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PREFACE 

This report describes work done on the project entitled "Utilization of 
Surface Wave System for Measuring Moduli of Pavements." This project is being 

conducted at the Center for Transportation Research, The University of Texas 
at Austin, as part of the Cooperative Highway Research Program sponsored by 
the State Department of Highways and Pub 1 i c Transportation and the Feder a 1 

Highway Administration. 
This report presents the results of analytical studies to evaluate the 

importance of dynamic effects on the deflections measured in the Dynaflect and 
Falling Weight Deflectometer tests. From the results of these studies it is 

concluded that dynamic effects may be important when there is bedrock at a 
finite depth. In this case a formulation which accounts for the dynamic 
nature of the loading should be used. 

The writers are particularly grateful to the entire staff of the Center 

for Transportation Research, who provided support throughout the analysis and 
preparation stages of this report. 
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ABSTRACT 

The Oynaflect and the Falling Weight Deflectometer are commonly used for 

nondestructive testing of pavements. Although in both cases a dynamic load is 

imparted, the determination of the mechanical properties of the pavement is 
normally performed by using static analyses. In this study, the displacements 
obtained from dynamic analyses are compared to those provided by conventional 
static programs when the sub-base is a homogeneous soil stratum of finite depth, 
resting on a much stiffer rock-like material and when the soil properties in
crease smoothly with depth, as is often the case. The results of these com
pari sons indicate that for certain ranges of depth to bedrock a static 
interpretation of the Oynaflect and Falling Weight Deflectometer tests may lead 
to substantial errors. Situations where these errors are important are more 
likely to be encountered with the Oynaflect than with the Falling Weight 
Deflectometer. 

KEY WORDS: pavements, deflections, Dynaflect, Falling Weight Deflectometer, 
nondestructive testing, seismic waves 
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SUMMARY 

The Dynaflect and the Falling Weight Deflectometer are commonly used for 

nondestructive testing of pavements. Although in both cases a dynamic load is 

applied, the determination of the mechanical properties of the pavement, base 

and subgrade is normally performed comparing the measured deflections at various 

points along the surface to results of static analyses considering the subgrade 

as a homogeneous, elastic half space. In this report a more accurate model to 

compute the displacements along the surface of a pavement due to a dynamic load 

is presented. The formulation starts by considering steady state harmonic 
forces and displacements. For a harmonic excitation at a fixed frequency (case 

of the Dynaflect) the solution provides directly the desired results. For an 
arbitrary transient excitation (case of the Falling Weight Deflectometer) the 

time history of the specified forces must be decomposed into different frequency 
components using a Fourier Transform. Results are obtained then for each fre

quency and combined to obtain the time history of displacements through the 
Inverse Fourier Transform. 

Deflections obtained from the dynamic analyses are compared to those pro
vided by conventional static programs when the subgrade is a homogeneous soil 
stratum of finite depth, resting on a much stiffer, rock-like, material and when 
the soil properties increase smoothly with depth, as is often the case. The 
results of these comparisons show that for certain ranges of depth to bedrock 
a static interpretation of the Dynaflect and Falling Weight Deflectometer tests 
may lead to substantial errors. Situations were these errors are important are 
more likely to be encountered with the Dynaflect than with the Falling Weight 
Deflectometer. 
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IMPLEMENTATION STATEMENT 

The Oynaflect and the Falling Weight Deflectometer are the instruments 

most commonly used by the Texas State Department of Highways and Public 
Transportation to obtain data concerning the in situ properties of pavements. 
The elastic properties of the pavement, base and subgrade are normally 
backfigured by comparing the deflections measured at various points along the 
surface to the results of static analyses assuming a homogeneous elastic half

space for the subgrade. The studies described in this report were conducted 
in order to assess the potential errors associated with the use of static 

analyses to backfigure the pavement, base and subgrade moduli from the 

deflection basin caused by a dynamic load. The results seem to indicate that 
these errors, due to dynamic effects, can be important when the subgrade has a 
finite thickness and is underlain by much stiffer, rock-like material. They 

are likely to be more significant for the Dynaflect than for the Falling 
Weight Deflectometer. 

Since these studies are only of a theoretical nature further parametric 

studies and experimental verification are needed before more definite 
recommendations can be made. If one were to find, however, strange or unusual 

results with the use of the present approach, it may be advisable to determine 
whether there is rock at a shallow depth. In this case dynamic effects could 
provide an explanation for the anomaly in the results, particularly if the 
frequency of the excitation is in the range between the fundamental 
frequencies of the stratum in shear and dilatation. 
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CHAPTER 1. INTRODUCTION 

1.1 Existing Test Methods 
A number of methods have been proposed to evaluate the elastic properties 

of pavement systems. Some of them, like the plate bearing test, the curvature 

meter, the Benkelman beam, the traveling deflectometer and the La Croix 
deflectograph are based on the application of static loads and measurement of 

the corresponding pavement deflections. Elastic layer theory is then used to 

backfigure, from the measured deflections, the pavement, base and sub-base 
moduli. Others are based on the application of dynamic loads, either at a fixed 

frequency (steady state vibrations), or in the form of an impact. The 

Dynaflect, the Road Rater and the WES and FHWA Vibrators belong to the first 

group, while the Falling Weight Deflectometer belongs to the second. Although 
these tests are dynamic by nature, the interpretation of their results to es

timate the elastic properties of the pavement, base and sub-base relies on 
static analyses. These analyses assume furthermore that the soil in the sub
base is an elastic, homogeneous and isotropic half-space. In most cases soil 

properties will vary with depth and the soil will be underlain at some depth 
by stiffer, rock-like material. 

1.2 New Procedure 
A new procedure that seems to be very prom1s1ng is the Spectral Analysis 

of Surface Waves (SASW) method, which is being developed at The University of 
Texas at Austin. In this method a transient impact is applied on the surface 
of the pavement and the deflections are recorded at two target points with the 
help of a Spectral Analyzer. The time histories of the deflections are auto
matically decomposed into a large number of frequency components and the ap
parent velocity of propagation of the waves between the two target points is 

determined at each frequency. Waves with high frequencies (short wave lengths) 
will penetrate only a small distance from the surface and their velocity of 

propagation should reflect the material properties of a top layer with a 

thickness of the order of the wavelength. Waves with low frequencies reflect 
on the other hand average materia 1 properties over a 1 arge depth. It is thus 
possible, starting with the high frequency components and proceeding with 
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smaller frequencies, to determine the moduli of the pavement, base and subgrade 

at different depths. Interpretation of the results of the SASW method is per

formed at present assuming that only surface (Rayleigh) waves are generated by 
the impact. Since near the source P and S waves (body waves) are also important 

the distance between the first receiver and the source must be large enough to 

guarantee that a sufficient amount of body wave energy has dissipated. On the 
other hand if the source is too far from the first receiver, or the distance 

between the two receivers is large in relation to the wavelengths involved, the 
amplitude of the arriving waves may be too small and background noise may dom
inate the records. 

