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PREFACE

A new computer program for performing slope stability calculations has
been developed as part of Research Project 353 by the Center for Transportation
Research at the University of Texas. A guide to the program, including a
detailed description of the procedures for input of data and an explanation of
the output has been prepared by Wright and Roecker (1984). In conjunction with
the development of the user's documentation a series of seven example problems
was developed to aid the user in developing input data and using the computer
program for slope stability computations. The seven example problems are pre-

sented in this report.

Stephen G. Wright

James D. Roecker

September 1984






ABSTRACT

A series of seven example slope stability problems for the computer
program, UTEXAS, is presented. The example problems consist of (1) a simple
slope, (2) an embankment on a very strong foundation, (3) an embankment on a
relatively weak foundation, (4) an excavated slope, (5) an embankment on a
foundation containing a thin seam of weak material, (6) a natural slope and (7)
a partially submerged slope. A description of each example problem, a listing
of the input data for the computer program, and the results of the computations
are presented and discussed for each example problem. These examples are
intended to serve both as a guide for input of data to the computer program,

UTEXAS, and to illustrate a variety of typical slope stability problems.







SUMMARY

A series of seven distinctly different example slope stability problems
has been developed and solved using the computer program UTEXAS. Several sets
of computations have been performed for most of the problems to examine both
short-term and long-term stability and the effects of such variables as tension
cracks, varying surcharge loads on the slope and different ground water condi-
tions. This report describes each of the example problems, including the
results of the slope stability computations which have been performed. A com-
plete 1isting of the input data required to solve each problem with UTEXAS is

included in the report.
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IMPLEMENTATION STATEMENT

Users of the newly developed computer program, UTEXAS, are encouraged to

"run" each

study each of the example problems presented in this report and to
example problem with the computer program before undertaking solutions to much
more complex problems. The complete 1listing of data for each problem is
included in the Appendix of this report and, thus, it should be relatively easy
for even the inexperienced user to run each of the example problems.

As part of the implementation of the results of Project 353 and, specif-
ically, the computer program, UTEXAS, a series of training workshops should be
developed and conducted. The workshops could logically include coverage of
both fundamentals of shear strength and slope stability along with a series of

solutions to selected practical problems. The examples presented in this

report could serve as problems for such a workshop.
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SECTION 1

INTRODUCTION

A series of seven exahple problems has been developed as part of the
documentation for a general purpose computer program for slope stability ana-
lyses, UTEXAS. This report presents these seven sample problems and the input
data for UTEXAS. A description of the computer program and guide for input of
data to the program “Users' Guide" is presented elsewhere by Wright and Roecker
(1984). The example problems presented in this report have been developed as a
supplement to the users' guide and to meet several needs. First, the example
problems serve as documented examples which can be used as "benchmarks" to ver-
ify that the computer program is functioning correctly. Secondly, the example
problems jllustrate typical sets of input data for the computer program to sup-
plement the user's guide presented by Wright and Roecker (1984). Finally, the
examples have been selected to provide the user with a set of fllustrative,
instructional examples covering a variety of typical, basic slope stability
problems, including excavated and fill slopes and short~term and long-term sta-~
bility conditions.

The reader is assumed to have read and be familiar with the users' manual
for the slope stability computer program, UTEXAS, before reading this report.
In the following sections of this report each of the seven examples fis
described and the results of the stability calculations performed by the
computer program are presented. Listings of input data for the computer pro-

gram are contained in Appendices A through G for each of the example problems.



The printed output produced by the computer program for the seven example
problems is approximately 450 pages in length. Because of the relatively great
length of the printer output and because the primary intent of this report is
to present sample data, rather than to discuss output in detail, the printed
output is not included as part of this report. However, it is expected that the
reader will execute the computer program with each of the example problem data
sets included in the Appendices and refer to the output while studying each
example problem presented in this report

The seven example problems are referred to as "Example Problems A through
G," and are as follows:

A) Simple Slope. This problem is a relatively simple problem designed to

help the beginning user become familiar with the computer program by
beginning with a simple problem.

B) Embankment on Strong Foundation. This problem illustrates a series of

slope stability calculations for a typical embankment where the founda-
tion is sufficiently strong to have no influence on the stability of the

embankment.

C) Embankment (Earth Fill) on Weak Foundation. This problem illustrates a

series of slope stability calculations for an embankment on a relatively
soft, weak foundation where the strength of the foundation has a signif-
jcant effect on the stability of the embankment.

