greater advantage of the 

CRA Y X-MP/24 supercomputer's vectorizing capabilities. 

ii 



This report is organized in two chapters, with the first corresponding to the 

microscopic traffic simulation problem and the second addressing the vectorization of the 

network assignment codes. Each chapter is self-contained and independent of the other, 

with the exception of a shared list of references. 

iii 



TABLE OF CONTENTS 

CHAPTER 1. EXPERIMENTS WITH MICROSCOPIC SIMULATION OF TRAFFIC 
IN NETWORKS 

1.1. Introduction ................................................................................ 1 

1.1.1. Motivation .................................................................. 1 

1.1.2. The NETSIM Model...................................................... 2 

1.1.3. Supercomputing and the CRA Y......................................... 3 

1.2. Modifications of the NETSIM Program ................................................ 5 

1.2.1. The CDC CYBER Version ............................................... 5 

1.2.2. Array Expansions in NETSIM .. . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . 5 

1.2.3. Other Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

1.3. Simulation Experiments .................................................................. 8 

1.3.1. Objectives of Experiments ............................................... 8 

1.3.2. Description of Experiments.............................................. 9 

1.3.2.1. Experimental Design- NETSIM Code ...................... 9 

1.3.2.2. Experimental Design- Test Networks ...................... 10 

1.3.2.3. Experimental Design- Large Network (Austin) ........... 16 

1.4. Experimental Results .................................................................... 26 

1.4.1. Experimental Results - Traffic Aspects ................................ 26 

1.4.2. Experimental Results - Computational Aspects ....................... 38 

1.5. Conclusions and Future Directions ................................................... .42 

1.5.1. Further Possible Modifications of NETSIM .......................... .42 

1.5.2. Further Research Possibilities ......................................... .45 

Appendix l.a. Additional Output Generation ................................................ .47 

Appendix l.b. An Example of the Results of the Time-Requirement Analysis ......... .48 

CHAPTER 2. VECTORIZA TION OF NETWORK EQULIBRIUM ASSIGNMENT 
ALGORITHMS FOR ONE AND TWO CLASSES OF USERS 

2.1. Introduction ................................................................................ 49 

2.2. General Guidelines ....................................................................... 49 

2.3. The Network Equilibrium Algorithms .................................................. 52 

2.4. Computational Results for Single Class UE Code .................................... 57 

2.5. Computational Results for the Two-Class Diagonalization Code ............ 66 

2.6. Conclusion ................................................................................. 76 

2.6.1. Summary ofResults ...................................................................... 76 

2.6.2. Directions for Future Research ........................................................... 78 

References .......................................................................................... 79 

iv 



LIST OF FIGURES 

Figure 

1.1 Overlay Structure of NETSIM on the CYBER 170!750............. 6 

1.2 5x5 Network.............................................................. 12 

1.3 6x6 Network.............................................................. 13 

1.4 7x7 Network.............................................................. 14 

1.5 8x8 Network.............................................................. 15 

1.6.a Map of Austin Network Study Area (Part a).......................... 18 

1.6.b Map of Austin Network Study Area (Part b)......................... 19 

1.6.c Map of Austin Network Study Area (Part c)......................... 20 

1.6.d Map of Austin Network Study Area (Part d)......................... 21 

1.6.e Map of Austin Network Study Area (Part e)......................... 22 

1.7 Speed-Concentration Curves for the Different Networks .......... 27 

1.8 lnT r vs. lnT for the Austin Network .................................. 30 

1.9 lnTr vs. lnT for the Test Networks ................................... 33 

1.10 lnTr vs. lnT and Calibrated Regression Lines for the Signalized 
and Unsignalized 5x5 Networks ...................................... 36 

v 



LIST OF TABLES 

1.1 Average Network Speeds for Different Vehicle Traffic Concentrations 24 

1.2 Vehicle Entry Rates for DifferenJ Simulation Subintervals- Austin 
Network ......................................................................... 25 

1. 3 Estimation of Two-Fluid Parameters (Austin Network - U nsignalized) 31 

1.4 Two-Fluid Parameter Estimation for Signalized Networks of 
Different Sizes ................ ....... .... ..... .. .... .......... ....... ........ .... 34 

1.5 Two-Fluid Parameter Estimation for Signalized Networks of 
Different Sizes . ....... ....... .............. ..................... ................. 37 

1.6 Execution Times ................................................................. 39 

1. 7 Execution Times (for different levels of vectorization) ..................... 41 

1.8 Execution Times (in the three most time-intensive routines of NETSIM) 43 

2.1 Execution Times for Each Subroutine When Vectorization is Blocked 
(MAXBLOCK = 1 in CFT Compiler ........................................ 58 

2.2 Execution Times for Each Subroutine with Vectorization Using the 
CFT Compiler . ... . ... . .... ... .... .... .. .. . ... .. . ...... .. ... . . .. . . .. ..... ... . ... . 59 

2.3 Execution Times for Each Subroutine with Vectorization Using the 
CFT77 Compiler . .. .... ........ ... .. ...... ....... ..... ........ .. . . .. . ... . ... . . .. 60 

2.4 Execution Times Summary Following the Modification of BISECT 
to Calculate the Travel Times Within BISECT Instead of Calling 
Function COSTFN (with Vectorization Using CFT Compiler) ........... 61 

2.5 Execution Time Summary Following Modification of BISECT by 
Including the Parameters A and BET in the Travel Cost Equation 
(with Vectorization Using CFT Compiler) .... ........ ...... .... ...... .... .. 63 

2.6 Execution Time Summary for Same Code as Table 2.5, 
but with Vectorization Using CFT77 Compiler............................. 64 

2. 7 Execution Time Summary Following Further Modification by 
Removing Calls to Separate Functions COSTFN and FINT 
(with Vectorization Using CFT77 Compiler) ............................... 67 

2.8 Execution Time Summary Following Further Modification by the 
BISECT Routine, Mainly Decomposing a Loop to Smaller Loops 
(with Vectorization Using CFT77 Compiler) ............................... 68 

2.9 Execution Time Summary for the Diagonalization Code, with 
Vectorization Blocked (MAXBLOCK = 1, on CFT Compiler) 69 

vi 



LIST OF TABLES, Continued 

2.10 Execution Time Summary Following Further Modification by 
Removing Calls to Separate Functions COSTFN and FINT (with 
Vectorization Using CFT Compiler) ........ ....... ...... .. ..... ..... ....... 70 

2.11 Execution Time Summary Following Modification in BISUED 
and AONUED Subroutines (Vectorized Using CFT Compiler)........ 75 

2.12 Vectorization Blocked (MAXBLOCK = 1, CFT Compiler)............. 77 

Vll 



CHAPTER 1. 
EXPERIMENTS WITH MICROSCOPIC SIMULATION OF 

TRAFFIC IN NETWORKS 

1.1. INTRODUCTION 

1.1.1. Motivation 

Microscopic vehicular traffic simulation models are computer programs which 

simulate the behavior and flow of traffic by representing and keeping track of the 

maneuvers of the individual vehicles. By contrast, macroscopic models utilize 

relationships between aggregate descriptors such as concentration, average speed, etc., and 

in some cases keep track of platoons of vehicles. A large body of work on the 

mathematical relationships underlying both kinds of models was developed during the 

1950's and 60's; the development of computer simulation codes of both types began in the 

late 60's. 

Microscopic models, due to their attention to the minute details of the traffic, are 

computationally more demanding, in terms of time and memory, than macroscopic models. 

Of course, the former kind of models have the potential to: 1) represent more complicated 

situations, 2) yield more detailed information, and 3) give more precise and "correct" 

simulation results than the latter kind. Examples of microscopic models are NETSIM for 

traffic network simulation and TEXAS for individual intersections. PASSER and 

TRANSYT, for arterial simulation are two examples of macroscopic models. 

The advent of the supercomputers, which offer at least an order of magnitude 

improvement over the conventional mainframes in speed and memory capabilities, provides 

the possibility of using the microscopic traffic simulation models for much more elaborate 

and realistic simulations than were done in the past. In this regard, one of the primary 

microscopic models to consider for implementation on a supercomputer for exploratory 

applications is NETSIM, arguably among the most detailed of existing traffic simulation 

models. This chapter concentrates mainly on the NETSIM model for network-level traffic 

simulation studies using the CRAY X-MP/24 supercomputer. 



2 

The present interest in microscopic traffic simulation using supercomputers is 

motivated by the past experience of limitations in conventional mainframe computing. 

From a research perspective, microscopic simulation is an important tool to study the 

behavior of traffic in networks. For instance, there has been considerable interest over the 

past few years in its use to support the development of a network-level traffic theory and 

the characterization of the performance of urban traffic networks (Mahmassani, Williams, 

and Herman, 1984; 1987). However, work to date has been limited to very small and 

possibly unrealistic networks. From an engineering practice perspective, microscopic 

simulation has rarely been performed for large urban networks. Most applications have 

been limited to small-scale local subsystems. Finally, an important motivator from both 

research and practice standpoints is the use of microscopic simulation as a predictive tool to 

study the effectiveness and support the design of in-vehicle informati~n systems for 

electronic route guidance and traffic control in large networks. 

1.1.2. The NETSIM Model 

The NETSIM model was developed for the Federal Highway Administration 

(FHW A) as a part of the Urban Traffic Control System (UTCS) program, and the initial 

version was released in 1971 as UTCS-1 (Bruggeman, Leiberman and Worrall, 1971). 

This was subsequently updated in 1973 and 1978. All the modifications and tests 

performed as part of the present research were done on the latest available mainframe 

version of NETSIM. 

The NETSIM computer program consists of 60 separate routines. The urban 

system must be represented as a set of nodes and directed one-way links. Vehicles enter 

the network via designated entry links and leave via exit links. Vehicles can also enter and 

leave at the sources or sinks at the mid-link locations. A range of controls, from no control 

to fully actuated control, can be specified for the intersections. Synchronization of the 

signals also can be achieved using user-specified offsets. Short term events, such as 



3 

vehicle stoppages, and long-term events, such as lane-closures and accidents, can be 

modelled. Detailed modelling of bus traffic is also possible. Calibrated values are used for 

the characteristics of different specified driver types and vehicles types, and for the 

parameters of the microscopic behavioral relations, with provisions for the model user to 

substitute other values, if needed. 

NETSIM is a discrete-time simulator which processes the vehicles by individually 

examining their location, speed, acceleration, etc., during each time step (generally one 

second) and updating the values according to the embedded mathematical models. The 

values are stored in the vehicle-specific array with 10 elements for each vehicle. Similarly, 

the information on the link-level is stored in the link-specific array with 33 elements for 

each link. It is this level of detail that results in the time and memory intensiveness of 

NETSIM. 

The effectiveness of NETSIM has been severely affected by the limits of 

conventional mainframe computers. Even the most powerful of these mainframes allow 

only up to about 150 links and about 100 nodes in the network. However, even for a 

medium-sized city like Austin, Texas, the simulation of traffic in the central business 

district (CBD) requires about 300 nodes and 900 links. As for time, the simulation of 

traffic in even a 5x5 square grid network with 800 vehicles for two simulation hours 

resulted in about an hour of execution time on a dual CPU CYBER (CDC), (Mahmassani, 

Williams and Herman, 1984). In fact, there is no documented evidence of the use of 

NETSIM for a complete CBD simulation of any city, though there have been some 

disappointing attempts to use NETSIM for disaster-evacuation simulation in a large 

network (Seabrook, New Hampshire). 

1.1.3. Supercomputing and the CRA Y 

The hardware performance of computers and supercomputers have shown dramatic 

improvement over the years. From bulky transistors to compact silicon chips, the progress 



4 

in the last 35 years has been quite rapid (Buzbee and Sharp, 1985). However, the 

performance of silicon chips is fast approaching its quantum-mechanical limits. Also the 

fact that the signal has to travel across the dimensions of the computer is imposing a limit 

· on the gate speeds to a few nanoseconds. Thus today's supercomputers utilize radical 

changes in architecture to achieve improvements within these limits (Zenios and Mulvey, 

1986). The CRA Y X-MP series has gained the widest acceptance among the different 

supercomputers that have emerged. 

There are two dimensions to parallel processing using supercomputers 

(Chen, 1983). One is that of multi-programming, multi-tasking or micro-tasking which 

correspond to multiple processors working on different jobs, executing different tasks 

within a job and executing different portions of the same task, respectively. The other 

dimension is the parallelism achieved by using vector or matrix operations of an algorithm 

(vectorization). Compilers are generally available for the CRA Y supercomputer to 

"vectorize" a particular code, by identifying those independent portions that can be executed 

in parallel, and sequencing the processing and task allocation accordingly. However, there 

are many inherently parallel activities that may have been programmed in ways intended for 

conventional scalar processing, but which actually inhibit the vectorization capabilities of 

the compiler. It is therefore generally possible to take fuller advantage of the capabilities of 

the supercomputer's architecture by modifying, or vectorizing the code. Three levels of 

vectorization can be distinguished. Local vectorization is the first level, where the program 

is re-examined in its subparts and subroutines, and redesigned only locally, without 

program-wide repercussions. Global vectorization is the next level where we examine the 

whole implementation of the algorithm and redesign the data structures and application 

choices to take advantage of the machine. At the third level, the algorithm itself is 

conceived to take advantage of the machine architecture. 