1.3 Purpose of Study 
The purpose of this work was to develop a more accurate mathematical model 

to study the propagation of waves generated by a surface impact through a 
pavement system, accounting not only for surface (Rayleigh) waves, but also for 
the presence of body waves: A number of formul~tions wer~ explored ~nd the one 
presented by Kausel (13) was selected. A review of these formulations is pre
sented in Chapter 2. A computer program was implemented using Kausel 1 s formu
lation and parametric studies were conducted to assess the accuracy of the 
results. The computer program was then used to evaluate the dynamic effects 
present in the results obtained with the Dynaflect (Chapter 3) and the Falling 
Weight Deflectometer (Chapter 4). For this purpose the dynamic displacements 
computed with the program for various depths to bedrock (thickness of the sub
grade) were compared with those resulting from static analyses for the same soil 
profile, and assuming that the subgrade extends to infinity with uniform prop
erties (the normal assumption in the interpretation of the Oynaflect or Falling 
Weight Oeflectometer results). The dynamic deflection bulbs obtained from the 
analyses were also used as input for the standard backfiguring process (Ref 
24) to estimate the elastic moduli of the pavement, base and sub-base, in order 
to assess the errors induced by neglecting dynamic effects. 



CHAPTER 2. FORMULATION 

2.1 Introduction 
Consider a soil deposit consisting of horizontal layers. The mass density 

and elastic moduli of the soil may change with depth, from layer to layer, but 

are assumed to be constant over each layer. For the present application the 
top layer would represent the pavement (assuming that it extends to infinity 
in both horizontal directions), the second layer would be the base, and the 

remaining layers represent the soil of the sub-base. The determination of the 
response of this soil deposit to dynamic loads applied at the surface (or at 
any point within the soil mass) falls mathematically into the area of wave 
propagation theory. 

The formulation of these problems always starts by considering steady state 
harmonic forces and displacements at a given frequency. For a harmonic 
excitation, as caused by a vibrating machine rotating at a specified velocity 
(case of the Dynaflect) the solution at the corresponding frequency provides 
directly the desired results. For an arbitrary transient excitation (case of 
the Falling Weight Deflectometer) the time history of the specified forces must 
be decomposed into different frequency components using a Fourier series, or 
more conveniently a Fourier transform. Results are obtained then for each term 
of the series (each frequency) and combined to obtain the time history of dis
placements (Inverse Fourier transform). 

Considering an isolated layer with uniform properties the stresses and 
displacements along the top and bottom surfaces can be expanded in a double 
Fourier series (or Fourier transform) in the two horizontal directions for 
cartesian coordinates or in a Fourier series in the circumferential direction 
and a series of modified Bessel functions in the radial direction for cylin
drical coordinates. For each term of these series, corresponding to a given 
wave number, one can determine closed form analytical expressions in the form 
of a transfer matrix relating amplitudes of stresses and displacements at the 
bottom surface to the corresponding quantities at the top (or vice versa}. This 

aproach is due to Thomson (23} and Haskell (8) and has served as the basis for 
most studies on wave propagation through layered media in the last 30 years. 

An alternative is to relate the stresses at both surfaces to the displacements, 

3 



4 

obtaining a dynamic stiffness matrix for the layer [Kausel and Roesset (14)] 

which can be used and understood in much the same way as those in structural 
analysis. For a half-space the stiffness matrix relates directly stresses and 
displacements at the top surface, since the bottom surface is pushed to infin

ity. Assembling the stiffness matrices of the different layers one can obtain 
a stiffness matrix for the complete soil deposit relating forces per unit of 
area applied at the free surface, or the interfaces between the layers, to the 

displacements at the same elevations. 
The terms of the transfer or stiffness matrices of each 1 ayer are 

transcendental functions (complex exponentials). In addition results must be 
obtained for each term of the Fourier series decomposition (each wave number), 
then combined, normally by numerical integration, to obtain the solution for a 
specified load distribution. On the other hand, the thickness of the layers 
is controlled only by physical considerations and the assumption of uniform 
properties. This makes the procedure particularly convenient when dealing with 
a homogeneous half-space or a very small number of layers, but extremely ex
pensive when a large number of layers is needed to reproduce properly the var
iation of soil properties with depth. Formulations along these lines have been 
implemented by Gazetas (7) in cartesian coordinates, and by Apsel (3) in cy
lindrical coordinates. 

When the 1 ayers are very thin, on the other hand, the transcendenta 1 

functions representing the variation of displacements with depth can be ap
proximated over each layer by a straight line (or higher order polynomial ex
pansions). The solution (displacements and stresses) is then expressed in terms 
of the exact analytical expressions in the two horizontal (or radial and 
circumferential) directions, and in terms of simpler polynomial expansions in 
the vertical direction (as in a finite element formulation). This approximation 
leads to much simpler algebraic expressions for the terms of the transfer or 
stiffness matrices of the layers. In addition, when the soil is underlain by 
a much stiffer, rock-like material, which can be considered rigid, one can de
termine the wave numbers (eigenvalues) and the mode shapes (eigenvectors) of 

the waves propagating through the soil deposit by solving an algebraic 

eigenvalue problem [Waas (25), Kausel (12)]. Expressing the solution in terms 
of these mode shapes (eigen-function expansion) Kausel (13) was able to obtain 
explicit solutions for the displacements caused by harmonic dynamic loads in a 
layered soil deposit. Kausel's formulation is particularly efficient from the 
point of view of computation but the layers must be sufficiently thin to re-
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produce accurately the variation of the displacements with depth with a 

piecewise linear approximation. This may require a large number of layers when 

dealing with a deep soil deposit. 

2.2 Wave Equation in Cartesian Coordinates 
The wave equations for a harmonic steady state motion in cartesian coor

dinates can be expressed as: 

where t is the volumetric strain t = Div u = au/ax + av/ay + aw/az and Q is the 
rotation vector. 