D) Excavated Slope. In this example a series of stability calculations

are presented for a typical excavated slope.

E) Embankment on Foundation with "Thin" Weak Soil Layer. This example

f1lustrates a series of stability calculations for an embankment where the
foundation contains a relatively thin, weak sofl layer which causes the

most critical s1iding surface to be noncircular in shape.



F) “"Natural Slope. This example is taken from the user's manual for the

slope stability computer program, STABL, by Siegel (1978). The example is
used to illustrate a series of slope stability computations for what could
be efther a natural or an excavated slope where the most critical sliding
surface may be slightly noncircular.

G) Partially Submerged Slope. This example is used to illustrate a series

of slope stability computations for a partfally submerged slope, which
could be either an embankment slope or an excavated slope. The example
illustrates several ways in which essentially the same type of computa-
tions may be performed, and serves as a good problem for checking the com-
puter program for correctness: The several ways in which the calculations
are performed must yield essentially identical results if the computer
program is operating correctly.
In the following seven sections of this report the seven example problems
are presented in more detail and the results of the stability calculations

performed with the computer program are presented.






SECTION 2

EXAMPLE PROBLEM A - SIMPLE SLOPE

The first example problem involves the stability computations for the
simple, homogeneous slope illustrated in Fig. 2.1 and is designed to aid the
beginning user in becoming familiar with the computer program. The slope 1s 12
feet high and has a 3(horizontal)-to-1(vertical) side slope. The slope and its
foundation are considered to consist of the same soil. The shear strength of
the soil s expressed in terms of a cohesion value (c) of 200 psf and an angle
of internal friction (¢) of 22 degrees. The shear strength {s expressed in
terms of total stresses, rather than effective stresses. Accordingly, no pore
water pressures are specified in the input data. The unit weight of the soil is
123 pcf.

For a simple, homogeneous slope, 1ike the one considered in this example,
a circular shear surface will usually produce essentially the minimum factor of
safety. Accordingly, stability computations are performed using only circular
shear surfaces for this problem. An automatic search is performed to locate
the most critical shear surface. The initial mode of search consists of find-
ing the most critical circle passing through the toe of the slope. Then, once
the most critical circle through the toe of the slope {s found, the search is
allowed to continue to determine if a more critical circle may exist.

The 1nitial starting point of centers for the automatic search is at the
coordinates x = 18, y = 24. The minimum size of the grid to be used,

corresponding to the desired accuracy in the location of the center of the



12 ft C = 200 psf
¢= 22°
y = 123 pef

Figure 2.1 - Cross-Section and Coordinate Axes
of Slope for Example Problem A.



critical circle, is 1 foot. This grid size (1 foot) was selected because it
represents no more than 10 percent of the slope height, which has been found to
be a good grid size to use for homogeneous slopes such as the one in this exam-
ple. Default values are used for all of the other variables in the analy-
sis/computation data.

The initial mode of search locates a critical circle through the toe of
the slope with a center at the coordinates x = 13.0, y = 31.0 and with a radius
of 33.6 feet. The corresponding factor of safety is 2.74 (side force inclina-
tion = 12.9 degrees). The automatic search then continues and finds a more
critical circle with a slightly lower value for the factor of safety than the
one found for the circle passing through the toe of the slope. This more crit-
fcal circle has its center at the coordinates x = 13.0, y = 32.0 and a radius of
34.6 feet. The most critical circle is shown in Fig. 2.2. The minimum factor
of safety for this most critical circle is 2.74. (The difference between the
factors of safety for the most critical circle through the toe of the slope and
the most critical circle found at the end of the final search is very small and
can only be seen by examining the fourth significant digit of the factor of
safety. The factors of safety are 2.740 for the critical circle through toe of
slope versus 2.739 for the most critical circle.) It is generally known that
the most critical circle will pass through the toe of the slope for a homogene-
ous slope like the one considered in this example where the friction angle, ¢,
is greater than zero. When ¢ is equal to zero, the critical circle may tend to
go infinitely deep as discussed for Example Problem C. The results of the cal-
culations for this example simply illustrate the known fact that the critical

circle passes very nearly through the toe of the slope.
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13.0 ft Center Point

Figure 2.2 - Most Critical Circular Shear Surface Located
by Automatic Search for Example Problem A.



