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ABSTRACT 
 
 
Deterministic network models, in which deterministic link travel time is a function of link 
volume, have been used by TxDOT in its transportation planning process.  The use of 
stochastic network models, in which link travel time is subjected to variation at a given 
volume, can potentially represent the network’s traffic conditions more realistically and 
provide additional measures that relate to travel time reliability for transportation project 
selection.  This research proposes and tests two traffic assignment approaches that include 
travel time variation in a network, and driver’s route choice and departure time choice in 
response to such travel time uncertainty.  A software tool to assist in the modeling of the 
proposed traffic assignment approaches in TransCAD has also been developed.  
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EXECUTIVE SUMMARY 
 
 
A driver’s route choice and departure time choice decisions for a trip do not depend on only 
the average travel time of the available routes, but also the travel time reliability of each of 
the routes.  Transportation planners typically use deterministic network models in the traffic 
assignment process.  Incorporating travel time reliability in the route choice and departure 
time choice modeling in traffic assignment could improve the precision of the evaluation of 
network performance.  This research develops two traffic assignment approaches that include 
travel time uncertainty and driver’s response to such uncertainty in route choice and 
departure time choice. 
 
The traffic assignment approaches are based on a network in which the link travel time (at 
the same time of the day, at a given link volume) is subjected to day-to-day fluctuation.  The 
variation could be due to incidents, weather, vehicle composition, driving behavior, and other 
random events.  The average link travel time may be described by the standard Bureau of 
Public Roads function, but the variance of travel time is proportional to the link length and 
link volume.  In this research, equivalent link disutility functions, corresponding to the 
different route choice behavior in such a network, have been derived.  The function for risk 
averse drivers, who prefer a route with a longer average travel time but better travel time 
reliability (smaller travel time variance), is of particular interest in this research.  A method 
to conduct driver survey so as to estimate the risk averse coefficients of the equivalent link 
disutility function has been developed. 
 
The two traffic assignment approaches developed in this project are for modeling the 
morning commute to work, when drivers have to arrive at their destinations before their 
work-start time.  With this constraint in arrival time, travel time reliability becomes an 
important consideration when a risk averse driver selects his/her route and/or departure time. 
 
The first traffic assignment approach developed in this project is called traffic assignment 
with a fixed origin-destination matrix.  It assumes that the average driver in the network is 
risk averse in route choice, but the departure time remains unchanged.  The solution of this 
traffic assignment problem may be solved by any standard user-equilibrium algorithm, by 
simply replacing the standard link performance function in the deterministic network model 
with the equivalent link disutility function in our stochastic network model. 
 
The second traffic assignment approach, called traffic assignment with departure time 
choice, considers both driver’s route choice and departure time choice.  The morning peak 
period is divided into smaller departure time intervals, each with its own origin-destination 
matrix.  An iterative procedure has been developed to (1) adjust the origin-destination 
matrices to reflect the departure time choices of all the drivers; and (2) solve the user-
equilibrium traffic assignment problem for each departure time interval, with the 
incorporation of the equivalent link disutility function that describes the risk averse behavior.   
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The two traffic assignment approaches have been tested with the El Paso network, with the 
corresponding origin-destination matrices.  A procedure to measure the network capacity 
reliability has also been developed and its applications demonstrated with the El Paso 
network with existing and future scenarios. 
 
The functions to assist in the implementation of the two traffic assignment approaches in 
Version 4.8 of TransCAD, including the pre-processing of the input data and post-processing 
of the results, have been coded into eight programs that are bundled in the Travel Time 
Reliability Program Suite.  The Travel Time Reliability Program Suite, its User’s Guide and 
sample data sets (which can be used for training workshops) have been compiled in the 
accompanying DVD. 
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IMPLEMENTATION STATEMENT 
 
 
The software tool and modeling approaches developed in this project are ready for in-house 
evaluation by TxDOT’s Transportation Planning and Policy (TP&P) staff.   
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CHAPTER 1 
 

INTRODUCTION 

 
 

1.1  Background 
 
Every TxDOT transportation project needs to be carefully evaluated, considering that many 
of them require significant capital investment and construction time.  It is often difficult to 
estimate a project’s eventual impacts on the state’s stakeholders at the beginning of the 
project.  One of the important aspects of driver’s travel experience is travel time reliability.  
The objective of this project is to model travel time reliability in a transportation network, 
evaluate its impact on driver’s travel pattern and eventually estimate the network’s traffic 
performance.  The modeling technique and tool developed in this research can be used to 
help prioritize future TxDOT projects.  Consequently, implementable strategies to improve 
travel time and travel time reliability can be proposed.  
 
A trip maker’s frustration drastically escalates when the transportation system cannot deliver 
a reliable performance.  In this case, from the user’s perspective, reliable performance means 
consistency in travel time.  It is comparatively easier for a driver to select a route and 
schedule his/her departure time when the transportation network has consistent and 
predictable travel time.  On the other hand, the variability of travel time introduces 
complexity into the driver’s perception on the transportation system performance and his/her 
decision criteria.  A driver not only minimizes his/her travel time in choosing a route or 
departure time, but also minimizes the risk in arriving late at the destination when the travel 
time is unreliable.   
 
Providing satisfactory transportation system performance to facilitate mobility and economy 
is the ultimate goal of every TxDOT project. Given limited funding, mixed public opinions, 
and heightened environmental concerns, selecting a project needs to rely on a holistic 
evaluation that emphasizes both immediate and long-term performance reliability.  However, 
travel time reliability has not been explicitly included as a project selection criterion in the 
state of the practice. One reason is that the appropriate method to evaluating the performance 
reliability of a transportation system has not been well studied.  No guideline exists to 
measure and gauge the measurement and improvement of travel time reliability.   
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1.2  Objectives 
 
The objectives of this project are: 
• To conduct a comprehensive review of the modeling of travel time reliability in a 

transportation network, including driver’s response to travel time reliability in making 
travel decisions, with emphasis on transportation planning applications. 

• To synthesize and propose practical transportation network modeling approaches that 
take travel time reliability and driver’s response to travel time reliability into 
consideration. 

• To demonstrate the applications of the proposed modeling approaches in selected 
networks. 

• To develop a software tool to be used with TransCAD for the modeling of travel time 
reliability, and the accompanying user’s guide. 

 
The modeling approaches and software tool developed in this research will provide TxDOT 
engineers and Metropolitan Planning Organization (MPO) planners models with better 
precision and additional measures that relate to travel time reliability in the evaluation of 
future transportation projects.  These measures will also enable TxDOT engineers and MPO 
planners to experiment with various transportation improvement strategies (whether physical 
improvement or operational management strategies) in order to select the best one to improve 
network performance, including travel time reliability. 
 
 

1.3  Outline of Report  
 
This report summarizes the tasks conducted under TxDOT Research Project Agreement 0-
5453, titled “Strategies for Improving Travel Time Reliability”. 
 
Chapter 2 of this report reviews the background materials and past research related to 
transportation modeling with travel time reliability consideration.  It covers the concepts of 
travel time reliability, traffic assignment models, driver responses to travel time reliability, 
TransCAD and capacity reliability. 
 
Chapter 3 describes the two proposed analysis approaches for evaluation of network 
performance: traffic assignment with a fixed origin-destination (O-D) matrix and traffic 
assignment with departure time choice. 
 
Chapter 4 derives the equivalent link disutility functions that correspond to route choice 
behavior of drivers in a network with travel time reliability consideration.  The functions are 
to be used as the link performance functions in traffic assignment. 
 
Chapter 5 presents the applications of the traffic assignment with a fixed O-D matrix 
approach (proposed in Chapter 3, and incorporating the equivalent link disutility function 
derived in Chapter 4) in two networks: a test network with 25 nodes and the El Paso network.  
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The difference in the results of traffic assignments with and without travel time reliability 
considerations are analyzed in detail. 
 
Chapter 6 presents the application of the traffic assignment with a departure time choice 
approach in the El Paso network. 
 
Chapter 7 demonstrates the application of the traffic assignment with a fixed O-D matrix 
approach in the evaluation of a transportation improvement project.  The examples used in 
this illustration are the El Paso network with and without the Southern Relief Route. 
 
Chapter 8 concludes the findings in this project and recommends a few possible directions 
for continuing research. 
 
 

1.4  Accompanying Products 
 
This report itself is a product of TxDOT Research Project Agreement 0-5453.   
 
A software suite, named Travel Time Reliability program suite, has been developed in this 
project and used in the applications and illustrations of the two traffic assignment approaches 
proposed in this project.  This software suite is coded as a TransCAD Add-in.  It consists of 
eight programs that are used to execute the procedures described in Chapters 3, 5, 6 and 7 of 
this report.  An accompanying User’s Guide for this program suite has been written. 
 
This report, the Travel Time Reliability Program Suite, the User’s Guide of Travel Time 
Reliability Program Suite, and sample data sets used in Chapters 5, 6 and 7 are provided in 
an accompanying DVD. 
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CHAPTER 2 
 

REVIEW OF PREVIOUS WORK 
 
 
This Chapter reviews the background materials and past research related to transportation 
modeling with travel time reliability consideration.  It first reviews the various concepts of 
travel time reliability and clarifies the meaning of travel time reliability within the context of 
this project.  Section 2.2 reviews the different types of traffic assignment models and selects 
a suitable model for this research.  In Section 2.3, models to describe drivers’ responses to 
travel time reliability, which manifest through route choice and departure time choice are 
presented.  The models for route choice and departure time choice behaviors are integrated 
with the traffic assignment model selected in Section 2.2, in the TransCAD transportation 
planning and modeling software.  A brief description of TranCAD is provided in Section 2.4.  
After running the integrated models in TransCAD, the performance of the transportation 
network is analyzed by the network’s capacity reliability.  The concept of capacity reliability 
is introduced in Section 2.5. 
 
 

2.1  Concepts of Travel Time Reliability 
 
Transportation networks are modeled by a set of nodes connected by a set of links.  Travel 
times in a transportation network may be measured at the link or route level.  A route is a 
series of connected links.  Therefore, the travel time of a route is the sum of the travel time of 
the links along the route.  If the travel time in a link is unreliable, it follows that the travel 
time along the route is also unreliable. 
 
The term travel time reliability relates to the consistency and predictability of travel time.  It 
arises because, in reality, travel time is uncertain to some degree.  Van Lint and Van Zuylen 
(2005) state that travel time reliability relates to the day to day travel time distribution as a 
function of time of day, day of week, month of year and external factors such as weather, 
incidents and road works.  That is, for the same link or route, the travel time at the same time 
on different days varies depending on many factors. 
 
In the literature, in general, the term travel time reliability usually refers to the route travel 
time between an origin-destination (O-D) pair.  There are two approaches in the definition 
and measurement of route travel time reliability.  The first approach (probabilistic approach) 
focuses on the probability of a trip travel time smaller than a threshold value.  The second 
approach (parametric approach) describes the variation or distribution of travel time, and 
measures the travel time reliability using the distribution parameters, for example, the 
variance of travel time. 
 
The probabilistic approach is concerned with whether that a trip can be successfully finished 
within a specified time (or less than a specified cost).  For example, Shao et al. (2006) 
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provide a definition of travel time reliability as “the probability that a traveler can arrive at 
the destination within a given travel time threshold.”  Chen et al. (2000) state that “it is 
concerned with the probability that a trip between a given O-D (origin-destination) pair is 
made successfully within a specified interval of time”.  More specifically, Lo et al. (1999) 
defines travel time reliability as “the probability that a trip between a given O-D pair can be 
made successfully within a specified interval of time for a given level of traffic demand in 
the network”.  The probabilistic approach in defining travel time reliability clearly relates to 
the travel time between an O-D pair in the network.  In transportation modeling, trips 
between an O-D pair may be distributed between different routes.  Chen et al. (2002a, 2003) 
further clarify the distinction between route travel time reliability and O-D travel time 
reliability.  Route travel time reliability is “the probability that the travel time of a given path 
(between an O-D pair) is within an acceptable threshold”.  For an O-D pair that is connected 
by multiple paths, the O-D travel time reliability is “the probability that the weighted travel 
time of a given O-D pair is within an acceptable level of service”.  Here the route travel times 
are weighted by their respective path flow connecting the O-D pair to arrive at the weighted 
average travel time for the O-D pair.  It has been mentioned that the probabilistic approach in 
quantifying travel time reliability is specific to an O-D pair.  In a transportation network, 
there are many O-D pairs.  Obviously, the process of estimating travel time reliability at the 
network level using the probabilistic approach is not a straight forward process. 
 
On the other hand, several studies have measured travel time reliability based on the 
parametric approach.  FHWA (2006) defines travel time reliability as a measure of 
consistency or dependability in travel time in day to day variation, or across different times 
of the day.  Among the measures suggested are 90th or 95th percentile value of travel time.  In 
the report by Hellinga and Fu (1999) the route selection is based on the criterion of the 95th 
percentile of travel time.  The Travel Rate Index (TRI), used by many urban planners, 
measures the amount of additional time needed to make a trip in the peak period rather than 
at the other time of the day (Lomax et al., 2001; Cambridge, 2002). The Texas Congestion 
Index (TCI) is based on this concept.  Most of these indices are derived from travel time 
variation of peak hour.  In the same approach, Noland et al. (1998) use the term “travel time 
uncertainty” to denote the variation in travel time in day to day commuting.  They use 
standard deviation of travel time, and a coefficient of variation of travel between an O-D pair 
as the measures of travel time uncertainty in their route choice models.  Several other 
researchers have used this approach to model route choice behavior when travel time in a 
network is uncertain (Chen and Recker 2000; Chen et al. 2000, 2002a, 2002b, 2003; 
Mirchandani and Soroush, 1987; Tatineni, et al., 1997).  Based on this parametric approach, 
they are able to perform traffic assignment in a network with uncertain travel time and 
quantify the network performance.   
 
After reviewing the various definitions of travel time reliability, the notions of travel time 
reliability provided by Van Lint and Van Zuylen (2005) and Noland et al. (1998) are 
modified and adopted in this research.  We consider travel time reliability as the variation of 
travel time in day to day commuting during the morning peak period.  The variation could be 
caused by fluctuations in traffic volume, vehicle composition, driving behavior, day of week, 
month of year and external factors such as weather, incidents and road works.  This project is 
concerned with modeling the network performance in view of drivers’ route choice caused 
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by the variation of travel time.  The parametric method of describing travel time uncertainty 
can be easily adapted to model the route choice behavior and is therefore adopted in this 
research. 
 
 

2.2  Traffic Assignment Models 
 
At present, a large number of transportation network models are based on the assumption that 
travel time in a link is a deterministic function of the link’s characteristics (such as free-flow 
travel time and link capacity) and link volume.  A network with such a deterministic link 
travel time function is called a Deterministic Network (DN).  In reality, link travel time, even 
for the same traffic flow in a link, is subjected to variations.  These variations are due to the 
difference in vehicle mix, difference in driver reactions, weather, incident conditions, etc.  
These variations are small when the traffic flow is light but they become much larger as the 
link becomes more congested.  A network with such probabilistic link travel times is called a 
Stochastic Network (SN).  According to the parametric method, a natural way to model link 
travel time variation is to consider it as a probability distribution, with mean and variance 
expressed as functions of the link characteristics and link volume. 
 
Most transportation network models assume that the drivers have perfect knowledge of the 
link travel times (in the deterministic case) or of the probabilities of different values of link 
travel times (in the stochastic case).  The resulting state of the transportation network, after 
traffic assignment, is called Deterministic User Equilibrium (DUE).  In reality, a driver’s 
knowledge is usually somewhat imperfect.  The driver’s perception of a (deterministic or 
stochastic) link travel time may be slightly different from the actual travel time.  Some 
transportation network models take this perception error into account by modeling it as a 
normal distribution with zero mean.  Due to these perception errors the selected routes of the 
drivers vary stochastically.  The resulting state of the transportation network is called 
Stochastic User Equilibrium (SUE). 
 
Based on the assumptions in link travel times and drivers’ perception on the link travel times, 
traffic assignment models may therefore be classified into four types: Deterministic 
Network-Deterministic User Equilibrium (DN-DUE), Deterministic Network-Stochastic 
User Equilibrium (DN-SUE), Stochastic Network-Deterministic User Equilibrium (SN-
DUE), Stochastic Network-Stochastic User Equilibrium (SN-SUE) (Chen and Recker 2000). 
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Table 2.1: Classification of traffic assignment models 
(from Chen and Recker 2000 and Chen et al. 2002a) 

 
  Perception Error? 
 No Yes 
 Travel Time 

Uncertainty? 
No DN-DUE DN-SUE

 Yes SN-DUE SN-SUE
 Where  DN = Deterministic Network 
  SN = Stochastic Network 
  DUE = Deterministic User Equilibrium 
  SUE = Stochastic User Equilibrium 
 
 
The DN-DUE is the simplest, the easiest to understand, and the most widely accepted traffic 
assignment model.  It assumes that drivers have perfect knowledge of the deterministic link 
travel times (with a given flow distribution) in the network, and they always select the paths 
that have the shortest travel times between their origins and destinations.  This model was 
originally formulated by Beckman et al. (1956) and can be solved by DUE algorithms (for 
examples, the Frank-Wolfe algorithm (LeBlanc et al., 1975), Algorithm B (Dial, 2006), and 
others).  In DN-SUE, the network’s link travel times are deterministic (with a given flow 
distribution), but they may be perceived differently by different drivers.  Due to the error in 
travel time perception, drivers will always select what they perceive as the shortest paths but 
these may not be the actual shortest paths.  The DN-SUE model was originally formulated by 
Daganzo and Sheffi (1977).  A popular solution algorithm for the DN-SUE model is the 
Method of Successive Averages proposed by Sheffi and Powell (1982).   

 
In DN, the travel time is uniquely determined by the path; a driver selects the path 
connecting an origin and a destination with the shortest travel time.  In SN, the travel time is 
not uniquely determined by the path; each driver selects the path with the lowest expected 
value of the disutility.  Such SN models were first studied by Mirchandani and Soroush 
(1987).  In particular, the SN-DUE assumes that drivers have perfect knowledge of the 
degree of variation in link travel times, and they factor this variation in their route choice 
decisions.  While DN-DUE and DN-SUE models are used by many transportation modelers, 
only a few papers (Mirchandani and Soroush, 1987; Tatineni, et al., 1997; Chen and Recker, 
2000; Chen et al. 2000) used SN models because these models are much more 
computationally complex than the DN models.  It is known that, under certain conditions, the 
SN-DUE model can be solved by the DUE algorithm (e.g., Frank-Wolf algorithm) simply by 
replacing the link travel time function with a suitable Equivalent Link Disutility (ELD) 
function (see for examples Mirchandani and Soroush, 1987; and Tatineni, 1996).  More 
details of the ELD will be covered in the next section. 

 
In principle, it is possible to consider an even more realistic SN-SUE model which adds 
drivers’ perception errors into the link travel time variations. However, according to Chen 
and Recker (2000), the SN-DUE model is quite suitable for modeling of peak hour traffic 
because regular commuters have a good knowledge of the mean and variance of peak hour 
travel times.   
 



 8

In this research, we adopt the SN-DUE approach to model the traffic flow distribution in a 
network during the peak hour commute when the network has uncertain travel time.  We 
assume that during this peak hour, all the drivers in the network are regular commuters who 
have good knowledge of their alternative routes and the respective average route travel time 
and travel time variation. 
 
 

2.3  Driver Responses to Travel Time Reliability  
 
When the travel time on a route (connecting an origin and a destination) has high variation, a 
driver may respond by selecting another route (connecting the same O-D pair) that has a 
more certain travel time, or use the original route but depart earlier to avoid the risk of 
arriving late at the destination.  The models that describe route choice and departure time 
choice behavior in a network with uncertain travel time are reviewed next. 
 
 

2.3.1  Route Choice Behavior 
 
A driver’s route selection depends on how the driver reacts to travel time uncertainty.  This is 
particularly important if the drivers has constraints in the time of arrival (e.g., scheduled 
events, work starting times) with heavy penalties for late arrivals.  Mirchandani and Soroush 
(1987), Tatineni et al. (1997) and Chen and Recker (2000) describe three types of such 
behavior: risk averse, risk prone and risk neutral.  The term risk here refers to the risk of a 
late arrival at the destination.  A risk averse driver prefers a route with longer expected travel 
time but smaller variation to a route with faster expected travel time but higher variation.  
That is, he/she would rather use the route with longer travel time (and depart early) to lower 
the risk of arriving late.  On the contrary, a risk prone driver would select the route with a 
faster travel time but higher variation.  A driver with risk neutral behavior does not consider 
travel time variation in his/her route choice decision.   
 
In a SN, travel time in a link is deterministic.  Drivers select a route r with the smallest value 
of the route travel time ∑

∈

=
ri

ir tt .  To describe the deterministic link travel time it , the most 

popular function used by transportation modelers is the Bureau of Public Roads (BPR) 
function: 
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where it  is the travel time in link i, f

it  is the free-flow travel time in link i, iv  is the volume 
in link i, ic  is the capacity of link i, and α  and β  are constants.  The f

it  is computed by 
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dividing  il , the length of link i, by f
iu , the free-flow speed of link i.  Typical values of α  

and β  are 0.15 and 4 respectively.  
 
According to decision theory (see for example Watson and Buede, 1994), in a SN, a rational 
decision maker maximizes the expected value of his/her utility function, or equivalently 
minimizes the expected value of the disutility function.  In particular, for the stochastic traffic 
assignment problem, given a choice of routes Rr ∈  connecting an origin-destination pair, a 
driver will select the route r ′  which has the smallest expected disutility [ ]rDUE   
 
[ ] [ ]{ }rRrr DUEDUE

∈
′ = min  (2.2) 

 
For the drivers with risk neutral behavior, the route disutility function rDU  is equal to the 
route travel time rt .  Therefore the expected route disutility [ ]rDUE  is equal to the average 
route travel time rt .  The route travel time rt , for a route r which is made up of L links, is 
equal to the sum of the link travel times: Lr t...tt ++= 1 .  So, the average route travel time is 
equal to the sum of the average link travel times: Lr t...tt ++= 1 .  Thus selecting a route with 
the smallest [ ]rDUE  is equivalent to selecting a route with the smallest value of the sum of 

it .  Hence, a risk neutral driver can be described by an ELD function ii tDU =  . 
 

For describing risk averse and risk prone behavior, the most commonly used disutility 
functions are the exponential functions (Watson and Buede, 1994). Such functions have been 
used by Tatineni et al. (1997) and Chen and Recker (2000) to represent the risk averse and 
risk prone behaviors in a SN: 
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 (2.3) 

 
where rt  is the route travel time, and ϕω,,, 21 bb  are positive constants.  Given a choice of 
routes Rr ∈  connecting an origin-destination pair, a driver will select the route r ′  which has 
the smallest expected disutility [ ]rDUE . 
 