5 

1.2. MODIFICATIONS OF THE NETSIM PROGRAM 

1.2.1. The CDC CYBER Version 

This study used the 1978 version of NETSIM installed on the CYBER 170/750 

(CDC) mainframe at the University of Texas at Austin. This version of NETSIM is 

implemented in FORTRAN N, and uses overlays to minimize the memory requirements by 

utilizing the independence between different blocks of subroutines in NETSIM. Overlays 

essentially define a tree storage structure. At the head of the tree, there are four routines: 

The main program which calls the preprocessor block of routines, the simulation block of 

routines, the post processor routine and the fuel routine. At the next level in the tree, there 

are four independent blocks of routines corresponding to preprocessing, simulation, post 

processing and fuel data analysis. Of these, the preprocessor overlay has three sub-level 

overlays and the simulation overlay has two sub-level overlays. The overlay structure is 

shown in Fig. 1.1. 

The version installed on the CRA Y does not have any overlays, because the CFT 

compiler on tRAY does not allow overlays. This is not expected to create any significant 

limitations for the kind of large scale simulations that the CRA Y version is intended to 

perform. In these cases, the vehicle and link information arrays will constitute the largest 

portion of the memory requirements, and neither of these arrays are cleared by the use of 

overlays. 

1.2.2. Array Expansions in NETSIM 

As said earlier, the existing versions of NETSIM allow only up to about 150 links 

and about 100 nodes. The CYBER version at the University of Texas allowed only 70 

nodes and 115 links, and had to be significantly increased for this study to accommodate 

the large Austin CBD network, which is comprised of about 550 nodes and 1600 links. 



BUSRED 
FLSORT 
PRACf 
CTPFF 
CTPSX 
CfPSV 

ACfOUT 
IN ACT 
PRSIG 

SURVIN 
THREAD 
UCOPY 
PREPRO 

MAIN 
DRWS 

LNKSIG 
MATRIX 

I 

/' ~ 
I CLRALL llr---IN--'-T-1 ---.11 PRMSND l 

Preprocessor overlay 

I 
FILTST 
RESET 

ADJQ 
BUSDAT 
BUSDIS 
BUSSTP 
CLNUP 
DETECT 
EX PES 
GETCD 

GOQ 
HDWY 
LANE 

LFTRN 
LSWCH 
MOOV 
MOVE 
POLL 

RNDM 
SIGACT 
PDAFZ 

PDNAFZ 
UP ACT 

GRNSIG 
REDSIG 
TERMFZ 
DECACf 
DETSW 
TERM 
ACTFZ 
ASIG 
FZCL 

SIMUL 
STPSN 
SVEH 
TRVL 
TSIG 

TSTSAT 
UPSIG 

I 

6 

FUEL 

BLK DATA FLCN 
BLK DATA HCEM 
BLK DATA COEM 
BLKDATANOEM 

Fuel data processor 
overlay 

I POSTPRO I 
Postprocessor 

overlay 

I 
CYCP 
INTST 

Simulation overlay 

Figure 1.1. Overlay Structure ofNETSIM on the CYBER 170/750 



7 

The modifications were made according to the guidelines given in the NETSIM user's 

manual (FHW A, 1980). 

There are three main variables which control the dimensions of three sets of arrays 

in NETSIM. These are NMAX, the number of links, NCAR, the number of actuated 

nodes, and MXND, the number of nodes. In addition to the arrays affected by these 

variables, there is the common array V which is to be modified according to the value of 

MAXV, the maximum number of vehicles, and the common array DTCTR which is to be 

modified according to NDET, the maximum number of detectors. The values of all these 

key control variables are defined in the subroutine, CLRALL. 

When NMAX is changed, the arrays which need modification are LINK, PCD, 

BLNK, NSPLBK, MNUVR, PSDLNK, ENDNDS, SUMO, SUMS, LTRNV, RTRNV, 

THRUV, VPROC and BUSLNK in common storage, LNAM and IS of subroutine 

PREPRO, and SLNK and X of subroutine CYCP. When MCAR is changed, the common 

arrays which need modification are NAFZ, NAAFZ, NATMR, NADET, NACNT, 

NALNK, NACDS, NACYC, NADEC and NASTAT. When MXND is changed, the 

common arrays, SIG, SIGT, SIGI, SNODE, VB, NDCNT, NPHS, VEMIT, NACT and 

IVENT need modifications. 

Another array modification, which is not mentioned in the NETSIM user's manual, 

is in the common arrays IBFSRT and ITHRED, according to the variable ISSIZE which is 

defined in subroutine PREPRO. This has to be increased to the maximum expected 

number of lines in the NETSIM data deck. 

For the purpose of the current study, NMAX was increased from 115 to 1650, 

MXND was increased from 1,000 to 3,000, 6,000, 9,000, etc., according to the different 

simulation cases. The NCAR value was not modified as there were no plans to study any 

simulation cases with actuated signals at present. The memory requirements with the above 

modifications are well below (less than 40%) the memory limit on the CRAY X-MP, thus 



8 

subsequent modifications to accommodate more detectors should not cause any difficulties. 

ISSIZE, mentioned above, was increased from 300 to 6,000. 

1.2.3. Other Modifications 

One of the most important modifications made on the NETSIM version distributed 

by the FHW A was in the way the model calculates the stopped time of a vehicle in a queue 

at an intersection. In fact, the necessity for this change was felt earlier during the research 

on network level traffic variables at the University of Texas. The definition of stopped time 

used by NETSIM was found to be inappropriate for the fundamental research in network 

traffic theory which is being continued in this project. The modifications made earlier are 

described in detail by Williams (1986) and have been adopted in this research as well. 

More capabilities were added to NETSIM, mainly to obtain additional information 

and specific details on traffic characteristics in the network. For instance, some of the 

research questions of interest require the ability to sample some individual vehicles in the 

network (Williams, 1986). For this purpose, the capability to track, accumulate and save 

results (final and intermediate) on individual vehicles also was incorporated into the model. 

Most of these modifications were made in the CLNUP subroutine of NETSIM. Another 

important new addition is the ability to obtain the speed distribution of the vehicles in the 

network. A list of additional output capabilities is given as Appendix l.a. 

1.3. SIMULATION EXPERIMENTS 

1.3.1. Objectives of Experiments 

As mentioned in the introduction, there were two primary objectives for this study. 

The first is to investigate traffic behavior in large, real-sized networks, so that better ways 

of characterizing urban network flow can be formulated. This objective is important from a 

fundamental traffic science perspective as well as for practical traffic engineering purposes. 

The second objective is to gain computational experience in simulating large-scale urban 



9 

traffic using supercomputing capabilities, so as to assess the potential of the latter to expand 

the scope and scale of applications of microscopic traffic simulation. In fact, such 

improvements on the computational side are essential in achieving the former objective. 

In this chapter, the simulation experiments conducted to address the above 

objectives are described. Simulations were performed with test networks of controlled 

characteristics as well as with a large network, that of the Austin central core. In addition 

to the substantive traffic theoretic results, the simulations also provided information on the 

computational aspects, such as the program execution time and memory requirements, and 

the time intensiveness of different parts of the program, which is useful for decisions on 

future modifications in the program. Compiler vectorization characteristics of the NETSIM 

program were also studied to some extent. 

1.3.2. Description of Experiments 

1.3.2.1. Experimental Design - NETSIM Code 

Even though supercomputers can be expected to provide an order of magnitude 

improvement in execution speed compared to the conventional mainframes, using existing 

codes directly on vector computers will result in massive underutilization of 

supercomputing capabilities. Vectorization of the computer codes can increase the 

execution speed and efficiency considerably. In this study, vectorization was achieved 

only by using the CFT compiler of the CRAY X-MP/24, which provides the facility of 

vectorizing blocks of code of a given maximum length in the program. The responsiveness 

of NETSIM to different values of this maximum block length limit was studied. The 

results discussed in Section 1.4, suggest that using block length limits larger than the 

default used by the CFf does not result in any significant improvements. 

It should be noted that considerably more execution efficiency could be achieved by 

rewriting the code incorporating vectorizable constructs. Some results on this aspect are 

given in the second part of this report in connection with network equilibrium assignment 



10 

algorithms. In the case of the NETSIM code, this was not attempted in the present study 

because of the tremendous size of the code (about 15,000 lines). However, a time 

requirement analysis was performed using the FLOWTRACE capability of the CFT 

compiler (see Appendix l.b). The results provide good indications as to the time intensive 

routines in the program which should be concentrated on if local vectorization by manual 

recoding is attempted. These results are discussed in more detail in a later section. 

1.3.2.2. Experimental Design · Test Networks 

As noted earlier, traffic simulations were performed both on small test networks as 

well as a large actual traffic network. The small test networks provide the opportunity to 

investigate traffic behavior under better controlled conditions than the large-scale real 

networks. These experiments were also expected to provide insight into the relative 

performance of NETSIM on the CRA Y and the conventional mainframes for different 

characteristics of the networks. The main control variables with respect to which the 

studies were conducted are the size of the networks and the traffic concentration in the 

networks. Four different sizes and three different traffic concentrations were considered. 

Due to the obvious geometric regularity that they offer, square grid networks were 

used in this study, as per the earlier work of Mahmassani et al. (1984, 1987) and Williams 

(1986). The sizes varied from 5 nodes by 5 nodes to 8 nodes by 8 nodes, the nodes being 

the intersections, with link lengths of 500 ft. Larger square grids could not be tested for 

the relative computational performance comparison, due to the limitations of the CYBER 

mainframe. In fact, to accommodate the 224 links associated with an 8x8 square grid of 

two-way streets, several array modifications and expansions were required on the NETSIM 

version on the CYBER mainframe, taking advantage of the fact that there were no 

detectors, actuated signals or bus routes in the test network. Networks larger than an 8x8 

grid could not be attempted successfully. The test networks are shown in Figures 



11 

1.2-1.5. The spiral numbering of the nodes was adopted because of its advantages when 

modifying an 8x8 network to a 7x7 or smaller network. 

The entry links of the test networks were at all the peripheral nodes of the grid, with 

the exception of the corner nodes. All the links in the networks were of 2 lanes each, with 

all feasible movements allowed at all the intersections. The turning percentages were 10% 

left, 75% through, 15% right at all the intersections where all three movements are allowed 

(i.e., the interior intersections), 50% -50% at intersections with two movements (i.e., the 

peripheral intersections) and, of course, 100% at intersections with one movement (i.e., the 

corner nodes). The performance of a 5x5 network with such turning patterns and 

geometric characteristics have been studied extensively in previous work (Williams, 1986), 

and the networks have been found to behave satisfactorily with respect to the uniform 

dissipation of traffic, which is important in preventing uneven or pathological development 

of congestion. 

Six different target traffic concentration levels were studied: 10 veh/lane-mile, 

20 veh/lane-mile, 30 veh/lane-mile, 40 veh/lane-mile, 50 veh/lane-mile, 60 veh/lane-mile. 

These concentrations are kept steady during a period of 10 minutes by not allowing vehicle 

entry or exit, following an initial loading period of 6 minutest . Of course, as vehicle 

generation is stochastic, these concentration values were achieved only approximately. 

(See Table 1.1 for actual concentrations.) These simulations were performed on the CRA Y 

with the simulations for concentrations up to 30 veh/mile being duplicated on the CYBER 

mainframe. The higher concentration levels could not be tried on the CYBER because of 

the maximum vehicle number limit on the CYBER version of NETSIM. In fact, the limit is 

reached with 20 veh/rnile concentration in the case of the 8x8 network. 

t Because the loading time was kept constant for all the simulations, the entry rate at the entry 

links were set in each case to achieve the desired concentration level. 



12 

Number of Nodes = 25 
Number of Links = 80 
Number of Entry Points = 12 
Lane Miles = 15.2 

Figure 1.2. 5x5 Network 



Number of Nodes 
Number of Links 
Number of Entry Points 
Lane Miles 

= 36 
= 120 
= 16 
= 22.9 

Figure 1.3. 6x6 Network 

13 



Number of Nodes = 49 
Number of Links = 168 
Number of Entry Points = 20 
Lane Miles = 32 

Figure 1.4. 7x7 Network 

14 



Number of Nodes 
Number of Links 
Number of Entry Points 
Lane Miles 

= 64 
= 224 
= 24 
= 42.7 

Figure 1.5. 8x8 Network 

15 



16 

All the traffic signals in the networks were timed so as to have 40 seconds cycles, 

with both directions in the grid having single alternate signal synchronization. The signal 

cycles were found to be adequate for the range of concentrations considered in these 

simulations. 

Additional simulations were performed for the case of an unsignalized 5x5 grid 

network, with all-way STOP signs at all the intersections. The reason for performing these 

simulations was to compare the results of the small test networks with the results from the 

large Austin network, which, as described in the next section, was simulated for the 

scenario of STOP sign control at all the intersections. The unsignalized network was also 

simulated for the six target concentration levels of 10, 20, 30, 40, 50, and 60 vehicles/lane

mile, respectively. 