SECTION 3

EXAMPLE PROBLEM B - EMBANKMENT ON STRONG FOUNDATION

INTRODUCTION

The second example consists of an earth fill embankment on a strong
foundation. The embankment cross-section and coordinate axes used are shown in
Fig. 3.1. The embankment side slopes are 3(horizontal)-to-1(vertical). The
embankment is 25 feet high and has a crest width of 75 feet. The foundation is
assumed to be sufficiently strong to prevent any sliding surface from passing
into the foundation and, thus, the properties of the foundation are ignored and
neglected in the stability computations.

The embankment in this problem is symmetrical. Thus, both side slopes
will have the same factor of safety and computations only need to be performed
for one side slope. The left-hand slope was arbitrarily selected for the com-
putations.

Two separate groups of computations are performed for the embankment. The
first group of computations 1is performed to compute the stability of the
embankment immediately after construction and are referred to as "short-term,"
or "undrained," stability computations. The second group of stability computa-
tions are performed to compute the stability of the embankment after a suffi-
cient period of time has passed for any drainage of water into or out of the
embankment (consolidation or swell) to occur, which is 1ikely to occur, i.e.

the soil is assumed to have reached a final equilibrium state. The second

o it



> <

Rock

Figure 3.1 - Cross-Section of Slope and Coordinate Axes
for Example Problem B.
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series of computations are referred to as "long-term" or "drained" stability

computations.

SHORT-TERM STABILITY COMPUTATIONS

The first group of computations are performed to determine the stability
of the embankment immediately after construction. Since the embankment is con-
sidered to be constructed of clayey soil, it is assumed that there is insuffi-
cient time for a significant amount of water to flow into or out-of the soil.
Thus, the embankment is assumed to be "undrained." The shear strength is
assumed to be determined using unconsolidated-undrained (UU or Q) type triaxial
testing procedures. The shear strength determined in this manner is expressed
in terms of total stresses and, accordingly, all of the short-term stability
computations will be performed using total, rather than effective stresses.

Except for the last series of short-term stability computations, the
embankment material has a cohesion value of 1000 psf and an angle of internal
friction of 10 degrees. For the last series of computations the strength of
the embankment material is characterized by a nonlinear (curved) shear strength
envelope. the embankment material has a total unit weight of 125 pcf for all of
the short-term stability computations.

Computation Series No. 1

The first series of stability computations employs an automatic search to
locate a critical circle. The initial mode for the search consists of finding
the critical circle tangent to a horizontal 1ine at the elevation of the toe of
the slope. Once the initial mode of search is completed, the search is termi-
nated because the circle cannot pass any deeper than the toe of the slope due to
the presence of the rock; any shallower circle will not encompass the entire
slope and, thus, will be less critical than the one found in the initial mode of

search. The search is initiated from an initial estimated center point at x =
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25, y = 50. The minimum spacing between grid points for the automatic search is
0.5 foot, which represents the accuracy attained in the location of the coordi-
nates of the center of the critical circle. This spacing (0.5 feet) is only 2
percent of the slope height and should produce more than adequate accuracy for
the location of the critical circle and corresponding minimum factor of safety
(10 percent of the slope height would probably have been adequate).

The critical circle found by the automatic search has a center at the
coordinates x = 37.5, y = 68.0 and the radius is 68.0 feet. The corresponding
minimum factor of safety is 3.96 (side force 1nclination = 9.7 degrees).

Computation Series No. 2

The second series of computations 1s performed to illustrate the effect of
an assumed vertical crack on the factor of safety. Computations are performed
for crack depths of 3, 6, 9, and 12 feet. Except for the introduction of a
crack into the computations, the second series of computations are identical to
the first series. The coordinates of the centers and radii of critical circles
and corresponding minimum factors of safety determined from Computation Series
Nos. 1 and 2 for the various crack depths considered are summarized in Table
3.1. The factor of safety is also plotted versus the crack depth in Fig. 3.2
for the 5 crack depths (0 through 12 feet) considered. It can be seen that the
factor of safety first decreases with an increase 1n crack depth from zero and
then 1increases. The crack depth producing the minimum factor of safety is
approximately 4.5 feet. This depth (4.5 feet) would generally be the depth
which would be recommended for design calculations because 1t is the most crit-
ical (produces the lowest factor of safety) and is of a reasonable magnitude.
The approximate location of the critical circie corresponding to a crack depth

of 4.5 feet is shown in Fig. 3.3.