Qx = 1/2 [(aw/ay) - (av/az)] 

QY = 1/2 [(au/az) - (aw;ax)] 

Qz = 1/2 [(av/ax) - (au/ay)] 

Cp =I (A + 2G)/p is the compressional (p) wave velocity of the material 

Cs = /G1Pis the shear (s) wave velocity 

G is the shear modulus, A + 2G the constrained modulus and p the mass 
density. 

In terms of Young's modulus E and Poisson's ratio v 

A= vE/[(1+v)(1-2v)] G = E/ [2( 1 +v)] 

A + 2G = E(1-v)/[(1-2v)(1+v)] 

A general solu~ion of the wave equations can be expressed as a combination 
of terms of the form 
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and 

with 

A f p p 

-m I -~In I 

11h• 2 + m• 2 ~· -m'n' 

£2. + m2 + n2 = 1 

£'2 + m'2 + n'2 = 1 

0 9.'2+m'2 

AP represents the amplitude of compressional (p) waves and ASH Asv the 

amplitudes of shear (SH and SV) waves 

fp = exp[i (w/Cp) (- £x- my- nz)] 

fs = exp[i (w/Cs) (- £'x- m'y- n'z)] 

When the coefficients 1, m, n, 1 1
, m', n', are all real they represent the 

direction cosines of the direction of propagation of the P and S waves respec

tively (body waves). When some of them are complex the expressions represent 

generalized surface waves. 

For a horizontally layered soil deposit, considering a layer with homoge

neous, isotropic properties one can 1mpose the condition 

wm/C = wm'/C = n p s 

to have a unique variation of the motions in the x andy directions. t and n 

are the wave numbers and w/t, w/n are the apparent wave velocities (phase ve

locities) in the x andy directions. It is then possible to express the general 

solution as a combination of terms of the form 



where 

u P -q sp P -q -sp 

u = v :: q p sq q P -sq 

iw r 0 1 -r 0 1 

·krz -ksz -ksz Ez = d i ag { e , e e krz ksz ksz} e , e , e 

A = /£ •2+m 12 

(1/a)A11 

p 

f = exp i(-~x - nY 

k = ( w/C ) £ • 2 + m • 2 = I ~2 + 112 = 
s 

r = in// r. 2 + m 2 = - (w/kCP 

s = in•;/ t• 2 + m'2 = 1 - (w/kC
5

) 

a = C /Cp = / (1 - 2v )I 2(1 - v) 

;A• 

(w/C ) I r. 2 + m2 
p 
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Ap, ASH' Asv are then the amplitudes of waves travelling in the positive 

z direction; A1 p, A1 SH' A1 SV are the amplitude of waves travelling in the neg
ative z direction. 

The stresses txz' tyz' az are given by 

t = G f = G (au/az + aw/ax) xz xz 

t = G f = G (av/az + aw/ay) yz yz 

a = A e + 2G e = A au/ax + A av/ay + (A + 2G) aw/az z z 

and can be expressed as 



8 1 xz 
m -rp sq/2 - p(l+s2) 

rp -sq/2 
9 (l+s2) 

2 - 2 

s 
T.YZ 

= -rq -sp/2 
g{l+s2) 

sp/2 - q(l+s2) 
EZAf = 2kG rq 

2 2 
(l+s2) 

2 
ia 

-{.!.¥-) 0 0 z -s - s 
2kG 2 

Choosing a local system of coordinates for the layer with z = 0 at the top 
and z = -h (layer thickness) at the b9ttom the displacements and tractions at 
the 2 layer interfaces can be written as 

U
0 

= CAF uo ! = 
[ c~-hJ U_h = CE_hAF u_h 

AF 

T = S = OAF I ~~J ~D~-h] 0 0 = 
T = -S = -DE AF -h h -h 

AF 

Leading to 

[ c ] -1 uo 
AF = 

CE_h u_h 

and 

T
0 I [ D l 

[ :E_h J 
-1 uo uo 

-DE -h J 
= K = 

T_h u_h u_h 

The matrix K is the stiffness matrix of the layer, function of the wave 
numbers (, 11. 

Assembling the stiffness matrices of the various layers the matrix of the 
complete soil profile can be obtained. When the bottom of the profile can be 
assumed to be rigid Uh = 0 for the last layer and only the top ~x3 submatrix 
of the stiffness K for the last layer is used. When the bottom is an elastic 
half-space if the excitation results from forces applied on the layers there 
are no incoming waves travelling in the positive z direction through the half

space. Making then AP, ASH and Asv equal to 0 and keeping the last three columns 
of the matrices C, D 
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K is the stiffness matrix for a half-space relating forces to displacements 

at the surface. 

Once the total stiffness matrix has been assembled 

KU = P 
U are the displacements at the layers interfaces and Pare forces applied 

at the same levels. If these forces are of the form p(x,y) it is necessary to 

obtain first 

P(~.n), = 1/41T 2 ! ! 
-oo -co 

The displacements in the wave number domain (in terms of ~. n) are then 

-1 
U (~.n) = K P (~.n) 

Finally the displacements as a function of x,y are 

U(x,y) = ! ! 
-oo -oo 

The determination of the steady state displacements due to a harmonic load 

applied at the surface (or any interface) of a horizontally layered soil deposit 

requires therefore the decomposition of the 1 oad into its .; , n components 

(equivalent to a double Fourier series), the assembly of the stiffness matrix 

of the profi 1 e for each set of va 1 ues ~, 11 ; the so 1 uti on of the system of 

equations KU = P and the inverse transform from .;, n (wave number domain) to 

x, y (space domain). The most delicate part of this process is the last one 

with the numerical evaluation of the double integral. 

2.3 Plane Waves 

When the directions of propagation of the waves are all in one plane it 

can be assumed without loss of generality that this is the x-z plane. Making 

then m = 0 in the above expressions the in plane motions (u,w) and stresses 

(az, txz), caused by P and SV waves, can be uncoupled from the out of plane 

motion v and stresses tyz, caused by SH waves. Only one wave number k is then 

needed for the solution with 

k = wt/C = wt'!C =.; p s 

p = 1, q = 0 = 11 
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Explicit expressions for the stiffness matrices corresponding to in plane 

and out of plane motions have been presented by Kausel and Roesset (Ref 14). 