Thus, four different test networks were simulated for six different traffic 

concentrations, on both the mainframe CYBER and the CRA Y for most cases, under both 

signalized and STOP sign control. Additional runs were performed on the CRA Y for the 

5x5 signalized test network at the 30 veh/lane-mile concentration level in order to examine 

the effectiveness of compiler vectorization for different maximum lengths of code blocks 

(i.e., for different values of the MAXBLOCK parameter in the CFr command). However, 

these additional runs did not generate any new traffic performance data as they were 

intended to study the computational aspects only. The results of these simulations are 

discussed in a later section, following the description of the large Austin network. 

1.3.2.3. Experimental Design - Large Network (Austin) 

Because one of the principal objectives of this study is to demonstrate the ability to 

perform a microscopic simulation of traffic in a real-sized large city network, a NETSIM 

dataset was developed for the core area of Austin, Texas. As stated earlier, tasks of this 

magnitude have not generally been performed previously, but can now be contemplated due 

to the availability of supercomputer facilities. The delineation of the study area followed 



17 

relatively evident boundaries, which included the Central Business District as well as the 

University of Texas campus area. The area is bound on the east by the Interstate Highway 

I-35, on the west by the MoPac Freeway, on the south by the Colorado River, and on the 

north by 26th Street, which is just to the north of the University. 

Another consideration in selecting the size of the study area was to avoid having 

more than 800 nodes in the network, because NETSIM reserves node numbers above 800 

for entry nodes. Extensive code modification would have been necessary in order to 

increase this number, which is beyond the scope of the present study, and not essential to 

its objectives. The delineated study area in Austin was found to have less than 600 nodes, 

which is acceptable from the above standpoint. 

Because of the exploratory illustrative nature of the study objectives, some 

simplifying assumptions were made in preparing the dataset representing the Austin 

network. Firstly, the topographic features of the area (hills, grades, etc.) were neglected. 

Secondly, all the nodes of the network were assumed to be unsignalized intersections with 

four-way STOP control. The principal reason for this assumption was the difficulty of 

obtaining detailed and reliable signal timing information for all the intersections in the 

network in the limited time available for the study, especially since such information is not 

essential to our objectives. From a traffic theory standpoint, the question of how a network 

such as the Austin CBD would perform under unsignalized STOP-sign control is of interest 

in its own right, especially since this performance is to be examined at different network 

concentration levels. More importantly, from a computational standpoint, this assumption 

does not in any way limit the validity of the conclusions on the size network that can be 

readily simulated on the supercomputer nor on the associated computational performance. 

The assumption is therefore not a serious shortcoming, because NETSIM does not 

specifically keep track of whether a node is signalized or not. Instead, all the node-related 

arrays are dimensioned and primed, regardless of whether the nodes are signalized or not. 

This means that specifying nodes as unsignalized does not in any way reduce the memory 



Figure 1.6.a 



19 

-··d.- MIGf+T'i' ~lAP C: 



Figure 1.6.c 



21 

J- MIGhTY MAP@ 

--

Figure 1.6.d 





23 

requirements of NETSIM. In fact, a STOP sign is equivalent to any kind of signal at an 

intersection, and is specified as signal control code 5 on the signalization data cards. 

Preliminary investigation of the code did not indicate that signalization was more 

demanding in terms of execution time than stop control. This was subsequently verified 

experimentally in connection with the small test networks. A map of the study area and the 

NETSIM network nodes are given in Figs. 1.6 a-e. 

The above network was simulated under five different target average vehicle 

concentration levels: 5, 10, 15, 20, and 30 veh/lane-mile, corresponding to about 1250, 

2500, 3750, 5000, and 7500 vehicles, respectively, in the network (see Table 1.1 for 

actual concentrations). Higher concentration levels were not attempted because of concern 

over potentially high execution times. The memory capabilities of the supercomputer 

would have allowed much higher concentrations, but the execution time resources available 

for this study did not allow such high-concentration simulations. It should be noted that 

measured concentrations during peak period operations in the Austin CBD network are 

within the range of concentratiqns considered in the simulations (Ardekani and Herman, 

1987). 

Due to the rather small number of entry links (only 43 for the entire 250 lane miles 

of road network), special care was taken to prevent undue congestion at the entry links, 

especially for the higher traffic concentration simulations. Multiple simulation subintervals 

with and without vehicle entry were used for the higher concentration cases to facilitate the 

dissipation of entry point congestion. The traffic loading patterns are shown in Table 1.2 

for the five concentration levels. 

To compare the results of compiler vectorization, different code block length limits 

(for vectorization) were tested, by varying the value of the MAXBLOCK parameter of the 

CRAY FORTRAN (CFT) compiler. MAXBLOCKS of 1, 2310 and 4,620 were used for 

the 10 veh/lane-mile concentration level, 1 and 2310 for the of 20 veh/lane-mile 

concentration level, and a single value of 2310 for the 30 veh/lane-mile concentration level. 



24 
Table 1.1. Average Network Speeds for Different Vehicle Traffic Concentrations 

Concentration 
(Vehicles/lane-mile) 

Speed 
Network (mph) 

Target Actual 

5x5 SIG 10 11.81 18.61 
5x5 SIG 20 22.18 16.31 
5x5 SIG 30 33.26 13.08 
5x5 SIG 40 44.28 10.93 
5x5 SIG 50 54.58 9.04 
5x5 SIG 60 66.06 7.25 

6x6 SIG 10 11.92 18.02 
6x6 SIG 20 22.53 15.71 
6x6 SIG 30 33.79 12.46 
6x6 SIG 40 42.24 10.59 
6x6 SIG 50 52.80 8.84 
6x6 SIG 60 62.39 6.73 

7x7 SIG 10 11.31 18.16 
7x7 SIG 20 22.60 15.48 
7x7 SIG 30 33.32 12.76 
7x7 SIG 40 40.23 10.90 
7x7 SIG 50 50.88 8.75 
7x7 SIG 60 60.34 6.47 

8x8 SIG 10 11.31 18.29 
8x8 SIG 20 22.60 15.77 
8x8 SIG 30 33.31 13.61 
8x8 SIG 40 40.23 11.37 
8x8 SIG 50 50.88 8.34 
8x8 SIG 60 60.34 6.55 

5x5 ST 10 11.81 7.95 
5x5 ST 20 22.11 4.83 
5x5 ST 30 33.26 3.37 
5x5 ST 40 40.26 2.85 
5x5 ST 50 48.90 2.22 
5x5 ST 60 55.31 1.85 

Austin ST 5 5.73 11.40 
Austin ST 10 11.23 7.98 
Austin ST 15 16.41 5.58 
Austin ST 20 21.47 4.35 
Austin ST 30 29.43 2.69 

SIG - refers to signalized network 
ST -refers to STOP-sign controlled network 



25 

Table 1.2. Vehicle Entry Rates for Different Simulation Subintervals- Austin Network 
[The relaxation periods were used to dissipate congestion at the entry point] 

Vehicle Expected 
Vehicle Entry Length of Simulation No. of Total No. 
Concentration Rate (per the Period Sub- Entry of Vehicles 
(Target)t link/hour) (sec) Interval Links Input 

5 veh/lane-miles 180 600 loading 43 1290 
0 900 simulation 

10 veh/lane-rniles 360 600 loading 43 2580 
0 900 simulation 

300 360 loading 43 3870 
0 120 relax 

15 veh/lane-rniles 300 360 loading 
0 120 relax 

300 360 loading 
0 900 simulation 

400 360 loading 43 5160 
0 120 relax 

20 veh/lane-rniles 400 360 loading 
0 120 relax 

400 360 loading 
0 900 simulation 

400 540 loading 43 7640 
0 120 relax 

30 veh/lane-rniles 400 540 loading 
0 120 relax 

400 540 loading 
0 900 simulation 

tSee Table 1.1 for actual concentrations 



26 

Note that a MAXBLOCK of 1 will lead to a compilation with no vectorization. The results 

of the different simulations are discussed the next section. 

1.4. EXPERIMENTAL RESULTS 

1.4.1. Experimental Results - Traffic Aspects 

As noted in the introduction, microscopic simulation can be an important tool to 

study the behavior of traffic networks and characterize their performance through the 

formulation of relations among network-level descriptors of traffic quality and the 

dependence of these relations on the physical and operational features of the network. The 

simulation results are examined from the standpoint of two such relations: a speed

concentration relation and the two-fluid model, discussed hereafter. 

One important indicator of the performance of urban traffic networks is the variation 

of the average speed in the network with the vehicular concentration in the network. In 

previous research, the result of microscopic simulation indicated that the relation between 

network-level averages of speed and concentration followed the familiar shape long 

observed for individual highway facilities (Williams et al., 1987; Mahmassani et al., 1987). 

However, in that research, the sensitivity of this relation to various network features was 

examined only for simulated networks of a given size, due in part to the previously 

explained computational limitations preventing the microscopic simulation of traffic in 

larger networks. In the present research, it is possible to examine the effect of network size 

on the speed-concentration relationship. Figure 1.7 shows the speed-concentration curves 

for the grid test networks of different sizes, as well as for the larger Austin core area 

network. Table 1.1 lists the corresponding average speed and concentration values. The 

most notable aspect from these curves is the large drop in speed for a given concentration 

when the intersections in the network are operated in the unsignalized, STOP-sign 

controlled mode. This seems to occur irrespective of the size of the network. There does 

not appear to be discernable systematic differences due to size among the speed-



27 

20 

15 
,......_ 
:J: 
a. 
::s 

0 10 UJ 
UJ 
a. 
VJ 

5 

" 
~~ 

~'-:::::----- / SxS (STOP) 
Austin(STOP) --_ --------~/-

0 ~------.-------.-------.-------.-------,-------.-----~ 

0 10 20 30 40 50 60 70 

CONCENTRATION (VEH/MILE) 

Fig. 1.7. Speed-Concentration Curves for the Different Networks. 



28 

concentration curves for the four signalized test networks, whose sizes varied from 15.2 

miles (for the 5x5 grid) to 42.7 miles (for the 8x8 grid). However, when the signal control 

is replaced by all-way stop control at all intersections, the average speed values decrease by 

about 10 mph, suggesting that changes in control from unsignalized to signalized operation 

at intersections has much more of an impact on the speed-concentration curves than the size 

of the network. 

It should be noted that the concentration values mentioned above are intended 

values which could only be approximated through the vehicle loading process. Actual 

concentration values could be somewhat different, especially for the large Austin network, 

as congestion at the entry points may have prevented the realization of the intended 

concentration levels. 

The nex-t aspect of the traffic quality studied were the parameters of the two-fluid 

model, which is based on a theory of town traffic proposed by Herman and Prigogine 

(1979), and validated in several field studies as well as simulation experiments. The theory 

proposes that traffic in street networks can be viewed as two fluids, one consisting of 

moving vehicles and the other of vehicles stopped due to reasons other than parking. The 

basic postulate of the theory leads to a characterization of the quality of traffic services with 

the two parameters n and T m in the following relation: 

where 

1 n 

T = Tn+l Tn+l 
r m 

Tr is the average running (moving) time per unit distance and 

Tis the average total trip time per unit distance (both Tr and Tare network-wide 
averages). 

The parameter T m can be interpreted as the average maximum moving time per unit

distance, i.e., in the absence of interference due to the presence of other vehicles. The 



29 

parameter n captures the degree to which the average running time increases with 

congestion in the network. 

Taking the natural log of both sides of the above equation yields 

lnT = - 1-lnT + _n_ lnT 
r n+1 m n+1 

In order to estimate the two parameters, n and T m. the average running time and 

total trip time values, both per unit distance, are obtained for the different concentration 

levels considered in the simulations. The lnTrvs.lnT relation is shown in Fig. 1.8 for the 

large Austin network. The depicted relation is essentially linear over the range of 

concentrations considered, with the exception of the highest values for which a levelling off 

can be noted. Similar behavior has been observed in earlier research with small signalized 

networks (Mahmassani et al., 1987; Williams, 1986) for concentrations in excess of 60 or 

more vehicles per lane-mile. However, a concentration of 30 vehicles/lane-mile can be 

considered to be extremely high for a network controlled only by stop signs at 

intersections. This again suggests that the two-fluid model assumptions may r~main correct 

over practically-encountered range of concentrations, but may not necessarily hold for 

extreme cases (which would be difficult to observe anyway). Figure 1.9 shows the lnT vs 

lnTr curve for the 5x5-node test network with STOP-only control, revealing an essentially 

linear pattern. 

To estimate the two-fluid parameters, nand Tm, a simple least-square regression 

was performed with the lnTr and lnT values. For the large Austin network, this was done 

with and without the data point corresponding to the 30 veh/mile concentration level (in 

light of the above-mentioned nonlinearity). The estimation steps and results are shown in 

Table 1.3 for the Austin network. The estimated parameter values for nand Tm are 0.3 and 

3.57, respectively, for the case with all the data points and 0.45 and 3.28 for the case with 

the one data point removed. 



r:k: 
1-
(.!) 
g 

30 

1.8 

1.6 \ \ 
k = 21.47 

k = 29.43 

1.4 

1 .2 

1.0 ~-------------.---------------.--------------.--------------, 

1.5 2.0 2.5 

LOG T 

3.0 

Note: k stands for concentration in vehicles/lane-mile 

Fig. 1.8. lnTr vs. lnT for the Austin Network. 