TABLE 3.1.

SERIES NOS. 1 AND 2 FOR EXAMPLE PROBLEM B

SUMMARY OF SHORT-TERM STABILITY COMPUTATION

13

Critical Circle Information

Minimum Side

Crack X-Coordinate Y-Coordinate Factor Force
Depth of Center of Center Radius of Inclination
(feet) (feet) (feet) (feet) Safety (degrees)

0 37.5 68.0 68.0 3.96 9.7

3 37.5 68.0 68.0 3.87 10.6

6 37.5 68.0 68.0 3.87 10.6

9 37.5 69.5 69.5 4.01 9.8

12 37.5 73.0 73.0 4.35 8.6
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Figure 3.2 - Variation in the Factor of Safety with the Depth of Vertical Crack
for Example Problem B - Short-Term Stability Computations.
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Figure 3.3 - Most Critical Circle Corresponding to "Critical" Vertical Crack
Depth Based on Short-Term Stability Calculations for
Example Problem B.
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Although the critical depth of crack can be found in the manner illus-
trated by this example and the results plotted in Fig. 3.2, such an approach is
somewhat tedious. As an alternative, experience has shown that a reasonable
estimate for the depth of crack can be made based on Rankine active earth pres-
sure theory; the depth of crack is selected as the depth to which the active
earth pressures are negative (tensile). Based on active Rankine earth pressure

theory the depth of the crack (dc) 1s given by the following equation:

2cm

Q.
[}

¢ y « tan (45 - ¢ /2) (3.1)

where ¢ and ¢ are "mobilized" shear strength parameters defined by

(3.2)

and,

arc tan(tan ¢/F) (3.3)

&
"

and ¥ is the unit weight of the soil. Crack depths estimated using Eq. 3.1 usu-
ally are sufficiently close to the crack depth producing the minimum factor of
safety that they can be used without the need for a series of calculations with
varying crack depths, as were performed above. For example, for the present

problem the crack depth computed from Eq. 3.1, using ¢ = 1000 psf, ¢ = 10

degrees, and a factor of safety of 3.9, is 4.3 feet, which agrees very closely
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with the value suggested by the stability computations and results presented in
Fig. 3.2.

Computation Series No. 3

The third series of short-term stability computations are performed to
estimate the effect of a surcharge at the top of the slope on the stability.
The surcharge was assumed to be 200 psf across the top of the slope with a set-
back of 3 feet as shown in Fig. 3.4. Such a surcharge might be produced by
vehicles on the top of the slope although such a high distributed surcharge
pressure (200 psf) may be improbable due to vehicles alone.

Stability computations are performed with the surcharge and assuming no
vertical crack. Two sets of computations are performed. For the first set of
computations an automatic search is initiated ta find the most critical circle
tangent to a line at the elevation of the toe of the slope. For the second set
of computations an automatic search is initiated to find the most critical cir-
cle tangent to a horizontal line located at an elevation 15 feet above the toe
of the slope. Once the critical circle tangent to the line 15 feet above the
toe of the slope is found, the program is directed to continue the search to
determine if a more critical circle can be found. The purpose of the second set
of computations and search is to determine if a "local" failure near the crest
of the slope may be possible due to the surcharge.

Both of the automatic searches result in the same final critical circle.
The most critical circle found for both sets of computations has the center
located at the coordinates x = 39.5, y = 73.0 and has a radius of 73.0 feet.
The critical circle is tangent to the base of the slope at the foundation sur-

face. The critical circle is shown in Fig. 3.5.
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Figure 3.4 - Surcharge Pressures on Slope for Example Problem B
- Short-Term Stability Computation Series No. 3.
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Computations for Example Problem B with Surcharge Pressures
Applied to the Top of the Slope.
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Computation Series No. 4

The fourth series of short-term stability computations is performed using
a nonlinear shear strength envelope which may be more representative of the
actual shear strength envelopes from UU (Q) type triaxial shear tests on com-
pacted fill materials than the linear envelope used previously. The shear
strength envelope used for the computations fs illustrated in Fig. 3.6. The
linear shear strength envelope used in the preceding computations is also shown
in this figure (broken-1ine) for comparison. It can be seen that the straight
line envelope used previously is a reasonable approximation of the curved shear
strength envelope used in this fourth series of computations for normal stress-
es ranging from zero to 2500 psf. The larger normal stress of 2500 psf repres-
ents approximately the maximum normal stress along the most critical shear
surface for the slope. Thus, reasonably close agreement between the factors of
safety computed is expected using the straight line and the nonlinear shear
strength envelopes. However, if the normal stresses were to be significantly
higher than 2500 psf, it can be seen that the two envelopes in Fig. 3.6 begin to
diverge and, thus, very different results could be obtained using the two
envelopes for much higher slopes and deeper shear surfaces.