Under these assumptions, it was shown that selecting a route with the smallest value of 
[ ]rDUE  is equivalent to selecting a route with the smallest value of the sum ∑

∈

=
ri

ir DUdu  

for some values iDU .  This minimized expression is similar to the minimized expression 

∑
∈

=
ri

ir tt  in the deterministic case.   

 
In particular, in the SN-DUE case, when there is no perception error, for risk averse drivers 
the equivalent link disutility function takes the following form (Tatineni, 1996; Tatineni, et 
al., 1997) 
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where 2

it
σ  is the variance of the link travel time and c is a constant determined by the 

parameters of the exponential disutility function.  In the derivation of this formula, the 
authors assume that the difference between the actual link travel time it  and that average 
travel time it  is reasonably small, so we can ignore higher order terms in ( )ii tt − . 
 
The fact that the user’s preferences can be expressed in the form of minimizing the 
expression ∑

∈

=
ri

ir DUdu   allows us to use Frank-Wolf algorithm to solve the traffic 

assignment problem in the stochastic case as well (Tatineni et al., 1997; Chen and Recker, 
2000).  However, to use (2.4), one has to know the variance of travel time 2

it
σ  of every link.  

For an urban transportation which has several hundred to several thousand links, the 
estimation of all the 2

it
σ  is not an easy task.  This research has derived a simpler form of 

iDU  to describe the route choice preference of risk averse drivers, which will be explained 
in Chapter 4. 
 
 

2.3.2  Departure Time Choice Behavior 
 
The paper by Noland et al. (1998) has reported several departure time choice models 
incorporating travel time reliability measures.  The models have been calibrated with an 
extensive set of real data, and are deemed suitable for use in this research.  This section 
reviews the departure time choice models in detail. 
 
Noland et al. (1998) actually presents a simulation model to illustrate the effect of travel time 
reliability on drivers’ departure time choice.  The simulation model uses a simple network of 
an O-D pair connected by one link.  The BPR function is used as the link performance 
function.  Travel time uncertainty was generated by random incidents that reduced the link 
capacity in the BPR function.  The model assumes a constant travel demand of a 5000 
vehicles in a peak hour.  A multinomial logit model is used to represent the departure time 
choice to allocate the 5000 trips into 11 departure time intervals.  The idea of time varying 
demand is to replicate drivers’ decision to depart earlier to compensate for the travel time 
uncertainty.   
 
The utility function in the logit model for departure time choice assumes the general form of: 
 

( ) ( ) LS DSDLSDETC θγβα +++=   (2.5) 
 
Where CS is the scheduling cost (if the trip departs earlier or later than desired), T is the 
travel time, SDE and SDL are binary variables of schedule delay early and late respectively, 
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DL is the delay penalty, and α, β, γ  are coefficients  (Small, 1982).  From here, Noland et al. 
(1998) derived the total expected cost of scheduling choice as  
 

( ) ( ) ( ) ( )SfPSDLESDEETEEC L σθγβα ++++=  (2.6) 
 
where LP  is the probability of arriving late, S is the variance of travel time and σ  is a 
coefficient. 
 
Stated preference survey data was obtained from Noland and Small (1995) to calibrate five 
models of similar forms.  The survey was conducted from 700 morning commuters in the Los 
Angeles region, of which 543 users completed data with information about employers, work 
start times, travel times.  Among the models, they have recommended the following utility 
function: 
 

( ) ( ) ( ) ( )TE
SPSDLESDEETEEC L 3463.03466.11299.00931.01051.0 −−−−−=   (2.7) 

 
The above utility function takes into account the expected travel time T, travel time variance 
S, and expected penalty of early or late arrival.  Obviously, the above equation (EC, T and S) 
depends on the trip origin, destination and departure time interval.  Furthermore, SDE, SDL 
and PL depend on the trip maker’s work start time. 
 
Noland et al. (1998) applied this utility function to calculate the probability of each of the 
5000 commuter-drivers in choosing the 11 10-minute departure time intervals.  In applying 
each model, they assumed that each commuter had a work start time (randomly assigned 
based on a normal distribution).  To obtain S, the variance of travel time, the model first 
assumed a probability of a driver (departing at a specific time interval) encountering an 
incident during a trip.  If an incident had occurred, there were associated conditional 
probabilities of having incidents of three different severities, resulting in three different 
levels of capacity reduction.  Furthermore, incidents of different severity had different length 
of occurrence.  With a number of trips departing at a time interval, the distribution of travel 
times for all the trips (with and without encountering an incident) can be obtained, from 
which E(T) and S can be derived.  Hence, assuming that each of the 11 departure time 
intervals has an associated E(T) and S,  the individual driver’s E(SDE), E(SDL) and PL was 
then computed. 
 
Obviously, E(T), S, and the associated E(SDE), E(SDL) and PL affects an individual’s 
departure time choice.  The individual departure time choice is then aggregated into different 
traffic volume in the link at a particular time interval, which will then affect E(T), S of all the 
trips depart in an interval, and the associated E(SDE), E(SDL) and PL of an individual trip 
maker.  The simulation model is solved iteratively until a certain predefined convergence 
criteria is met. 
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2.4  TransCAD 
 
 
TransCAD is a Geographical Information System (GIS) developed for transportation 
applications (Caliper 2005a).  It links a transportation application oriented database with a 
graphical representation of a network, and assists engineers in planning, managing and 
analyzing the characteristics of transportation systems and facilities.  The GIS engine 
provides a powerful tool for visualization of the input and output data.  Embedded in 
TransCAD are many travel demand modeling tools including those that can be applied to the 
four-step travel demand forecasting process (Caliper 2005b).  It also offers an extensive set 
of traffic assignment models, including the SN-DUE model which is used in this research.  In 
TransCAD, the SN-DUE model is solved by means of the Frank-Wolfe algorithm (LeBlanc 
et al., 1975). 
 
Since 1997, TransCAD has been used in many transportation applications.  Some of them are 
listed below: 

• Travel time analysis in the siting of Michigan DOT’s service centers (Robinson et 
al., 1997) 

• Estimation of travel time from origin-destination survey data (Thériault et al., 1999) 
• Four-step transportation modeling process for small cities in Kansas (Russell et al., 

2000) 
• Computation and display of congestion indices and hot spots in Lubbock, TX 

(Zhang and Lomax 2006) 
 
The GIS Development Kit (GISDK) that comes with TransCAD is a collection of software 
tools for users to automate repetitive TransCAD functions or tasks, create user-defined add-
ins, build customized applications and integration with other programs.  The GISDK is 
provided with a programming language called Caliper Script.  Users can write C or 
FORTRAN programs to interact with TransCAD through the Caliper Script (Caliper 2005c).  
In other words, the GISDK with the Caliper Script language is the gateway for users to write 
customized routines to work with the internal functions of TransCAD, or interface external 
programs with TransCAD.  This powerful and yet flexible feature of TransCAD provides the 
researchers an avenue to implement the departure time choice model not found in TransCAD 
and other software. 
 
 

2.5  Capacity Reliability 
 
Capacity reliability is a measure introduced to address the issue of planning for adequate 
capacity in a road network to accommodate the demand for travel.  Capacity reliability is 
defined by Chen et al. (2000, 2002b) as “the probability that the network can accommodate a 
certain traffic demand at a required service level, while accounting for drivers’ route choice 
behavior”.  In other words, the travel time uncertainty at the link or route level affects the 
drivers’ route choice and/or departure time choice.  Capacity reliability is a measure to 
quantify the effect of travel time uncertainty at the network level.  Chen and his co-authors 
(Chen and Recker 2000; Chen et al. 2000, 2002a, 2002b, 2003) are the most active in 
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transportation network reliability research.  They have applied various traffic assignment 
methods incorporating travel time uncertainty to evaluate the network capacity.   
 
Clearly, the capacity reliability of a transportation network, given a fixed O-D demand, is   
related to the number of links that have reached their capacities.  The estimation of the 
capacity reliability is based on the concept of network reserve capacity.   
 
Network reserve capacity is defined as the largest multiplier applied to an existing O-D 
matrix that can be allocated to a transportation network without violating the link capacities 
(Chen et al. 1999, 2000, 2002b).  Mathematically stated, it is to find the maximum O-D 
matrix multiplier μ such that no link in the network, as a result of user equilibrium traffic 
assignment, has volume that exceeds the capacity: 
 
  Max  μ 

  
subject to:  ( ) ii cv ≤qμ      Ai∈∀  (2.8) 
    

where )(i qμν  is the user equilibrium volume on link i, in the network with all the links A, 
with the demands of all the O-D pairs q being uniformly scaled by μ, and ic  is the capacity 
of link i.   
 
Route choice behavior (with travel time uncertainty) is explicitly considered by solving the 
user equilibrium traffic assignment problem in the processing of determining )(i qμν .  More 
specifically, )(i qμν  is obtained by solving 
 

  Min ( )∑∫
∈

=
Ai

v

ii

i

dxc,xtZ
0

  (2.9) 

Subject to: 
  ∑

∈

=
wRr

wr qf μ   Ww∈∀   (2.10) 

  ∑
∈

=
Rr

irri fv δ   Ai∈∀   (2.11) 

 0≥rf   Rr∈∀   (2.12) 

where 

  W  = set of O-D pairs in the network 

 R  = set of routes in the network 

  wR  = set of routes between O-D pair w 
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 it   = travel time on link i 

 ic  = capacity of link i 

  wq   = existing demand between O-D pair w 

  rf   = flow on route r 

  irδ   = 1 if route r uses link i, and 0 otherwise 

 
Note that, when μ =1, the problem expressed in Equations (2.9) to (2.12) are reduced to the 
standard user equilibrium traffic assignment problem which is formulated by Beckman et al. 
(1956). 
 
The problem of determining μ  is a bi-level programming problem.  At the upper level, a set 
of possible values of μ , say, at a constant increment, is specified.  For each μ  value, the 
solution of the user equilibrium traffic assignment problem is obtained at the lower level.  
The highest μ  value, with the all the link flows ii Cv ≤ , Ai∈∀  is taken as the network’s 
reserve capacity. 
 
The network reserve capacity maxμ  may be interpreted as follows.  It indicates whether the 
current network has reserve capacity or is overcrowded.  If 1max >μ , the network has 
capacity to accommodate more traffic demand before some of the links become too 
congested.  If maxμ <1, some of the links in the network are already overcrowded.   
 
Instead of computing the network reserve capacity which gives only a maxμ  value, we 
propose to use the results of all the user equilibrium traffic assignments at the different μ  
values to plot the capacity reliability curve.  The curve indicates the change in the level of 
service in the transportation network when the overall traffic demand (O-D matrix) grows 
( 1>μ ) or declines ( 1<μ ).  Essentially, the computation of capacity reliability curve is also 
a bi-level programming problem.  At the upper level, a set of possible values of μ  is 
specified.  For each μ  value, the solution of user equilibrium traffic assignment problem 
(taking into account route choice behavior due to uncertain travel time) is obtained at the 
lower level.  The level of service measures are then computed based on the solution of the 
traffic assignment problem.  Examples of the measures are the percentage of links that have 
volume that exceeds the capacity ( ii cv > ) and the percentage of lane-miles that have volume 
that exceeds the capacity.  The latter is more representative as it takes into account the 
number of lanes and length of affected links.  It is expected that, as μ  increases, there will be 
more links and lane-miles that have ii cv > .  Therefore, it is expected that the capacity 
reliability curve should follow an “S” shape as in Figure 2.1.  For two transportation 
networks subjected to the same set of demand variations, the network with the curve on the 
right is more reliable than the network with the curve on the left, as it has fewer links or lane-
miles that reach capacity when the demand increases. 
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Figure 2.1: Typical capacity reliability curves 
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CHAPTER 3 
 

DEVELOPMENT OF ANALYSIS APPROACHES 
 
 
In Chapter 2 of this report, important concepts in traffic assignment with travel time 
reliability consideration were reviewed.  This chapter presents the syntheses of these 
concepts that form the two analysis approaches proposed in this research:  traffic assignment 
with a fixed O-D matrix, and traffic assignment with departure time choice. 
 
 

3.1  Traffic Assignment with a Fixed O-D Matrix 
 
 

3.1.1  General Idea 
 
This section relates to performing traffic assignment with a fixed O-D matrix to estimate the 
traffic conditions in a network when travel time reliability is taken into consideration.  It only 
models route choice behavior of the drivers and does not consider departure time choice as a 
possible outcome.  The model that also considers departure time choice (in addition to route 
choice) will be discussed in Section 3.2 in this chapter. 
 
In Chapter 2, it has been discussed that: 

• When modeling a network with travel time reliability consideration, the analyst is 
actually modeling the network with travel time uncertainty (a SN), and driver’s 
departure time and/or route choice under such uncertainty. 

• When route travel time is uncertain, drivers will exhibit different behaviors when they 
are facing constraints in the arrival times.  Therefore, modeling a network’s 
performance with travel time reliability is more appropriate for the rush hours.  
Typically this refers to the morning peak period when the traffic in the network is 
congested (hence the travel time is more uncertain) and regular commuters have to 
arrive on time to work. 

• When faced with route travel time uncertainty, drivers will exhibit risk averse, risk 
neutral and risk prone behavior.  They will make their route choice decision based on 
route disutility (which is an exponential function of route travel time) rather than the 
route travel time itself.  In the morning commute, an average driver can be described 
as risk averse. 

• Under certain assumptions, the exponential route disutility function corresponds to a 
certain ELD function.  For the morning commute to work, an analyst can apply the 
SN-DUE model to solve the traffic assignment problem for risk averse drivers in a 
network with travel time uncertainty. 
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This section therefore focuses on how to apply the SN-DUE model in TransCAD.  As 
reviewed in Chapter 2, the SN-DUE model can be implemented as a DN-DUE model by 
replacing the link performance function in the DN-DUE model (e.g., the BPR function) with 
the ELD function.  The easily implementable ELD will be derived in Chapter 4 of this report. 
 
In TransCAD, the modeling and implementation of the DN-DUE model is under Planning→  
Traffic Assignment in the main menu (Caliper, 2005b).  The default link performance 
function provided by TransCAD is the BPR function.  It turns out that the derived ELD 
function (to be presented in Chapter 4) is very similar to the BPR function.  The analyst can 
manipulate the default TransCAD input value in Planning→  Traffic Assignment to make the 
program perform traffic assignment using the ELD function.  In another words, the analyst 
can play a trick by changing the input value of α  in the BPR function from the standard 
value of 0.15 to a higher value to depict the risk averse route choice behavior. 
 
 

3.1.2  Use of Hourly O-D Matrix 
 
In transportation planning, the traffic demand in the current year or future years is normally 
expressed in the form of a daily 24-hour O-D matrix.  That is, the planners have a good idea 
on how many trips will be made between an O-D pair in a day.  However, they do not have a 
very precise idea of the distribution of these trips over all 24 hours. 
 
The SN-DUE model proposed in this research is to model the traffic distribution during the 
morning peak hour, with risk averse behavior.  Therefore, the analyst should use a O-D 
matrix that consists of trips made during the morning peak hour.  In addition, the model 
should reflect driver response to traffic congestion and travel time uncertainty.  The response 
is more drastic during the highest peak hour, when the traffic is most congested and travel 
time is most uncertain.  This single-hour typically happens immediately before the average 
work-start time in the network.  Therefore, the analyst should first determine the peak hour 
within the morning peak of the day, and construct the hourly O-D matrix from the 24-hour 
matrix.  The unit measure of all the elements in the hourly O-D matrix is “vehicles per hour”. 
 
To determine the highest peak hour within the morning peak in the current year, the analyst 
should collect traffic count data at representative locations in the network continuously for 24 
hours.  These representative locations may be the major freeways, critical intersections, etc.  
Count data are typically aggregated at 15-minute intervals.  At each counting location, the 
average traffic count data for all the 15-minute intervals over the 24 hours are then plotted.  
The highest four consecutive 15-minute intervals are then designated as the peak hour.  The 
analyst may repeat the plot for different locations.  It is natural that data collected at different 
locations will indicate different peak hours.  The analyst should then exercise his/her 
engineering judgment to decide the peak hour of interest.  Instead of using a data aggregation 
interval of 15 minutes, some agencies use the data aggregation interval of one hour (e.g., 
7:00 a.m. to 8:00 a.m., 8:00 a.m. to 9:00 a.m.). 
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Having decided the peak hour, the next step is to construct the so-called K-factor.  It is 
assumed that, the peak hour O-D matrix can be obtained by multiplying the 24-hour O-D 
matrix by a factor known as the K-factor.  This K-factor factor is the proportion of the peak 
hour traffic volume over the 24-hour volume.  The K-factor is obtained by dividing the 
existing year’s traffic volume counted at the representative locations during the identified 
peak hour, by the 24-hour total volume counted at the same locations. 
 
The above procedure applies to the traffic counts and 24-hour O-D matrix in the existing 
year.  The hourly O-D matrix for a future year may be obtained as follows: 

• Estimate the future year’s daily O-D matrix from the trip generation model. 
• Apply the same K-factor obtained for the existing year.  That is, assume that (1) the 

peak hour in the future year is the same as the peak hour as the existing year; and (2) 
the proportion of traffic during the peak hour over the 24-hour day remains 
unchanged over the years. 

• Multiply the future year’s 24-hour O-D matrix by the K-factor to obtain the future 
year’s peak hour O-D matrix. 

 
 

3.1.3  Use of Hourly Capacity 
 
The O-D matrix used in traffic assignment is the hourly O-D matrix.  Since the elements in 
the O-D matrix are “vehicles per hour”.  The link capacity must also be in units of vehicles 
per hour. 
 
If the link capacities of the network are provided in vehicles per day, they must be changed to 
vehicles per hour.  Unlike the O-D matrix, the capacity of a link remains constant throughout 
the day.  However, converting a link capacity from daily capacity to hourly capacity is not as 
straight forward as dividing the former by a factor of 24.  In fact, the daily link capacity may 
have been adjusted during the calibration process (of traffic assignment with 24-hour matrix 
to produce reasonable link volume). 
 
Therefore, hourly link capacity is better estimated from the guidelines provided by the 
Highway Capacity Manual 2000 (TRB, 2000).  The values may be adjusted based on the 
analyst’s experience. 
 
 

3.1.4  Link Performance Function 
 
Having obtained the hourly O-D matrix, and hourly link capacity, traffic assignment for SN-
DUE model can then be carried out.   
 
The default Planning→  Traffic Assignment function in TransCAD is used to execute the 
DUE algorithm, which in TransCAD is the Frank-Wolfe algorithm.  The only important 
modification to the Planning→  Traffic Assignment function is the input of a numerical value 
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in the α  field that describes the risk averse drivers.  This will force the Frank-Wolfe 
algorithm to use the ELD function as a BPR function. 
 
 

3.2  Traffic Assignment with Departure Time Choice 
 
 

3.2.1  O-D Matrices for Different Time Intervals 
 
The analysis described in the previous section was based on the simplified assumption that 
the analyst knows the O-D matrices for all time intervals. This assumption is reasonable 
when one is dealing with the existing traffic networks. Indeed, for these traffic networks, the 
analyst can experimentally determine, for every two zones and for every time interval, how 
many drivers from the first zone need to get to the second zone.  
 
The main intent of the tools described in this report is to help in road planning, so that the 
agency is able to predict the traffic conditions under different scenarios. In each of these 
scenarios, it is assumed that  

• that the new roads have been built; 
• that the capacity of some of the existing roads has been increased, and at the same 

time; 
• that the population has increased and therefore, the traffic demand has increased.  

 
There exist tools and techniques for predicting population growth in different zones, and for 
describing how this population growth will affect the overall traffic demand.  TxDOT have 
been using the resulting predictions of daily O-D matrices corresponding to different future 
times (such as the year 2030).  To get a better understanding of the future traffic patterns, the 
analyst must be able to describe how this daily traffic is distributed over different time 
intervals, in particular, how much of this traffic occurs during the critical time intervals in the 
morning rush hour.  In other words, it is necessary to “decompose” the daily O-D matrix into 
O-D matrices corresponding to different time intervals, e.g., 15 minute intervals.  
 
 

3.2.2  Setting Up O-D Matrices 
 
It is reasonable to assume that the future distribution of departure times will be 
approximately the same as at present. Under this assumption, the analyst can estimate the O-
D matrix corresponding to a certain time interval by simply multiplying the (future) daily O-
D matrix by the corresponding present day’s K-factor – portion of traffic which occurs 
during this time interval.  These K-factors can be determined by an empirical analysis of the 
current traffic: a K-factor corresponding to a certain time interval can be estimated as a ratio 
between  

• the number of trips within this time interval, and  
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• the overall number of trips.  
 
At present, the empirical values of the K-factor are only available for hourly intervals.  If the 
analyst wants to find the K-factors corresponding to 15 minute intervals, it is reasonable to 
use linear interpolation. Let us illustrate linear interpolation on a simple example. Let us 
assume that we know K-factors corresponding to the hourly traffic, in particular, we know 
that: 

• at 7:00 a.m., the K-factor is 0.06, meaning that at this moment of time, the traffic 
volume (in terms of vehicles per hour) is equal to 6.0% of the daily traffic volume (in 
terms of vehicles per day); and  

• at 8:00 a.m., the K-factor is 0.08, meaning that at this moment of time, the traffic 
volume (in terms of vehicles per hour) is equal to 8.0% of the daily traffic volume (in 
terms of vehicles per day). 

If for an O-D pair, the daily traffic volume is 1,000 vehicles per day, then: 
• at 7:00 a.m., the traffic volume will be 0.06x1000 = 60 vehicles per hour, and  
• at 8:00 a.m., the traffic volume will be 0.08x1000 = 80 vehicles per hour. 

 
If we are interested in half-hour intervals, then we need to also estimate the traffic volume at 
7:30 a.m. Linear interpolation means that as such an estimate, we use the value (0.06+0.08)/2 
= 0.07. So, K-factors for the half-hour time intervals are:  

• at 7:00 a.m., the K-factor is 0.06; 
• at 7:30 a.m., the K-factor is 0.07; 
• at 8:00 a.m., the K-factor is 0.08. 

 
Similarly, to extrapolate into 15 minute intervals, we use (0.06 + 0.07)/2 = 0.065 for 7:15 
a.m. and (0.07 + 0.08)/2 = 0.075 for 7:45 a.m.  So, the K-factors for the 15 minute time 
intervals are:  

• at 7:00 a.m., the K-factor is 0.06; 
• at 7:15 a.m., the K-factor is 0.065; 
• at 7:30 a.m., the K-factor is 0.07; 
• at 7:45 a.m., the K-factor is 0.075; 
• at 8:00 a.m., the K-factor is 0.08. 

 
Once the K-factors for the time intervals have been estimated, they can be used as the 
multiplication factors into the daily O-D matrix to obtain the O-D matrix for the 
corresponding time intervals.  Note that, after multiplying by the interpolated K-factors, the 
elements of new O-D matrices have a unit of vehicles per hour. 
 