2.4 Wave Equations in Cylindrical Coordinates 

The radial, tangential and vertical displacements u, v, win cylindrical 
coordinates can be expressed in the form 

00 

u = ! (urns cosme + uma sinme) 
m=O 

00 

v = ! 
m=O 

(-v ms sinme + vma cosme) 

00 

w = !. (wms cosme + w sinme) 
m=O rna 

which represents an expansion in Fourier series in the circumferential direc

tion. urns' vms' wms represent symmetric and uma' vma' wma antisymmetric com
ponents. An advantage of the expression is that for many pract i ca 1 prob 1 ems 

only one term is needed. Thus for instance when dealing with a vertical load 

uniformly distributed over a circular area (the case of primary interest for 

the present work) only the symmetric term with m = 0 is needed and 

The wave equations in terms of the volumetric strain and the rotation 
vector are independent of the system of coordinates and apply equally to cy
lindrical coordinates. A general solution for the symmetric or antisymmetric 
components of the displacements for a given value of m is then given by 

u d 
em 

m 
em 0 

dr r 
m 

em 
d 

em 0 CEzA = F mCEzA = F mum u = v = Or m r 

w 0 0 -kC m 

where C is the same matrix of cartesian coordinates for the plane wave case (p 

=l,m=m• = q = 11 = 0, k = o. 
C = C (kr) are cylindrical functions of mth order and first, second or m m 

third kind (Bessel, Neumann or Hankel functions respectively). Hankel functions 

are often used because they behave asymptotically like complex exponentials. 
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First Hankel functions are used to model waves travelling from infinity towards 

the origin, and second Hankel functions for waves travelling from the center 

region towards the farfield. These functions show, however, a singularity for 

zero argument and cannot be used if the problem includes the origin. 

The stresses Sm = (trz' tre' az)T can be expressed in the form 

S = 2 kG F 0 E A = F S m m z m m 

Where the Fm matrix is the same defined above for the displacements, with 

terms involving cylindrical functions of mth order and D is the same matrix 

defined for cartesian coordinates applied to the plane case (q = 0, p = 1). 
One can again form a stiffness matrix for the layer relating tractions 

resulting from the stresses S at both interfaces and the displacements U. It 

must be noticed that these matrices are a function of the wave number k but they 

are independent of m and are therefore the same for all terms of the Fourier 

series expansion. 

The problem of a load applied at the free surface or any interface can then 

be solved in cylindrical coordinates by obtaining 

co 

pm =am 1 
0 

21T 
rFm I Tm P (r, e) drde 

0 

with Fm as defined above and 

T = diag (cos me, -sin me, cos me) for symmetric loads with respect m 
to the x axis. 

Tm = diag (sin me, cos me, sin me) for antisymmetric loads with re
spect to the x axis. 

The displacements 

U = K-1 P U = 
m m' 

are obtained by assembling the stiffness matrix of the profile and solving the 

system of equations. 
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The most delicate part of this procedure is again the numerical evaluation 

of the integral from 0 to ® to convert the displacements from the wave number 

domain (function of k) to the space domain (function of rand 9). 

2.5 Discrete Model 

Assuming that the layers are relatively thin an approximate finite element 

type solution can be obtained assuming that the variation of the displacements 

with depth is given by 

u = -(z/h) ubot + (1 + z/h) utop 

One could, of course, use a quadratic variation or any other polynomial, 

but the linear variation implied by the above formula is used here. 

It is then possible to obtain a stiffness matrix for the layer (plane wave 

or cylindrical coordinates) of the form 

as reported by Waas (1972), Kausel (1974), and Kausel and Roesset (1981). k 

is again the wave number. 
The matrices A, B, C and M involve only the material properties of the 

layer. The main advantage is that this stiffness matrix does not involve 
transcendental functions of k. It is possible then to assemble the total 
stiffness matrix of the soil deposit and proceed with the solution as in the 
continuous formulation. 

Considering instead the case where no loads are applied 

This system of equations represents a quadratic eigenvalue problem. The 

eigenvalues k and the eigenvectors X are the wave numbers and the mode shapes 

of the waves propagating in the soil at a frequency w. 

This problem yields 6N eigenvalues kj and eigenvectors Xj if N is the total 

number of layers (assuming a rigid bottom). 3N of these correspond to 

eigenvalues k. and shapes X., while the other half are eigenvalues -kJ. and 
J J 

shapes x•. (X 1
• is obtained from x. by changing the sign of the vertical com-

J J J 
ponents). Following Waas one chooses the 3N modes that have eigenvalues kj 

whose imaginary part is negative if k. is complex, or whose real part is posi
J 
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t i ve if kj is rea 1. These are the modes that decay with distance from the 

source. An efficient solution of the eigenvalue problem has been presented by 

Kausel (1981). 

2N of the modes have zero v displacements and correspond to generalized 

Rayleigh waves. The other N modes have zero u and w displacements and corre

spond to generalized Love waves. 
Ca 11 i ng U. the u components of X. and W. the w components and V. the 

. J J J J 
eigenvectors with only v components the flexibility matrix of the total soil 

deposit (I nv. K) can be expressed directly in terms of the eigenvectors and 

eigenvalues as 

f uu 0 f uw 
-1 0 fvv 0 K = 

f ww 0 fww 

The submatrices fuu• fuw etc. are of order N X N. Their general terms 
fuu(m,n) (mth row, nth column) are given according to Kausel (1981) by 

2N 
f (m n) = ! U. U. a. 

uu ' j=1 Jm J n J 

2N 
f (m n) = E U. w. b. 

uw ' j = 1 J m J n J 

2N 
fwu(m,n) = j~1 wjmujnbj 

2N 
f (m n) = L W. W. a. 

ww ' j=l Jm Jn J 

2N 
fvv(m,n) = j~l vjmvjnaj 

where ujm represents the mth component of uj etc. 

The displacements U can then be obtained from the forces P multiplying them 

by the flexibility matrix Inv. K. The main advantage of this formulation. is 

that the integrals involved in the transformation from the space to the wave 

number domain and vice versa can be evaluated explicitly. 
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For the case of a uniform vertical disk load q applied over a disk of radius 

R, of particular interest for this study 

21T 
p = l/21T J J rF T Pd8dr 

0 0 0 0 

21T 0 
= l/21T q J rF J 0 d8dr 

0 0 0 1 

0 
= qR/k J ( kR) 0 

-1 

(only the m = 0 term is involved). 