For this series of computations an automatic search very similar to the
ones performed previously for Computation Series Nos. 1 and 2 is performed
using a vertical crack depth of 5 feet. The critical circle found using the
nonlinear shear strength envelope has fts center located at x = 40.0, y = 67.0
with a radius of 67.0 feet. The corresponding minimum factor of safety is 3.87
(side force inclination = 10.1 degrees). This value for the factor of safety
(3.87) is essentially identical to the value suggested by the results based on
a straight line shear strength envelope; the value of F for a straight line
shear strength envelope with a 5 foot deep crack is approximately 3.85 as shown

in Fig. 3.2.
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If a vertical crack is not introduced in this example the results could be
very different from the results obtained in Computatfon Series No. 1 with a
straight 1ine shear strength envelope because of differences in the shear
strength for negative values of normal stress (o). The use of a straight line
envelope implies that the strengths continue to be defined by the extension of
the envelope at negative stresses, while the use of a nonlinear envelope could
enable the user to make the shear strengths zero for negative values of normal

stress.

LONG~TERM STABILITY COMPUTATIONS

The second group of stability computations for Example Problem B are per-
formed to estimate the long-term stability of the slope after a sufficient
period of time has elapsed for the soil to fully consolidate or swell and reach
a final equilibrated state. The shear strengths in this case are expressed in
terms of effective stresses and effective stresses are used for all of the sta-
bility computations. The shear strength parameters are determined using either
consolidated-drained (CD or §) type triaxfal or direct shear tests or consoli-
dated~undrained (CU, R) type triaxial shear tests with pore water pressure mea-
surements. For all of the long-term stability computations, excepting those in
Computation Series No. 4, the shear strength is expressed by a cohesion value
(c) of 100 psf and an angle of internal friction (5) of 20 degrees. For Compu-
tation Series No. 4 the cohesion value (E) is assumed to be zero to examine the
effect of ignoring the cohesion value on the factor of safety. The total unit
weight of sofl used in the stability computations i1s 125 pcf.

Computation Series No. 1

The first series of long-term slope stability computations is performed
with zero pore water pressures throughout the slope. An automatic search is

performed to locate a most critical circle tangent to a horizontal 1ine at the
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elevation of the toe of the slope. The search is started from a center point at
the coordinates x = 25, y = 50 using a minimum grid spacing of 0.5 foot.

The critical circle is found to have its center at the coordinates x =
17.0, y = 92.5 and the radius is 92.5 feet. The factor of safety obtained for
the critical circle is 1.63 (side force inclination = 15.7 degrees). The crit-
ical circle is shown in Fig. 3.7.

Computation Series No. 2

The second series of long-term stability computations is identical to the
first series except that a 1 foot deep vertical crack {s introduced. This
depth of 1 foot was arrived at using Eq. 3.1 with a cohesion value of 100 psf, a
friction angle of 20 degrees, a unit weight of 125 pcf and an estimated factor
of safety of 1.6 (from Computation Series No. 1). An automatic search, identi-
cal to the one in the first computation series, is performed.

The center of the critical circle is found to be at the coordinates x =
17.0, y = 92.5, and the corresponding minimum factor of safety is 1.63. Thus,
in this case the effect of the crack with the appropriate depth is minimal and
has almost no effect on the factor of safety. This is typically the case in
long-term stability computations where the "cohesion" value is small compared
to the cohesion value for undrained (i.e. short-term) loading conditions.

Computation Series No. 3

The third series of long-term stability computations is performed with
pore water pressures expressed in terms of the pore water pressure coefficient
- The pore water pressure coefficient s is defined as the ratio of the pore
water pressure at a point divided by the corresponding total vertical overbur-
den pressure at the point. For the present computations the value of u is con-

stant throughout the slope; the value of "y used for the computations is 0.15.

(Normally a value would be estimated based either on experience with slopes and
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groundwater conditions in a particular area or a value would be calculated from
the anticipated ground water and seepage conditions in the slope as outlined by
Bishop and Morgenstern (1960), and illustrated later in Example Problem D.)