 

3.2.3  Justification for Considering Departure Time Choice 
 
The previous section describes how to use the interpolated K-factors to divide the daily O-D 
matrices into O-D matrices for different time intervals. The resulting O-D matrices are, 
however, only a first approximation to the actual O-D matrices.  A driver selects his or her 
departure time based on the time that the driver needs to reach the destination (e.g., the work-
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start time), and the expected travel time.  For example, if the driver needs to be at work at 
8:00 a.m., and the expected travel time to his or her destination is 30 minutes, then the driver 
leaves at 7:30 a.m.  
 
Population changes and new roads will change the expected travel time.  For example, if due 
to the increased population and the resulting increase road congestion the expected travel 
time increases to 45 minutes, then the same driver leaves at 7:15 a.m. instead of the previous 
departure time of 7:30 a.m.  So, the trips in the corresponding entry in O-D matrix 
corresponding to 7:30 a.m. will decrease while a similar entry in the O-D matrix 
corresponding to 7:15 a.m. will increase.  
 
Similarly, if a new freeway decreases the expected travel time to 15 minutes, then the driver 
will leave at 7:45 a.m. instead of the original 7:30 a.m. In this case, the corresponding entry 
in O-D matrix corresponding to 7:30 a.m. will decrease while a similar entry in the O-D 
matrix corresponding to 7:45 a.m. will increase.  
 
In general, the change in a transport network and/or the change in travel time will change the 
departure time choice and thus, change the resulting O-D matrices.  The following sub-
section describes how one can take this departure time choice into consideration.  
 
 

3.2.4  Logit Model for Departure Time Choice 
 
As mentioned in Chapter 2, the most widely used model for describing the general choice 
(especially the choice in transportation-related situations) is the logit model.  It is therefore 
reasonable to use this model to describe the driver’s choice of departure time.  In the logit 
model, the probability of departure in different time intervals is determined by the utility of 
different departure times to the driver.  According to this model, the probability iP   that a 
driver will choose the ith time interval is proportional to ( )iuexp , where iu  is the expected 
utility of selecting this time interval. The coefficient at ( )iuexp  must be chosen from the 
requirement that the sum of these probabilities be equal to 1.  So, the desired probability has 
the form  
 

( )
( )∑

=

= n

j
j

i
i

uexp

uexp
P

1

  (3.1) 

 
 
To apply the logit model, we must be able to estimate the utilities of different departure time 
choices.  As we have mentioned in Chapter 2, the utility iu  of choosing the ith time interval 
is determined by the following formula:  
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( ) ( ) ( ) ( )TE
S.P.SDLE.SDEE.TE.u Li 3463034661129900931010510 −−−−−=   (3.2) 

 
where E(T) is the expected value of travel time T, E(SDE) is the expected value of the 
“scheduled delay” (i.e., cost or penalty) when arriving early, E(SDL) is the expected value of 
the scheduled delay when arriving late, PL  is the probability of arriving late, and S is the 
variance of the travel time.  Note that T, E(SDE), E(SDL), LP  and S are calculated as if the 
driver departs in time interval i.  If we denote departure time by dt , and the desired arrival 
time (e.g., work-start time, for morning commute to work) by at , then we can express SDE as  
 

( )[ ]0,TttmaxSDE da +−=   (3.3) 
 
and SDL as  
 

( )[ ]0,tTtmaxSDL ad −+=   (3.4) 
 
So, to estimate the values of the utilities iu , one must first estimate the values of all these 
auxiliary characteristics. 
 
 

3.2.5  Expected Travel Time, Scheduled Delays and Probability of Arriving Late  
 
The first of these auxiliary values – the expected value E(T) of the traffic time T – is the most 
straightforward to compute: we can find it by simply applying a standard traffic assignment 
procedure (e.g., the one implemented in TransCAD) to the original O-D matrices. 
 
To estimate E(SDE) and E(SDL), in addition to the travel time, one must also know the 
departure time dt  and the desired arrival time at .  
 
Let us start our analysis with the departure time dt . For simplicity, for all the traffic 
originating during a certain time interval, as a departure time, we take the midpoint of the 
corresponding time interval. For example, for all the traffic originating between 7:00 a.m. 
and 7:15 a.m., we take dt =7:07.5 a.m.  
 
The analysis of the desired arrival time at  is slightly more complicated. The desired arrival 
time depends on the time of the day.  In the morning, the desired arrival time is the time 
when the drivers need to be at work or in school.  During the evening rush hour, the desired 
arrival time is the time by which the drivers want to return home, etc.  In terms of traffic 
congestion, the most crucial time period is the morning rush hour, when for most drivers, the 
desired arrival time is the work-start time.  In view of this, in the following text, we will refer 
to all desired arrival times as work-start times.  
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The work-start time usually depends on the destination zone.  For example, in El Paso, most 
zones have the same work-start time with the exception of a few zones such as: 

• the Fort Bliss zones where the military workday starts earlier, and  
• the university/college zone(s) where the school day usually starts somewhat later.  

For every zone, we therefore usually know the (average) work-start time, i.e., the (average) 
desired arrival time for all the trips with the destination in this zone.  
 
Of course, the actual work-start time for different drivers arriving in the zone may somewhat 
differ from the average work-start time for this zone. To take this difference into 
consideration, we assume that the distribution of the actual works-start time follows a bell-
shaped distribution around the average.  Considering the discrete time intervals, e.g., time 
moments separated by 15 minute time intervals, it makes sense to assume that: 

• for the 40% of the drivers, the actual work-start time is the average for this zone,  
• for 20%, the work-start time is one time interval (15 minute) later; 
• for another 20%, the work-start time is one time interval (15 minutes) earlier,  
• for 10%, it is two time intervals later, and  
• for the remaining 10%, it is two time intervals earlier.  

For example, if the average work-start time for a zone is 8:00 a.m., and the selected time 
interval is 15 minutes, then the assumed work-start times are as follows 

• for 10% of the drivers, the work-start time is 7:30 a.m.; 
• for 20% of the drivers, the work-start time is 7:45 a.m.; 
• for 40% of the drivers, the work-start time is 8:00 a.m.; 
• for 20% of the drivers, the work-start time is 8:15 a.m.; and, finally, 
• for 10% of the drivers, the work-start time is 8:30 a.m.. 

 
For each of these five groups, the corresponding value of SDE can be estimated from  
 

( ) ( )[ ]0,TttmaxtSDE daa +−=   (3.5) 
 
To get the desired value of E(SDE), one need to combine the values SDE(ta) at the different 

at  with the corresponding probabilities. For example, when the average work-start time is 
8:00 a.m., the expected value of SDE is equal to  
 
E(SDE) = 0.1*SDE(7:30) + 0.2*SDE(7:45) + 0.4*SDE(8:00) + 0.2*SDE(8:15) + 

0.1*SDE(8:15)  (3.6) 
 
Similarly, one can estimate the expected value E(SDL) of the delay SDL. By adding the 
probabilities corresponding to different work-start times, one can also estimate the 
probability PL of being late.  
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3.2.6  Variance of the Travel Time  
 
The previous sub-section describes how to estimate E(T), E(SDE), E(SDL) and PL. To 
compute the utility value iu , we need one more characteristic: the variance S of the route 
travel time. Let us analyze how we can estimate the variance S.  
 
In a deterministic network (DN), once we know the capacities of all the road links and the 
traffic demand (i.e., the values of the O-D matrix), we can apply a DUE algorithm to 
uniquely determine the route travel times for all O-D pairs. In practice, the travel time can 
change from day to day.  Some changes in travel time are caused by incidents, weather, 
special events and etc.  Since incidents are the major source of travel time delays, and in the 
absence of the other data, it is reasonable to estimate the variance S of the route travel time 
caused by the incidents. 
 
For this analysis, the analyst needs to have records of incidents which occurred during a 
certain period of time (e.g., 90 days).  The record of each incident typically includes the 
location and time of the incident, and the number of lanes in the corresponding link which 
was closed because of this incident.  To estimate S corresponding to a certain time interval 
(e.g., from 8:00 a.m. to 8:15 a.m.), the analyst should only consider the incidents which 
occurred during this time interval. Based on the incident location, one can find the link on 
which this incident occurred. The incident decreases the capacity of this link. This decrease 
can be estimated based on the original number of lanes and on the number of lanes closed by 
this incident.  
 
If all the lanes are closed by the incident, then the capacity of the link goes down to 0.  A 
reader should be cautioned that TransCAD does not allow us to enter 0 value for link 
capacity.  To overcome this problem, the capacity should be set to the smallest possible value 
(such as 1 vehicle per hour).  For all practical purposes, this is equivalent to setting this 
capacity to 0. 
 
Let us now provide heuristic arguments for estimating the decrease in capacity in situations 
in which some lanes remain open. Let us start with the simplest case of a 1-lane road. In 
reality, depending on the severity of an incident, the factor from 0 to 1 describing the 
decreased capacity can take all possible values from the interval [0,1].  The incident record 
only marks whether the incident actually led to the lane closure or not.  In other words, 
instead of the actual value of the capacity-reduction factor, the record only shows, in effect, 0 
or 1, with  

• 0 corresponding to the closed lane, and  
• 1 corresponding to the open lane.  

In yet another terms, we approximate the actual value of the factor by 0 or 1. It is reasonable 
to assume that:  

• factors 0.5 or higher get approximated by 1 (lane open), while  
• factors below 0.5 are approximated by 0 (lane closed).   

So, the incident records in which the lane remained open correspond to all possible values of 
the capacity-reduction factor from the interval [0.5,1].  As a reasonable average value of this 
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factor for the case when the lane remained open, we can therefore take the midpoint of this 
interval, i.e., the value 0.75.  
 
In multi-lane roads, an incident usually disrupts the traffic on all the lanes. It is therefore 
reasonable to assume that if no lanes were closed, then the capacity of each lane was 
decreased to 75% of its original value. Thus, for minor incidents in which no lanes were 
closed, we set the resulting capacity to 3/4 of the original capacity of the link.  
 
For a 2-lane link, if one lane is closed and another lane remains open, then we have one lane 
with 0 capacity and one lane with 3/4 of the original capacity; the resulting capacity is 3/4 of 
the capacity of a single lane, i.e., 3/8 of the original capacity of the 2-lane road. Since this 
number comes from a heuristic estimate, the capacity reduction factor is only approximately 
equal to 3/8 = 0.375. Experts tend to estimate on a 7 plus/minus 2 scale. This means that in 
the interval [0,1], they usually distinguish at most 9 different values with a distance of 
approximately 10% between them. These values can represent the actual value with an 
accuracy of 5% or even less. Thus, the approximate value 0.375 can mean the actual value 
from 0.325 to 0.425. Since the number 0.375 is only approximate, we can simplify our 
computations if, instead of this rather complex number, we use the simplest fraction from this 
interval, i.e., 1/3.  
 
For a 3-lane road, if one lane is closed this means that we retain only 2/3 of the incident-
reduced 75% capacity, i.e., 1/2 of the original capacity. If two lanes are closed, this means 
that we retain only 1/3 of the reduced capacity, i.e., 1/4 of the original capacity.  
 
Similar values can be estimated for 4-lane roads and, if necessary, for roads with a larger 
number of lanes.  
 
Based on the above logic, the remaining link capacity due to incidents, expressed in the 
number of equivalent lanes, is listed in Table 3.1. 
 
 

Table 3.1: Capacity of links affected by incidents 
 

Remaining capacity 
(number of lanes) 

Number of lanes closed by incident 
1 2 3 4 

 
No. of 

original lanes 

1 0 - - - 
2 0.75 0 - - 
3 1.50 0.75 0 - 
4 2.25 1.50 0.75 0 

 
 
For each recorded incident occurring at a given time interval, we replace the original capacity 
in the incident-affected link by the correspondingly reduced value, and solve the traffic 
assignment problem. As a result, for each O-D pair, we get a new value of the O-D (or route) 
travel time.  Using the output of the traffic assignment, the O-D travel times may be 
estimated by means of the “cost matrix” function in TransCAD. 
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Thus, for each O-D pair and for each time interval, for each day d during the period where 
incidents were observed D (e.g., 90 days), we have a value of the O-D travel time ( )dt :  

• if there was no incident during the time interval on this day, the value of the travel 
time comes from the original traffic assignment (without incident);  

• for the days on which there was an incident during the given time interval, the travel 
time comes from the analysis of the network with the correspondingly reduced 
capacity. 

Based on these ( )dt  value, we compute the mean value E of the travel time as  
 

( )∑
=

=
D

d
dt

D
E

1

1   (3.7) 

 
and then the variance S as  
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3.2.7  Development of Algorithm: Idea and Its Limitations 
 
In the two previous sections, we described how we can compute the characteristics which are 
needed to estimate the utility related to each departure time.  Let us now assume that we 
know the original O-D matrices for each time interval i.  For each time interval i, we can use 
the corresponding O-D matrix and solve the traffic assignment problem corresponding to this 
time interval.  From the resulting traffic assignment, we can compute the values of the 
desired auxiliary characteristics E(T), E(SDE), E(SDL), PL and S and thus, estimate the 
expected utility iu  of departing at this time interval i.  The logit formula enables us to 
compute the probability iP   that the driver will actually select departure time interval i.  
 
The probability Pi  means that out of N drivers who travel from the given origin zone to the 
given destination zone, iPN ×   leave during the ith time interval. The rest of the ( )iPN −× 1  
drivers will change their departure time to leave in other intervals, with the corresponding 
probabilities given by the logit model.  Similarly, some other drivers who have originally 
estimated to depart at other time intervals (they are counted in the original O-D matrices for 
other time intervals), may switch to the ith time interval.  The updated number of drivers 
between an O-D pair who depart during the ith time interval can be computed by adding the 
summing the products of the corresponding values in the original O-D matrix and the 
corresponding probability, from all the time intervals.  
 
These new O-D matrices take into account the departure time choice.  However, they are not 
the ultimate O-D matrices. Indeed, since we have changed the O-D matrices, we thus 
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changed the traffic assignments at different intervals of time; this will lead to different values 
of utilities iu  and probabilities iP .  
 
As an example, let us assume that there is an O-D pair for which the free-flow route travel 
time is 30 minutes.  Let us also assume that for the corresponding destination, everyone 
needs to be at work at 8 a.m. Let us also assume that at present, there is not much traffic 
congestion between the origin and destination zones, so everyone leaves around 7:30 a.m. 
and gets to work on time. Since we are estimating the distribution of traffic flow over time 
intervals based on the existing traffic, we will thus conclude that  

• in the O-D matrix corresponding to the time interval that include 7:30 a.m., we will 
have all the drivers, while  

• in the O-D matrices corresponding to earlier or later time intervals, we will have no 
drivers at all.  

Let us now apply these O-D matrices to traffic assignment. Due to this higher traffic volume 
along some links, the traffic time will drastically exceed 30 minutes, so all the drivers leaving 
at 7:30 a.m. will be, for example, 15 minutes late.  
 
On the other hand, drivers who happen to leave at 7:15 a.m. encounter practically no traffic – 
because there was no one needing to drive at this time in the original O-D matrix, so their 
travel time is exactly 30 minutes, and they get to work by 7:45 a.m., which is 15 minutes 
early. As we have seen in the above empirical formula (and in full accordance with common 
sense), the penalty for being 15 minutes late is much higher than the penalty of being 15 
minutes early.  As a result, the utility corresponding to leaving at 7:15 a.m. is higher than the 
probability of leaving at 7:30 a.m. Hence, in accordance with the logit formula, the 
probability that a driver will select to leave at 7:15 a.m. is much higher than the probability 
that this driver will leave at 7:30 a.m.  
 
So, in the new O-D matrices, most drivers will leave at 7:15 a.m., and the values 
corresponding to leaving at 7:30 a.m. will be much lower. If the drivers really follow the 
pattern corresponding to the new O-D matrix, then the traffic congestion corresponding to 
7:30 a.m. will be much lighter than before, so the utility of leaving at 7:30 a.m. will become 
higher and thus, the probability of leaving at 7:30 a.m. will increase again.  It is reasonable to 
expect that if we repeat this procedure several times, we will eventually reach the desired 
stable values of the O-D matrix.  
 
Let us describe these ideas in precise term. In essence, we have described a procedure which 
transforms the original set of O-D matrices M  into a new set of O-D matrices ( )MF , a set 
which takes into account departure time choice based on the traffic assignments generated by 
the original O-D matrices. To completely take into account the departure time choice means 
to find the O-D matrices which already incorporate the departure time choice, i.e., the 
matrices M which do not change after this transformation: ( ) MM =F .  
 
At first glance, it seems reasonable to find these “stable” O-D matrices M  by using a 
reasonable iterative procedure:  
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• we start with the set of first-approximation O-D matrices 1M  which are obtained by 
multiplying the new O-D daily matrix by the original K-factors; 

• then, we apply the transformation F again and again: ( )12 MM F= , ( )23 MM F= , 
…, until the procedure converges, i.e., until the new set of matrices 1+iM  becomes 
close to the previous set iM .  

 
This procedure seems even more reasonable if we recall that a similar iterative procedure is 
successfully used in TransCAD to find the traffic assignment.  However, we found out that 
this seemingly reasonable procedure often does not converge.  
 
This lack of convergence can be illustrated on a “toy” example in which we have a single 
origin, single destination, and two possible departure times. Similarly to the above example, 
let us assume that the work starts at 8 a.m., that the free-flow traffic time is 30 minutes, and 
that we consider two possible departure times 7:30 a.m. and 7:15 a.m. Again, just like in the 
above example, we assume that the original O-D matrices are based on the existing low-
congestion networks in which everyone leaves at 7:30 a.m. and nobody leaves at 7:15 a.m. In 
other words, we assume that the K-factor for 7:30 a.m. is 1, and the K-factor for 7:15 a.m. is 
0. We also assume that there are high penalties for being late and for spending too much time 
in traffic.  
 
In accordance with the above iterative procedure, we start with the O-D matrices 1M   in 
which everyone leaves for work at 7:30 a.m., and nobody leaves for work at 7:15 a.m. The 
only difference with the current situation is that we are applying the same K-factors to the 
future, more heavy traffic.  

• For those departing at 7:15 a.m., there is no traffic, so the travel time is equal to the 
free-flow travel time of 30 minutes.  

• The drivers departing at 7:30 a.m. face a much heavier traffic, so we get a traffic 
congestion. As a result of this congestion, the travel time increases to 45 minutes.  

So, 
• drivers who leave at 7:15 a.m. spend only 30 minutes in traffic and arrive 15 minutes 

early, while  
• drivers who leave at 7:30 a.m. spend 45 minutes on the road and are 15 minutes late. 

 
Since we assumed that the penalties for being late are heavy, the expected utility of leaving at 
7:15 a.m. is much higher than the expected utility of leaving at 7:30 a.m.. Thus, the 
probability of leaving at 7:15 a.m. is overwhelmingly higher than the probability of leaving at 
7:30 a.m.. As a result, we arrive at the new O-D matrices ( )12 MM F=  in which almost 
everyone leaves at 7:15 a.m. and practically no one leaves at 7:30 a.m..  
 
For these new O-D matrices 2M : 

• for those departing at 7:30 a.m., there is no traffic, so the travel time is equal to the 
free-flow time of 30 minutes; 

• the drivers departing at 7:15 a.m. face a much heavier traffic, so we get a traffic 
congestion; as a result of this congestion, the travel time increases to 45 minutes.  
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So, 
 

• drivers who leave at 7:30 a.m. spend only 30 minutes in traffic and arrive on time, 
while  

• drivers who leave at 7:15 a.m. spend 45 minutes on the road. 
Since we assumed that the penalties for spending extra time on the road are heavy, the 
expected utility of leaving at 7:30 a.m. is much higher than the expected utility of leaving at 
7:15 a.m.. Thus, the probability of leaving at 7:30 a.m. is overwhelmingly higher than the 
probability of leaving at 7:15 a.m. As a result, we arrive at the new O-D matrices 

( )23 MM F=  in which almost everyone leaves at 7:30 a.m. and practically no one leaves at 
7:15 a.m..  
 
In other words, we are back to the original O-D matrices 13 MM ≈ . These “flip-flop” 
changes continue without any convergence. How can we modify the above idea so as to 
enhance convergence?  This leads us to propose the method discussed in the following sub-
section. 
 
 

3.2.8  Development of Algorithm: A More Realistic Approach 
 
We started with the O-D matrices 1M  which describe the existing traffic behavior. We want 
to predict how a change in traffic volume and in road network will affect the driver’s 
behavior. To do that, let us analyze  

• how the actual drivers change their behavior if the road congestion and road 
conditions change, and  

• how we can simulate this behavior in a computer model so as to predict these 
changes.  

 
At first, the drivers simply try to follow the same traffic patterns as before, i.e., depart at the 
same times as before. In terms of the computer representation of the drivers’ behavior, this 
means that the proportion of the drivers departing at different time intervals remains the same 
as in the original traffic. In other words, this behavior corresponds to what we described as 
the first approximation 1M  – when we take the new daily O-D matrix and multiply it by the 
K-factors corresponding to the original traffic.  
 
As we have mentioned, due to the change in traffic volume and in road capacity, this first-
approximation behavior may lead to congestion and delays. When drivers realize this, they 
will change their departure time so as to avoid these new delays. The drivers will use the 
traffic patterns and delays caused by 1M  to decide on the new departure times.  The resulting 
change in the O-D matrix is what we described in the previous section as a transformation F. 
In other words, the resulting O-D matrix is ( )12 MM F= .  
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The change of departure times, as reflected by the move from the original O-D matrices 1M  
to the new O-D matrices 2M , will again change the traffic patterns and delay times, so again, 
there will be a need to change the departure times based on the new traffic delays.  
 
In these terms, the above iterative process ( )ii F MM =+1   corresponds to the situation when 
the drivers only use the experience of their most recent traffic behavior and ignore the rest of 
the traffic history.  Let us illustrate this idea on the above “toy” example.  
 
In this example, the drivers used to go to work at 7:30 a.m. For the original traffic volume, 
this was a reasonable departure time because it allowed them to be at work exactly at the 
desired time 8:00 a.m., and to spend as little time on the road as possible – exactly 30 
minutes, the free-flow traffic time.  
 
When the traffic volume increases, in Day 1 of this new arrangement, the drivers follow the 
same departure time as before, i.e., they all leave for work at 7:30 a.m. Since the traffic 
volume has increased, this departure time no longer leads to the desired results – most of the 
drivers are 15 minutes late for work.  
 
Since in the first day, most drivers were 15 minutes late, on the second day they leave 15 
minutes earlier, at 7:15 a.m., so as to be at work on time. They do reach work on time, but at 
the expense of driving 15 minutes longer than they used to. A few drivers, however, still 
leave at 7:30 a.m.. To their pleasant surprise, they experience a smooth and fast ride and 
arrive at work exactly on time.  
 