The displacements at the ith interface due to a vertical disk load at the 

jth interface are then 

U = FP 

and 

CX> 

u = To J kF OUdk 
0 

leading to 

2N 
u = qR I. utiwtjiulk£ 

R,= 1 

v = 0 

2N 
w = qR I. 

t= 1 w£ iwtj r H 

with 

112. = 1T/2ik£ J
0

(k£r) H1(2)(k£R)- 1/Rk2 2. 0 ~r ~ R 

= 1T/2iklit J1(k£R) H
0

(
2) (k£r) r ~ R 

and 



I 2 ~ = ~/2i J 1 (k~r) H 1 ( 2 )(k~R) 0 ~ r ~ R 

= ~/2i J 1(ktR) H1( 2) (ktr) r ~ R 
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The more detailed derivation and a complete set of expressions for other 

loads can be found in Kausel's work (Ref 13). 
The main advantage of Kausel's formulations is that the numerical inte

grations are avoided since the results are expressed explicitly in terms of 
Bessel and Hankel functions and the modal shapes of the waves in the soil de
posit. The drawback is that the soil profile must be divided into very thin 
layers (due to the linear approximation to the variation of displacements with 
depth) in order to get accurate results. This is not a serious limitation when 
the soil properties vary with depth and many layers are needed in any case to 
reproduce properly the variation of the elastic moduli. It makes the method· 
less attractive when dealing with a homogeneous half-space or a very deep ho
mogeneous soil stratum. The thickness of the layers needed to get good results 
was explored in this work through a series of parametric studies and rules to 
generate automatically an appropriate mesh were derived. 

Another limitation of this approach is the assumption of a rigid bottom 
at a finite depth, implied in the solution of the eigenvalue problem. In the 
continuous formulation an underlying homogeneous half-space is accounted for 
using a stiffness matrix that relates forces and displacements at the top under 
the assumption that there are no waves propagating through the half-space in 
the positive z direction. Kausel (1981) has suggested an approximation to 
simulate the half-space expanding the continuum stiffness matrix. 

K = 2kG 

K = kSG 

1 - s2 r1 sll-1 01 01 I 2(1-rs) for in-plane motions 

for out·of-plane motions 

leading to matrices A, 8, C for the half-space of the form 
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c 
1-2r- 0 0 

c s 
A = l iG 2. 0 -1 0 2 w 

c c 
0 0 ({)3-2 {r-)2 

s s 

0 
cP 

2 0--
cs 

B = G 0 0 0 

cP -2 o 
cs 

0 

1 0 0 

c = iw G 0 1 0 c c s 
0 o.-E. 

c s 

In this work both solutions, assuming a rigid base at some depth, and 

simulating a half-space through the approximate formulation, were implemented 

in a computer program and used for the studies described in the following 

chapters. 



CHAPTER 3. SIMULATION OF DYNAFLECT TESTS 

3.1 Introduction 

The Dynaflect consists of a force generator and five geophones housed in 

a small trailer, which is towed by a light vehicle. The loading system consists 

of two counter-rotating eccentric masses. The resulting vertical force varies 

harmonically with time. At a frequency of 8Hz a force of 1000 lbs is trans

mitted to the pavement through the loading wheels. The resulting deflection 

basin is measured by five geophones mounted on the trailer draw bar at 12-inch 

intervals. The position of the geophones (stations) with respect to the wheels 

is shown schematically in Figure 3.1. The deflections measured represent the 

amplitudes of the steady state displacements at a given frequency (8Hz). They 

are interpreted, however, as static displacements, assuming that the subgrade 

is homogeneous and extends to infinity. 

3.2 Application to a Pavement System 

A pavement system was selected to evaluate the importance of dynamic ef
fects on the results of the Dynaflect tests. The pavement has a thickness of 
2.5 inches and a Young's modulus of 200 ksi. The soil of the subgrade was 

considered both homogeneous with a Young's modulus of 29 ksi, and with a modulus 

starting with this value at the top and increasing with depth. Different depths 

to bedrock were used in the range from 10 to 110 feet. Displacements were 
computed at the points corresponding to the stations of the Dynafl ect for a 
static load and for a frequency of 8Hz. Figure 3.2 shows the profile and the 
meshes used for the study. 

Figure 3.3 shows the variation of the static displacements with depth to 
bedrock at the five stations for the uniform subgrade. Notice that at station 
1 (between the two wheels) the amplitude of the displacement varies from ap
proximately 0.047 to 0.055 as the depth to bedrock increases from 10 to 110 ft, 

while at station 5 it changes from 0.007 to 0.014, illustrating the larger ef

fect of the bottom soil layer on the response as the distance to the loaded area 

increases (all displacements must be multiplied by 10-'). Figure 3.4 shows the 

corresponding results for a frequency of 8 Hz. It can be seen that two peaks 

appear at depths of approximately 35 and 42 ft, followed by a sharp valley. 

17 
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DYNAFLECT 
P= 500 lb, F=S Hz 
¥ 
I 

~, 2 3 4 5 
• • • 8 • 
I 
I 
I 

* P= 500 lb 
Scale: I ft 

I 

Fig. 3.1. Geometric Configuration of Loads and 
Stations for Dynaflect. 
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E = 200000 psi u::: 0.35 

in ..... E = 78500 psi u = 0.35 

E = 29000 psi u = 0.40 

Rock 

Fig. 3.2. Profile of Pavement Used for Studies. 



20 

--co 
I 
0 ....-

c: 
0 -(J 
Q) --Q) 

0 

0.07 

Point 1 

~ ~ • 

/ 
A 

0.05 

Point 2 

... .. / . 
Point 3 

0.03 

:Point 4 r: 
y: :Point 5 

0.01 

0.00 L...------~-------...1.-------.L.----
0.00 20.00 60.00 

Soil Depth, ft 

100.00 

Fig. 3.3. Variation of Static Displacements with Depth to Bedrock -
Dynafl ect. 



--co 
I 
0 .,... 
. 

c: 
0 ·--(.) 

~ -Q) 

0 

0.07 

Point 1 

0.05 

Point 2 

Point 3 

0.03 

Point 4 

Point 5 

0.01 

0.00 L----L--------l....---------~-----

0.00 20.00 60.00 

Soil Depth, H 

100.00 

Fig. 3.4. Variation of Dynamic Displacements with Depth to Bedrock
Dynaflect. 

21 



22 

The ratio of the dynamic to the static displacements at points 1 and 5 is shown 

in Figure 3.5. The dynamic displacements are larger than the static ones in 

most cases, the only exception being the small range of depths to bedrock where 

a valley occurs. The maximum dynamic amplification occurs for a depth of the 

subgrade of about 35 feet. It is of the order of 1.25 at point 1 but increases 

with increasing distance reaching a value of nearly 2 at point 5. The range 

of depths over which there is a substantial dynamic amplification of the de

flections is closely associated with the depths for which a frequency of 8Hz 
represents the natural frequencies of the soil deposit in shear and dilatation. 