An automatic search is performed to locate the most critical circle using
the same parameters for the search as used for Computation Series Nos. 1 and 2.
The critical circle is found to have a center located at the coordinates x =
18.5, y = 89.5 with a radius of 92.5 feet. The corresponding minimum factor of
safety is found to be 1.43 (side force inclination = 15.5 degrees).

Computation Series No. 4

Computation Series No. 4 is identical to Computation Series No. 3 except
that the cohesion value is assumed to be zero, rather than 100 psf. In the case
of a homogeneous slope where the cohesion is zero, 1ike the one in this case,
the most critical sliding surface is theoretically a plane surface passing par-
allel to, and only an infinitesimal distance below, the surface of the face of
the slope. To locate such a surface in the automatic search it is necessary to
locate the most critical circle through the toe of the slope, rather than the
most critical circle tangent to a given line.

The center of the critical circle is found to be located at the coordi-
nates x = -5.0, y = 16.5 and the circle has a radius of 17.2 feet. The corre-
sponding value for the factor of safety is 0.91 (side force inclination = 18.4
degrees). The critical circle is illustrated in Fig. 3.8 and discussed in fur-
ther detail below.

The critical circle which is found and illustrated in Fig. 3.8 actually
"slices" through only a small portion of the slope and represents within the
numerical errors associated with the computations, a shallow plane surface.
During the automatic search for Computation Series No. 4, a relatively large

number of "circles" are tried which either do not intersect the slope or which
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expected when a search is performed to locate a critical circle in a slope con-
sisting entirely of cohesionless material. In similar examples of homogeneous
cohesionless slopes the automatic search sometimes tends to produce a center
for the critical circle which lies a great distance away from the slope. (The-
oretically the critical center for a cohesionless slope should 1ie an infinite
distance away from the slope on a line which passes through the midpont of the
slope face and is perpendicular to the face of the slope.) However, regardless
of what appear to be wide variations among the locations of critical circles
for various cohesionless slopes, the circles can all be expected to approximate
a shallow plane and the factor of safety should be the correct value. In fact,
an automatic search with the computer program should not actually be attempted.
The exact factor of safety is more appropriately calculated from the following
equation which is derived by "infinite slope" analysis procedures (Taylor,

1948):

F = [cot B - u (cot B + tan B)] tan ¢ (3.4)

in which F is the factor of safety, B is the slope angle and "tan" and "cot"
designate the tangent and cotangent, respectively.

The fourth series of computations is performed to illustrate what may hap-
pen when the computer program is used for analyses of slopes in cohesionless
materials, rather than to present what would be considered a realistic use of
the program. Eq. 3.4 produces precisely the correct solution desired and there
is no need for the computer program in this instance.

The result of the fourth series of computations clearly show that the
cohesion value (E) is a dominant factor in the stability of the slope consid-

ered. The factor of safety computed previously with a cohesion value of 100
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psf (Computation Series No. 3) was 1.43 compared to the value of 0.91 which is
computed in this series of computations with zero cohesion. Thus, any cohesion
value which would be relied upon for stability should be carefully considered
and verified by the results of laboratory tests, especially tests at low con-

fining pressures where the cohesion is an important component of the strength.

COMPARISON OF RESULTS FROM SHORT-TERM AND

LONG-TERM SLOPE STABILITY COMPUTATIONS

For design of embankments like the ones considered in this example both
short-term and long-term stability computations are ordinarily required and
should be performed. The lowest (most critical) factor of safety computed for
the two conditions should then govern the design.

For the present example the lowest factors of safety are computed for the
long-term stability condition and, thus, the long-term stability condition
governs. However, this is not always the case. For higher slopes the

short~term stability condition may become the more critical condition.
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SECTION 4

EXAMPLE PROBLEM C - EMBANKMENT ON A WEAK FOUNDATION
INTRODUCTION

This example consists of a compacted earth fill resting on a relatively
weak clay foundation. A cross-section of the slope and foundation is shown in
Fig. 4.1 with the coordinate axes used for this problem. The slope is 18 feet
high and has a 3(horizontal)-to-1(vertical) side slope. The fill material is
sand. The sand has a total unit weight of 115 pcf and an angle of internal
friction of 35 degrees with no cohesion. The clay foundation is 15 feet thick
and is underlain by rock. The clay is saturated.