The other drivers learn about the negative experience of those who left at 7:15 a.m. and of 
the positive experience of those who left at 7:30 a.m. In our iterative model, we assume that 
when the drivers decide on departure time at Day 3, they only take into account delays on the 
previous Day 2. Under this assumption, to select the departure time on Day 3, the drivers 
only use the Day 2 experience. On Day 2, departing at 7:30 a.m. certainly led to much better 
results that leaving for work at 7:15 a.m. So, under this assumption, on Day 3, most drivers 
will switch to 7:30 a.m. departure time. As a result, most of them will be again 15 minutes 
late for work, with the exception of those who left home earlier, at 7:15 a.m. Since on Day 3, 
leaving at 7:15 a.m. was clearly much preferable than leaving for work at 7:30 a.m., on the 
next Day 4, most drivers will again leave at 7:15 a.m., etc. 
 
In this analysis, we get the same non-converging fluctuations as we had in the previous 
section, but this time, we understand the reason for these fluctuations: the fluctuations are 
caused by the simplified assumption that the drivers’ behavior is determined only by the most 
recent experience.  
 
In reality, when the drivers choose departure times, they take into account not only the traffic 
congestion on the day before, but also traffic congestion on several previous days.  It is 
reasonable to assume that all these previous days are weighted equally. Let us describe this 
assumption in precise terms. We start with the set 1M  of O-D matrices which describe the 
number of drivers leaving at different time intervals on Day 1, when the drivers follow their 
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original departure times. Similarly, let us denote the set of O-D matrices describing the 
drivers on Day i by iM .  
 
Suppose that we already know the O-D matrices 1M , 2M ,…, iM   which describe the 
number of drivers leaving at different time intervals at days 1, …, i.  Since the drivers weigh 
all these previous days equally, they estimate the expected traffic iE as the average of the 
previous traffics:  
 

[ ]ii ...
i

MMME +++= 21
1   (3.9) 

 
The drivers use this expected traffic iE  to make their departure time choices. We have 
already described the corresponding procedure, and we have denoted the resulting 
transformation of O-D matrices by F. So, we can conclude that the O-D matrices 1+iM  
corresponding to the new departure times have the form ( )ii F EM =+1 .  
 
Thus, we arrive at a new iterative procedure that takes into account departure time choice 
when making traffic assignments.  This procedure has the following steps,  

• Start with the O-D matrices 1M  which describe the original departure times; these O-
D matrices can be obtained by multiplying the daily O-D matrix by the the K-factors;  

• For i = 2, 3, …, repeat the following steps:  
o Compute iE  according to Equation (3.9); and then  
o Compute ( )ii F EM =+1  

• After the iterations have stopped, use the resulting set of O-D matrices to describe the 
resulting traffic assignments. 

 
Our experiments on the “toy” road network and on the actual El Paso road network 
confirmed that this procedure converges.  An important question is when to stop the 
iterations. More iterations lead the solution closer to the desired “equilibrium” traffic 
assignment. However, each iteration requires a reasonably large amount of computation time 
on TransCAD, so it is desirable to limit the number of iterations.  
 
To find a reasonable stopping criterion, let us recall that the main objective of our traffic 
assignment task is to evaluate the network performance with the future year traffic in order 
for planners to make decisions on road projects.  Thus, the objective is to deal with the O-D 
matrices which describe future drivers’ behavior.  The only way to get such future matrices is 
by prediction.  At best, we can predict the accuracy of the future traffic with the accuracy of 
10-15%.  Thus, it makes sense to stop iterations when we have already achieved this same 
order of accuracy, i.e., when the difference between the O-D matrices iE  (based on which 
we make the plans at moment i+1) and the resulting matrices 1+iM   is smaller than (or equal 
to) 10-15% of the size of the matrix entries themselves.  
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As a measure of the difference between the matrices iE  and 1+iM , it is reasonable to take the 
root mean square difference, i.e., the value ( )1+ii ,MEδ  determined by the formula  
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where T is the number of time intervals, Z is the number of zones in the network; t, o and d 
denote the indices for time interval, origin (row) and destination (column) of the O-D 
matrices respectively; t

ode  and t
odm  are the elements in the iE  and 1+iM  matrices 

respectively. Similarly, as a measure of the size of a set iE  of matrices, it is reasonable to 
take its root mean square value, i.e., the value ( )irms E  determined by the formula  
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To speed up computations, we only compute the sizes ( )1Mrms  and ( )2Mrms  for the first 
two iterations, and use the largest of the two resulting sizes as an estimate for the size in 
general.  In other words, we stop the traffic assignment and departure time choice 
adjustments when  
 
( ) ( ) ( ){ }211 MMME rms,rmsmax, ii ≤+δ   (3.12) 

 
 

3.2.9  Development of Algorithm: Resulting Algorithm and Final Remarks 
 
In this section, we have described the algorithm for taking into account departure time choice 
when making traffic assignments.  The advantage of this algorithm is that it converges. 
However, from the computational viewpoint, this algorithm has a limitation. To implement 
the above algorithm, we must store the sets of O-D matrices 1M , 2M ,…, iM   corresponding 
to different iterations.  For a large city-wide road network, we need to store information 
about many O-D pairs at several different time intervals.  For example, the standard El Paso 
network has 681 zones, so we need to store the information about each of the 681x681 O-D 
pairs at each of, say, 12 15-minute time intervals, and we must store as many different pieces 
of this information as there are iterations. Storing, accessing, and processing all this 
information requires a large amount of computation time.  
 
It is therefore desirable to reformulate the above algorithm in such a way as to avoid this 
excessive storage. We will show that such a simplification is indeed possible. The idea for 
this simplification comes from the fact that once we know the previous average value 
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[ ]ii ...
i

MMME +++= 21
1   (3.13) 

 
And we have computed the new matrices ( )ii F EM =+1 , we do not need to repeat all the 
additions to compute the new average:  
 

[ ]1211 1
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++ ++++
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= iii ...
i
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Indeed, the expression for 1+iE  can be reformulated as follows:  
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Taking into account that 11 ME = , we arrive at the following algorithm:  

• we start with the O-D matrix 1E  which describes the original departure times; this O-
D matrix can be obtained if we multiply the original daily O-D matrix by the K-
factor;   

• Compute ( )1Erms  
• Repeat for i = 2, 3, …,  

o Compute ( )iF E  

o Compute ( )[ ]iii Fi
i

EEE +
+

=+ 1
1

1  

• Stop when  ( )( ) ( ) ( ){ }21 EEEE rms,rmsmaxF, ii ≤δ  
• Use the resulting set of O-D matrices iE  to represent the traffic demand and the 

resulting traffic assignment to describe the predicted traffic conditions. 
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CHAPTER 4 
 

DEVELOPMENT OF ROUTE CHOICE MODELS 
 
 
As reviewed in Chapter 2 (Section 2.3.1), the route choice behavior of drivers in a SN may 
be classified as risk averse, risk prone or risk neutral, each with a respective form of  route 
disutility functions.  For risk averse and risk prone drivers, the route disutility functions are 
exponential functions of the route travel time.  For risk neutral drivers, the route disutility is a 
linear function of the average route travel time.  For each route disutility function, there is a 
corresponding form of equivalent link disutility (ELD) function.  This Chapter presents the 
derivation of the ELD functions for the risk neutral and risk averse route choice behavior.  It 
also discusses the advantages of the ELD functions derived in this research over those 
reviewed in Section 2.3.1.  This Chapter also demonstrates a method to estimate the 
coefficient of the derived ELD function for risk averse drivers based on the survey data 
gathered in El Paso, TX. 
 
 

4.1  Risk Averse Behavior 
 
 

4.1.1  Desirability of Using Equivalent Link Disutility Functions 
 
According to the SN-DUE model, a driver selects a route with the minimum value of the 
expected disutility [ ]rDUE .  If we “rescale” the disutility function, i.e., consider an auxiliary 
function [ ]( )rr DUEgA =  for some monotonically increasing function ( )xg , then minimizing 
[ ]rDUE  is equivalent to minimizing rA . We will use this property to simplify the decision 

making in the SN-DUE model.  
 

In particular, for risk averse drivers, following Equation (2.3), we have [ ] ( )11 −= rr AbDUE , 
where  
 

( )[ ]rr texpEA ω=  (4.1) 
 
Therefore, [ ]( )rr DUEgA =  for ( ) ( ) 11 += bxxg .  Since 1b >0, the function ( )xg  is 
monotonically increasing and therefore, minimizing [ ]rDUE  is equivalent to minimizing rA .  
 

The route travel time rt  is composed of link travel times it : ∑
=

=
L

i
ir tt

1
.  In a SN, link travel 

times ( )it  are considered to be independent random variables.  Thus, the auxiliary expression 
( )[ ]rr texpEA ω=  can be expressed as 
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rA  = ( )[ ]rtexpE ω  = ( )( )[ ]Lt...ttexpE +++ 21ω  = ( ) ( ) ( )[ ]Ltexp...texptexpE ωωω 21  

 
 = ( )[ ] ( )[ ] ( )[ ]LtexpE...texpEtexpE ωωω ⋅⋅⋅ 21  (4.2) 
 
Drivers will select the route that minimizes [ ]rDUE ; this is equivalent to minimizing rA .  
Since ( )xln  is a monotonically increasing function, this choice is, in its turn, equivalent to 
selecting the route that minimizes ( )rAln .  Here 
 
( )rAln  = ( )[ ]{ } ( )[ ]{ } ( )[ ]{ }LtexpEln...texpElntexpEln ωωω +++ 21  (4.3) 

 
Let us perform one more rescaling, to make this expression similar to that of the DN.  A DN 
can be viewed as a particular case of a SN, in which all travel times it  and rt  are 
deterministic.  In a DN, the above expression reduces to  
 
( )rAln  = ( )[ ] ( )[ ] ( )[ ]Ltexpln...texplntexpln ωωω +++ 21  = ( )Lt...tt +++ 21ω  = rtω  (4.4) 

 
In a DN, we select a route with the smallest route travel time rt .  For convenience, let us 
rescale the objective function ( )rAln  one more time so that for DN, the rescaled objective 
function will coincide with rt .  Specifically, we consider ( )rr Alndu ω

1=  instead of ( )rAln , 
both for the DN and for the SN.  In this case, for the DN we have rr tdu = . 
 
In the general SN case, since ( ) ω

xxg =  is a monotonically increasing function, selecting a 
route based on rdu  is equivalent to selecting a route based on ( )rAln , and thus equivalent to 
selecting a route based on [ ]rDUE .  From Equation (4.3), we conclude that the new 
objective function rdu  can be expressed as Lr DU...DUdu ++= 1 , where 

( )[ ]{ }ii texpElnDU ωω
1= .  Thus, the drivers preference in SN-DUE is equivalent to selecting a 

route with the smallest value of the sum ∑
∈

=
ri

ir DUdu .  So we get the desired equivalence 

with the ELD function ( )[ ]{ }ii texpElnDU ωω
1= .  Therefore, selecting a route in a SN is very 

similar to selecting a route in a DN, but with link disutility ( )[ ]{ }ii texpElnDU ωω
1=  instead of 

link travel time. 
 
 

4.1.2  Equivalent Link Disutility Functions  
 
Let us reformulate this expression for iDU  in terms of mean and variance of it .  In a SN the 
actual travel time it  in link i can be expressed as the sum of the mean travel time it  and the 
deviation from its mean: 
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( )iiii tttt −+=   (4.5) 
 
It follows that 
 

( ) ( ) ( )( )iiii ttexptexptexp −= ωωω  (4.6) 
 
Hence 
 

( )[ ]itexpE ω  = ( ) ( )( )[ ]iii ttexpEtexp −ωω  (4.7) 
 
Usually ( )ii tt −ω  is small, so we can expand the exponential function into the Taylor series 
and only keep the first three terms in this expansion 
 

( )( )ii ttexp −ω  = ( ) ( ) ...tttt ii
ii +

−
+−+

2
1

22ωω  (4.8) 

 
Therefore 
 

( )( )[ ] [ ] ( )[ ]2
2

2
1 iiiiii ttEttEttexpE −+−+≈−

ωωω  (4.9) 

 
By definition, [ ]ii ttE − =0 and ( )[ ] 22

itii ttE σ=−  which is the variance of it .  Substituting 
Equation (4.9) into Equation (4.7), we obtain  
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The link disutility function thus becomes 
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Using the Taylor series expansion of ( ) ...zzln +=+1  we obtain 
 

2

2 itii tDU σω
+≈  (4.12) 

 
We have shown that, if the all drivers in a network follow the same risk averse behavior, 
solving for DUE in a SN is similar to solving for DUE in a DN, except that we replace it  in a 
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DN with iDU  in a SN.  Note that the first term it  in iDU  is the same as Equation (2.1), the 
BPR function.  Thus, it can be said that, in a SN with risk averse behavior, the additional 
term in the route choice decision for drivers is the link travel time variance, scaled by a factor 
ω /2.  The magnitude of ω  reflects the sensitivity of the drivers in avoiding the risk.  Risk 
averse drivers will avoid links that have high 2

it
σ .  Note that, if 

it
σ =0, the SN-DUE model is 

reduced to a DN-DUE model.   
 
 

4.2  Risk Prone Behavior 
 
 

4.2.1  Desirability of Using Equivalent Link Disutility Functions 
 
According to the SN-DUE model, a driver selects a route with the smallest possible value of 
the expected disutility [ ]rDUE  
 
[ ] [ ]{ }rRrr DUEDUE

∈
′ = min   (4.13) 

 
For risk prone drivers, according to Equation (2.3), [ ] ( )rr BbDUE −= 12  where  
 

( )[ ]rr texpEB ϕ−=  (4.14) 
 
Thus, minimizing [ ]rDUE  is equivalent to maximizing rB .  Since the link travel times it  are 
independent random variables, we conclude that for a route consisting of L links, we have  
 

rB  = ( )[ ]rtexpE ϕ−  = ( )[ ] ( )[ ] ( )[ ]LtexpE...texpEtexpE ϕϕϕ −⋅⋅−⋅− 21  (4.15) 
 
Selecting a route according to Equation (4.12) is equivalent to selecting a route that 
maximizes rB . This choice, in its turn, is equivalent to selecting the route that minimizes 

( )rr Blndu ϕ
1−= .  Here  

 

rdu  = ( )[ ]{ } ( )[ ]{ } ( )[ ]{ }LtexpEln...texpElntexpEln ϕ
φ

ϕ
ϕ

ϕ
ϕ

−−−−−−−
111

21  (4.16) 

 
Thus, for risk prone behavior, the drivers preference in SN-DUE is equivalent to selecting a 
route with the smallest value of the sum ∑

∈

=
ri

ir DUdu .  So we get the desired equivalence 

with the equivalent link disutility function ( )[ ]{ }ii texpElnDU ϕϕ −−= 1 .  Therefore, selecting a 
route in a SN is very similar to selecting a route in a DN, but with link disutility 

( )[ ]{ }ii texpElnDU ϕϕ −−= 1  instead of link travel time.   
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4.2.2  Equivalent Link Disutility Functions  
 
Let us reformulate this expression for iDU  in terms of mean and variance of it .  By 
following the same procedure as in the risk averse case, we can show that  
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Therefore, we can write 
 

iDU = ⎥
⎦

⎤
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11
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 (4.18) 

 
Using the Taylor series expansion for ( )xln +1 , we obtain 
 

2

2 itii tDU σϕ−≈  (4.19) 

 
Equation (4.19) may be interpreted as follows.  A risk prone driver will consider the average 
link travel times ( )it  as well as the variance of link travel times ( )2

it
σ  in his/her route choice 

decision.  If there are choices of two links with the same average travel time, a risk prone 
driver prefers the link with the higher variance.  The higher the variance, the more favorable 
the link is to the risk prone driver.  Therefore, the link disutility function has the link variance 
term, weighted by  ( )2ϕ− .   
 
 

4.3  Desired Properties of Equivalent Link Disutility Functions 
 

A route r is made up of a series of L connected links i=1,…,L.  We have already shown that 
we can assign, to every link i, a value iDU  in such a way that the drivers preference is 

equivalent to selecting a route with the smallest value of the sum ∑
=

=
L

i
ir DUdu

1

.  In other 

words, the equivalent link disutility function satisfies the property 
  

(P1) It must be mathematically consistent with the route disutility function, in the sense 
that it leads to the same routing decision (it may however have a different form 
than the route disutility function). 
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Property P1 ensures that the equivalent link disutility function describes the same route 
choice behavior as the original route disutility function.   
 
It is also desirable that the equivalent link disutility function satisfies the following 
properties: 
 

(P2) If we sub-divide a link into a series of shorter links, the equivalent disutility of the 
original link must be equal to the sum of the equivalent disutilities of the shorter 
links. 

 
(P3) The equivalent link disutility function must be a monotonically increasing and 

continuously differentiable function of link volume.   
 
Property P2 ensures that drivers’ route choice and network flow remain the same irrespective 
of the resolution of network representation.  Property P3 ensures that the equivalent link 
disutility function is consistent with common sense: the higher the link volume, the less 
preferable it is to the drivers, and small changes in the link volume lead to small changes in 
the driver’s preference. 
 
The consistency in UE flow patterns irrespective of the resolution in network representation 
is important in many practical applications.  Many transportation planning models divide the 
geographical area to be analyzed into zones, depending on the land-use patterns.  The zones 
in the geographical border (or buffer zones) are usually larger than the zones in the central 
business district.  Naturally, the modeling details are often sized according to the zone 
dimension.  Zones covering larger areas are likely to have longer links.  On the other hand, 
smaller zones are likely to have shorter links and higher node density.  Many traffic 
assignment algorithms use the geographical and topological information of the nodes and 
links converted from a GIS database.  To be geographically correct in representing a curved 
road segment which has a uniform geometry, intermediate nodes are inserted between the 
two ends of the segment so that it can be represented by a series of piecewise linear links.  If 
the additive property of the link disutility is not preserved, such division of a link into a series 
of smaller links may produce different UE flow patterns after traffic assignment.   

 
A consistent equivalent link disutility function can be placed instead of the deterministic link 
travel time function in the existing traffic assignment models (such as TransCAD (Caliper, 
2005b)) and thus enable us to use these models for SN-DUE applications. 
 
We first use a commonly used deterministic link travel time function to illustrate the 
concepts of P2 and P3.  As we have mentioned, the most popular deterministic link travel 
time function used by transportation modelers is the BPR function in Equation (2.1).  The f

it  
is computed by dividing il , the length of link i, by f

iu , the free-flow speed of link i.  For a 

route r which is made up a series of L links ( )L,...,i 1= , the route travel time is ∑
=

=
L

i
ir tt

1

.  In 

short, the route travel time is the arithmetic sum of the link travel times, with the latter 
represented by the BPR function.   
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Since α >0 and β >0, it  is a monotonically increasing and continuously differentiable 
function of iv , i.e., the BPR function satisfies P3.   
 
We now illustrate the concept of P2.  Suppose that we now divide link i into n consecutive 
sub-links { }niii ,...,, 21 , with lengths { }

ni iii lll ,, ,...2
.  Then, the volume, capacity, and free-flow 

speed of the sub-links are same as that of link i, i.e., iiii vv...vv
n
====
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, 

iiii cc...cc
n
====

21
, and  f

i
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.  The free-flow travel times of the sub-
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sum of the travel times in its sub-links, is 
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Therefore, if we divide an original link into shorter links and compute the travel times of the 
shorter links, then the sum of the travel times on the shorter links is the same as the original 
link travel time.  Thus, by using the BPR function, the additive property of the link travel 
time is preserved, and the BPR function satisfies property P3. 
 
 

4.4  Simpler Equivalent Link Disutility Functions  
 
 

4.4.1  General Expression for Risk Averse, Risk Prone and Risk Neutral Behavior 
 
Let us use the property P2 to derive expression for the equivalent link disutility functions in 
terms of link volume and link capacity.  In a SN, it , the travel time in link i, is a random 
variable.  For this random variable it , the average travel time it  can be estimated by the BPR 
function: 
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Note that, according to this formula, when iv =0, we have f
ii tt = .  Moreover, in the absence 

of traffic flow, i.e., when iv =0, the link travel time it  should be equal to f
it  (with 

probability=1.0). Other than these restrictions on the average and on the free-flow travel 
time, we are not making any other explicit assumptions about the distribution of it ; in this 
sense, the conclusions of this section are distribution-free.   
 
It is natural to assume that, iDU , the equivalent disutility of link i should depend on the free-
flow travel time f

it  and the relative average delay ( ) f
i

f
ii tttd −= , i.e.,  

 
( )d,tFDU f

ii =  (4.22) 
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for some function ( )d,tF f

i .  So, to describe an equivalent link disutility function, we must 
find the appropriate function ( )d,tF f

i .   
 
One would expect a link which has a longer uncongested travel time to have a higher 
equivalent disutility; so, ( )d,tF f

i  must be an increasing function of f
it . One would also 

expect that as the link becomes more congested, the equivalent disutility would increase; so, 
( )d,tF f

i  must also be an increasing function of d.  In addition, the function ( )d,tF f
i  must 

satisfies the following conditions:  
 
(i)  In the deterministic case, we want our equivalent link disutility function to reduce to the 

standard link travel time function.  We have already mentioned that when 0=iv , then the 
travel time is deterministically determined f

iii ttt == , therefore  
 
( )0,tF f

i = f
it   (4.24) 

 
(ii) We would like the equivalent link disutility function to satisfy the property P2: If we sub-

divide a link into a series of shorter links, the equivalent disutility of the original link 
must be equal to the sum of the equivalent disutilities of the shorter links.  If we sub-
divide a link into two sub-links with free-flow travel times f

it 1
 and f

it 2
 respectively, then 

iii vvv ==
21

, and iii ccc ==
21

; so by Equation (4.22), the relative average delay d for both 
sub-links is the same as for the original link.  Thus the desired property P2 takes the 
following form 

 
( ) ( ) ( )d,tFd,tFd,ttF f

i
f

i
f

i
f

ii 212
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Let us describe all the functions ( )d,tF f

i  which satisfy these conditions.  First we analyze 
Equation (4.25).  We fix a value d and introduce an auxiliary function ( ) ( )d,aFaG = .  In 
terms of this new function, Equation (4.25) takes the form  
 
( ) ( ) ( )bGaGbaG +=+  (4.26) 

 
We also know that ( )d,tF f

i  is an increasing function of f
it  and therefore, ( )aG  is an 

increasing function of a.  It is known (Aczel, 2006) that every monotonically increasing 
function ( )aG  which satisfies Equation (4.25) has the form ( ) akaG ⋅=  for some k>0.  For 
different d, the coefficient k may in general be different: ( )dkk = .  Thus we conclude that  
 

( ) ( )dktd,tFDU f
i

f
ii ==  (4.27) 

 
From Equation (4.24), we know that for d=0 we have ( ) f

i
f

i td,tF = .  Therefore ( )0k =1.   
 