Since the elastic properties of the pavement, base and subgrade are 

normally determined by comparing the measured deflections to those resulting 
from static analyses assuming that the sub-base is an elastic half-space it is 
more interesting to compare the dynamic results to the static deflections for 

an infinite depth to bedrock. The ratio of these deflections for points 1 and 
5 is shown in Figure 3.6. These results indicate that for shallow depths to 
bedrock (less than 20 ft) the dynamic deflections are smaller than the static 
deflections for a half-space, although they are larger than the static de

flections for the same soil profile with a finite depth. For a range of depths 
of 20 to 40 ft the dynamic results are larger than the static ones, the dynamic 
amplification being more pronounced as the distance to the load increases. The 
maximum amplification is now about 1.20 at point 1 and 1.75 at point 5. For 
depths larger than 50 or 60 ft the ratio of dynamic to static displacements is 
close to 1. It is thus for depths to bedrock les~ than 40 ft where the errors 
committed by the present interpretation procedures can be more serious for this 
particular profile. Larger depths would be significant if the soil of the 
subgrade w~re stiffer than the one selected. 

Figures 3.7, 3.8 and 3.9 show the dynamic displacements and the ratios of 
dynamic to static displacements assuming 2 percent internal damping in the soil. 
It can be seen that introducing a small amount of material damping provides 
smoother curves, decreasing the amplitude of the peaks and eliminating almost 
completely the sharp valley at a depth of about 45 feet. The general conclu
sions remain, however, unchanged. 

Figures 3.10 to 3.13 show the corresponding results when the modulus of 
the soil in the subgrade increases with depth, as is often the case in practice. 
The dynamic amplifications are somewhat smaller than those reported for the 
uniform subgrade but the range of depths over which dynamic effects are impor
tant is enlarged. Dynamic effects are significant in this case up to a depth 
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to bedrock of 60 feet. Moreover as the depth increases the ratio of the 

dynamic displacements to the static deflections assuming a uniform half-space 

does not tend to 1 as in the previous case. The va 1 ues of this ratio at 

larger depths are affected by the distance of the station to the loaded area 
making the static interpretation of the results more difficult. 

3.3 Estimation of Material Properties 

Determination of the characteristics of the profile (elastic moduli of 
the pavement, base and subgrade) from the measured deflections falls into the 

general category of system identification problems (also referred to sometimes 
as the inverse problem). Because only five deflections are ava·ilable, it is 

often assumed that the thickness of the pavement and the base are known, and 
that the only unknowns are the moduli of elasticity. These moduli are 
normally estimated by a trial and error procedure, assuming a set of values, 
computing the corresponding static deflections, comparing them to the measured 

values, and iterating until the differences are smaller than an acceptable 
tolerance. Unfortunately uniqueness of the solution cannot be guaranteed and 
different sets of elastic moduli can produce results which are within the 

specified tolerance. 
To get a better feel1ng for the magnitude of the errors that can be 

committed when the moduli are computed using a static analysis the same 
hypothetical profile (Fig. 3.2) used for the previous studies was considered. 
Depths to bedrock of 10, 20, 35 and 110ft were used as input. The amplitudes 
of the dynamic displacements at the five observation points corresponding to a 
harmonic force at a frequency of 8 Hz were then computed. These values are 
shown in Table 3.1 together with t~e static displacements for a subgrade which 
is an elastic half-space (depth to bedrock equal to infinity), 

The computed dynamic displacements were then used as input to determine 
elastic moduli of the pavement, base and subgrade following a procedure 

similar to that used in practice today, starting with an assumed set of moduli 
(the actual values used for the dynamic analyses) and performing iterative 
linear analyses, adjusting the properties in each cycle, until the differences 
between the computed static deflections and the input values differed by less 
than a specified tolerance. The resulting predicted moduli are also shown in 

Table 3.1. If the displacements computed with the dynamic analyses for an 

assumed set of elastic moduli are assumed to simulate actual measurements the 



TABLE 3.1. DEFLECTION BULBS AND PREDICTED ELASTIC MODULI FOR 
HOMOGENEOUS SUB-BASE ANO DIFFERENT DEPTHS TO BEDROCK. 

Oispl. in Point 1 Point 2 Point 3 Point 4 Point 5 Young's Modulus 

(MILS) (1 b/in2) 

200,000 

Static H=CID 0.70 0.52 0.36 0.26 0.20 78,500 

29,000 

150,000 

Dyn. H=10ft 0.61 0.44 0.28 0.17 0.11 30,000 

45,000 

340,500 

Oyn. H=20ft 0.68 0.51 0.35 0.24 0.18 78,000 

29,837 

350:.000 

Dyn. H=35ft 0.82 0.65 0.48 0.38 0.31 98:.500 

20:.000 

248,370 

Oyn. H=llOft 0.69 0.52 0.35 0.25 0.18 78,500 

29,833 

Errors 
(%) 

25.0 

61.8 

55.2 

70.3 

0.6 

2.8 

75.0 

25.5 

31.0 

24.0 

0.0 

2.9 
- ~--········--·········--L.......-

I 

w 
w 
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differences between the predicted values and those used for the dynamic 

computations can be interpreted as the errors that would be committed by 

ignoring dynamic effects. These differences, in percentage, are shown in 

Table 3.1 under the heading Errors. It can be seen that for a depth to 

bedrock of only 10 ft the stiffness of the sub-base is badly overestimated, 

while the modulus of elasticity of the base is underestimated as well as the 

modulus of the pavement. This results from the fact that the dynamic and 

finite layer effects are more pronounced for the farthest stations, whose 

deflections are heavily influenced by the soil properties at larger depths. 

For a depth to bedrock of 10 ft the properties of the base and the soil are 

accurately determined, but the modulus of the pavement is badly overestimated. 

For a depth of 35 ft the moduli of the pavement and the base are both 

overestimated while the stiffness of the sub-base is underestimated. This 

situation is the reverse of that encountered for a depth of 10 feet. When the 

depth of bedrock is 110 ft the results are more reasonable although the 

estimated modulus of the pavement is still 24 percent too high. It should be 

pointed out, again, that the solution is not unique and a different person 

might have computed different profiles. 