Both short-term and long-term stability computations are performed for
this example problem. Different shear strength properties are used for the
foundation clay for the short-term and the long-term stability computations;
the strength properties for the foundation clay are described in the appropri-

ate sections below.

SHORT-TERM STABILITY COMPUTATIONS

The first three sets of stability computations are performed to compute
the factor of safety immediately after construction. Undrained shear
strengths, such as those determined by unconfined compression, unconsolidat-
ed-undrained (UU, Q) and vane shear test procedures, are used for the clay
foundation. The variation in undrained shear strength (Su) with depth in the

foundation is shown in Fig. 4.2. The undrained shear strength is 300 psf in the
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upper one~half of the foundation, and then increases from the value of 300 psf
at the rate of 10 psf per foot of depth below a depth of 7.5 feet. The total
unit weight of the clay in the foundation is 98 pcf for the short-term computa-
tions.

Computation Series No. 1

The first series of computations is performed to locate the most critical
circular shear surface. An automatic search is performed beginning with a cen-
ter point at the coordinates x = 75, y = 35 and locating the critical circle
tangent to a line at ﬁhe bottom of the weak clay foundation (15 foot depth),
after which the search is allowed to continue in order to find a more critical
circle if one exists. A grid spacing of 1 foot is used. This spacing (1 foot)
was selected to represent a small fraction of both the slope height and the
thickness of the clay foundation layer. The spacing is less than 10 percent of
these distances (slope height and foundation thickness), which is considered
adequate for the relatively homogeneous conditions in this problem.

The computations show that the center of the most critical circle is at
the coordinates x = 77, y = 34 and the circle has a radius of 46 feet. The cri-
tical circle is shown in Fig. 4.3 and passes to a depth of 12 feet into the
foundation, which is nearly to the bottom of the clay layer. The minimum fac-
tor of safety corresponding to the critical circle is 1.16 (side force inclina-
tion is -7.4 degrees). |

Computation Series No. 2

The second series of computations is performed to determine the approxi-
mate influence of the shear strength assigned to the embankment on the stabili-
ty. To determine the potential influence of embankment strength the embankment
is assigned a strength of zero (c =0, ¢ = 0). The factor of saféty is then

computed for a single circular shear surface which is the most critical circle
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Figure 4.3 - Most Critical Circular Shear Surface from Short-Term Stability
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found in Computation Series No. 1 (center at x =77, y = 34 - radius = 46 feet).
An automatic search for a critical circle would be meaningless in the case of
zero embankment strength because the search would lead to the most critical
circle being located entirely within the embankment where, because of its zero
strength, the factor of safety would have been zero (an obvious minimum).

The factor of safety computed in the second computation series is 0.83,
compared with the value of 1.16 computed in Computation Series No. 1. Thus,
the effect of reducing the embankment strength to zero is to reduce the factor
of safety by at least 30 percent.

Computation Series No. 3

For the third computation series the embankment is treated as a vertical
surcharge and replaced by vertical "surface pressures" acting on a horizontal
ground surface as shown in Fig. 4.4. The surcharge pressures are equal to the
vertical stress produced by the embankment and vary from 2070 psf (= 18 ft x 115
psf) beneath the horizontal, top portion of the embankment to zero at the toe
of the embankment and beyond. For the input data the original profile lines
and material property data for the embankment are not changed; instead a new
slope geometry consisting of a horizontal "slope" at the top of the clay sur-
face is specified. The embankment material above the "slope" is then automat-
ically ignored by the computer program in any computations.

An automatic search is performed for the third computation series using
the same starting point and grid spacing used for the first series. The most
critical circle is found to have its center at the coordinates x = 77, y = 33
and the radius is 48 feet. This circle is almost identical to the critical cir-
cle found in the first computation series. -However,~the factor of safety for
the third computation series is 1.37, which is somewhat higher than the value

(1.16) computed for the first computation series. The higher value for the
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factor of safety in Computation Serfes No. 3 occurs because when the embankment
is treated as a surcharge, the horizontal thrust, which is exerted by the
embankment and reflected in the results of Computation Series No. 1, is
ignored. In reality the sand embankment will exert a horizontal thrust (earth
pressure force) which will increase the driving forces tending to cause insta-
bility and, thus, reduce the factor of safety. Thus, Computation Series No. 1

is considered to be fundamentally more correct than Computation Series No. 3.