3.5 



Table 1.3. Two-Fluid Parameter Estimation for the Austin Network 

Parameter A ParameterB 
Tm n 

Case 
Estimate T-stat Estimate T-stat 

Austin 
(concentration levels 0.817 12.58 0.311 10.52 0.45 3.27 of 5.73, 11.23, 16.41, 
and 21.47) 

Austin 
(concentration levels 
of 5.73, 11.23, 16.41, 0.980 9.40 0.231 5.32 0.30 3.57 
21.47, and 29.43) 

Model: In Tr =A+ B lnT 

(
In T m J ( _!!__ l 

= n+1 )+ Cn+1)1nT 



32 

The two-fluid parameters were also estimated for the four test networks of different 

sizes. The lnTr vs. lnT relations for the four networks are shown in Fig. 1.9, revealing a 

pattern that is essentially linear over most of the range of observations considered with the 

exception of the higher concentrations. The same type of nonlinearity observed earlier is 

also present here, with the curves levelling off at higher concentrations. In general, this 

happens above about 40 veh/lane-miles concentration. Regression lines were calibrated 

separately for the simulation results for all the concentration levels and also for those for up 

to the 40 veh/lane-miles concentration level. The linear portions of the lnTr vs. lnT curves 

almost coincide, and so the latter regressions resulted in comparable estimates of n and T m· 

This was further confirmed by an F-test of the hypothesis that the parameters of the 

lnT r vs. lnT relation are not significantly different across the four networks for 

concentrations up to about 40 veh/lane-miles. On the other hand, a similar F-test 

conducted on the estimates obtained using all six concentration levels showed that the 

model parameters are significantly different (see Table 1.4 for the regression results, two

fluid parameter estimates and the F-tests). The reason for this is the nonlinearity of the 

relationship at higher concentrations, and the fact that different networks exhibit 

nonlinearity above different "critical" concentrations. In fact, Fig. 1.9 shows that this 

"critical" concentration becomes lower as the network size increases. Recall that for the 

Austin network, this critical level was closer to 20 veh/lane-miles, as seen in Fig. 1.8. The 

parameter estimates of n and T m appear to be quite robust, at about 1.4 and 2.3, 

respectively (Table 1.4), for all the four networks at the lower concentrations. This further 

confirms the applicability of the two-fluid theory over the range of practically meaningful 

concentrations, and points to the need for further investigation of the behavior of traffic 

networks at very high concentrations. 

The results obtained also indicate that the traffic control in the network does have a 

significant effect on the lnTr vs. lnT relation, as can be seen in Fig. 1.10, which shows a 

plot of these relations for the signalized and unsignalized (STOP-controlled) 5x5 



Q::: 
f--

1.8 

1 .6 

'-' 1 . 4 g 

1.2 

33 

5x5 (SIG) 

1.0 T------------------.-------------------.------------------~ 

1 .0 1 .5 2.0 

LOG T 

Note: Concentrations at successive points are: 

11.81, 22.18, 33.26, 44.28, 54.58 and 66.06 for 5x5 network, 
11.92, 22.53, 33.79, 42.24, 52.80 and 62.39 for 5x5 network, 
11.31, 22.60, 33.31, 40.23, 50.88 and 60.34 for 5x5 network, and 
10.89, 22.63, 29.98, 40.14, 50.89 and 61.59 for 5x5 network, 

Fig. 1.9. lnTr vs. lnT the Four Test Networks. 

2.5 



Table. 1.4. Two-Fluid Parameter Estimation for Signalized Networks of Different Sizes 

Parameter A ParameterB Sum of 

Network No. of Data Squared n 
Errors Points Estimate T-stat Estimate T-stat (SSE) 

Case 1: All six concentration levels included in estimation 

5x5 SIG 6 0.129 1.34 

6x6 SIG 6 0.412 5.63 

7x7 SIG 6 0.514 6.88 

8x8 SIG 6 0.532 10.59 

Pooled 24 0.410 7.44 

Case 2: Two highest concentration levels deleted from estimation 

5x5 SIG 4 0.367 6.70 
6x6 SIG 4 0.335 9.01 
7x7 SIG 4 0.328 6.46 
8x8 SIG 4 0.361 6.86 
Pooled 16 0.347 14.64 

F-test of difference between the models (case 1) 

Qunresrricted =I ssE= 22.07 x 10 -3 

Qrestricted = SSE 66.63 X 10-3 
pooled 

F* = (Qr- Qul 1(~~= 66.63-22.07 j 22.07 
r ) N - K J 6 24 - 8 

= 5.38 > F 6, 16, O.G25 = 3.3 

So the models are significantly different. 

0.730 
0.536 
0.465 
0.447 
0.535 

0'.556 
0.586 
0.595 
0.571 
0.577 

-3 2.70 12.50 8.66 X 10 _3 
12.42 5.08 X 10 _3 1.15 
10.53 5.61 X 10 _3 0.87 
14.95 2.72 X 10 _3 0.81 
16.29 66.63 X 10 1.15 

14.57 
-4 

1.25 4.64 X 10-4 
23.29 2.13 X 10-4 1.42 
17.10 3.64 X 10-4 1.47 
15.51 3.36 X 10 -4 1.33 
35.27 22.64 X 10 1.37 

F-test of difference between the models (case 2) 

-4 = 13.77 X 10 

Qr = 22.64 x 10
4 

F* _ 22.64- 13.77 I 13.77 
- 6 16- 8 

= 0.86 < F 6,s,o.o25 = 4.65 

So the models are not significantly different. 

Tm 

1.61 
2.42 
2.61 
2.61 
2.41 

2.28 
2.25 
2.25 
2.32 
2.38 



35 

networks, respectively. The figure also depicts the individual regression lines for the 

network under the two control strategies, as well as the line for the pooled data. The two

fluid parameter estimates are shown in Table 1.5, along with the F-test indicating that the 

parameters of the lnTr vs. lnT relations are' significantly different for the two cases. The 

estimates of nand Tm are 0.89 and 1.71, respectively, for the STOP-controlled network, 

and 2.70 and 1.61 for the signalized network. 

The principal substantive conclusions of the above simulations in so far as the 

behavior of traffic is concerned are that 1) the size of the grid network does not appear to 

significantly influence its performance characteristics, and 2) the effect of drastic changes in 

control policies at intersections appears to be much more significant than the effect of size, 

at least for the type of grid test networks considered. Furthermore, by considering the 

results obtained here with earlier findings (Mahmassani et al., 1987), the effect of traffic 

· control strategies is such that drastic changes, such as going from unsignalized to 

signalized control.has a markedly greater impact on network performance than do 

improvements in the timing and/or coordination of traffic signals. For instance, going from 

a non-coordinated timing plan to a coordinated one that provided smoother progression 

along the major directions in the network resulted in a much lesser impact (in earlier 

studies) than the "jump" observed in going from STOP control to signal control in this 

study. 

The finding herein that the size of the grid network does not particularly influence 

its performance characteristics alleviates some of the concerns expressed in connection with 

earlier work regarding the potential existence of a "boundary effect". The latter would be 

due to vehicles being deflected along or inwards as they hit the boundary of the grid. If 

such boundary effects were significant, then systematic variation of the network's 

performance characteristics with the size of the grid would have been observed, because the 

larger networks have less boundary lane-miles relative to the total lane-miles of the 



2.0 

1.8 

c.::: 1.6 
I-
C.? 
9 

1.4 

1.2 

data points for 
signalized control (SIG) 

calibrated regression 
line for signalized \ 
control (SIG) 

1.0 1.5 2.0 

calibrated regression line for pooled data 

t 

2.5 3.0 

LOG T 

Note: The Concentration Levels for the Successive Data Points are: 

11.81, 22.11, 33.26, 40.26, 48.90 and 55.31 for 5x5 (STOP) and 
11.81, 22.18, 33.26, 44.28, 54.58 and 66.06 for 5x5 (SIG) 

Fig. 1.10. lnTr vs. lnT and Calibrated Regression Lines for the Signalized and 
Unsignalized 5x5 Networks. 

36 

3.5 



Table. 1.5. Two-Fluid Parameter Estimation for Signalized Networks of Different Sizes 

Parameter A 
Network No. of Data 

Points 
Estimate T-stat 

5x5 SIG 6 0.129 

5x5 ST 6 0.282 

Pooled 12 0.687 

F-test of difference between the models 

Qunrestricted = LssE = 12.24 x 10 -3 

Qrestricted =SSE pooled= 161.4 x 10-3 

F* ~ ( <t ~ Q"j!(N ~"K) 
( 

161.4- 12.24 J;( 12.4 J 
= 2 ) 12- 4) 

= 52.7 >> F 2, 2, 0.025 = 5.7 

1.34 

3.87 

5.97 

ParameterB Sum of 
Squared 
Errors 

Estimate T-stat (SSE) 

0.730 12.50 8.66 X 10 
-3 

0.472 18.83 3.58 X 10 
-3 

0.350 7.19 161.4 X 10 -3 

So, the lnTr- lnT models for the signalized and unsignalized 5x5 networks are significantly different. 

n Tm 

2.70 1.61 

0.89 1.71 

0.54 2.88 



I 

38 

network. The absence of such systematic variation suggests that the validity of earlier 

results is not compromised by the potential of such a boundary effect. 

1.4.2. Experimental Results - Computational Aspects 

Since the ability to perform microscopic simulations of realistically large networks 

is one of the principal motivations for this research, several aspects of the computational 

requirements deserve serious consideration. The results are expected to yield valuable 

information for further studies and applications in large networks. Detailed knowledge of 

the computational aspects of the programs is important in order to take full advantage of the 

special architectures of supercomputers. In the following analysis, we assess the reduction 

in execution times on the CRA Y relative to mainframe processing both with and without the 

compiler vectorization capabilities. In addition, information is presented. on the specific 

elements of the program which are particularly computationally demanding, and which 

would therefore be the obvious candidates for subsequent code modification to remove 

non-essential inhibitors to vectorization. 

The first aspect studied is a comparison of the execution times for the different 

simulation cases obtained both on the conventional mainframe and the CRA Y X-MP/24. 

These results are shown in Table 1.6. The simulation cases which could be tried on both 

the CYBER mainframe and the CRA Y show that the CPU execution times on the CRA Y 

are only about 10 to 15% of those on the CYBER. Two other trends are also apparent 

from these results. Firstly, the execution times on the CRA Y appear to increase at a 

somewhat higher rate than on the CYBER as the network size increases. Similarly, for a 

given network size the execution times on the CRA Y increase at a faster rate as the 

vehicular concentration increases than on the CYBER (about 50% increase in execution 

time from the 10 veh/mile concentration to the 30 veh/rnile concentration for the CYBER, 

compared to about a 100% corresponding increase on the CRA Y). The CRA Y version of 

the NETSIM program used for these simulations was vectorized using the CFT compiler. 



39 
Table 1.6. Execution Times 

Target Vehicle 
Execution Times 

Simulation Concentration Simulation (CPU seconds) 
Network Level Loading Time (sec) 

Time (sec) CYBER 170 CRAY X-MP/24 
(veh/lane-mile) Mainframe Supercomputer 

5x5 (SIG) 10 330 600 308.52 25.69 
5x5 (SIG) 20 330 600 371.11 38.73 
5x5 (SIG) 30 330 600 427.68 50.43 
5x5 (SIG) 40 330 600 6.105 
5x5 (SIG) 50 330 600 70.22 
5x5 (SIG) 60 330 600 77.44 

6x6 (SIG) 10 330 600 295.29 35.13 
6x6 (SIG) 20 330 600 382.21 55.06 
6x6 (SIG) 30 330 600 469.50 73.16 
6x6 (SIG) 40 330 600 85.40 
6x6 (SIG) 50 330 600 99.36 
6x6 (SIG) 60 330 600 108.87 

7x7 (SIG) 10 330 600 351.95 45.18 
7x7 (SIG) 20 330 600 470.98 74.17 
7x7 (SIG) 30 330 600 584.28 99.12 
7x7 (SIG) 40 330 600 112.12 
7x7 (SIG) 50 330 600 130.69 
7x7 (SIG) 60 330 600 141.91 

8x8 (SIG) 10 330 600 412.12 24.00 
8x8 (SIG) 20 330 600 574.74 34.23 
8x8 (SIG) 30 330 600 41.70 
8x8 (SIG) 40 330 600 46.76 
8x8 (SIG) 50 330 600 53.03 
8x8 (SIG) 60 330 600 59.17 

5x5 (SIG) 10 330 600 57.00 
5x5 (SIG) 20 330 600 62.39 
5x5 (SIG) 30 330 600 119.10 
5x5 (SIG) 40 330 600 146.80 
5x5 (SIG) 50 330 600 167.09 
5x5 (SIG) 60 330 600 188.06 

AUSTIN (ST) 5 600 900 291.78 
AUSTIN (ST) 10 600 900 443.96 
AUSTIN (ST) 15 1320 900 747.58 
AUSTIN (ST) 20 1320 900 889.60 
AUSTIN (ST) 30 1860 900 1297.95 

SIG refers to signalized networks 
ST refers to unsignalized STOPs-only networks 



40 

It is probable that the above trends are due to the presence of coding constructs that inhibit 

vectorization in the subroutines that perform the computations, and that the effect of these 

inhibitors increases with the number of vehicles being simulated. 