CHAPTER 4. SIMULATION OF FALLING WEIGHT DEFLECTOMETER TESTS 

4.1 Introduction 
The Falling Weight Deflectometer has a 330.7 lb (150 kg) weight, mounted 

on a vertical shaft, housed in a compact trailer which can be easily towed by 
most conventional passenger cars. The weight is hydraulically lifted to a 

predetermined height (ranging from 0 to 15.7 inches or 0 to 400 mm). It is then 
dropped onto an 11.8-inch {300-mm)-diameter loading plate resting on a 0.22-inch 
(5.5-mm)-thick rubber pad which helps to distribute the load uniformly over the 
loading area. The resulting load is a force impulse with a duration of ap
proximately 30 msec and a peak magnitude ranging from 0 to 14,000 'lbs {0 to 
60,000 Newtons), depending on the drop height. The displacements of various 
stations along the surface of the pavement (from the center of the loaded area 
to a point at a distance of 5 ft) are measured by velocity transducers. Figure 
4.1 shows schematically tlie position of the load and the stations. The de
flections measured are the peak displacements under a transient type dynamic 
excitation. The interpretation of the results to backfigure the elastic moduli 
is based again on static analyses assuming that the subgrade extends to infinity 
with uniform properties. 

4.2 Determination of Transient Response 
Since the loads applied by the Falling Weight Deflectometer are transient 

in nature, it is necessary, to simulate the results of this test, to decompose 
the time hi story of the force into frequency components using the Fourier 
transform. Figure 4.2 shows the time history of the applied load used for the 
present analyses (a triangular pulse with a duration of 33 milliseconds) and 
Figure 4.3 shows the amplitude of its Fourier transform. Analyses must then 
be conducted for a large number of different frequencies obtaining at each point 
(station) the transfer functions of the deflections. Figure 4.4 shows for ex
ample the transfer function at point 1 (center of the loaded area) for the 
pavement system of Figure 4.5 (same profile used for the Dynaflect studies) and 

a depth to bedrock of 20 feet. These transfer functions are then multiplied 
by the Fourier transform of the input and the resulting functions are converted 
back to time using the Inverse Fourier Transform. The final results are the 
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time histories of the deflections at the various points. The complete analysis 

is clearly much more expensive than for the case of the Dynaflect where only 
one frequency is involved. Therefore the studies were limited to depths to 

bedrock of 10, 20, 40 and 80 feet. 
The continuous Fourier transform involves an integral over time (direct 

transform) or frequency (inverse transform) extending from minus i nfi ni ty or 
zero to infinity. In practice, however, a discrete transform, referred to as 
the Fast Fourier Transfonn, is used. In this case a finite number of points 

(power of 2) is selected to reproduce the function of time at equal time in
tervals 6t. The total duration is T = N6t if N is the number of points. Notice 
that for an impulse type load the values of the function will only be nonzero 

for a few points. The Fourier Transform is then calculated at N/2 points with 

a frequency interval 6f = 1/T and a maximum frequency fmax = 1/2 6t. A proper 
selection of these parameters is important to guarantee the accuracy of the 
final results. A small time interval 6t is desirable to reproduce properly the 
time variation of the forcing function and to ensure that the peak response 
displacement is not missed. The total duration T should be several times larger 
than the actual duration of the load to ensure that spurious free vibration 
terms have attenuated; the appropriate value depends on the fundamental period 
of the system and the amount of damping (in the present case no internal damping 
is assumed for the soil and the only source of energy dissipation results from 
radiation or geometric spreading of the waves above the fundamental frequency 
of the soil stratum). The frequency increment 6f (fixed once the duration T 
has been selected) should be small to reproduce properly the transfer function, 
particularly if it exhibits some sharp peaks (typical of lightly damped sys
tems). All these considerations point out the desirability of a small 6t and 
a large number of points N. It should be noticed, however, that as the number 
of points increases so does the cost of computation and the number of frequen
cies for which ana lyses must be conducted. As 6t decreases the maximum fre
quency f max increases, requiring more refined meshes and a 1 arger number of 
layers because of the dynamic limitation on the thickness of the layers. 

A number of preliminary studies were conducted to assess the required 
values of 6t and N to obtain reasonably accurate results. It was concluded from 

these studies that a value of N equal to 2048 and a time interval of approxi
mately 0.002 seconds were appropriate for these applications. Figure 4.4 shows 
a typical transfer function for the center of the loaded area and a depth to 
bedrock of 20 feet. (The transfer function is actually complex; the amplitude 
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of the function is shown). It can be seen that for frequencies larger than 20 
Hz the function is relatively smooth without any pronounced peaks. It was de

cided therefore to calculate the values of the transfer functions at frequency 
intervals of approximately 0.25 Hz in the range 0 to 20Hz, 2Hz from 20 to 60 
Hz and 4 Hz from 60 to 120 Hz. Since the Af required is of the order of 0.25 

Hz the values of the transfer functions at intermediate points are evaluated 
by interpolation between the computed values. Finally since f should be max 
approximately 240 Hz the va 1 ues between 120 and 240 Hz were obtai ned by ex-
trapolation. The preliminary studies indicated that the results obtained with 

these simplifications (leading to considerable savings in computer time) were 
in very good agreement with those obtained using a constant frequency increment 
of 0.25 Hz over the complete range of frequencies. 

Figure 4.6 shows typical time histories of the displacements at points 1 
(center of the loaded area) and point 7 (farthest station) for a depth to 
bedrock of 20 feet. From these figures the peak deflection was computed at each 
statton and the deflection bulb was obtained. 

Figure 4.7 shows the static and dynamic displacement bowls for a depth to 
bedrock of 20 ft while Figure 4.8 shows the ratio of the dynamic to the static 
displacements for the same soil profile and to the static displacements assuming 
that the subgrade extends to infinity (the normal assumption in the interpre
tation of the results). It is important to notice that, once again, this ratio 
varies with distance to the load, increasing in general as this distance in
creases. The dynamic deflections are almost equal to the static ones at the 
center of the loaded area but become larger for the farthest stations. The 
ratios of the dynamic deflections to the static ones assuming a half-space are, 
however, close to 1, indicating that the errors committed by neglecting dynamic 
effects and the existence of bedrock at a finite depth tend to cancel in this 

case. 
Figures 4.9 to 4.12 show similar results for a depth to bedrock of 40 ft 

and Figures 4.13 to 4.16 for a depth of 80 feet. 