For typical values of α  and β  (see Equation (4.24)), we have 1<<d .  Thus we can use the 
Taylor series expansion 
 
( ) ...dadadk +++= 2

211  (4.28) 
 
and ignore the higher order terms, i.e., use an expression ( ) 2

211 dadark ++= .  Substituting 
the formula for d (Equation (4.23)) into this expression, we conclude that 
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Furthermore, for the standard values of α =0.15, β =4, and the normal range of ii cv , the 

term ( ) βα 22
ii cv  is usually negligible.  Therefore we may simplify Equation (4.29) to 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

β

α
i

if
ii c

vatDU 11  (4.30) 

 
Equation (4.30) can also be expressed as 
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Hence, we may view iDU  as consisting of two components: the “deterministic” component 

it  which has the same value given by the BPR function, and the “stochastic” component 
[ ]...t f

i  which is due to the uncertainty in link travel time.  Then, 1a  describes the sensitivity of 
the driver in respond to this uncertainty.  Note that, Equation (4.30) can be used to represent 
risk averse, risk prone and risk neutral drivers, depending on the value of 1a .  When 1a =1, 
drivers do not consider travel time uncertainty in route choice, and Equation (4.30) is reduced 
to the BPR function as in Equation (2.1).  
 
 

4.4.2  Conditions for Risk Averse Behavior 
 
We have earlier derived Equation (4.12) as an ELD function that represents the route choice 
behavior of risk averse drivers.  Comparing Equations (4.12) with (4.30), the latter is easier 
to implement in DUE algorithms as one does not need to know the 2

it
σ  of every link.  

However, the condition of ≥2
iσ 0 imposes a restriction on the 1a  value.  By equating the last 

term on the right-hand-side of Equations (4.12) and (4.30), and with ≥2
iσ 0 
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As all other terms in Equation (4.32) are positive, it follows that ≥1a 1.  For risk averse 
drivers, we refer to this sensitivity parameter 1a  as the risk averse coefficient. 
  
 

4.4.3  Conditions for Risk Prone Behavior 
 
The bound of 1a  for risk prone behavior may be derived in the similar fashion. Comparing 
Equations (4.19) with (4.30) and by setting ≥2

iσ 0, we obtain 
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As all other terms in Equation (4.33) are positive, it follows that ≤1a 1, for risk prone 
drivers. 
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4.5  Modeling Route Choice Behavior in Stochastic Networks 
 
We have already shown that the property P1 is satisfied.  In terms of our ELD function iDU , 
this property means that the driver preferences should be equivalent to selecting a route with 

the smallest value of the sum rdu  = ∑
=

L

i
iDU

1
. 

 
Thus, the Equation (4.30) provides a convenient way of solving the SN-DUE model using a 
DUE algorithm, such as the Frank-Wolf algorithm in TransCAD (Caliper, 2005b), provided 
that iDU  is a convex function of iv .  This property of iDU  holds e.g. when ≥1a 0.  
Therefore, we can treat the SN-DUE model like a DN-DUE model simply by replacing the it  
and rt  in the DN-DUE model by iDU  and rdu  respectively.  In fact, we only need to replace 

it  by iDU  in the solution algorithm! 
 
To use Equation (4.30) in a DUE algorithm, one only needs to know the value of 1a .  In 
principle, every driver should have his/her individual 1a  value.  To describe the general 
behavior of the driving population, an average value of 1a  may be used.  The following 
section describes a method to estimate the average 1a  value from a questionnaire survey. 
 
 

4.6  Estimation of Risk Averse Coefficient 
 
By expressing Equation (4.30) in terms of d (as defined in Equation (4.23), we obtain 
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In a hypothetical link that has a constant travel time 

 
f

ii tDU =   (4.35) 

 

Consider the case where there are only two parallel links connecting an O-D pair, with link 
i=1 having a constant travel time ft1 , while link i=2 having a travel time according to 
Equation (4.34).  For link i=2, the values of ft2  and 2t  may be prescribed as the minimum 
and average travel times respectively.  Given the values of ft2 and 2t , we may ask a driver to 
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specify the value of ft1  such that he/she does not have any preference on one link over 
another.  Under this condition 
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We may then solve for 1a . 

 

A questionnaire survey has been conducted in the city of El Paso, Texas, to estimate the 
average 1a  value among the driving population.  In this survey, participants were presented 
with the scenario of morning commute to work that has a fixed work-start time with a penalty 
for late arrival.  The complete survey form is attached in the Appendix.  There are two 
questions in the survey.  Question 1 has ft2 =20 minutes and 2t =30 minutes while Question 2 
has ft2 =35 minutes and 2t =50.  In each of the questions, participants were given a set of 
possible ft1  values at 5-minute increments.  Each person was asked to select the closest ft1  
value in each question that satisfies Equation (4.36), that is, he/she do not have preference 
between link 1 (which has a constant time ft1 ) and link 2 (which has an uncertain travel 
time).  The two questions with different travel times were designed to check the consistency 
in the route choice behavior.  They also help to find average 1a  values for different trip 
lengths.  The ft2 , 2t  values posed in the two questions are the typical ranges found in El 
Paso.  Survey responses were collected from 202 drivers.  There were 404 1a  values 
computed from Equation (4.36).  The survey response ( ft1  values) and the estimated 1a  
values are all listed in the Appendix.  The average value of 1a  is 1.4356.  This indicates that 
an average driver is risk averse (since 1a >1) in the morning commute to work.  The value of 

1a =1.4356 is used in the traffic assignment for risk averse drivers in the SN-DUE model in 
the remaining chapters of this report. 
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CHAPTER 5 
 

TRAFFIC ASSIGNMENT WITH A FIXED ORIGIN-DESTINATION MATRIX 
 

 
This chapter concerns the implementation of the SN-DUE models (i.e., user equilibrium 
traffic assignment in a SN for risk averse drivers) when the traffic demand is specified in a 
O-D matrix.  That is, the traffic assignment is performed for one time period when the trip 
rates (in vehicles per hour) between all the O-D pairs in the O-D matrix remained unchanged 
through the time period.  This assumes that drivers do not change their departure times in 
response to traffic congestion or travel time reliability.  The O-D matrix is typically given as 
an hourly matrix, e.g., the morning peak hour of 8:00 a.m. to 9:00 a.m.   
 
The ELD function for the implementation of the SN-DUE model has been derived in Chapter 
4.  One of the purposes of this chapter is to demonstrate the difference in the results of traffic 
assignment in the SN-DUE model (which uses the ELD function) and the DN-DUE model 
(which uses the BPR function).  A relatively small test network and the El Paso network in 
the 2005 scenario are used in the illustrations. 
 
 

5.1  Implementation in TransCAD 
 
This traffic assignment model belongs to the SN-DUE model discussed in Section 2.2.  It is 
recommended that this type of traffic assignment be conducted for the morning peak 
commuting hour because 

- most of the drivers have good knowledge of the travel times in alternate routes 
- most of the drivers have a fixed time of arrival at work (work-start time) with a late 

arrival penalty 
Because of the need to arrive in time for work, drivers in the morning peak hour tends to 
exhibit risk averse behavior when the travel time in the network is uncertain.  This behavior 
has been shown in the result of the route choice survey reported in Chapter 4. 
 
In Chapter 4, an ELD function in the form of Equation (4.30) was derived.  The 1a  value of 
1.4359 has been estimated from a route choice survey.  To model the SN-DUE, one simply 
replaces the BPR function in the DN-DUE, the standard traffic assignment model in a 
deterministic network, with the ELD function while still using the same DUE algorithm to 
solve the problem.  In fact, the ELD function is very similar to the BPR function, except for 
addition of the 1a  term in front of α .  Therefore, one can simply use the BPR function, but 
replace the α  value with the α1a  value to model and solve the SN-DUE problem like a DN-
DUE model!  This Chapter takes the advantage of this property to make use of the default 
functions provided by TransCAD to solve the SN-DUE problem. 
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The traffic assignment model provided by TransCAD belongs to the DN-DUE model.  In 
TransCAD, the Frank-Wolfe algorithm has been provided to solve the DUE problem, while 
the BPR function describes the deterministic travel time in a DN (Caliper, 2005b). 
 
A software Travel Time Reliability Program Suite has been developed as part of this research 
for implementation with Version 4.8 of TransCAD.  This program suite has several 
programs, of which the following programs may be necessary to solve the SN-DUE model, 
and to analyze the results: 

• Adjust O-D Matrix 
• Adjust Link Capacity 
• Traffic Assignment with Fixed O-D 
• Capacity Reliability Curve 

 
Instructions on how to use these programs are explained in the accompanying User’s Guide. 
 
Adjust O-D Matrix 
 
This program contains instructions on how to convert an O-D matrix that has trips over a 
longer time period to an O-D matrix for trips over a shorter time period.  Very often, the O-D 
matrix used in transportation planning contains estimated trips over a 24-hour period.  This 
24-hourly O-D matrix needs to be converted into the O-D matrix for the morning peak hour 
for input into the SN-DUE model.  A typical way to convert a 24-hourly O-D matrix to an 
hourly O-D matrix is to multiply the original by the K-factor. 
 
Adjust Link Capacity 
 
Since the traffic demand is given in an hourly O-D matrix, the link capacity must also be in 
unit of vehicles per hour.  Some network models in TransCAD have link capacity expressed 
in terms of vehicles per day.  The Adjust Link Capacity program is to convert the link 
capacity from vehicles per day to vehicles per hour.  The conversion from daily capacity to 
hourly capacity is not as simple as dividing the earlier by 24.  The conversion factor depends 
on the facility type. 
 
Traffic Assignment with Fixed O-D 
 
Once the hourly O-D matrix has been created in a TransCAD matrix file and hourly link 
capacity updated in the link attributes in the TransCAD database, the SN-DUE model is 
ready to be solved.  The Traffic Assignment with Fixed O-D program provides a set of 
instructions for users to make use of the standard traffic assignment functions in TransCAD 
to solve the SN-DUE model.  Note that the only difference in the procedure is to enter the 
value of α1a =1.4359x0.15=0.2123 instead of α =0.15, as shown in Figure 5.1. 
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Figure 5.1: Screenshot of traffic assignment parameters in TransCAD 

 
 
Capacity Reliability Curve 
 
The Capacity Reliability Curve program helps to plot the capacity reliability curves discussed 
in Section 2.5.  The program plots two charts: 

• (% of links with ii cv > ) versus μ  
• (% of lane-miles with ii cv > ) versus μ  

These charts show the network performance or level of service when the traffic demand 
during the peak hour (the hourly O-D matrix) is increased/decreased by a factor of μ .   
 
The Capacity Reliability Curve program essentially has two iterative loops.  The outer loop 
sets the values of μ  based on the range specified by the user.  For each μ  value, the inner 
loop multiplies the hourly O-D  matrix by μ , and solve the SN-DUE model for the new O-D 
matrix. 
 
 

5.2  Test Network 
 
In this section, a test network, adopted from Dial (2006), is used to illustrate the application 
the ELD function in a SN-DUE model (using the value of 1a =1.4356 obtained in the survey) 
and compare the results against the DN-DUE model.   

 



 49

The test network has been coded into TransCAD.  The 25 nodes, 40 two-way links, f
it  and 

one-way link capacity ic  are shown in Figure 5.2.  The links with capacity of 300 vph have 
free-flow speeds of 20 mph while those links with capacity of 200 vph have free-flow speeds 
of 55 mph.  Only nodes 7, 9, 17, 19 are O-D nodes.  The O-D matrix is shown in Table 5.1.  
TransCAD uses the Frank-Wolfe algorithm to solve the DUE problem (Caplier, 2005b).  
After network coding, a DUE assignment was performed in TransCAD using the setting as 
reported in Dial (2006).  After our DUE assignment, majority of the links have the same iv  
and it  values as reported in Dial (2006).  Of the few links that have different iv  and it  
values, the maximum differences are 1 vph and 0.04 minutes, respectively.  We attribute the 
small differences due to the Frank-Wolfe algorithm’s implementation details. 

 

 

 
All links are two-way links. 
Free-flow link travel time is shown above each link (in green, italic, in minutes) 
Directional link capacity is shown below each link (in red, in vph) 

 

Figure 5.2: Test network - free-flow travel time and link capacity  
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Table 5.1: Fixed O-D matrix of text network 

 Trips 
(vehicles per hour) 

Destination Node 
 7 9 17 19 
  

Origin 
Node 

7 0 500 500 500 
 9 500 0 500 500 
 17 500 500 0 500 
 19 500 500 500 0 
 

 

5.2.1  Deterministic Network-Deterministic User Equilibrium Model 
 

The DN-DUE model was first implemented for this network.  The standard values of 
α =0.15 and β =4 were used in the BPR function.  To be consistent with the practice of the 
Texas Department of Transportation, the Frank-Wolfe algorithm was run for 100 iterations.  
Figure 5.3 shows the directional volume-capacity ratios ( ii cv ) after 100 iterations.  Since 
the O-D matrix is symmetrical and the links have the same f

it  and ic  values in both 
directions, the resulting ii cv  and it  are the same in both directions of a link.  The it  values 
are displayed in Figure 5.4.   

 
 

 
Figure 5.3: Test network with fixed O-D matrix - V-C ratio after traffic assignment with BPR 

function 
 
 



 51

 
 Link travel time is in minutes 

 

Figure 5.4: Test network with fixed O-D matrix - link travel time after traffic assignment 
with BPR function 

 

 

5.2.2  Stochastic Network-Deterministic User Equilibrium Model 
 

In the SN-DUE model, we simply replaced the BPR function in the DN-DUE model by the 
ELD function.  Put simply, one only needs to change the value of α =0.15 in the BPR 
function to α1a =1.4356x0.15=0.2153.  Figures 5.5 and 5.6 show the directional  ii cv  and 
average directional link travel time ( it ), respectively, after 100 iterations.   
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Figure 5.5: Test network with fixed O-D matrix - V-C ratio after traffic assignment with ELD 

function 
 

 

 
 Link travel time is in minutes 
 

Figure 5.6: Test network with fixed O-D matrix - link travel time after traffic assignment 
with ELD function 
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5.2.3  Comparison of Volume-Capacity Ratio 
 

Figures 5.3 and 5.5 show the ii cv  of the links in the test network, after traffic assignments 
with the BPR and ELD functions, respectively.  Compared to Figure 5.3, Figure 5.5 has 17 
links with relatively lower ii cv , 3 links with the same ii cv  ratio and 20 links with higher 

ii cv .   With the BPR function, there are 10 links with ii cv >1.5 in Figure 5.3.  The ii cv  of 
these links have been reduced after the trips are assigned with the ELD function.  For 
example, link 8-13 in Figure 5.3 has the maximum ii cv =2.34 in the network.  In Figure 5.5, 
this link still has the maximum ii cv  in the network but the value has become 2.19.  With the 
ELD function, risk averse drivers are more sensitive to ii cv  (the later is proportional to 
travel time variation) and therefore they will avoid links which have high volume, resulting 
in a more “uniform” distribution of traffic in the network. 

 

 

5.2.4  Comparison of Link Travel Time 
 

Figure 5.4 shows the it  (for a DN-DUE model), computed by using Equation (2.1), while 
Figure 5.6 show the it  (for a SN-DUE) computed by using Equation (4.22).  For links that 
have high ii cv  in Figure 5.3, there are reductions from it  in Figure 5.4 to it  in Figure 5.6 
(due to the fact the magnitude of change is proportional to ii cv  to the power of β =4).  
Links with relatively low ii cv  in Figure 5.3 show no or only a marginal increase from it  in 
Figures 5.4 to it  in Figure 5.6.  This is the overall effect of re-routing some traffic from links 
with high volumes (and hence high travel time variance) to links with low volumes (with 
more certain travel times). 

 

One point worth noting is that, in the DN-DUE model, the used routes between an O-D pair 
have the same route travel time that is less than the travel time of any unused route.  
However, in our SN-DUE model, all the used routes between an O-D pair have the same 
route disutility that is less than the disutility of any unused route.  Therefore in the SN-DUE 
model, only the route disutility, not the route travel time, is in equilibrium.  For risk averse 
drivers, the link disutility ( )iDU  is always greater than the average link travel time ( )it .  
Therefore, route disutility is always greater than the route travel time.  To illustrate this, the 
link disutilities of the test network after traffic assignment with the ELD function is plotted in 
Figure 5.7.   Readers can compare Figure 5.7 with Figure 5.6 to see that ii tDU ≥ , i∀ .  Note 
that the difference between iDU  and it  is greater when the ii cv  ratio is higher. 
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  Link disutility is in minutes 

 
Figure 5.7: Test network with fixed O-D matrix - link disutility after traffic assignment with 

ELD function 
 

 

5.2.5  Comparison of O-D Travel Time 
 

Table 5.2 shows the O-D travel times along the shortest-time paths of the DN-DUE model, 
after 100 iterations of traffic assignment with the BPR function.  Table 5.3 shows the O-D 
travel times along the shortest-disutility paths of the SN-DUE model, after 100 iterations of 
traffic assignment with the ELD function.  As mentioned, in the SN-DUE model, drivers 
select the route between an O-D pair that has the smallest disutility.  The routes with the 
smallest disutility may not be the same as the route with the shortest travel time.  To illustrate 
this point, consider the route between nodes 7 and 17 in the test network.  In Figure 5.7, the 
shortest-disutility path between nodes 7 and 17 is by nodes 7-6-11-16-17, with a route 
disutility of 20.64 minutes.  In Figure 5.6, this route has an average travel time of 19.21 
minutes.  However, if one examines Figure 5.6 carefully, the shortest-time path between 
nodes 7-17 is via nodes 7-12-17, with an average route travel time of 17.33 minutes, a saving 
of 1.88 minutes!  In this case, along the route of nodes 7-12-17, links 7-12 and 12-17 have 

ii cv  of 1.58 and 1.47, respectively, which are higher than the ii cv  of the links along route 
of nodes 7-6-11-16-17 (see Figure 5.6).  A higher ii cv  ratio indicates a higher link travel 
time variance.  This reflects that in a SN, a risk averse driver would rather select a route 
which has a higher average route travel time but smaller travel time variance over a route 
with a smaller average travel time but higher travel time variance.   
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Table 5.2: Test network with fixed O-D matrix - O-D travel time after traffic assignment with 

BPR function 
 

 Travel Time  
(minutes) 

Destination Node 
 7 9 17 19 
  

Origin 
Node 

7 - 19.42 17.90 38.26 
 9 19.42 - 36.01 19.65 
 17 17.90 36.01 - 20.65 
 19 38.26 19.65 20.65 - 

 

 
Table 5.3: O-D Test network with fixed O-D matrix - travel time after traffic assignment with 

ELD function 
 

 Travel Time#  
(minutes) 

Destination Node 
 7 9 17 19 
  

Origin 
Node 

7 - 17.95 19.21 
(17.33) 

40.32 

 9 17.95 - 38.31 
(31.93) 

17.85 

 17 19.21 
(17.33) 

38.31 
(31.93) 

- 18.83 

 19 40.32 17.85 18.83 - 
#  O-D travel time is calculated along the shortest-disutility path. If the shortest-time path is 

different from the shortest-disutility path, the O-D travel time along the shortest-time 
path is shown in parenthesis. 

 

 

The route travel times between the O-D pairs in Tables 5.2 and 5.3 are of interest in this 
comparison.  For the O-D pairs between nodes 7-17 and 17-7, the shortest-disutility paths are 
not the same as the shortest-time paths.  This has been discussed in the previous paragraph.  
Another two O-D pairs, nodes 9-17 and 17-9 also have their shortest-disutility paths differ 
from their respective shortest-time paths.  For comparison purpose, the O-D travel times for 
these four O-D pairs along the respective shortest-time paths are included in Table 3 in 
parentheses.  For these four O-D pairs, it is expected that the O-D travel times for the SN-
DUE model in Table 5.3 are greater than those obtained with the DN-DUE model in Table 2.  
For the other O-D pairs, no consistent patterns of greater or smaller O-D travel time between 
same O-D pair in Tables 5.2 and 5.3 have been found.   
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5.2.6  Comparison of Network Performance 
 

The network performance is evaluated by comparing the total vehicle-miles traveled (VMT) 
and total vehicle-hours traveled (VHT) after 100 iterations of the Frank-Wolfe algorithm.  
For the DN-DUE model, the VMT is 32119 veh-miles and the VHT is 2545.08 veh-hrs.  For 
the SN-DUE model, the corresponding statistics are 32876 veh-miles and 2425.68 veh-hrs 
respectively.   This reflects the fact that risk averse drivers prefer a longer route with a lower 
travel time variance than a shorter route with a higher travel time variance.  The overall 
effect of redistribution of flow has resulted in a smaller VHT.  The SN-DUE model has a 
total disutility of 2849.03 veh-hrs.   

 

5.3  El Paso Network 
 
In this section, the El Paso network is used as a realistic network to mimic the actual 
transportation planning process.  The network files, which are based on the network 
geometry and traffic demand in year 2005, in the TransCAD format have been provided by 
the El Paso MPO through the TxDOT El Paso District.  The network consists of 681 zones, 
4836 links and 3060 nodes.  The 4836 links consist of both one-way links and two-way links 
(1073 one-way links and 3763 two-way links).  The links in the network are shown in Figure 
5.8.  The total lane-miles in the network is 4295.30 lane-miles. The TransCAD database files 
include directional 24-hour capacities (in vehicles/day) and a 24-hour O-D matrix (also in 
vehicles/day) for the year 2005.  This network is denoted as EP2005 network for the rest of 
this report. 
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Figure 5.8: EP2005 network as seen in TransCAD 
 

 

5.3.1  Data Preparation 
 
Traffic assignment for risk averse drivers (i.e., the SN-DUE model) were applied to the 
EP2005 network to simulate the traffic distribution in the network in year 2005 during the 
morning commuting hour when there is uncertainty in the link travel time.  The ELD 
function with 1a =1.4356, from the survey of El Paso drivers (see Section 4.6) was used to 
model the risk averse behavior of the drivers. 
 
The O-D matrix and link capacities that were supplied with the EP2005 network database 
were in vehicles/day.  Before performing the traffic assignment, these O-D matrix and 
capacity were converted into the peak hour trip rate and hourly capacity respectively.   
 
The El Paso Gateway 2030 MTP report (EPMPO, 2006) was used to deduce the peak hour. 
Figure 5.9 is the hourly traffic distribution in a typical weekday in El Paso, reproduced from 
the Gateway 2030 MTP report.  From this figure, the morning peak hour was determined to 
be 7:00 a.m. to 8:00 a.m.  The K-factor for each of the 24 hours was also provided by 
EPMPO.  The K-factor for 7:00 a.m. to 8:00 a.m. is 0.1175.  This factor was used as an input 
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to the Adjust O-D matrix to create the hourly O-D matrix of 7:00 a.m. to 8:00 a.m. from the 
24-hour O-D matrix. 
 