The next aspect considered is the effect of different levels of compiler vectorization 

on the computational performance of the simulation. The CFT compiler provides the 

capability to vectorize the program code in blocks of maximum specified limit (in terms of 

words of internal intermediate text) using the MAXBLOCK control parameter. The 

execution times for the simulations of both the large Austin network and the 5x5 node test 

network for different levels of vectorization (values of MAXBLOCK) are shown in 

Table 1.7. The five cases reported for the Austin network reveal a drop of about 35 to 

40% in execution time that can be achieved by using the default vectorization capabilities of 

the compiler. However, there does not appear to be any significant improvement when a 

higher block length limit is used. Several additional simulations were performed with the 

5x5 test network, and the results are rather interesting. For instance, there is a sharp drop 

in execution time when a maximum block length of 47 is used as compared to the case with 

46. Whereas only about a 6% drop in execution time is obtained from the case of no 

vectorization to that of a MAXBLOCK of 46, a 25% drop is observed as the value of 

MAXBLOCK is changed from 46 to 47. Beyond that level, no more than an additional5% 

drop is achieved. This aspect of vectorization is closely related to the architecture of the 

CRA Y. It can be concluded that the default value of MAXBLOCK for vectorization of the 

NETSIM code results in more or less the maximum level of efficiency that can be achieved 

by compiler vectorization. 

Another important aspect of the computational performance of NETSIM that was studied 

was the relative time-intensiveness of different routines in the program. The CFT compiler 

provides the capability to keep track of the time spent in the various subroutines of the 

program. Appendix l.b shows an example case of the time requirement analysis results 



Simulation 
Network 

AUSTIN (ST) 

AUSTIN (ST) 

AUSTIN (ST) 

AUSTIN (ST) 

AUSTIN (ST) 

5x5 (SIG) 

5x5 (SIG) 

5x5 (SIG) 

5x5 (SIG) 

5x5 (SIG) 

5x5 (SIG) 

5x5 (SIG) 

5x5 (SIG) 

Table 1.7. Execution Times 
(for different levels of vectorization) 

Target Vectorization 
Concentration level 
( veh/lane-mile) MAXBLOCK* 

10 1 (no vectorization) 

10 2310 (default) 

10 4620 

20 1 (no vectorization) 

20 2310 (default) 

30 1 (no vectorization) 

30 25 

30 46 

30 47 

30 1155 

30 2310 (default) 

30 4620 

30 9240 

SIG refers to signalized networks 
ST refers to unsignalized STOPs-only networks 

CPU 
Execution Time 

(seconds) 

670.57 

443.95 

441.94 

1443.66 

889.61 

74.89 

72.73 

70.48 

53.26 

50.66 

50.61 

50.57 

50.57 

*Maximum length of block of code, in words of internal intermediate text, to be vectorized 

41 



• 

42 

produced by the CFf compiler. Table 1.8lists the percentages of time used up by the three 

most time intensive subroutines in the program (ADJQ, CLNUP, and TRVL) for different 

levels of compiler vectorization. The most striking aspect of the time requirement analysis 

is the extreme time-intensiveness of the subroutine CLNUP, which generally accounts for 

half or more of the execution time. This subroutine performs most of the bookkeeping at 

the end of each simulation time step, by looping over all the vehicles and all the links in the 

network. Its time-intensiveness is therefore understandable. Table 1.8 reveals that the 

percentage of time spent in this routine falls by about 20 to 25% under compiler 

vectorization. This, coupled with the fact that there is about 35 to 40% drop in overall 

program execution time under vectorization, means that the subroutine CLNUP vectoizes 

better than the program overall, causing an overall drop of more than 50% in execution 

time. There are no significant patterns in the changes in the percentages for other major 

subroutines. This points to the possibility of concentrating on subroutine CLNUP for 

further modifications by rewriting the code using more vectorizable structures. 

1.5. CONCLUSIONS AND FUTURE DIRECTIONS 

1.5.1. Further Possible Modifications of NETSIM 

This study has demonstrated that supercomputer capabilities provide the ability to perform 

microscopic simulation of realistically large urban traffic networks that could not be 

previously performed on mainframe computers. An encouraging indication from the 

research is that this was accomplished without exhausting the capabilities of the CRA Y. 

For instance, the simulation of the Austin Central Area Network of 1600 links with 256 

lane-miles required only about 30% of the memory capabilities of the CRAY. The CPU 

time needed for simulating realistic traffic concentrations of 20 to 30 veh/lane-mile was of 

the order of one half of the real time, even when no receding of the NETSIM program was 

attempted to improve vectorizability. This suggests considerable scope for further 



43 
Table 1.8. Execution Times 

(in the three most time-intensive routines of NETSIM)* 

Percentage of 
Execution Times t 

Target V ectorization 
Simulation Concentration level 
Network (veh/lane-mile) MAXBLOCK** m m in 

ADJQ CLNP TRVL 

AUSTIN (ST) 10 1 8.22 59.08 12.19 

AUSTIN (ST) 10 2310 10.49 43.85 17.25 

AUSTIN (ST) 10 4620 10.51 43.89 17.12 

AUSTIN (ST) 20 1 12.60 63.20 8.85 

AUSTIN (ST) 20 2310 16.52 47.59 13.28 

5x5 (SIG) 30 1 7.23 61.46 18.07 

5x5 (SIG) 3o 25 7.76 62.75 17.41 

5x5 (SIG) 30 46 6.81 62.93 17.55 

5x5 (~IG) 30 47 9.63 47.70 24.60 

5x5 (SIG) 30 1155 9.11 48.26 25.80 

5x5 (SIG) 30 2310 9.05 48.12 25.07 

5x5 (SIG) 30 4620 9.06 48.31 24.87 

5x5 (SIG) 30 9240 9.06 48.25 24.80 

*See Appendix l.b for an example of the complete break-up of the execution times 

** Maximum length of block of code, in words of internal intermediate text, to be vectorized 

tSee Table 1.7 for the total execution times for these cases. 



44 

meaningful improvements, which would make the microscopic simulation of traffic in any 

large urban network a viable proposition and a tool that can contribute to research in traffic 

theory as well as to traffic engineering practice. 

One of the most important areas for improvement is that of execution speed. A real 

time to simulation time ratio of 2:1 for a reasonably sized downtown area, albeit acceptable 

for microscopic simulation, is nevertheless still costly on supercomputers. However, it is 

clear that this time can be greatly reduced by local recoding of portions of the NETSIM 

program to achieve greater parallel processing efficiency. In fact, the computational 

experience with such local vectorization of other network analysis programs during this 

research (see Chapter 2), indicates that execution times can be reduced to much lower 

values (even to 20 or 30%) than those obtained with automatic compiler vectorization. 

Such results can be achieved with relatively minor changes in the program code. 

With respect to execution time improvement, this research study was able to 

produce some pointers for future modifications. The time requirement analysis (see 

Appendix l.b and Table 1.8) shows that almost half of the execution time is spent in one 

subroutine CLNUP, and almost 75% to 80% in just three out of the 60 subroutines 

(CLNUP, ADJQ, TRVL). Clearly, these are the subroutines that should be concentrated 

on in further code modifications. The CLNUP subroutine does the bookkeeping after 

every simulation time step, and in this process loops over all the vehicles and all the links. 

Some rearrangement of the DO loops in the subroutine could be instrumental in reducing 

the execution times (See Chapter 2 for examples of vectorizable DO loop structures.) 

The memory capabilities of the CRA Y of about 4 million words seemed to be more 

than adequate, and no immediate modifications are warranted in the program for more 

efficient memory management. It appears that urban areas of up to even 5 or 6 times the 

size of the Austin network tested in this study can be managed within the 4 megaword 

memory limit of CRA Y. One possibility along these lines is to have a preprocessor for the 

NETSIM code itself, which does intelligent array dimensioning depending on the problem 



45 

at hand and recompiles the code. For example, if the urban area does not have many 

actuated signals, the memory dimensions needed for actuated signals can be reduced. 

Similar modifications are possible, based on whether any bus-routes analysis is needed, 

whether fuel consumption analysis is needed, etc. Again, this would be needed only for 

some extremely large networks. 

1.5.2. Further Research Possibilities 

Having demonstrated the feasibility of performing microscopic simulations of large 

networks a wide spectrum of possibilities become available for simulation-based studies of 

real urban traffic networks. This research initiated a first step in this direction in the area of 

the characterization of the quality of urban traffic based on network-level traffic parameters. 

Several other meaningful directions for future traffic research should be considered. 

In the area of the two-fluid theory of urban traffic, further investigation of the 

behavior of the traffic system under extremely congested conditions is worth pursuing. As 

the Austin network used for this study was assumed to have only STOP control at the 

intersections, definitive conclusions could not be reached on this aspect. Simulating 

networks with different types of signalized control at different traffic concentrations would 

be useful, as would the study of the traffic system under short and long-term events 

(closing of the full length of a street for construction, for example). Actually, such 

simulations have been conducted by Williams et al. (1985), though only for a 5x5 grid 

network. conducting similar tests on larger realistic networks on the CRA Y is now 

possible. Another aspect of interest is the effect of the topology of large networks, and of 

configurations of the main streets on network performances and traffic quality. 

Another important application area that could be addressed in future research is that 

of strategies for electronic route guidance in urban traffic networks. The basic 

telecommunications and microprocessor hardware technologies for in-vehicle route 

guidance are largely available; however, the integration of these technologies for the 



46 

purpose of purveying real-time information to vehicles remains m its infancy. 

Furthermore, important system design questions must be addressed, pertaining to the type 

and frequency of supplied information, as well as the extent of its availability to network 

users. Microscopic simulation provides an obvious tool for evaluating the effectiveness of 

various strategies and supporting the design of such systems. However, to conduct such 

studies using NETSIM, some modifications are needed in the code, especially with regard 

to the routing of vehicles in the network. An additional subroutine to determine users' 

route choice in response to information could be incorporated into the program for this 

purpose. 



47 

Appendix l.a. Additional Output Generation 

FORTRAN output 
unit number 

41-58 

35 

32 

36 

Output written 

Individual vehicle information for every specified vehicle in the 
network. The vehicles are specified in the subroutine CLNUP. 
Information on the vehicle position, link occupied, headway in 
front, etc., are available. More variables can easily be added. 

Vehicle speed distribution at the end of each cumulative output. The 
frequency of vehicles in 100 speed classes, (0 ft/sec to 100ft/sec). 
A 100-element array called IVEL is the output. 
IVEL(J) = The number of of times that a vehicle with speed 

between (J-1) ft/s and J ft/s is encountered, at specified 
sampling intervals. 

Information on particular links in the network 

Total number of time steps the vehicles are either moving or stopped 



48 

Appendix l.b. An Example of the Results of the Time-Requirement 
Analysis. (Austin Network, Vectorization of 
MAXBLOCK = 2310, Concentration = 20 veh/lane-miles) 

F L 0 W T R A C E -- Alphabetized summary 

Routine Time executing Called Avg T 
29 ADJQ 115.442 ( 16.52%)1422131 > Called by GOQ MOVE 
53 BUSDIS 0.002 ( 0.00%) 2280 >>> Called by CLNUP 
17 BUSOT2 0.006 ( 0.00%) 6 > Called by PRE PRO 
49 CLNUP 332.613 ( 47.59%) 2280 0.146 Called by SIMUL 

8 CLRALL 0.024 ( 0.00%) 2 0.012 Called by PRE PRO 
52 CYCP 5.129 ( 0.73%) 7 0.733 Called by OUTPT 

2 DRWS 8.930 ( 1.28%) 28526 > Called by FLSORT PRE PRO 
PRMSND PRSIG UTCSUP 

43 EXPES 0.138 ( 0.02%) 107160 > Called by SVEH 
16 FLOOUT 0.046 ( 0.01%) 6 0.008 Called by FLOWS 
13 FLOWS > ( 0.00%) 18 > Called by PRE PRO 
5 FLSORT 0.034 ( 0.00%) 1 0. 034 Called by PRE PRO 

26 GETCD 2.904 ( 0.42%) 181829 > Called by LANE 
23 GOQ 3. 211 ( .o. 46%) 257644 > Called by LFTRN MOOV 

MOOV 
30 HDWY 0.864 ( 0.12%) 63206 > Called by ADJQ MOVE 

9 INTI 2.576 ( 0.37%) 12 0.215 Called by PRE PRO 
51 INTST 3.340 ( 0.48%) 4 0.835 Called by OUTPT 
25 LANE 5.140 ( 0.74%) 181829 > Called by GOQ SVEH 
40 LFTRN > ( 0.00%) 72 > Called by MOOV 
12 LNKSIG 0.020 ( 0.00%) 16564 > Called by PRSIG UPSIG 
34 LSWCH 0.716 ( 0.10%) 45017 > Called by CLNUP TRVL 
37 MOOV 37.241 ( 5.33%) 2280 0.016 Called by SIMUL 
20 MOVE 35.219 ( 5.04%) 2280 0.015 Called by SIMUL 
50 OUTPT > ( 0.00%) 11 > Called by CLNUP SIMUL 