4.3 Estimation of Material Properties 

As in the Dynaflect studies the profile of Figs. 3.1 and 4.5 was again 
considered with depth to bedrock in this case of 10, 20, 40 and 80 ft. 

Dynamic ana lyses were then conducted to determine the maximum di sp 1 acements 
under an impact load simulating the force exerted by the Falling Weight 
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Deflectometer, at the seven stations used typically with this instrument. The 

dynamic displacements were then used .as input to backfigure elastic moduli 

using iterative static analyses. The procedure used for this simulation was 
identical to that described in Section 3.3 the only difference being in the 
load used for the dynamic analyses. It must be emphasized again that 
unique ness of the so 1 uti on is not guaranteed with this approach and that a 
different set of moduli might provide results within the same tolerance. The 
problem is inherent in the procedure used at present to backfigure the elastic 
properties of the pavement system. 

The results of these analyses are shown in Table 4.1. The static 

displacements assuming that the subgrade extends to infinity and the dynamic 
displacements for depths to bedrock of 10, 20, 40 and 80 ft are tabulated 
together with the actual and predicted elastic properties and the errors 
involved in the estimates. For this pavement system the errors are always 

much smaller than those reported in Table 3.1 for the Dynaflect tests. Even 
so, it should be noticed that the small differences between static and dynamic 
deflections can introduce errors in the estimates (particularly for a depth to 
bedrock of 40 ft) due to the distortion in the shape of the displacement bowl 

(the fact that the ratio of dynamic to static displacements is slightly less 
than 1 under the load and slightly larger at the farthest stations). 

Due to the cost of computation it was not possible to repeat these 
studies for tbe case where the soil properties in the subgrade increase with 
depth instead of remaining uniform, a situation of practical significance. 
Additional studies should be conducted before the conclusions from this 
example can be generalized. It appears, however, that dynamic effects ·are 
less important for the Falling Weight Deflectometer than for the Dynaflect due 
to the fact that a broader range of frequencies is involved instead of a 

single frequency. 



TABLE 4.1. DEFLECTION BULBS AND PREDICTED ELASTIC MODULI FOR HOMOGENEOUS SUB-BASE AND 
DIFFERENT DEPTHS TO BEDROCK. FALLING WEIGHT DEFLECT0~1ETER. 

Displ. Distance to the Center Young's Errors Modulus 
(x10-8ft) 0' 1' 2' 3' 4' 5' 6' (lb/in2) (%) 

200~000 

Static H=inf. 11.54 5.139 3.141 2.180 1.611 1.253 1.015 78,500 

29,000 

200,000 o.o 
Dyn~ H•10ft 10.60 4.622 2.842 1.923 1.317 0.9094 0.7214 78,500 0.0 

35~539 22.5 

200~000 0.0 

Dyn. H=20ft 11.06 4.652 3.013 2.073 1.538 1.280 1.090 82~200 4.7 

28~790 0.7 

. 287,200 43.6 

Dyn. H=40ft 10.74 4.860 3.008 2.111 1.590 1.288 1.086 87~375 11.3 

28,331 2.3 

200,000 0.0 

Dyn. H=80ft 11.08 4.733 3.073 2.109 1.608 1.311 1.044 89,131 13.5 

29,245 0.8 

(J"' 
(J"' 





CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this work was to develop a more accurate model to 
compute the displacements at points along the surface of a pavement due to a 
dynamic excitation, either at a fixed frequency or in the form of an impact. 
A discrete formulation was selected because it is particularly efficient when 
dealing with a large number of horizontal layers with different properties, as 
would be encountered in practice if the modulus of the subgrade increased with 
depth. When dealing on other hand with an elastic half-space or a very small 
number of layers the formulation presented by Apsel (3) would be more conven
ient. 

The formulation was implemented in a computer program and a number of 
parametric studies were conducted to assess the accuracy of the results as a 
function of the number and thickness of the layers, and the distance from the 
point of application of the load (or the center of the loaded area) to the point 
where displacements are computed. The results of these studies indicated that 
the deflections near the load are affected only by the properties of the mate
rial near the surface while the properties at depth play an increasing role as 
the distance to the load increases. A procedure to select an appropriate mesh 
for a given distance and frequency of vibration was derived on the basis of 
these preliminary studies and used for all ensuing analyses. 

The computer program developed was used then to assess the importance of 
dynamic effects on the results of typical Dynaflect and Falling Weight 
Deflectometer tests when the soil in the subgrade is underlain at a finite depth 
by much stiffer rock. An actual pavement system was selected for these studies 
varying the depth to bedrock (thickness of the subgrade). For this particular 
profile the results indicate that a static interpretation of the displacement 
bowl measured in Dynaflect tests might be reasonable when dealing with a homo
geneous soil (subgrade) extending to depths of 40 ft or more. When much stiffer 
bedrock is encountered at shallower depths important dynamic amplifications can 

occur and the elastic properties backfigured for the pavement system using 
standard techniques can be substantially in error. The situation is aggravated 

when the soil in the subgrade is not homogeneous but its stiffness increases 
with depth. For the profile studied dynamic effects were then important up to 
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a depth of 60 feet. In general dynamic effects due to the existence of bedrock 

at a finite depth will be significant if the frequency of excitation (typically 

8 Hz for the Dynaflect) is in the range between the fundamental frequencies of 

the profile in shear and dilatation. It is recommended that these frequencies 

be estimated in cases where the results seem unusual. 

Dynamic effects seem to be less important for the Falling Weight 
Deflectometer, where a broad range of frequencies are excited rather than a 

single one. For the particular case studied the errors introduced by neglecting 

dynamic effects and the existence of bedrock at a finite depth tended to cancel 

each other resulting in dynamic displacements for the actual profile very sim

ilar to the static deflections assuming a half-space for the subgrade. Even 
so there were st i 11 some ranges of depth to bedrock for which the difference 

in dynamic effects at the various stations, distorting the shape of the dis
placement bowl, leads to erroneous estimates of the elastic moduli. Due to the 
cost of computation it was not possible to study the case where the properties 

of the soil in the subgrade increase with depth. Additional studies are re
commended to generalize the conclusions related to the Falling Weight 

Deflectometer. 
An additional problem with the Dynaflect and the Falling Weight 

Deflectometer is that only a small set of values (five or seven deflections) 
is available to backfigure the elastic properties of the pavement, base and 
subgrade. A procedure which takes advantage of much more information is the 
Spectral Analysis of Surface Waves. 
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