 

 
Figure 5.9: Hourly distribution of traffic in El Paso (from ELMPO (2006)) 

 
 
The hourly capacities for the different facility types were estimated from the typical values 
found in Highway Capacity Manual 2000 (TRB, 2000).  These estimated values are shown in 
Table 5.4.  The link capacities (the AB_CAP, BA_CAP and TOT_CAP columns) in the 
EP2005 database were updated with the values listed in Table 5.4 and converted into 
vehicles/hour by means of the Adjust Link Capacity program. 
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Table 5.4: Estimated hourly capacities of different facility types 
 

Facility type number Facility type Hourly capacity (veh/hr/lane) 
0 Conn 1500 
1 B Hwy 2200 
2 FrwyR 2400 
3 Expy 2200 
4 PartD 1800 
5 PartU 1800 
6 Dart 1600 
7 Uart 1600 
8 CollD 1500 
9 CollU 1500 
11 Frtg 2000 
12 Ramp 2200 
13 Xmtn 1800 
14 FrwyC 2400 

 
 
After the hourly O-D matrix was created and link capacity adjusted, the SN-DUE model was 
implemented as per instructions given in the Traffic Assignment with Fixed O-D program.  
The following sub-sections present the results and compare the network performance against 
the SN-DUE model (which used the BPR function). 
 
 

5.3.2  Total Vehicle-Miles Traveled and Total Vehicle-Hours Traveled 
 
Table 5.5 compares the total vehicle-miles traveled (VMT) and total vehicle-hours traveled 
(VHT) in the EP2005 network during the morning peak hour of 7:00 a.m. to 8:00 a.m., after 
the traffic assignments using the ELD and BPR functions.  The total VMT of SN-DUE model 
is slightly smaller than the total VMT of the DN-DUE model, but the total VHT of SN-DUE 
model is slightly higher than the total VHT of the DN-DUE model.  The marginal differences 
are less than 0.6% which is not large enough to draw any conclusion. 
 
 

Table 5.5: EP2005 network with fixed O-D matrix – total VMT and total VHT 
 
  SN-DUE DN-DUE 
  (ELD function) (BPR function) 
 Total VMT (veh-miles) 1813151 1813325 
 Total VHT (veh-hr) 61903 61529 
 
 



 60

5.3.3  V-C Ratios at Hotspots 
 
Hotspots are potential bottlenecks or important locations in the network at which the traffic 
conditions are closely monitored.  Ten hotspots have been identified in the EP2005 network.  
The traffic conditions at these locations are measured by the V-C ratios at the respective 
links.  Table 5.6 compares the V-C ratios at the hotspots between the SN-DUE and SN-DUE 
models.  Of the 20 V-C ratios compared, the SN-DUE model has lower V-C ratios at 15 out 
of the 20 links.  This again, is a reflection that with the ELD function in the SN-DUE model, 
traffic avoids the links which have high V-C ratios.   
 
 

Table 5.6: EP2005 network with fixed O-D matrix – V-C ratio at hotspots 
 
Location of hotspots Link ID V-C ratio 

SN-DUE 
(ELD) 

DN-DUE 
(BPR) 

I-10 north of Sunland Park 1538 (EB) 
1542 (WB) 

0.7085 0.7056 
0.7957 0.7985 

I-10 between Sunland Park & Executive 
Center 

1534 (EB) 
1535 (WB) 

0.8653 0.8771 
0.7641 0.7647 

I-10 west of US-54 1924 (EB) 
2927 (WB) 

0.7527 0.8162 
0.7265 0.7336 

I-10 east of US-54 216 (WB) 
217 (EB) 

0.7420 0.7609 
0.7524 0.7583 

I-10 west of Loop 375 3580 (WB) 
3583 (EB) 

0.7122 0.7334 
0.4387 0.4102 

Paisano north of Executive Center 1623 (EB) 
1623 (WB) 

0.0258 0.0074 
0.1934 0.1835 

Cesar Chavez northwest of Midway 579 (EB) 
579 (WB) 

0.7081 0.7113 
0.7008 0.7034 

I-10 west of Horizon 3647 (WB) 
4759 (WB) 

0.4774 0.4815 
0.4702 0.4721 

Mesa south of Sunland Park 1908 (EB) 
1908 (WB) 

0.6052 0.6131 
0.6025 0.6213 

Mesa north of Shuster 1835 (EB) 
1835 (WB) 

0.2583 0.2364 
0.2931 0.2861 
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5.3.4  Lane-Mile Distribution of V-C Ratios 
 
Since the EP2005 network has 4836 links, it is impractical to compare the link-by-link V-C 
ratio like in the test network.  Instead, the lane-mile distribution by V-C ratios were plotted 
and analyzed. 
 
After traffic assignment, the V-C ratio (in the AB_voc and BA_voc columns of the 
ASN_LinkFlow.bin file), length and number of lanes of all the links were copied onto a new 
Miscosoft Excel worksheet for post processing.  First, data for the opposite directions of two-
way links were separated.   That is, a two-way link was separated into two one-way links.  At 
the end of this step, all the data are in the form of one-way links.  For each of the (one-way) 
links, the lane-miles was computed.  The one-way data were then sorted in increasing order 
of V-C ratio.  The V-C ratios were next divided into intervals (e.g., from 0 to 1, at increments 
of 0.1).  For each interval of V-C ratios, the lane-miles of the links with V-C ratios that fell 
into this interval were summed.  Figure 5.10 plots the lane-mile distribution of V-C ratio 
(percent lane-miles in the network in the vertical axis versus V-C ratio in the horizontal axis) 
obtained from the SN-DUE model.  The DN-DUE model was also implemented for the 
EP2005 network, with the same O-D matrix and hourly link capacities.  The lane-miles 
distribution of V-C ratio is also plotted in Figure 5.10.  Table 5.7 lists the percent of lane-
miles in each interval of V-C ratio, for the SN-DUE and DN-DUE models. 
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Figure 5.10: EP2005 network with fixed O-D matrix - lane-miles distribution of V-C ratio for 

all links 
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Table 5.7: EP2005 network with fixed O-D matrix – lane-miles distribution of V-C ratio for 

all links 
 

V-C Ratio SN-DUE (ELD function) DN-DUE (BPR function) 
Lane-miles % lane-miles Lane-miles % lane-miles

0-0.1 1574.53 36.66 1594.93 37.13
0.1-0.2 819.56 19.08 828.27 19.28
0.2-0.3 620.17 14.44 604.84 14.08
0.3-0.4 372.94 8.68 376.03 8.75
0.4-0.5 302.48 7.04 277.42 6.46
0.5-0.6 228.14 5.31 217.87 5.07
0.6-0.7 159.27 3.71 159.41 3.71
0.7-0.8 115.13 2.68 117.67 2.74
0.8-0.9 59.68 1.39 62.44 1.45
0.9-1.0 27.56 0.64 29.65 0.69

>1 15.86 0.37 26.79 0.62
Total 4295.30 100.00 4295.30 100.00

 
 
The SN-DUE model used the ELD function in the traffic assignment while the DN-DUE 
model used the BPR function in the traffic assignment.  From Figure 5.10 and Table 5.7, the 
SN-DUE model has more lane-miles within the V-C ratio range of 0.2 to 0.6, but has fewer 
lane-miles with V-C ratio of more then 0.6, compared to the DN-DUE model.  This is 
consistent with the finding reported in the test network that, when the ELD function is used, 
traffic will be distributed from the links which are more congested to the link which are less 
congested.  As drivers shift to the links that have very low V-C ratios, the V-C ratios of these 
links may increase to the next V-C ratio interval in Figure 5.10 and Table 5.7.  This explains 
why the lane-miles with V-C ratio of less than 0.2 are fewer with the SN-DUE model than 
the DN-DUE model.   
 
The changes in the V-C ratios are more obvious for the freeway links.  Figure 5.11 plots the 
lane-mile distribution by V-C ratios for only the freeway links (functional classes 1, 2, 3 and 
14).  Table 5.8 compares the number and percentage of freeway lane-miles at the various V-
C ratio intervals.  With the exception of the V-C ratio between 0.3 and 0.4, the SN-DUE 
model (which uses the ELD function) results in fewer percentages of freeway lane-miles with 
very high and very low V-C ratios, compared to the DN-DUE model (which uses the BPR 
function).  Note that in both models, no freeway link has a volume that exceeds the capacity. 
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Figure 5.11: EP2005 network with fixed O-D matrix - lane-miles distribution of V-C ratio for 

freeway links 
 
 
Table 5.8: EP2005 network with fixed O-D matrix – lane-miles distribution of V-C ratio for 

freeway links 

V-C Ratio SN-DUE (ELD function) DN-DUE (BPR function) 
Lane-miles % lane-miles Lane-miles % lane-miles

0-0.1 101.04 17.30 104.56 17.90
0.1-0.2 66.89 11.45 70.23 12.02
0.2-0.3 96.33 16.49 90.95 15.57
0.3-0.4 37.02 6.34 49.74 8.52
0.4-0.5 77.91 13.34 67.22 11.51
0.5-0.6 75.68 12.96 61.56 10.54
0.6-0.7 62.20 10.65 65.57 11.23
0.7-0.8 50.10 8.58 54.18 9.28
0.8-0.9 11.88 2.03 13.88 2.38
0.9-1.0 5.02 0.86 6.18 1.06

>1 0.00 0.00 0.00 0.00
Total 584.07 100.00 584.07 100.00
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5.3.5  Distribution of Trip Travel Time 
 
The distribution of O-D trip travel time is next analyzed.  Table 5.8 lists the total number of 
trips and percentage of the total trips that have trip travel times that belong to the respective 
5-minute intervals.  Figure 5.12 plots the percentage distribution of trip length in 5-minute 
intervals.  From the Figure 5.12 and Table 5.9, it is observed that the SN-DUE model has 
more trips with travel time equal or greater than 15 minutes and fewer trips with travel time 
less than 15 minutes, compared to the DN-DUE model.  The average trip travel time in the 
SN-DUE model is 12.1984 minutes, while the average trip travel time in the DN-DUE model 
is 12.1246 minutes.  The increase in average trip travel time in the SN-DUE model is 4.4 
seconds per trip in order to avoid links which have high travel time uncertainty. 
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Figure 5.12: EP2005 network with fixed O-D matrix – distribution of trip travel time 
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Table 5.9: EP2005 network with fixed O-D matrix –distribution of trip travel time 
 

O-D travel 
time (minutes) 

SN-DUE (ELD function) DN-DUE (BPR function) 
No. of trips % of total trips No. of trips % of total trips

0-5 93955 30.86 94275 30.96
5-10 74005 24.31 74312 24.41
10-15 48927 16.07 49085 16.12
15-20 31337 10.29 31295 10.28
20-25 19898 6.54 19643 6.45
25-30 12996 4.27 12929 4.25
30-35 8487 2.79 8346 2.74
35-40 5480 1.80 5387 1.77
40-45 3349 1.10 3283 1.08
45-50 1835 0.60 1802 0.59
50-55 1062 0.35 1023 0.34
55-60 606 0.20 594 0.20
>60 2547 0.84 2508 0.82

Total 304482 100.00 304482 100.00
 
 

5.3.6  Capacity Reliability 
 
Figure 5.13 plots the capacity reliability curves of the SN-DUE model and DN-DUE model 
for the EL2005 network.  The data used to plot these curves are obtained after running the 
Capacity Reliability Curve program.  The capacity reliability curve indicates the change in 
the network’s level of service (in this case, percentage of total lane-miles that has V-C ratio 
of more than 1).  The x-axis of the graph has the matrix multiplication factorμ  that ranges 
from 0.8 to 1.5, at 0.1 increments, with μ =1 corresponds to the 2005 O-D matrix between 
7:00 a.m. and 8:00 a.m. (the 2005 base demand).  μ =0.8 means the traffic demand is only 
80% of the 2005 base demand, while μ =1.5 represents a 50% increase from the base 
demand.  As expected, when the traffic demand increases, the percentage of lane-miles in the 
network that will reach capacity increases.  The magnitude of percentage of lane-miles with 
V-C ratio >1 is higher and the rate of increase is much faster for the DN-DUE model than the 
SN-DUE model.  This indicates that with the ELD function (in the SN-DUE model), drivers 
tend to select the links which are not as congested and avoid the links which have high V-C 
ratio.  With such a route choice behavior, we can expect a network which can accommodate 
more vehicles without having too many links that reach capacity level.  The curves also 
indicate that the EP2005 network modeled by SN-DUE has more capacity reliability than the 
DN-SUE counterpart. 
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Figure 5.13: EP2005 network – capacity reliability curves 

 
 
The results in Figure 5.13 assume that traffic input into the network (the O-D matrix) is 
increased by a constant factor consistently across all the zones while the network remains 
unchanged.  It implies the growth of population and economic activities are uniform in the 
network and no expansion of the road facility.  If the land-use plan in the network is known 
and the forecasted O-D matrix in the future year is available, the capacity reliability curve 
may be modified as the one presented in Figure 5.14.  In this analysis, it is assumed that the 
traffic demand continues to grow and new road facilities are added over the years.  The 
forecasted 24-hour O-D matrices and expanded road networks for the years 2015, 2025 and 
2030 are provided by TxDOT.  For each of these matrices, the Adjust O-D Matrix program 
was used to generate the hourly O-D matrix between 7:00 a.m. and 8:00 a.m., using the same 
K-factor=0.1175.  Traffic assignments were carried out using the hourly O-D matrices for 
years 2015, 2025 and 2030, respectively.  Therefore, Figure 5.14 plots the year instead of 
plotting μ  in the x-axis, and the forecasted O-D matrix for the corresponding years were 
used in the traffic assignments.   Figure 5.14 show results that are consistent with Figure 
5.12.   The SN-DUE model exhibits better capacity reliability than the DN-DUE model.   
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Figure 5.14: EP2005 network – forecasted capacity reliability curves 
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CHAPTER 6 
 

TRAFFIC ASSIGNMENT WITH DEPARTURE TIME CHOICE 
 
 
This chapter describes how to implement the concept of traffic assignment with departure 
time choice, as proposed in Chapter 3.  The main ideas and algorithms behind this 
assignment have been described in Section 3.2. The chapter also describes the results of 
applying the corresponding algorithms to the El Paso 2005 network. 
 
 

6.1  Implementation in TransCAD 
 
Section 3.2 has described how to take into account departure time choice when making 
traffic assignments. The corresponding algorithm has been coded as part of our Travel Time 
Reliability Program Suite for implementation in TransCAD.  Detailed instructions on how to 
use the corresponding functions are given in the software’s accompanying User’s Guide. 
 
Several programs from this suite are related to the task of traffic assignment with departure 
time choice: 

• Adjust O-D Matrix 
• Adjust Link Capacity 
• Set Variance of O-D Travel Time 
• Traffic Assignment with Departure Time Choice  
• Plot VMT  & VHT 
• Plot Hotspots 

 
Of these six programs, the first three programs  

• Adjust O-D Matrix 
• Adjust Link Capacity 
• Set Variance of O-D Travel Time 

prepare the data needed for traffic assignment with departure time choice.  The program  
• Traffic Assignment with Departure Time Choice  

actually performs this traffic assignment.  The last two programs  
• Plot VMT  & VHT 
• Plot Hotspots 

enable the analyst to plot the results of this traffic assignment.  
 
A brief description of the functions of these programs are given below.  
 
Adjust O-D Matrix 
 
This program contains instructions on how to convert an O-D matrix that has trips over a 
longer time period into an O-D matrix for trips over a shorter time period.  Usually, the O-D 
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matrix used in transportation planning contains estimated trips over a 24-hour period.  For 
traffic assignment with departure time choice, we need to subdivide this daily traffic into 
shorter (15-minute, 30-minute, or 1 hour) time intervals. To compute the O-D matrices 
corresponding to different time intervals, the original daily O-D matrix is multiplied by the 
values of the corresponding K-factors.  Since TransCAD already has a built-in function to 
perform such an operation, this description simply explains how to use the TransCAD 
function to generate the necessary O-D matrices. 
 
To use these instructions, the analyst must have the values of the K-factors that correspond to 
the different time intervals. Usually, transportation agencies have K-factors for different 
hour-long time intervals. To obtain the values of the K-factors for shorter (30 minutes and 15 
minutes) time intervals, linear interpolation as described in Section 3.2 may be used.  
 
As a result of following the instructions presented by this program, the analyst should have a 
set of O-D matrices which correspond to different time intervals within the selected time 
period. For example, if the analyst selects a morning rush hour time period from 6:00 a.m. to 
9:00 a.m., and time intervals of 15 minutes, then there should be 12 O-D matrices 
corresponding to the following 12 time intervals: 

1. from 6:00 a.m. to 6:15 a.m.; 
2. from 6:15 a.m. to 6:30 a.m.; 
3. from 6:30 a.m. to 6:45 a.m.; 
4. from 6:45 a.m. to 7:00 a.m.; 
5. from 7:00 a.m. to 7:15 a.m.; 
6. from 7:15 a.m. to 7:30 a.m.; 
7. from 7:30 a.m. to 7:45 a.m.; 
8. from 7:45 a.m. to 8:00 a.m.; 
9. from 8:00 a.m. to 8:15 a.m.; 
10. from 8:15 a.m. to 8:30 a.m.; 
11. from 8:30 a.m. to 8:45 a.m.; 
12. from 8:45 a.m. to 9:00 a.m.; 

 
Adjust Link Capacity 
 
This program is used to change the capacity of all the links in a network. From the viewpoint 
of traffic assignment with departure time choice, the main use of this program is to transform 
all the capacity values from vehicles per day to vehicles per hour.  
 
The need for this transition comes from the fact that for one-hour and shorter time intervals, 
the traffic demand in the corresponding O-D matrix is usually given in vehicles per hour. So, 
to properly use these O-D matrices in TransCAD, the model must have link capacity values 
also described in the same unit of vehicles per hour. However, some network models in 
TransCAD have link capacity expressed in terms of vehicles per day. The Adjust Link 
Capacity program enables us to convert link capacity from vehicles per day to vehicles per 
hour.  
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At first glance, it may seem easy to calculate the hourly capacity by simply dividing the daily 
capacity by 24. However, in reality, the corresponding conversion factors may be different 
from 24; the actual value of the conversion factor depends on the type of the road facility. In 
view of this fact, the Adjust Link Capacity program enables the analyst to separately adjust 
link capacities for different road types. For this adjustment, the analyst must know the values 
of vehicles per lane per hour for different road facility type.  
 
Set Variance of O-D Travel Time 
 
This program computes the variance of route travel time for all O-D pairs in a network. It 
assumes that the variance is caused by lane blocking incidents which can only occur one at a 
time in the network. The algorithm for computing this variance is given in Section 3.2.  
 
The Set Variance of O-D Travel Time program must have O-D matrix files that correspond 
to the different time intervals and the geographic file with the correspondingly adjusted 
capacities.  Thus, in order to run Set Variance of O-D Travel Time program, the analyst may 
have to first run the programs Adjust O-D Matrices and Adjust Link Capacity.  
 
The Set Variance of O-D Travel Time program must also have an incident database (*.bin) 
file that contains, for each incident,  

• the incident start time; 
• the link ID of the incident location; and  
• the number of lanes closed by this incident.  

The program also asks for the number of days during which the incident data was collected.  
 
Based on all the information, for each time interval, the program creates a matrix which 
contains the incident-caused variance of each O-D travel time during the given time interval. 
For example, if we use twelve consecutive 15-minute time intervals for the period from 6:00 
a.m. to 9:00 a.m., then  

• the first matrix contains the travel time variance for all O-D pairs during the 6:00 a.m. 
to 6:15 a.m. time interval; 

• the second matrix contains the travel time variance for all O-D pairs during the 6:15 
a.m. to 6:30 a.m. time interval; 

• etc. 
 
Traffic Assignment with Departure Time Choice 
 
This program actually computes the traffic assignment with departure time choice. It follows 
the algorithm presented in Section 3.2. To run this program, we must have: 

• the O-D matrix files that correspond to different time intervals;  
• the geographic file with the correspondingly adjusted capacities; and  
• the variance of O-D travel time matrices that correspond to different time intervals.  

 
The, to run this program, we must first run the programs in the following order 

• Adjust O-D Matrices; 
• Adjust Link Capacity; and  
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• Set Variance of O-D Travel Time. 
 
The program asks for the (average) work-start times at different zones. Specifically, it asks 
for the default work-start time, and then allows the user to input the work-start times for the 
zones in which the work-start time is different. 
 
By default, this program assumes that the analyst is dealing with risk averse drivers whose 
behavior can be characterized by the value a1 = 1.4356. It also enables the user to change this 
value if necessary.  
 
After receiving all the input data, the program iteratively adjusts the O-D matrices to take 
into account the departure time choice. After the iterations have converged, the program 
returns the adjusted O-D matrices and the corresponding traffic assignment files.  
 
Plot VMT  & VHT 
 
This program uses the output of the Traffic Assignment with Departure Choice Program to 
plot the total vehicle-miles traveled (VMT) and total vehicle-hours traveled (VHT) as a 
function of time interval.  The program produces the two corresponding plots.  It also 
produces a text file which contains the values of the data points used to plot the curves.  
 
Plot Hotspots 
 
This program uses the output of the Traffic Assignment with Departure Choice Program to 
plot, for a given link, the V-C ratio versus time interval.  The program prompts the user for 
the link ID of the “hotspot”. For this hotspot, the program produces a plot ─ with one or two 
curves depending on whether the selected link is a one-way or a two-way link. The program 
also produces a text file which contains the values of the data points used to plot the curve(s).  
 
After the plotting is done, the program gives the user an option of inputting a link ID of 
another hotspot.  
 
 

6.2  El Paso Network 
 
In this section, we use the same EP2005 network as in Chapter 5.  
 
 

6.2.1  Data Preparation   
 
The test of traffic assignment with departure time choice in the EP2005 network used the 
morning rush hours traffic, from 6:00 a.m. to 9:00 a.m., with 15-minute time intervals. 
During this time period, the following values of the hourly K-factors (in Table 6.1) are 
provided by EPMPO (2006): 
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Table 6.1: Hourly K-factors provided by EPMPO 

 
 Hour K-factor 
 6:00 a.m. 0.055012 
 7:00 a.m. 0.117510 
 8:00 a.m. 0.064856 
 9:00 a.m. 0.044771 
 
 
By using linear interpolation (as described in Section 3.2), the following K-factors have been 
obtained: 
 
 

Table 6.2: Fifteen-minute K-factors 
 
 Hour K-factor 
 6:00 a.m. 0.055012 
 6:15 a.m. 0.070637 
 6:30 a.m. 0.086261 
 6:45 a.m. 0.101886 
 7:00 a.m. 0.117510 
 7:15 a.m. 0.104347 
 7:30 a.m. 0.091183 
 7:45 a.m. 0.078020 
 8:00 a.m. 0.064856 
 8:15 a.m. 0.059835 
 8:30 a.m. 0.054814 
 8:45 a.m. 0.049792 
 9:00 a.m. 0.044771 
 
 
To find the incident-related variance of O-D travel times, the records of all the incidents 
which occurred in El Paso during the 15-day period from May 30, 2006 to June 13, 2006, 
during the time period of the day (6:00 a.m. to 9:00 a.m.) were used.  The Set Variance of O-
D Travel Time program was used to generate the variance of O-D travel time matrices that 
correspond to each time interval. 
 