3 PREPRO 6.610 ( 0.95%) 7 0. 944 Called by UTCSUP 
46 PRKD 2.146 ( 0.31%) 2280 > Called by SIMUL 
14 PRMSND 0.008 ( 0.00%) 12 > Called by FLOWS 
10 PRSIG 0.024 ( 0.00%) 2 0.012 Called by PRE PRO 
57 RESET 0.013 ( 0.00%) 1 0.013 Called by STABLE 
22 RNDM 3.060 ( 0.44%) 499302 > Called by GETCD GOQ 

HDWY STPSN SVEH 
18 SIGOUT 0.378 ( 0.05%) 2 0.189 Called by PRE PRO 
19 SIMUL 0.158 ( 0.02%) 6 0.026 Called by UTCSUP 
56 STABLE > ( 0.00%) 1 > Called by SIMUL 
21 STPSN 14.275 ( 2.04%) 978086 > Called by MOVE 
42 SVEH 0.336 ( 0.05%) 2280 > Called by SIMUL 

7 THREAD 0.073 ( 0.01%) 6 0.012 Called by FLSORT 
32 TRVL 92.834 ( 13.28%)2842142 > Called by GOQ MOOV 
33 TSIG 8.095 ( 1.16%)1061465 > Called by TRVL 
28 TSTSAT 3.656 ( 0.52%) 257644 > Called by GOQ 
47 UPSIG 13.652 ( 1.95%) 2280 0.006 Called by SIMUL 

1 UTCSUP > ( 0.00%) 1 > 

* * * TOTAL 698.915 7958682 Total calls 



CHAPTER 2. 
VECTORIZATION OF NETWORK EQUILIBRIUM ASSIGNMENT 

ALGORITHMS FOR ONE AND TWO CLASSES OF USERS 

2.1. INTRODUCTION 

49 

The main objective of this chapter is to examine the computational improvements 

that can be achieved by running two network traffic assignment codes, for the single class 

and the two-class user equilibrium problems, on the CRA Y X-MP supercomputer. The 

network traffic assignment problem arises in connection with many transportation planning 

activities, including the analysis of the cost-effectiveness of capital improvement projects 

and the evaluation of operational planning strategies in traffic networks. Both codes are 

also used in the more general transportation network design problem, which is a non-

polynomial hard problem that cannot generally be solved optimally using current 

computational techniques. In view of the CRA Y's high speed and ability to handle 

vectorization, the two codes were tested to determine if the reduction in execution time is 

substantial, especially after modification aimed at taking advantage of the capabilities of the 

CRA Y's architecture. The results have important implications for practice, in terms of the 

size and complexity of the problems that can be addressed, and more importantly, for the 

future development of solution approaches to the network design problem. 

2.2. GENERAL GUIDELINES 

The introduction of supercomputers, faster and capable of handling vector and 

parallel processing, enables the solution of problems which had previously been considered 

unsolvable on slower machines. However, they have increased the programmers' 

responsibilities, requiring a better understanding of computer architectures and 

characteristics. This point is emphasized by many researchers (Zenios and Mulvey, 1986) 

as well as CRA Y consultants (CHPC User Services, 1987a, b). The main feature that is 

emphasized from the programming point of view is the vectorization of the DO LOOPS, 

which generally are the main source of computer time expense. Emphasis is given to the 



50 

identification and modification of those programming steps which inhibit vectorization, 

given that the CRA Y X-MP compiler automatically tries to vectorize the loops where 

applicable. Some recommended steps for transforming a code initially intended for a scalar 

process to one that can take advantage of vector processing capabilities are summarized 

below. 

The first step is to perform a time requirements analysis of the computer code to 

determine the parts of the code which consume most of the execution time. The user 

should then employ a combination of compiler directives and program optimization by 

identifying those parts of the code which inhibit vectorization. Then, having achieved a 

certain levd of improvement, the user should try to attempt code restructuring, eventually 

considering different algorithms which may be implemented in a way that can better 

address the vector and parallel processing capabilities of the computer. This process is 

iterative, and can be continued until the programmer is satisfied that no significant changes 

can be made. These general steps are recommended by the UT CRA Y group (CHPC User 

Services, 1987a, b), as well as most other experienced users (see, for example, Zenios 

and Mulvey, 1986). 

The vectorization of the DO LOOPS is emphasized as a first step towards 

improvement of the code. When trying to determine whether or not to vectorize a particular 

DO LOOP, the CFT compiler checks for the existence of any dependencies within the loop. 

The CFT compiler produces a code which contains vector instructions to drive the high

speed vector and floating point functional units and the eight vector registers in their 

specified operation. Vectors are processed in a pipeline fashion; after an initial startup 

period the first result appears, followed by the other results, one every cycle. The 

compiler, to be on the safe side, does not attempt vectorization when it recognizes certain 

dependencies within the loop. Below are some statements which should be avoided within 

the DO LOOPS, according to the UT CHPC User Services Group (1987a): 



• CALL statements; 

• I/0 statements; 

• branches to statements not in the loop; 

• inner DO LOOPS that are not unrolled; 

• backward branches within the loop; 

• statement numbers with references from outside the loop; 

• references to character variables, arrays, or functional IF statements 

which may not execute due to the effects of previous IF statements; 

• ELSEIF statements; 

• external function references not declared in a CDIR $ VFUNCTION 

directive; 

• bounds checking on any array referenced in the loop; 

• specifying the DEBUG option; 

• loop size exceeds the optimized MAXBLOCK size; and 

• loop has been unrolled or replaced by a $SCILIB routine. 

51 

Furthermore, as a guideline to vectorize the two codes, we followed some 

techniques suggested in publications from both the UT CHPC User Services (1987) and 

the San Diego Supercomputer Center (June 1987), such as: 

1) Eliminate data dependencies; a loop will not vectorize if, for example, an array is 

referencing values dependent on computations in lower positions of the array in an 

incrementing loop. The computations cannot be pipelined. 

2) Eliminate subscript ambiguities; try to eliminate the dependency of a subscript on 

a previous calculation, i.e., include the operation in the array. 

3) Assign as the innermost loop the one with the largest range; the code is more 

effective when the inner loop is the largest one since it is the only one that is vectorized. 



52 

4) Eliminate conditionals; IF THEN ELSE statements can be replaced by 

conditional vector merge procedures. Simple IF statements are vectorizable, but depending 

on their reference they might inhibit vectorization. 

5) Unroll the loops to a certain depth; it eliminates checking for termination 

conditions and enforces chaining and functional unit overlap. 

6) Separate vectorizable from unvectorizable loop; if possible, separate loops which 

contain CALL statements or I/0 statements or any of the statements mentioned previously 

which are independent of the other computations within the loop. 

Before describing the application of these rules to the network assignment codes 

considered in the study, we present, in the next section, the basic steps of the algorithms to 

solve for the Single Class User Equilibrium and the Multiclass User Equilibrium with 

asymmetric costs. 

2.3. THE NETWORK EQULIBRIUM ALGORITHMS 

The single user equilibrium algorithm is an iterative procedure that solves for the 

flows onto the links of a transportation network by assigning given trips between origin 

and destination points in a way that achieves certain equilibrium conditions in the network. 

Users are assumed to choose the path with the minimum travel time between their origin 

and their destination. However, because link travel time (costs) depend on the prevailing 

link flow, it is necessary to solve jointly for link flows and travel times. This solution is 

based on the principle that no driver can improve his travel time by unilaterally switching 

routes when the equilibrium state is reached (Wardrop, 1952). The single class user 

equilibrium problem is based on Beckman's equivalent mathematical programming 

formulation (1956), and can therefore be solved by any of several nonlinear optimization 

techniques. The most widely used algorithm for its solution is based on the Frank-Wolfe 

(1956) or convex combinations method. 



53 

The two-class user equilibrium problem arises when two classes of users, e.g., 

cars and trucks, share the use of the physical right-of-way on the highway facilities. The 

travel times (costs) experienced by one class of users depend not only on the flow of 

elements belonging to that class, but also on the flow of the other class. When the 

respective effects of the flow of one class on the travel time of the other are not symmetric 

(e.g., the effect of one additional truck on the cars' average travel time is greater than the 

effect of an additional car on the trucks' travel time), the resulting user equilibrium problem 

does not have an equivalent mathematical programming formulation. The algorithm used 

for its solution is a direct algorithm, called the diagonalization algorithm. Both algorithms 

have similar computational characteristics, mainly a shortest path routine, a line search 

routine (to find the optimal move size along a particular direction), and an aU-or-nothing 

assignment routine. The principal cost is due to the frequent use of the shortest path 

routine followed by the move size calculation. A considerable cost is also incurred in the 

computation of the relatively complicated travel cost functions. The principal steps of the 

two algorithms are presented hereafter. Note that the functions taO denote the link 

performance (cost) functions, which capture the dependence of link travel time (cost) on 

link flows. 

Steps of the single class user equilibrium algorithm: 

STEP 0: Initialization. Perform aU-or-nothing assignments based on the free flow 

travel times ta = ta(O), Va; 

This yields the set of link flows {x;}_ Set counter n = 1. 

STEP 1: Update. Set t~ = ta (X;), Va. 

STEP 2: Direction finding. Perform aU-or-nothing assignment based on 

{t~}. This yields a set of (auxiliary) link flows {y~}. 



x~+ a (y~- x:J 
STEP 3. Line search. Find an that solves min I, Jta(w)dw 

a 0 

subject to 0::;; an;;::: 1. 

n+l n n n 
STEP 4: Set Xa = Xa +an (Ya- Xa), Va. 

STEP 5: Convergence test. If a convergence criterion is met, STOP (the 

{ n+l} current solution, Xa is the set of equilibrium link flows); otherwise, 

set n = n+l and GO TO STEP 1. 

54 

In the solution of the two-class user equilibrium problem, a separate copy of the 

physical network is created for each class of users. The interactions between classes 

sharing the same physical links are then represented through the performance (cost) 

functions associated with each link in the individual network copies. In the general case, 

these functions would specify the dependence of a link 's travel cost on flows on any other 

link. In the two-class case, the specification of the cost functions reflects the desired 

dependence between user classes as interactions among links. 

Steps of the diagonalization algorithm: 

STEP 0: Initialization. Find a feasible link flow vector xn. Set n = 0. 

STEP 1: Diagonalization. Solve the following subproblem: 
XE 

min zn(X) = L I te (X~, ... , Xe\· w, x;+l' ... ,X~)dw 
e 0 

subject to 

(
5 

;;::. 0, Vk, r, s 



where 

the subscript e denotes a link of the combined network (which includes as 

many copies of the physical network as there are different classes of users), 

Xe is the flow on link e 

~ denotes path k from origin r to destination s; and 

~ denotes the total flow from origin r to destination s. 

55 

STEP 2: Convergence test. If a convergence criterion is met, STOP (the current 

solution {x~+l} is the set of equilibrium link flows); otherwise, set n = n+1 and 

GO TO STEP 1. 

STEP 1 is solved using the Frank-Wolfe algorithm, where at the n-th iteration all 

cross-link effects are fixed and the flow on one link depends only on its own flow. It is 

more computationally demanding than the single class algorithm, because there are as many 

origin-destination trip matrices as there are classes of users, which means greater use of the 

shortest path and the ali-or-nothing assignment procedures. Furthermore, the travel cost 

functions are more complicated, increasing the computational burden for the move size 

finding. 

Nevertheless, the two computer codes do not differ significantly from each other. 

They are composed of the same subroutines, with some modifications in the two-class UE 

to take into account the division of the traffic into trucks and passenger cars. Following is 

a descriptive summary of how the algorithmic steps are implemented in the two computer 

codes. 

The input of the characteristics of the network, the Origin-Destination (0-D) 

matrices, link characteristics and convergence measures, are included in TRAF ASN and 

UETRDIA for the Single Class UE and the Two-Class UE, respectively. The initialization 

STEP 0 takes place in subroutines UE and UED, respectively, where all the main steps of 

the algorithms are controlled. Following the initialization of all the paths to zero flows, 



56 

subroutine AON (AONUED for the two-class diagonalization code), is called to initialize 

the flows on the links to zero. Then the travel times on the links are computed, initially 

with zero flows. Given these travel times, subroutine SHP A TH (SHPUED) is called, as 

many times as the number of 0-D pairs, which identifies the shortest path for each 0-D 

pair. Then the flow for each 0-D pair is allocated on the links which comprise each 

shortest path. The calculation of the travel times and the allocation of the flows to the links 

(ali-or-nothing assignment), correspond to STEP 1 and STEP 2 of the Single Class UE 

algorithm, respectively. These steps are all included in STEP 1 of the diagonalization 

algorithm, which, as noted earlier, mainly involves the solution of many Single Class UE 

problems. STEP 3 of the Single Class UE is controlled by subroutine BISECT 

(BISUED), where the step size is determined by a line search using the bisection method. 

Then the flows are updated in STEP 4 using the step size calculated in STEP 3 and finally, 

STEP 5 (STEP 2), the convergence test, is calculated in subroutine UE (UED). For the 

diagonalization algorithm, we have the additional burden of the internal convergence test 

for each UE subproblem. The output of the program is controlled by subroutine DUMP 

(DUMPUED), mainly reporting the flows on the links, the convergence measure, the 

number of iterations and the volume-to-capacity ratio for each link. A more detailed 

description of the two computer codes can be found in Mouskos et al. (1986). 

The main computational effort is required by the shortest path routine, its cost 

depending on the size of the network and the number of 0-D pairs. The computational 

effort required by the step size determination routine is also dependent on the size of the 

network, due to the repetitive calculation of the link travel times and the iterative nature of 

the line search. The computation of link travel times is also the major burden in the ali-or

nothing and the output subroutines. The convergence measure determination is the main 

source of time expense in the UE (UED) routine. In the following sections, the 

modifications to the two codes to enhance their vectorizability are described, along with the 



57 

computational results obtained in connection with the numerical experiments performed to 

test these modifications. 

2.4. COMPUTATIONAL RESULTS FOR SINGLE CLASS UE CODE 

The algorithm was tested on a network with 364 0-D pairs, 128 nodes, and 336 

links. This is considered a medium-size transportation network, and has been used in 

earlier tests of a total of 500 iterations were allowed before the code was terminated for any 

test run. 

The first step before doing any changes to the code was to execute the program 

without the vectorizing capabilities of the CFT compiler and perform a time analysis. The 

results are shown in Table 2.1. To total time to execute was 15.679 seconds, using the 

CFT compiler (with vectorization blocked using the statement MAXBLOCK = 1). 

Next, the program was executed by removing the prohibition for vectorization, 

using both the CFT and the CFT77 compilers. The results are shown in Tables 2.2 and 

2.3, respectively. From the results, it can be seen that the execution times for soi:ne of the 

routines were reduced considerably. A total reduction of 4.404 sees (or 28.1%) has been 

achieved by the vectorized compilation (See Tables 2.1 and 2.2) (without any program 

modification). However, the functions COSTFN and FINT have not been reduced much 

(by 0.234 and 0.022 sec, or 3.9% and 4.3%, respectively), thereby pointing our efforts 

towards seeking an opportunity to improve those functions. 

One strategy to achieve such improvement is to include the travel cost functions 

within the BISECT routine, in which the COSTFN function is called repeatedly. As noted 

earlier, calling functions or subroutines in a loop sometimes prohibit vectorization. The 

execution time summary following this modification, is given in Table 2.4. As can be 

seen, there is a reduction of 1.274 sec (or 11.3%). However, it was suspected that a 

further data dependency existed in the loop for calculating the travel times which inhibited 

vectorization. More specifically, the separate calculations of the parameters A1 and B 1 of 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
COSTFN 
DUMP 
FINT 
SHPATH 
TRAFASN 
UE 

2.195 
3.065 
5.928 
0.222 
0.507 
3.330 
0.051 
0.381 

TOTAL 15.679 

(PERCENT AGE TIME) 

(14.00) 
(19.55) 
(37.81) 

(1.41) 
(3.24) 

(21.24) 
(0.32) 
(2.43) 

58 

Table 2.1. Execution Times for Each Subroutine When Vectorization is 
Blocked (MAXBLOCK = 1 in CFT Compiler) 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
COSTFN 
DUMP 
FINT 
SHPATH 
TRAFASN 
UE 

1.430 
1.813 
5.694 
0.215 
0.485 
1.391 
0.050 
0.198 

TOTAL 11.27 5 

(PERCENT AGE TIME) 

(12.68) 
(16.08) 
(50.50) 

(1.91) 
(4.30) 

(12.33) 
(0.44) 
(1.75) 

59 

Table 2.2. Execution Times for Each Subroutine with Vectorization Using 
the CFT compiler 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
COSTFN 
DUMP 
FINT 
SHPATH 
TRAFASN 
UE 

0.917 
1.517 
5.785 
0.201 
0.487 
1.055 
0.048 
0.191 

TOTAL 10.199 

(PERCENTAGE TIME) 

(8.99) 
(14.87) 
(56.72) 

(1.97) 
(4.78) 

(10.34) 
(0.47) 
(1.87) 

60 

Table 2.3. Execution Times for Each Subroutine with Vectorization Using 
the CFT77 Compiler 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
COSTFN 
DUMP 
FINT 
SHPATH 
TRAFASN 
UE 

1.424 
5.746 
0.481 
0.213 
0.489 
1.402 
0.050 
0.196 

TOTAL 10.001 

(PERCENT AGE TIME) 

(14.24) 
(57 .46) 

(4.80) 
(2.13) 
(4.89) 

(14.02) 
(0.50) 
(1.96) 

61 

Table 2.4. Execution Tims Summary Following the Modification of 
BISECT to Calculate the Travel Time Within BISECT Instead of 
Calling Function COSTFN (with Vectorization Using CFT 
Compiler). 



62 

the link performance functions were thought to inhibit vectorization because they could not 

be recognized by the CFf compiler. The expressions for these parameters were therefore 

included directly in the travel time equation. The above changes in the code are exhibited 

below: 

original loop in bisect: 

DO 30 N=l, NARC 

X= FL(N) + AMD*(NFL(N)-FL(N)) 

Al =ALP (TYP(N)) 

Bl = BET(TYP(N)) 

CST= COSTFN (L(N), C(N), V(N), X, Al, Bl) 

30 D = D + CST*(NFL(N) - FL(N)) 

1st Change: Removing the call function COSTFN 

DO 30 N=l, NARC 

X= FL(N) + AMD* (NFL(N) -FL(N)) 

Al =ALP (TYP(N)) 

Bl = BET(TYP(N)) 

CST = L(N)N(N) 

IF(C(N). NE.O) CST= CST*(l + Al *(X/C(N))**B 1) 

30 D = D + CST*(NFL(N) - FL(N)) 

2nd Change: Incorporating expressions for A 1 and B 1 directly in the cost (CST) 

calculation 

DO 30 N=l, NARC 

X = FL(LN) + AMD* (NFL(N) - FL(N)) 

CST= L(N)N(N)* (1+ ALP(TYP(N))*(X/C(N))**BET(TYP(N))) 

30 D = D + CST*(NFL(N)- FL(N)) 

With the last change shown above, the program was executed by both compilers. 

As it can be seen from the results in Tables 2.5 and 2.6, there was a dramatic drop in 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECf 
COSTFN 
DUMP 
FINT 
SHPATH 
TRAFASN 
UE 

1.433 
1.328 
0.477 
0.211 
0.475 
1.411 
0.050 
0.184 

TOTAL5.568 

(PERCENT AGE TIME) 

(25.73) 
(23.85) 

(8.56) 
(3.79) 
(8.53) 

(25.34) 
(0.90) 
(3.30) 

63 

Table 2.5. Execution Time Summary Following Modification of BISECT 
by Including the Parameters A and BET in the Travel Cost 
Equation (with Vectorization Using CFT Compiler). 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
COSTFN 
DUMP 
FINT 
SHPATH 
TRAFASN 
UE 

0.931 
0.654 
0.494 
0.203 
0.488 
1.061 
0.047 
0.184 

TOTAL4.061 

(PERCENTAGE TIME) 

(22.93) 
(16.09) 
(12.15) 

(4.99) 
(12.02) 
(26.12) 

(1.17) 
(4.52) 

64 

Table 2.6. Execution Time Summary for Same Code as Table 2.5, but with 
Vectorization Using CFT77 compiler 



65 

execution time from 10.001 to 5.568 sees (or a 44.3% improvement), primarily due to a 

drop in BISECT from 5.746 to 1.328 (or a 76.9% improvement), confirming the prior 

existence of a dependency which had inhibited the vectorization of the loop. 

Given the above results, similar changes were made wherever the functions 

COSTFN and FINT were called. The time analysis after those changes were implemented 

is shown in Table 2.7. The total execution time was reduced from 4.061 sees to 3.325 

sees (using the CFT77 compiler), or an 18.1% decrease. 

In the same subroutine, a further step was to specify the _1_ as a variable Cl(N) 
C(N) 

so that X/C(N) was transformed to X*Cl(N), which eliminates the repetitive division. 

Furthermore, the equation X= FL(N) + AMD*(NFL(N) - FL(N)) was taken out of the 

loop as follows: 

DO 29 N=1, NARC 

DNFL(N) = NFL(N)- FL(N) 

29 CONTINUE 

DO 31 N=1,NARC 

X(N) = FL(N) + AMD*DNFL(N) 

31 CONTINUE 

DO 30 N=1, NARC 

CST= L(N)N(N)*(l. + ALP(TYP(N))*(**Cl(N))** BET(TYP(N)) 

30 D = D + CST*DNFL(N). 

Also, the following loop was similarly changed: 

original form 

DO 300 N=1, NARC 

NFL(N) = FL(N) + AMD*(NFL(N)- FL(N)) 

300 CONTINUE 



modified form 

DO 300 N=1, NARC 

NFL(N) = FL(N) + AMD*DNFL(N) 

300 CONTINUE 

66 

The results of this change are given in Table 2.8 indicating a decrease from 3.325 to 

3.301 (0.024 sec, less than a 1% reduction). Thus, the improvements from these further 

changes were not as significant as the earlier ones. 

2.5. COMPUTATIONAL RESULTS FOR THE TWO-CLASS 
DIAGONALIZATION CODE 

The diagonalization algorithm was applied to a relatively large network, with two 

classes of vehicles operating on it. The network consists of 364 0-D pairs, 1400 

nodes, and 3912 links. A total of 25 iterations were allowed before the code was 

terminated for all test runs. 

A similar procedure was followed as with the single class user equilibrium code. 

First, a time analysis was performed using the CFT compiler options ON=F and 

MAXBLOCK=1 to block vectorization. The results are given in Table 2.9. Table 2.10 

shows the time analysis with MAXBLOCK=1 removed, thus allowing compiler 

vectorization to take place. Comparing the results, we see an improvement from 23 

seconds to 13 seconds (i.e., a 41.5% reduction). The routines which showed 

improvement are the AONUED (the aU-or-nothing procedure), BISUED (the direction 

finding procedure), DUMPUED (the output routine), SHPUED (the shortest path routine), 

and UETRDIA (the input routine). No improvement occurred for the travel cost function 

TRCOST and the UED (the routine calling the other routines and performing the general 

diagonalization process). These results parallel those obtained with the single class UE 

algorithm. Therefore, similar changes in the code were implemented, as shown below: 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
DUMP 
SHPATH 
TRAFASN 
UE 

0.850 
0.656 
0.208 
1.058 
0.048 
0.504 

TOTAL3.325 

(PERCENT AGE TIME) 

(25.56) 
(19.74) 

(6.25) 
(31.83) 

(1.45) 
(15.17) 

67 

Table 2.7. Execution Time Summary Following Further Modification by 
Removing Calls to Separate Functions COSTFN and FINT 
(with Vectorication Using CFT77 compiler). 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AON 
BISECT 
DUMP 
SHPATH 
TRAFASN 
UE 

0.847 
0.641 
0.206 
1.056 
0.048 
0.505 

TOTAL3.301 

(PERCENT AGE TIME) 

(25.66) 
(19.43) 

(6.23) 
(31.99) 

(1.47) 
(15.23) 

68 

Table 2.8. Execution Time Summary Following Further Modifications in 
the BISECT Routine, Mainly Decomposing a Loop to Smaller 
Loops (with Vectorication Using CFT77 compiler). 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AONUED 
BISUED 
DUMPUED 
SHPUED 
TRCOST 
UED 
UETRDIA 

1.192 
5.726 
0.434 

10.033 
4.608 
0.245 
0.815 

TOTAL 23.053 

(PERCENTAGE TIME) 

(5.17) 
(24.84) 

(1.88) 
(43.52) 
(19.99) 

(1.06) 
(3.54) 

69 

Table 2.9. Execution Times Summary for the Diagonalization Code, with 
Vectorization Blocked (MAXBLOCK = 1, on CFT compiler). 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AONUED 
BISUED 
DUMPUED 
SHPUED 
1RCOST 
UED 
UE1RDIA 

0.661 
2.856 
0.201 
4.389 
4.440 
0.125 
0.816 

TOTAL 13.489 

(PERCENTAGE TIME) 

(4.90) 
(21.17) 

(1.49) 
(32.54) 
(32.91) 

(0.93) 
(6.05) 

70 

Table 2.10. Execution Time Summary for the Diagonalization Code, with 
Vectorization Using the CFf Compiler. 