 

6.2.2  Convergence of Iterative Process 
 
In accordance with the algorithm described in Section 3.2, the interpolated K-factors were 
used to subdivide the 24-hour O-D matrix into 1E , a set of 12 O-D matrices corresponding to 
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the 12 selected 15-minute time intervals. The root mean square value ( )1Erms  of the 
resulting set 1E  of O-D matrices was 3.2306.  
 
The iterative algorithm described in the same Section 3.2 stopped when the root mean square 
difference ( )( )ii F, EEδ  between the O-D matrices iE   used to plan the traffic assignment 
and the O-D matrices ( )iF E  describing the resulting departure time choice does not exceed 
10% of ( )1Erms , i.e., does not exceed 0. 3230629. The program converged after 10 
iterations.  
 
 

6.2.3  Total VMT and VHT 
 
For the EP2005 network, the Traffic Assignment with Departure Time Choice program 
produces the following results.  The value of 1a =1.4356 has been used in the program to 
describe the risk averse behavior in the ELD function. 
 
Table 6.3 shows the total VMT and VHT obtained in the traffic assignment output files for 
the 12 15-minute intervals.  The original output values from the traffic assignment files are 
presented in columns 2 and 4.  Note that, these values are in vehicle-miles per hour for total 
VMT and vehicle-minutes per hour for total VHT.  This is because, by default, the units of 
the 15 minute O-D matrices are vehicles per hour, the link capacity is in vehicles per hour, 
the output units of link flow are vehicles per hour.  The VMT of a link is the product of the 
total link flow (in vehicles per hour) and link length (in miles).  Therefore, the units of total 
VMT in the traffic assignment output files are vehicle-miles per hour.  The unit of link travel 
time in TransCAD is in minutes.  The VHT of a link is the sum of the products of direction 
link flow (in vehicles per hour) and directional link travel times (in minutes).  Therefore, the 
units of total VHT in the traffic assignment output files are vehicle-minutes per hour.   
 
Using the values in the traffic assignment output files will lead to gross overestimations of 
the total VMT and VHT.  This is because each traffic assignment is meant for traffic in a 
time interval.  In this case, the input and results of each traffic assignment is valid for only 15 
minutes.  Therefore, the reported total VMT and VHT in columns 2 and 4 in Table 6.3 must 
be divided by a factor of 4 to scale to the same time span. 
 
After scaling, the total VMT and VHT over all the intervals are summed to give the total 
VMT and VHT over three hours (from 6:00 a.m. to 9:00 a.m.).  A check can be made by 
comparing the hourly average VMT and VHT against the corresponding values reported in 
Table 5.5.  The hourly average values reported in Table 6.3 are lower than the corresponding 
values in Table 5.5, but they are of the same order of magnitude.  The hourly total VMT and 
VHT in Table 6.3 are lower because these are the average values of three hours which 
include before and after the morning peak hour. 
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Table 6.3: Traffic assignment with departure time choice – Total VMT and VHT 

 
1 2 3 4 5 

Time interval Total VMT 
(vehicle-miles 

per hour) 

Total VMT 
(vehicle-miles 

per 15-
minute) 

Total VHT 
(vehicle-minutes 

per hour) 

Total VHT 
(vehicle-hours 
per 15-minute) 

1 676561 169140 1217938 5075
2 717604 179401 1319436 5498
3 1207969 301992 2350412 9793
4 2241939 560485 4669014 19454
5 3145151 786288 6992634 29136
6 3200821 800205 7318455 30494
7 2038697 509674 4478473 18660
8 715099 178775 1507949 6283
9 241893 60473 501842 2091
10 131330 32833 267069 1113
11 94071 23518 188598 786
12 78024 19506 155074 646

Total - 3622290 - 129029
Hourly average - 1207430 - 43010
 
 
Figure 6.1 plots the change in total VMT over the time intervals.  The figure also includes the 
total VMT computed from the Traffic Assignment with Fixed O-D program for comparison.  
Essentially, the latter data points are the results of using the 15-minute O-D matrices to 
perform traffic assignment with a fixed O-D matrix approach, without the changing driver’s 
departure time.  It can be seen that, without or before adjusting the departure time, the total 
VMT peaks at interval 5 (7:00 a.m. to 7:15 a.m.).  This reflects that to some degree, the K-
factor has already captured the peak 15 minutes.  However, with departure time choice, the 
peak pattern is more severe and it spread over a longer time span (7:00 a.m. to 7:30 a.m.).  
Another point to note is that, when the average work start-time is set to 8:00 a.m., most of the 
risk averse drivers will adjust their departure times to earlier, causing the curve to have very 
small values when the time intervals have passed the average work-start time. 
 
It is important to emphasize that the input O-D matrices (derived from the 24-hour matrices 
and the interpolated K-factors) are based on the current year conditions.  Therefore, it is not 
reasonable to run the model with departure time choice.  An analyst running the traffic 
assignment with departure time choice model with existing and valid input data will produce 
the new O-D matrices and results that are biased (and not realistic).  Therefore, this model is 
more appropriately used to model the network conditions in the future years, when traffic 
congestion is expected to influence a driver’s departure time decision. 
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Figure 6.1: Traffic assignment with departure time choice – total VMT 

 
 
Figure 6.2 plots the change in total VHT over the time intervals.  Both curves, with and 
without departure time choices, follow the same shape as in the total VMT. 
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Figure 6.2: Traffic assignment with departure time choice – total VHT 

 
 
 

6.2.4  Analysis for the Peak Time Interval 
 
Chapter 5 of this report presents a detailed analysis of the network characteristics after traffic 
assignment with a fixed O-D matrix.  The analysis includes: 

- V-C ratio at hotspots 
- lane-mile distribution by V-C ratio 
- distribution of trip travel time 

The analysis can be repeated for the network of interest in any time interval, by processing 
the data at the corresponding traffic assignment output file.  To perform such analysis, it is 
recommended that the analyst examine the total VMT and VHT curves, and select the time 
interval with the highest VMT and VHT.  In the examples in Figures 6.1 and 6.2, the interval 
of interest is interval 6 (7:15 a.m. to 7:30 a.m.).  As the analysis procedure is the same as 
described in Chapter 5, it will not be repeated here.  However, readers are cautioned that, 
when the traffic assignment results are analyzed, the results are only valid during the short 
time interval. 
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6.2.5  V-C Ratios at Hotspots 
 
 
The Plot Hotspot program allows the user to analyze the change in V-C ratio over time in 
selected links.  As examples, this program has been used to plot the V-C ratios of the 
following important links in the EP2005 network: 

- Westbound I-10 east of US-54 
- Eastbound I-10 west of Executive Center Drive 
- Eastbound Mesa Street north of Shuster 
- Westbound Mesa Street north of Shuster 

These first two links are one-way freeway links that connect the commuters to the 
downtown.  The eastbound Mesa Street is an alternate route for commuters from the west 
side of El Paso to travel to the downtown area without using the freeway.  Since Mesa Street 
is coded as a two-way in the TransCAD model, the V-C ratio of westbound Mesa Street is 
also plotted for comparison.  Westbound of Mesa Street is also an important link for drivers 
who travel from the east side of El Paso to UTEP and the medical centers nearby. 
 
The V-C ratio curves are shown in Figure 6.3.  All the four curves peak at interval 5 (7:00 
a.m. to 7:15 a.m.).  It is also noticed that traffic at Mesa Street in both directions is almost 
zero before 6:15 a.m. and after 8:15 a.m.  The shape of the V-C curves follow closely to the 
total VMT and VHT curves plotted in Figures 6.1 and 6.2. 
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Figure 6.3: Traffic assignment with departure time choice – V-C ratios at hotspots 
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CHAPTER 7 
 

APPLICATION IN PROJECT EVALUATION 
 

 
This chapter illustrates how the concept of the SN-DUE model can be applied to evaluate a 
transportation project proposal.  The traffic conditions in two networks are to be compared in 
this evaluation.  The base network is the EP2005 network as described in Chapter 5.  A new 
project, the Southern Relief Route (SRR), has been added to the EP2005 network.  This 
network with SRR is called EP2005SRR in this Chapter.  The traffic loading used in the 
evaluation is the 7:00 a.m. to 8:00 a.m. O-D matrix.  This is the same O-D matrix used in 
Chapter 5.  In our analysis, it is assumed that the SRR is completed and opened to traffic in 
year 2005.   
 
The departure time choice analysis performed in Chapter 6 is based on a set of 15-minute O-
D matrices constructed based on several assumptions. As no detailed information on the 
future 15-minute O-D matrices in the morning peak period is available, it was decided that 
analysis would not be performed for departure time choice.   
 
Since no further information on the future year’s road expansion (in other part of the road 
network) is provided, the capacity reliability analysis is performed with the same network as 
in 2005.  This is unlike Chapter 5 where the capacity reliability curves were plotted for future 
years’ O-D matrices and future years’ road expansion. 
 
 

7.1  El Paso Network with Southern Relief Route 
 
The TransCAD road network database for the EL2005SRR network has been provided by 
TxDOT El Paso District.  This network, with the addition of SRR, has 4923 links and 
4340.69 lane-miles.  A TransCAD screenshot of the entire network is shown in Figure 7.1, 
while an enlarged view of the SRR is highlighted in Figure 7.2. 
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Figure 7.1: EP2005SRR network as seen in TransCAD 
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Figure 7.2: SRR in EP2005SRR network 

(the SRR is highlighted in yellow) 
 
 
As usual, the capacity of all the links in the network were first adjusted from the 24-hourly 
capacity to hourly capacity, according to the values listed in Table 5.4.   
 
Note that, SRR is a toll road with a toll rate of $0.14/mile.  To perform traffic assignment 
with toll, the Planning →   Advanced Traffic Assignment →  Multimodal Multi-Class 
Assignment option in TransCAD Version 4.8 was used.  In addition, to simulate the risk 
averse behavior of the drivers, the α  value of 0.2153 has been used (to reflect the used of 
ELD function with 1a =1.4356). 
 
 

7.2  V-C Ratios at Hotspots 
 
The V-C ratios at the 10 hotspots in the network are first analyzed.  The value of the V-C 
ratios at the same links from the EP2005 and EP2005SRR networks are tabulated side by 
side in Table 7.1.   
 
In the scenario simulated for the 7:00 a.m. to 8:00 a.m. traffic, the two hotspots along I-10 in 
the west side of El Paso (north of Sunland Park and between Sunland Park and Executive 
Center) have lower V-C ratios.  This is because the proposed SRR starts at Sunland Park 
interchange.  The portion of I-10 north of Sunland Park interchange has been widened with 
increased capacity.  Along I-10 between Sunland Park and Executive Center, the freeway has 
been widened, and some of the traffic which originally used I-10 is diverted to the parallel 
SRR route.  The V-C ratio of eastbound I-10 west of US-54 has also decreased significantly.  
This shows that the diversion of some of the eastbound traffic from I-10 to SRR not only 



 81

benefits I-10 on west side of the downtown, but also has positive effect on the traffic on I-10 
east of the downtown area. 
 
In Table 7.1, one of the hotspots is at Paisano north of Executive Center.  This section of 
Paisano in EL2005 has been converted to part of SRR.  Therefore, in the EP2005SRR 
network, this link attracts more traffic and hence leads to an increase in V-C ratio.  The V-C 
ratios of approximately 0.7 in both directions indicate that the SRR is well utilized during the 
morning peak hour. 
 
  

Table 7.1: EP2005 network with and without SRR – V-C ratio at hotspots 
 
Location of hotspots Link ID V-C ratio 

EP2005 
(ELD) 

EP2005SRR 
(ELD) 

I-10 north of Sunland Park 1538 (EB) 
1542 (WB) 

0.7085 0.5480
0.7957 0.4765

I-10 between Sunland Park & Executive 
Center 

1534 (EB) 
1535 (WB) 

0.8653 0.5246
0.7641 0.5820

I-10 west of US-54 1924 (EB) 
2927 (WB) 

0.7527 0.3220
0.7265 0.7125

I-10 east of US-54 216 (WB) 
217 (EB) 

0.7420 0.7362
0.7524 0.7618

I-10 west of Loop 375 3580 (WB) 
3583 (EB) 

0.7122 0.7141
0.4387 0.3322

Paisano north of Executive Center 1623 (EB) 
1623 (WB) 

0.0258 0.6973
0.1934 0.7265

Cesar Chavez northwest of Midway 579 (EB) 
579 (WB) 

0.7081 0.7115
0.7008 0.7082

I-10 west of Horizon 3647 (WB) 
4759 (WB) 

0.4774 0.4769
0.4702 0.4691

Mesa south of Sunland Park 1908 (EB) 
1908 (WB) 

0.6052 0.6284
0.6025 0.6602

Mesa north of Shuster 1835 (EB) 
1835 (WB) 

0.2583 0.2546
0.2931 0.2818

 
 
 

7.3  Total Vehicle-Miles Traveled and Total Vehicle-Hours Traveled 
 
Table 7.2 compares the total VMT and total VHT in the EL2005 network with and without 
SRR.  As expected, with the SRR, the total VHT has reduced from 61903 vehicle-hours to 
61841 vehicle-hours, a saving of 62 vehicle-hours between 7:00 a.m. to 8:00 a.m.  The total 
VMT has also been reduced by 2243 vehicle-miles.  This shows that the SRR not only 
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provides congestion relief (spreading vehicles from I-10 Freeway), but also provides a more 
direct route from the west side of El Paso to the downtown area.  
 
A comparison is also made if the evaluation of EP2005 and EP2005SSR network would lead 
to a different conclusion if DN-DUE model is used (i.e., if the BPR function is used in traffic 
assignment instead of the ELD function).  Using the BPR function in traffic assignment with 
a fixed O-D matrix, the EP2005SRR has relatively smaller total VMT and total VHT, than 
the EP2005 network.  The conclusions are consistent with the earlier findings using the ELD 
function. 

 
 

Table 7.2: EP2005 network with and without SRR – total VMT and total VHT 
 
  EP2005 EP2005SRR 
  (ELD function) (ELD function) 
 Total VMT (veh-miles) 1813151 1810908 
 Total VHT (veh-hr) 61903 61841 
  (BPR function) (BPR function) 
 Total VMT (veh-miles) 1813325 1810875 
 Total VHT (veh-hr) 61529 61470 
 
 
 

7.4  Lane-Mile Distribution of V-C Ratios 
 
Table 7.3 and Figure 7.3 show the percentage distribution of total lane-miles at the various 
V-C ratios.  With the addition of SRR, there is a lower percentage of lane-miles with V-C 
ratios greater than 0.6.  This indicates that SRR is attracting traffic away from the competing 
congested routes that have high V-C ratios.  With the SRR, the network has more lane-miles 
with moderate range of V-C ratio (between 0.2 to 0.6).  Overall, the EL2005SRR network 
appears less congested than the EP2005 network.  However, there are more links (although 
they are of small number) in the EP2005SRR network which have V-C ratios greater than 1. 
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Figure 7.3: EP2005 network with and without SRR – lane-mile distribution of V-C ratio 

 
 

Table 7.3: EP2005 network with and without SRR – lane-mile distribution of V-C ratio 
 

V-C Ratio EP2005 (ELD) EP2005SRR (ELD) 
Lane-miles % lane-miles Lane-miles % lane-miles

0-0.1 1574.53 36.66 1640.08 37.78
0.1-0.2 819.56 19.08 793.14 18.27
0.2-0.3 620.17 14.44 627.81 14.46
0.3-0.4 372.94 8.68 393.26 9.06
0.4-0.5 302.48 7.04 316.72 7.30
0.5-0.6 228.14 5.31 240.49 5.54
0.6-0.7 159.27 3.71 126.34 2.91
0.7-0.8 115.13 2.68 102.12 2.35
0.8-0.9 59.68 1.39 54.74 1.26
0.9-1.0 27.56 0.64 27.94 0.64

>1 15.86 0.37 18.07 0.42
Total 4295.30 100.00 4340.69 100.00
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Figure 7.4 and Table 7.4 shows the lane-mile distribution of V-C ratio for the freeway links 
only.  The freeway links are facility types (functional classes) 1, 2, 3 and 14.  The SRR 
project actually adds 11.57 lane-miles in the network.  In Figure 7.4, the percent lane-mile is 
plotted as the y-axis to normalize against the difference in the total freeway lane-miles.  The 
changes in the V-C ratios basically fall into two groups. With the SRR, there are fewer 
percentages of lane-miles with V-C ratios of 0.6 to 0.9, and more lane-miles with V-C ratios 
of 0.4 to 0.6.  A similar trend of V-C ratio being shifted from the range of 0.1 to 0.3 to less 
than 0.1 has also been observed.  The SRR has an effect in reducing some of the freeway 
lane-miles from high V-C ratios.  This indicates that the SRR is spreading the traffic among 
the freeway lane-miles.  
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Figure 7.4: EP2005 network with and without SRR – lane-mile distribution of V-C ratio for 

freeway links 
 
 



 85

Table 7.4: EP2005 network with and without SRR – lane-mile distribution of V-C ratio for 
freeway links 

V-C Ratio EP2005 (ELD function) EP2005SRR (ELD function) 
Lane-miles % lane-miles Lane-miles % lane-miles

0-0.1 101.04 17.30 143.74 24.13
0.1-0.2 66.89 11.45 58.21 9.77
0.2-0.3 96.33 16.49 83.48 14.02
0.3-0.4 37.02 6.34 53.04 8.91
0.4-0.5 77.91 13.34 87.77 14.74
0.5-0.6 75.68 12.96 83.45 14.01
0.6-0.7 62.20 10.65 37.56 6.31
0.7-0.8 50.10 8.58 38.01 6.38
0.8-0.9 11.88 2.03 4.45 0.75
0.9-1.0 5.02 0.86 5.88 0.99

>1 0.00 0.00 0.00 0.00
Total 584.07 100.00 595.59 100.00

 
 

7.5  Distribution of Trip Travel Times 
 
Table 7.5 and Figure 7.5 show the distribution of trip travel time in 5-minute increments.  
The EP2005SRR network has relatively more trips with travel times of less than 15 minutes 
and relatively fewer trips with travel times of more than 20 minutes, compared to the EL2005 
network.  The EL2005 network has an average trip travel time of 12.1984 minutes while the 
EP2005SRR network has an average trip travel time of 12.1861 minutes, a saving of only 
0.738 second per trip.   The savings in the average trip travel time caused by the SRR is not 
that significant because it has been averaged out by trips in the network not using the SRR. 
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Figure 7.5: EP2005 network with and without SRR – distribution of trip travel time 

 
 

Table 7.5: EP2005 network with and without SRR – distribution of trip travel time 
 

O-D travel 
time (minutes) 

EP2005 (ELD) EP2005SRR (ELD) 
No. of trips % of total trips No. of trips % of total trips

0-5 93955 30.86 93892 30.84
5-10 74005 24.31 74109 24.34
10-15 48927 16.07 49509 16.26
15-20 31337 10.29 31326 10.29
20-25 19898 6.54 19849 6.52
25-30 12996 4.27 12975 4.26
30-35 8487 2.79 8461 2.78
35-40 5480 1.80 5461 1.79
40-45 3349 1.10 3120 1.02
45-50 1835 0.60 1790 0.59
50-55 1062 0.35 992 0.33
55-60 606 0.20 593 0.19
>60 2547 0.84 2406 0.79

Total 304482 100.00 304482 100.00
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7.6  Capacity Reliaility 
 
The capacity reliability of the EP2005 and EP2005SRR networks are compared in this 
section.  Unlike in Chapter 5, where the EP2005, EP2015, EP2015 and EP2030 networks 
were provided together with the projected O-D matrices in the corresponding years, the 
future year’s network with the SRR is not available.  Therefore, both the EP2005 and 
EP2005SRR networks are assumed to be the same over the years, i.e., no capacity expansion.  
Nevertheless, the projected O-D matrices in the years 2005, 2015, 2025 and 2030 were used.  
Traffic assignments were performed with the ELD function for years 2005, 2015, 2025 and 
2030.  Since the SRR is a toll road, it is also assumed that the toll rate of $0.14 per mile 
remain unchanged over the years. 
 
Figure 7.6(a) plots the increase in percent lane-miles in the network with V-C ratio greater 
than 1 over the analyzed years.  Since the EP2005 and EP2005SRR networks have different 
total lane-miles (4295.30 lane-miles in EP2005 and 4340.69 lane-miles in EP2005SRR), the 
absolute value of lane-miles with V-C ratios greater than 1 is also plotted in Figure 7.6(b).  
From 2005 to 2015, both networks have almost identical capacity reliability.  This is because, 
in the earlier years, the remarkable improvement in V-C ratios are all centered around the 
parallel routes of SRR, which form only a small fraction of lane-miles in the entire network.  
In 2025 and 2030, the percent and number of lane-miles with V-C ratios greater than 1 have 
increased relatively at a faster pace.  The percent and absolute values are higher than the 
modeling results reported in Chapter 5.  This is because, in the EP2005 and EP2005SRR 
network, no capacity expansion is coded in the northeast region of El Paso, but the forecasted 
O-D matrix loaded more vehicles into the network from this area.  Comparing the two curves 
in the same figure, the EP2005SRR network actually has better capacity reliability, because it 
has fewer lane-miles with V-C ratio greater than 1 in years 2025 and 2030.   
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Figure 7 6: EP2005 network with and without SRR – forecasted capacity reliability curves 

 



 89

7.7  Summary 
 
In this chapter, the use of traffic assignment with a fixed O-D matrix, with the ELD function 
(which represents the route choice behavior of risk averse drivers) has been used to evaluate 
a transportation proposal: the addition of the SRR in the El Paso network. A comparative 
evaluation of the EP2005 network and EP2005SRR network (which is the EP2005 network 
with the addition of SRR) under the same traffic demand in the morning peak hour has been 
made. 
 
The evaluation has found that the EP2005SRR network has resulted in slightly lower total 
VMT, total VHT and average trip travel time.  The improvement is marginal because most of 
the improvements in traffic flow are concentrating around the SRR and its parallel freeway.  
The EL2005SRR has fewer lane-miles with high level congestion as the level of traffic grows 
in the future years, especially beyond 2015.  The analysis at the hotspots also reveals that 
most of the reductions in V-C are along portions of the major freeway which is parallel to the 
SRR, but the rest of the network has relatively small changes in the volumes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 90

CHAPTER 8 
 

CONCLUSIONS AND RECOMMENDATION FOR FUTURE RESEARCH 
 
 

8.1  Conclusions 
 
This research has produced the following important findings: 
 
From the literature review, it was found that a driver’s route choice in response to travel time 
reliability (or more correctly, travel time uncertainty) may be modeled by three types of 
behavior: risk averse, risk neutral and risk prone.  In each type of behavior, the driver selects 
the least-disutility route.  The route disutility is an exponential function of the average route 
travel time. 
 
Based on past research, traffic assignment models may be classified into four types based on 
the assumptions on link travel time and the driver’s perception of the link travel time.  Based 
on this classification, the Stochastic Networks-Deterministic User Equilibrium (SN-DUE)) 
model is recommended for use in modeling route choice in a network with travel time 
uncertainty in the morning commute, which is usually the most congested hour. 
 
Our literature review also found a calibrated model that describes the driver’s choice of 
departure time to work when the route travel time is uncertain.  This model has been 
incorporated into the traffic assignment model developed in this research. 
 
The existing definition and method of computing capacity reliability has been reviewed.  The 
definition has been modified and incorporated into this research to provide a quantitative 
measure of a network’s level of service when the traffic assignment model considers travel 
time uncertainty and driver’s response to travel time uncertainty.  The definition is further 
modified to predict the level of service when the traffic demand and network facility changes 
over the years. 
 
Based on the findings in the literature review, the research team has proposed two traffic 
assignment approaches in a network with travel time uncertainty during the morning peak 
hour: 

• Traffic assignment with a fixed Origin-Destination (O-D) matrix 
• Traffic assignment with departure time choice 

Both approaches incorporate the route choice behavior in response to travel time uncertainty.  
The second model further incorporates a driver’s departure time choice in response to traffic 
congestion along the route. 
 
This research team has derived Equivalent Link Disutility (ELD) functions (as reported in 
Chapter 4) that correspond to each of the three types of route choice behavior.  The link 
disutility functions have two components: a deterministic component that is described by the 
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BPR function, and a stochastic component proportional to the link travel time variance.  The 
research team has proven that these derived expressions are the more general cases of those 
found in literature review (which are only applicable under some conditions).  However, their 
functional forms are difficult to implement in traffic assignment models. As an alternative, 
the research team has derived simpler ELD functions, with mathematical properties 
consistent with the earlier derived ELD expressions, so that they can be easily implemented 
in the traffic assignment model.  The simpler ELD function is similar to the BPR function, 
except with an additional factor to account for the different risk taking behavior of the driver.  
In summary, to perform traffic assignment in the morning commuting hour with travel time 
reliability consideration, the analyst only needs to use the traditional static traffic assignment 
model, but simply replace the BPR function with the simpler ELD function.  In TransCAD, 
this can be done easily by changing the value of alpha in the BPR function. 
 
A driver survey has been conducted in El Paso to illustrate how the risk averse coefficient in 
the simple ELD function can be estimated.  The estimated coefficient has shown that for the 
morning commute to work, on the average, drivers are risk averse. 
 
The traffic assignment with a fixed O-D approach has been implemented in TransCAD.  Two 
networks, a 25-node test network and the El Paso network (in year 2005) have been used to 
illustrate the difference in the results with and without travel time reliability considerations.  
It has been shown that, with the risk averse behavior (that considers travel time uncertainty), 
drivers tend to avoid highly congested links and prefer the less congested links (which may 
have longer average travel time).  This leads to a more uniform distribution of Volume-
Capacity (V-C) ratios across the network.  Because of this, the total Vehicle-Hours Traveled 
(VHT) is likely to increase.   
 
The traffic assignment with departure time choice approach has also been implemented in 
TransCAD, using the two networks, for the morning peak period of 6:00 a.m. to 9:00 a.m.    
The implementation results have demonstrated that this approach was able to adjust the 
departure times of the drivers to meet their work-start times.  However, because this 
approach requires O-D matrices in smaller time intervals and the work-start time of each of 
the zones, further work on data collection needs to be done to bring this approach closer to 
practical implementation. 
 
The traffic assignment with a fixed O-D approach (with the ELD function) has been applied 
to comparatively evaluate the El Paso network with and without the Southern Relief Route 
(SRR).  The different ways of presenting and comparing the results of traffic assignment, 
such as comparing the total VMT, total VHT, distribution of V-C ratio, distribution of trip 
length, and V-C analysis at hotspots, have been demonstrated in this case study. 
 
A program suite (named Travel Time Reliability) has been written in the GISDK language 
for use with TransCAD Version 4.8 as an Add-in.  This program suite has eight programs 
which, when used in combinations, allows an analyst to conduct traffic assignment with a 
fixed O-D matrix and traffic assignment with departure time choice, in a network with travel 
time uncertainty.  It also assists the analyst in preparing the input data and visualizing the 
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traffic assignment results.  A User’s Guide which accompanies this software has been 
written. 
 
 

8.2  Recommendations for Future Research 
 
Although this research has developed traffic assignment models for stochastic networks with 
travel time reliability consideration, there are still several issues that need to be addressed for 
more accurate implementation.  These issues, discussed below, warrant further research. 
 
The average link travel time in a stochastic network is assumed to follow the BPR function.  
Although the BPR function is the most accepted and used function by researchers and 
practitioners, it was proposed in the 1960s, when the driving population, their behavior, 
vehicle performance and classes, level of traffic congestion, etc, were different from today.  
Furthermore, this function has not been calibrated extensively with field data.  Our 
experiences in modeling with the BPR function suggest that it underestimates the level of 
congestion compared to field observations.  An updated function or functions are necessary 
to represent the different types of Texas roadway facilities in order to produce more accurate 
modeling results for transportation planning decisions.  How the updated function, if in a 
different form, affects the derivation of ELD function needs to be studied. 
 
In Chapter 4, the ELD functions for risk averse, risk neutral and risk prone behaviors have 
been derived.  In reality, there exist fractions of the driving population who are risk averse, 
risk neutral and risk prone.  In the analysis and illustrations presented in Chapters 5, 6 and 7, 
the research team have assumed that in the morning commute, when work-start times become 
constraints, all the drivers in the network are (on the average) risk averse.  This simplification 
enables us to model the SN-DUE model as an DN-DUE model. An extension would be to 
model the network with different proportions of risk averse, risk neutral and risk prone 
drivers.  This approach is called multi-class traffic assignment, which is an emerging area of 
transportation research. 
 
In the traffic assignment with departure time choice model, a time interval of 15 minutes has 
been used.  A time interval must be short enough to represent users’ departure time decision 
interval and long enough for the users to complete their trips.  The time interval of 15 
minutes is recommended as a compromise.  Our results show that the average trip travel time 
of approximately 12 minutes is less than the 15-minute time interval.  The sensitivity of the 
choice of time interval on the total VMT, total VHT and V-C ratio at hotspots needs to be 
investigated, but this is beyond the scope and time of this project.   
 
A related issue in the selection of departure time interval is the availability of O-D matrices.  
The original O-D matrices used as the inputs to the traffic assignment models with departure 
time choice (in Chapter 6) were constructed with interpolated K-factors.  The O-D matrices 
can be more accurate if traffic counts at the same resolution as the time interval at 
representative locations in the network are available. 
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An important input in the traffic assignment with departure time choice model is the work-
start time.  In the model developed in this research, the average work-start time of each zone 
has been assumed based on the researchers’ knowledge of the El Paso network and input 
from the Project Advisory Committee.  The work-start time is further assumed to follow a 
discrete probability distribution with probability of 0.1, 0.2, 0.4, 0.2, 0.1 for five time 
intervals, with the probability of 0.4 being the time interval of the average work-start time.  
These assumptions were made because no data of existing work-start time is available from 
TxDOT or El Paso MPO.  In the future, when possible, data on work-start time should be 
gathered for each of the zones. 
 
At present, the Capacity Reliability program developed in this project can only work with a 
network without any tolled links.  For a network with toll links, the traffic assignment task 
and computation of percent lane-miles with V-C ratio greater than 1 have to be performed 
manually.  Such automation can be made in the future when time and budget are available. 
 
Another application of the traffic assignment approaches developed in this project is to 
model the network’s capacity reliability due to the loss in capacity in a link, for example, a 
bridge collapse or freeway closure.  Due to the constraint in time, this has not been 
investigated in this project, but should be explored in future applications. 
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APPENDIX A 

 
 

ESTIMATION OF RISK AVERSE COEFFICIENT: 
 

SURVEY FORM AND RESULTS
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          Route Choice Behavior Survey 
 

UTEP is conducting a research project titled “Strategies to Improve Travel Time Reliability” 
which is funded by the Texas Department of Transportation (TX DOT).  An objective of this 
research is to conduct surveys to see how travelers perceive between a route with an 
uncertain travel time and a route which has a constant travel time.   
 
This survey will not require you to disclose any confidential information.  We appreciate 
your time in taking part in this survey by answering the following two questions.  Thank you. 
 
Kelvin Cheu, PhD 
Associate Professor 
Department of Civil Engineering 
 
 
Question #1 
 
Suppose that you live in location A and work at location B.  You are to report to work every 
weekday at 8:00 a.m.   
 
There are two routes you can take from A to B: Routes 1 & 2.  Route 1 has an uncertain 
travel time but Route 2 has a fixed travel time. 
 

A B

Route 1

Route 2

Minimum 20 Minutes
Average 30 Minutes

Travel Time T Minutes

Figure 1

 
Figure A1: Network for survey question 1 

                                                         
The travel time on Route 1 is unreliable, and depends on the traffic conditions on that day.  
We only know that it has a minimum travel time of 20 minutes on a good day, but on the 
average, the travel time is 30 minutes. 
 
The travel time on Route 2 is very reliable and is constant at T minutes.   
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If T ≤20 minutes, the travel time on Route 2 is less than or equal to that of Route 1.  In this 
case you will most likely choose Route 2.   
 
When T >20 minutes, Route 1 can have a shorter travel time than Route 2.  Route 2 becomes 
less attractive as T increases.   
 
When T=30 minutes, the constant travel time on Route 2 is the same as the average travel 
time on Route 1.  If you leave home at 7:30 a.m. and use Route 2, you will reach you office 
at 8:00 a.m.  But with Route 1, you have a 50% chance of arriving before 8:00 a.m. and a 
50% chance of arriving later than 8:00 a.m. 
 
Given that you have to reach your office by 8:00 a.m., you may prefer to use Route 2 that has 
a longer but more reliable travel time.  What is the value of T so that you would consider 
both routes having the same quality?  That is, what is the value of T so that you do not have 
any preference of one route over the other? 
 
Answer (please circle one): T = 30, 35, 40, 45, 50, 55, 60 minutes 
 
Question #2 
 
Consider the similar problem as in Question #1, but for 2 routes (Routes 3 and 4) between 
Locations C and D, with the travel times as shown in the following figure: 

 

C D

Route 3

Route 4

Minimum 35 Minutes
Average 50 Minutes

Travel Time T Minutes

Figure 2

 
Figure A2: Network for survey question 2 

 
The travel time on Route 3 is unreliable has a minimum travel time of 35 minutes on a good 
day, but on the average, the travel time is 50 minutes. 
 
The travel time on Route 4 is very reliable and is constant at T minutes.   
 
What is the value of T so that you would consider both routes having the same quality?  That 
is, what is the value of T so that you do not have any preference of one route over the other? 
 
Answer (please circle one): T = 50, 55, 60, 65, 70, 75, 80 minutes 
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SURVEY RESULTS 
 
 

Surveyee No. Question # 1 Question #  2 Question # 1 Question # 2 
T (minutes) T (minutes) a1 a1 

1 30 50 1.000 1.000 
2 35 55 1.500 1.333 
3 30 50 1.000 1.000 
4 30 50 1.000 1.000 
5 30 50 1.000 1.000 
6 35 60 1.500 1.667 
7 40 60 2.000 1.667 
8 30 50 1.000 1.000 
9 40 55 2.000 1.333 
10 40 55 2.000 1.333 
11 35 55 1.500 1.333 
12 30 50 1.000 1.000 
13 30 50 1.000 1.000 
14 35 60 1.500 1.667 
15 30 50 1.000 1.000 
16 30 50 1.000 1.000 
17 35 55 1.500 1.333 
18 40 55 2.000 1.333 
19 30 50 1.000 1.000 
20 35 55 1.500 1.333 
21 35 60 1.500 1.667 
22 35 60 1.500 1.667 
23 30 50 1.000 1.000 
24 30 50 1.000 1.000 
25 45 75 2.500 2.667 
26 30 50 1.000 1.000 
27 35 55 1.500 1.333 
28 30 55 1.000 1.333 
29 35 50 1.500 1.000 
30 45 70 2.500 2.333 
31 35 65 1.500 2.000 
32 45 60 2.500 1.667 
33 30 50 1.000 1.000 
34 30 50 1.000 1.000 
35 35 55 1.500 1.333 
36 30 50 1.000 1.000 
37 35 55 1.500 1.333 
38 30 50 1.000 1.000 
39 30 50 1.000 1.000 
40 30 50 1.000 1.000 
41 35 55 1.500 1.333 
42 30 50 1.000 1.000 
43 30 60 1.000 1.667 
44 35 60 1.500 1.667 
45 30 50 1.000 1.000 
46 30 50 1.000 1.000 
47 40 60 2.000 1.667 
48 30 50 1.000 1.000 
49 40 60 2.000 1.667 
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Surveyee No. Question # 1 Question # 2 Question # 1 Question # 2 
T (minutes) T (minutes) a1 a1 

50 30 50 1.000 1.000 
51 35 55 1.500 1.333 
52 30 50 1.000 1.000 
53 45 55 2.500 1.333 
54 30 50 1.000 1.000 
55 35 55 1.500 1.333 
56 45 75 2.500 2.667 
57 50 60 3.000 1.667 
58 35 50 1.500 1.000 
59 30 50 1.000 1.000 
60 40 60 2.000 1.667 
61 30 50 1.000 1.000 
62 50 70 3.000 2.333 
63 30 50 1.000 1.000 
64 30 50 1.000 1.000 
65 30 50 1.000 1.000 
66 30 50 1.000 1.000 
67 30 50 1.000 1.000 
68 30 50 1.000 1.000 
69 30 50 1.000 1.000 
70 30 50 1.000 1.000 
71 30 50 1.000 1.000 
72 35 55 1.500 1.333 
73 30 50 1.000 1.000 
74 30 50 1.000 1.000 
75 30 50 1.000 1.000 
76 40 65 2.000 2.000 
77 30 50 1.000 1.000 
78 45 65 2.500 2.000 
79 30 60 1.000 1.667 
80 40 65 2.000 2.000 
81 35 60 1.500 1.667 
82 30 50 1.000 1.000 
83 40 60 2.000 1.667 
84 30 50 1.000 1.000 
85 40 50 2.000 1.000 
86 35 55 1.500 1.333 
87 35 55 1.500 1.333 
88 30 50 1.000 1.000 
89 30 50 1.000 1.000 
90 30 50 1.000 1.000 
91 30 50 1.000 1.000 
92 35 55 1.500 1.333 
93 50 70 3.000 2.333 
94 30 50 1.000 1.000 
95 30 50 1.000 1.000 
96 40 65 2.000 2.000 
97 40 65 2.000 2.000 
98 40 65 2.000 2.000 
99 40 55 2.000 1.333 

100 35 55 1.500 1.333 
101 35 55 1.500 1.333 
104 40 60 2.000 1.667 
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Surveyee No. Question # 1 Question # 2 Question # 1 Question # 2 
T (minutes) T (minutes) a1 a1 

105 30 50 1.000 1.000 
106 40 55 2.000 1.333 
107 45 50 2.500 1.000 
108 30 50 1.000 1.000 
109 35 60 1.500 1.667 
110 40 55 2.000 1.333 
111 40 60 2.000 1.667 
112 30 50 1.000 1.000 
113 40 60 2.000 1.667 
114 35 55 1.500 1.333 
115 30 50 1.000 1.000 
116 45 50 2.500 1.000 
117 30 50 1.000 1.000 
118 30 55 1.000 1.333 
119 30 55 1.000 1.333 
120 40 55 2.000 1.333 
121 30 50 1.000 1.000 
122 30 50 1.000 1.000 
123 30 50 1.000 1.000 
124 40 65 2.000 2.000 
125 35 55 1.500 1.333 
126 30 50 1.000 1.000 
127 30 50 1.000 1.000 
128 30 50 1.000 1.000 
129 30 60 1.000 1.667 
130 40 65 2.000 2.000 
131 45 60 2.500 1.667 
132 40 55 2.000 1.333 
133 40 60 2.000 1.667 
134 35 50 1.500 1.000 
135 35 50 1.500 1.000 
136 40 60 2.000 1.667 
137 40 55 2.000 1.333 
138 45 60 2.500 1.667 
139 30 50 1.000 1.000 
140 40 70 2.000 2.333 
141 35 55 1.500 1.333 
142 30 50 1.000 1.000 
143 30 50 1.000 1.000 
144 30 55 1.000 1.333 
145 30 50 1.000 1.000 
146 35 60 1.500 1.667 
147 30 50 1.000 1.000 
148 60 60 4.000 1.667 
149 30 50 1.000 1.000 
150 40 60 2.000 1.667 
151 40 60 2.000 1.667 
152 35 55 1.500 1.333 
153 30 50 1.000 1.000 
154 30 50 1.000 1.000 
155 45 60 2.500 1.667 
156 40 60 2.000 1.667 
157 30 50 1.000 1.000 
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Surveyee No. Question # 1 Question # 2 Question # 1 Question # 2 
T (minutes) T (minutes) a1 a1 

158 35 50 1.500 1.000 
159 35 55 1.500 1.333 
160 30 50 1.000 1.000 
161 30 50 1.000 1.000 
162 30 50 1.000 1.000 
163 30 50 1.000 1.000 
164 35 50 1.500 1.000 
165 40 55 2.000 1.333 
166 30 50 1.000 1.000 
167 55 55 3.500 1.333 
168 30 50 1.000 1.000 
169 40 60 2.000 1.667 
170 30 50 1.000 1.000 
171 30 50 1.000 1.000 
172 35 60 1.500 1.667 
173 30 50 1.000 1.000 
174 35 55 1.500 1.333 
175 40 60 2.000 1.667 
176 45 60 2.500 1.667 
177 40 65 2.000 2.000 
178 45 60 2.500 1.667 
179 40 50 2.000 1.000 
180 40 55 2.000 1.333 
181 30 50 1.000 1.000 
182 40 50 2.000 1.000 
183 35 60 1.500 1.667 
184 35 55 1.500 1.333 
185 35 50 1.500 1.000 
186 55 50 3.500 1.000 
187 50 60 3.000 1.667 
188 30 55 1.000 1.333 
189 40 65 2.000 2.000 
190 30 50 1.000 1.000 
191 40 50 2.000 1.000 
192 30 50 1.000 1.000 
193 45 50 2.500 1.000 
194 30 60 1.000 1.667 
195 45 65 2.500 2.000 
196 50 65 3.000 2.000 
197 40 60 2.000 1.667 
198 55 75 3.500 2.667 
199 30 50 1.000 1.000 
200 45 60 2.500 1.667 
201 45 75 2.500 2.667 
202 45 75 2.500 2.667 

AVERAGE a1 
 

1.456 
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APPENDIX B 
 

NOTES FROM TRAVEL TIME RELIABILITY WORKSHOP 
 
 
A workshop was held by the research team on 28 August 2007 at the University of Texas at 
El Paso campus for staff from TxDOT and El Paso MPO.  In the workshop, the research 
team presented the concept of traffic assignment with a fixed O-D and traffic assignment with 
departure time choice, and demonstrated the use of the Travel Time Reliability Program 
Suite.  This Appendix documents the self-assessment conducted by the research team after 
the workshop.  It is hope that the experience shared by the research team here would help 
TxDOT in conducting future workshops during project implementation. 
 
• Pre-Workshop.  It is recommended that each participant familiar him/herself with the 

fundamentals of GISDK, matrix operations and basic traffic assignment procedure in 
TransCAD.  It is also preferable that each participant bring his/her own laptop computer 
pre-installed with TransCAD Version 4.8.  Some of the functions in the Travel Time 
Reliability Program Suite may not work earlier version of TransCAD.  The laptop 
computer must have a DVD drive.  Otherwise, the training/workshop classroom must 
have computer with enough TransCAD Version 4.8 licenses installed.  Each participant 
should be provided with a hard copy of the User’s Guide which can also be used as class 
notes. 

 
• Installation DVD.  The research team has prepared DVDs to be distributed to all 

workshop participants.  The DVD contains the source file of Travel Time Reliability 
Program Suite, the User Guide, and sample data sets for each of the programs.  As some 
of the participants may not have sufficient background in GISDK, the trainer/instructor 
should go through the installation procedure step-by-step (although the procedure has 
already been explained clearly in the User’s Guide).  The installation of Travel Time 
Reliability Program Suite and copying of data file may take up to 20 minutes. 

 
• Review of Traffic Assignment Approaches.  Before going into the details of the Travel 

Time Reliability Program Suite, it is recommended that the trainer/instructor review the 
two traffic assignment approaches with the participants.  The slides used for the 
Closeout Meeting are excellent materials for a 20-minute review. 

 
• Sequence of Programs.  The trainer/instructor should go through the following four 

programs in sequence, to demonstrate the steps in performing traffic assignment with a 
fixed O-D matrix, since the concepts and procedure are easier to understand: 

Adjust O-D Matrix 
Adjust Capacity 
Traffic Assignment with Fixed O-D 
Capacity Reliability 

 After taking a short break, the trainer/instructor should go through the remaining 
programs for traffic assignment with departure time choice: 

Set Variance of O-D Travel Time 
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Traffic Assignment with Departure Time Choice 
Plot VMT & VHT 
Plot Hotspots 

While going through the following steps, the participants should follow the trainer/ 
instructor step-by-step, using the sample data set as an exercise.  After this the 
trainer/instructor should allocate time for personal instructions or for participants to 
clarify certain points or steps in the programs. 
 

• Duration.  The first half of the workshop which included software installation, review of 
traffic assignment approaches and going through the four programs that relate to traffic 
assignment with a fixed O-D matrix took approximately 2 hours.  After break, the four 
programs that concern with traffic assignment with departure time choice took 
approximately 1.5 hours.  A good workshop schedule is to start at 10:00 a.m., with a 
one-hour lunch break after conducting the first half, from 12 p.m. to 1:00 p.m.  The 
second half should end at 2:30 p.m.  The remaining time can be allocated to further 
discussions and hands-on practice if a participant has brought along his/her own data. 
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