BISUED routine - Original code for LOOP 30: 

DO 30 N=1, NARC/2 

X1 = NFLI(N) + (NFL(N)- NFLI(N))*AMD 

A 1 = ALP(TYP(N)) 

B1 = BET(TYP(N)) 

E1 = E(TYP(N)) 

K=N+NARC/2 

C1 = C(N) 

C2 = C(K) 

FLA =FL(N) 

FLT = FL(K) 

T1 + T(N) 

T2 = T(K) 

71 

CST1 = TRCOST(L(N), C1, C2, VEL(N), X1, FLT, A1, B1, E1, T1, T2, 

RL(N)) 

X2 = NFLI(K) + AMD*(NFL(LK) - NFLI(K)) 

A2 = ALP(TYP(K)) 

B2 = BET(TYP(K)) 

E2 = E(TYP(K)) 

CST2 = TRCOST (L(K), C1, C2, VEL(K), FLA, X2, A2, B2, E2, T2, 

T1, RL(K)) 

30 D = D + CST1 *(NFL(N) - NFLI(N)) + CST2*(NFL(K) -NFLI(K) 



BISUED routine - modified code for LOOP 30 

DO 30 N=l, NARC/2 

Xl = NFLI(N) + (NFL(N)- NFLI(N))*AMD 

K=N +NARC/2 

X2 = NFLI(K) + AMD*(NFL(K)- NFLI(K)) 

72 

CST! = L(N)*RL(N)NEL(N)*(l. + ALP(TYP(N))* (Xl *T(N)/C(N) + 

E(TYP(N))*FL(K)*T(K)/C(K))**BET(TYP(N))) 

CST2 = L(K)*RL(K)NEL(K)*(l. + ALP(TYP(K))* (FL(N)*T(K)/C(N) + 

E(TYP(K)*X2*T(N)/C(K))**BET(TYP(K))) 

D = D +CST! *(NFL(N) - NFLI(N)) + CST2*(NFL(K) - NFLI(K)) 

30CONTINUE 

Again, as in the BISECT routine of the single class UE code, the dependencies 

were removed and entered into the equation of the travel cost function which is no longer 

calculated as a separate function call statement. This allows the compiler to vectorize this 

loop. Table 2.11 indicates that these modifications led to a reduction in execution time for 

this subroutine from 5.726 sees for the non-vectorized form to 0.861 sees for the 

vectorized modified one, i.e., a remarkable 85% reduction. 

Additional changes in subroutine AONUED were implemented as follows. 



AONUED routine - initial code LOOP 10 

DO 10 N=l, NARC 

Al = ALP(TYP(N)) 

B 1 = BET(TYP(N)) 

El = E(TYP(N)) 

IF (N.LE.NARC/2) THEN 

K =NARC/2 + N 

NFL(N) = 0 

NFL(K) = 0 

ELSE 

END IF 

Cl = C(N) 

C2 = C(K) 

FLA = NFLI(N) 

FLT = FL(K) 

Tl = T(N) 

T2 = T(K) 

K=N -NARC/2 

NFL(K) = 0 

NFL(N) = 0 

Cl = C(K) 

C2 = C(N) 

FLA =FL(K) 

FL T = NFLI(N) 

T2 =T(K) 

Tl = T(N) 

73 

10 COST(N) = TRCOST (L(N), Cl, C2, VEL(N), FLA, FLT, Al, Bl, El, 

Tl, T2, RL(N)) 



AONUED routine - Changed code LOOP 10 

DO 10 N = 1, NARC/2 

NFL(N) = 0 

K =NARC/2 +N 

NFL(K) = 0 

COST(N) = L(N)*RL(N)NEL(N)*(l. + ALP(TYP(N))*(NFLI(N) 

*T(N)/C(N) + E(TYP(N))*FL(K)*T(K)/C(K)) 

**BET(TYP(N))) 

COST(K) = L(K)*RL(K)NEL(K)*(l. + ALP(TYP(K)*(FL(N) 

*T(K)/C(N) + E(TYP(K))*NFLI(K)*T(N)/C(K)) 

**BET(TYP(K))) 

10CONTINUE 

74 

The basic changes made above are: 1) the removal of the IF THEN ELSE 

statement, 2) the removal of the call function TRCOST which was substituted by the 

expression of the function within the loop, and 3) removal of the dependencies by 

including the variables into the equation. Although there is a dependency due to the 

calculation of K, the loop is still vectorized by the compiler. The overall execution time of 

this subroutine changed from 1.192 to 0.423 seconds (a 64.5% reduction), with the 

modifications in the above loop accounting for the change in execution time from 0.661 to 

0.423 seconds (or a 36% reduction). 

The above are the major changes that accounted for the principal improvements 

obtained in this effort. Other minor changes involved the minimization of the division 

operations, as in the single-class case, by defining Cl(N) = _1_ and unrolling of some 
C(N) 

DO LOOPS. However, these changes did not lead to further significant reductions. 

Although all possibilities may not have been exhausted, a remarkable 70% reduction, from 

23 seconds to approximately 7 seconds, has been achieved, corresponding to a non-



SUBROUTINE TIME EXECUTING 
(Seconds) 

AONUED 
BISUED 
DUMPUED 
SHPUED 
UED 
UETRDIA 

0.423 
0.861 
0.217 
4.326 
0.125 
0.808 

TOTAL6.759 

(PERCENT AGE TIME) 

(6.26) 
(12.74) 

(3.21) 
(63.99) 

(1.85) 
(11.95) 

75 

Table 2.11. Execution Times Summary Following Modifications in 
BISUED and AONUED Subroutines (Vectorized Using CFT 
Compiler). 



76 

vectorized to vectorized improvement ratio in excess of 300%. It should also be noted 

here that the changes made also enhance the scalar performance of the computer code's 

execution, as can be seen in Table 2.12 where a time analysis was performed with blocked . 
vectorization after the changes were made. The total execution time was 17.427 sec 

compared to the 23.053 sec of the original code (in Table 2.9). The corresponding codes 

required 182 seconds to execute on the CYBER CDC 170n50. 

2.6. CONCLUSION 

2.6.1 Summary of Results 

The main objective of this study was to examine the possible reductions in 

execution time that can be achieved, using the CRAY X-MP/24 supercomputer on two 

computer codes used for traffic assignment -- the single class user equilibrium and the two-

class user equilibrium. In both cases, a considerable reduction in execution time has been 

achieved: 8_0% and 70%, respectively, over the unvectorized execution. Our experience 

confirms the effectiveness of the recommendations followed to optimize these two 

FORTRAN codes, mainly trying to avoid dependencies, IF and CALL statements within 

the DO LOOPS. Inserting in line the travel cost functions proved very helpful in both 

cases. 

In both algorithms, the shortest path routine contributes most to the computation 

time, 32% for the single class UE and 64% for the two-class UE, even after reduction by 

about 70% in the first case and 55% in the second case. A possible change in the codes 

might be to try other shortest path routines as well as a different method to calculate the 

move size. 



SUBROUTINE TIME EXECUTING 
(Seconds) 

AONUED 
BISUED 
DUMPUED 
SHPUED 
UED 
UETRDIA 

0.927 
5.171 
0.370 
9.953 
0.244 
0.802 

TOTAL 17.467 

(PERCENTAGE TIME) 

(5.31) 
(29.60) 

(2.12) 
(56.98) 

(1.40) 
(4.59) 

Table 2.12. Vectorization Blocked (MAXBLOCK=1, CFT compiler). 

77 



78 

2.6.2. Directions for Future Research 

The encouraging results obtained in this study allow some optimism towards 

running the transportation network design code on the CRA Y and attempting to vectorize it. 

In our previous attempts on the Cyber CDC computer, the above code required about 300 

seconds to execute when tested over a trivial 3 link network! Given that the traffic 

assignment routine for the two-class user equilibrium problem required about 200 seconds 

to run on the Cyber for a large realistic network, it became evident that it would not be 

feasible to run the network design code, of which the traffic assignment routine is a part. 

The network design problem by itself is computationally demanding as it falls into 

the category of np-hard problems. Given a network, with known 0-D matrices for each of 

the categories of users of the network, and a number of links n, the problem is to propose 

various improvements to the links so as to improve operating conditions and service levels 

offered by the network. Assuming a problem with k improvement options for each link, its 

combinatorial complexity rises to kn. In transportation networks, the calculation of the 

travel costs associated with a particular combination of improvements requires the 

application of a traffic assignment procedure, which may attempt to achieve either a User 

Equilibrium solution or a System Optimum solution. This is why the traffic assignment 

routine is important to the network design problem. 

Our future work involves the development of a network generator for the network 

design problem and the traffic assignment routine. This network generator will enhance 

our efforts to provide more comprehensive results on the required execution times of the 

traffic assignment routine and the network design problem. Parallel to that, further 

attempts to improve the efficiency of the codes will be made using some of the previously 

mentioned measures, as well as moving towards more global restructuring of the codes to 

take advantage of the vector characteristics of CRA Y. 



79 

References 

Ardekani, S. A. & Herman, R. (1987), "Urban Network-Wide Variables and Their 
Relations," Transportation Science, Vol. 21, No. 1. 

Beckman, M.J., McGuire, C. B. , and Winston, C. B. (1956). Studies in the Economics 
of Transportation. Yale University Press, New Haven, Connecticut. 

Bruggeman, J.M., Leiberman, E., and Worrall, R.D. (1971), "Network Flow Simulation 
for Urban Traffic Control System", Federal Highway Administration, U.S. 
Department of Transportation. 

Buzbee, B.L., and Sharp, D.H. (1985), "Perspectives on Supercomputing", Science, Vol. 
227, pp. 591-597. 

Center for High Performance Computing (UT CHPC) User Services (1987a), "CRAY 
FORTRAN Optimization and Performance Analysis", The University of 
Texas at Austin. 

Center for High Performance Computing (UT CHPC) User Services (1987b), "Program 
Performance Analysis", The University of Texas a~ Austin. 

Chen, S.S. (1983), "Large-Scale and High-Speed Multiprocessor System for Scientific 
Applications", High Speed Computation, NATO ASI Series F, Vol. 7, 
Springer-Verlag, Berlin. 

Federal Highway Administration (January 1980), "Traffic Network Analysis with 
NETSIM- User's Guide," implementation package, FHW A-IP-80-3. 

Frank, M., and P. Wolfe (1956), "An Algorithm for Quadratic Programming." ? Research 
Logistics Quarterly 3 (1-2), pp. 95-110. 

Herman, R., and Prigogine, I. (1979), "A Two-Fluid Approach to Twon Traffic", 
Science, Vol. 204, pp. 148-151. 

Mahmassani, H.S., Wiliams, J.C., and Herman, R. (1984), "Investigation of Network
Level Traffic Flow Relationships: Some Simulation Results", 
Transportation Research Record 971, Transportation Research Board, 
Washington, D.C, pp. 121-130. 

Mahmassani, H.S. and Mouskos, K.C. (1988), "Some Numerical Results on the 
Diagonalization Network Assignment Algorithm with Assymmentric 
Interactions between Cars and Trucks", forthcoming in Transportation 
Research B, Vol. 22B. 

Mahmassani, H.S., Wiliams, J.C., and Herman, R. (1987), "Performance of Urban 
Traffic Networks", in Gartner, N. and Wilson, N.H.M. (eds.), 
Transportation and Traffic Theory, Proceedings of the lOth International 
Symposium on Transportation and Traffic Theory, Elsevier Science 
Publishing, New York, N.Y. 



80 

Mouskos, K.C., H.S. Mahmassani, and C.M. Walton (1986), "Network Assignment 
Methods for the Analysis of Truck-Related Highway Improvements." 
Research Report 356-2F, Center for Transportation Research, The 
University of Texas at Austin, Texas. 

San Diego Supercomputer Center. (June 1987). User Guide. Chapter 12: Optimizing 
Your FORTRAN Code. 

Sheffi, Y. (1984). Urban Transportation Networks. Prentice-Hall, Englewood Cliffs, 
New Jersey, pp. 204-230. 

U.S. Bureau of Public Roads (1964). Traffic Assignment Manual. U.S. Department of 
Commerce, Washington, D.C. 

Wardrop, J.G. (1952). "Some Theoretical Aspects of Road Traffic Research." 
Proceedings. Institution of Civil Engineers II (1), pp. 325-378. 

Williams, J.C. (1986), "Urban Traffic Network Performance - Flow Theory and 
Simulation Experiments," Ph.D. Dissertation, Department of Civil 
Engineering, University of Texas at Austin, Texas. 

Williams, J.C., Mahmassani, H.S., and Herman, R. (1985), "Analysis of Traffic Network 
Flow Relations and Two-Fluid Model Parameter Sensitivity", 
Transportation Research Record 1005, pp. 95-106. 

Williams, J.C., Mahmassani, H.S., and Herman, R. (1987), "Urban Traffic Network 
Flow Models", Transportation Research Record 1112, pp. 78-88. 

Zenios, S.A., and Mulvey, J.M. (1986), "Nonlinear Network Programming on Vector 
Computers: A Study on the CRAY X-MP", Operations Research, Vol. 34, 
No. 5, (Sept.-Oct.), pp. 667-682. 


	COVER PAGE
	ACKNOWLEDGEMENTS
	PREFACE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1. EXPERIMENTS WITH MICROSCOPIC SIMULATION OF TRAFFIC IN NETWORKS
	Appendix l.a. Additional Output Generation
	Appendix l.b. An Example of the Results of the Time-Requirement Analysis.
	CHAPTER 2. VECTORIZATION OF NETWORK EQUILIBRIUM ASSIGNMENT ALGORITHMS FOR ONE AND TWO CLASSES OF USERS
	References