LONG-TERM STABILITY COMPUTATIONS

One series of long-term stability computations is performed to determine
the factor of safety, which the embankment would ultimately attain, once the
foundation has ample opportunity to consolidate (or swell). The strengths for
the long-term stability computations are based on effective stresses and deter-
mined from either consolidated-drained (CD, $) or consolidated-undrained (CU,
R) tests with pore water pressure measurements. The effective stress shear
strength parameters for the clay are ¢ = 0 and ¢ = 23 degrees. The total unit
weight of the clay is increased to 101 pcf from the value of 98 pcf used in the
short-term stability computations. The groundwater table is at the surface of
the foundation (ground surface) and pore water pressures are described in the
input data using a horizontal piezometric line.

An automatic search is performed to locate a critical circle. The search
is initiated by finding the most critical circle through the toe of the slope
and then is allowed to continue to find the most critical circle. A 1 foot grid
spacing 1s used for the search.

The center of the critical circle is found to be located at the coordi-
nates x = 98, y = 21 and the radius is 26.7 feet. The critical circle.is shown
in Fig. 4.5. As shown in this figure, the critical circle passes to a depth of

only approximately 5.7 feet into the foundation, which is considerably shallow-
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er than the depth of approximately 12 feet found for the critical circles for
the short-term stability computations. The factor of safety for the long~term

stability computations is 1.44 (side force inclination = =10.9 degrees).

COMPARISON OF SHORT-TERM AND LONG-TERM COMPUTATIONS

The factor of safety for the long-term stability computations (1.44) is
significantly higher than the factor of safety for the short-term stability
computations (1.16), indicating that an increase in the factor of safety can be
expected to occur with time after the embankment is completed. In the majority
of cases, with the possible exception of water-impounding structures, the fac-
tors of safety of embankments on weak foundation will be higher for long-term
stability conditions because the foundation soils will consolidate and become
stronger with time. In those few cases where the foundation may swell, and,
thus, become weaker with time, the factor of safety may be lower for the long-
term stability condition. Also, if the embankment strength, rather than the
foundation strength is the governing factor contributing to stability, then the
long-term stability condition may be critical in the manner illustrated by

Example Problem B.



SECTION 5

EXAMPLE PROBLEM D - EXCAVATED SLOPE

INTRODUCTION

Example Problem D consists of an excavated slope in a relatively
homogeneous clay stratum. The slope is 20 feet high and has a side slope of
3(horizontal)-to-1(vertical). Rock exists at a depth of 20 feet below the toe
of the slope. A cross-section of the slope with the coordinate axes used is
shown in Fig. 5.1.

Both short-term and long-term stability computations are performed for
the slope. Different shear strengths are used for each set of computations

(short-term and long-term) and are described below.

SHORT-TERM STABILITY COMPUTATIONS

The slope and portion of the foundation above the rock are considered to
be saturated clay. The undrained shear strength of the clay is considered to
be relatively uniform and equal to 1500 psf (¢ = 0). The total unit weight of
the clay is 128 pcf. Two series of short-term stability computations are per-
formed: In the first series there is no vertical crack; in the second series a
vertical crack of appropriate depth is used. |

Computation Series No. 1

An automatic search is performed to locate a critical circular shear sur-
face for the first series of computations. In cases like the current one,

where the angle of internal friction (¢) is equal to zero and the shear
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strength is constant (c does not vary) it can be shown that the most critical
circle will tend to pass to an infinite depth provided that the slope is flat-
ter than 53 degrees (Taylor, 1948). Thus, it is known that the critical circle
for the current problem will go as deeply as possible and will be 1imited by the
underlying rock to a depth of 20 feet. Accordingly, the automatic search is
performed to locate the most critical circle tangent to a 1ine at the elevation
of the top of the rock and the search is terminated once the initial mode of
search is completed. A minimum spacing of 0.5 foot between grid points is used
for the automatic search. This distance (0.5 foot) is 2.5 percent of the slope
height and is considered to be more than adequate with respect to obtaining an
accurate estimate for the factor of safety; a distance of as much as 10 percent
of the slope height would be expected to give adequate accuracy for the rela-
tively homogeneous slope in this example.

The critical circle located by the automatic search has a center point at
the coordinates x = 30.0, y = 46.5 and a radius of 66.5 feet. The corresponding
minimum factor of safety is 3.68 (side force inclination = 3.8 degrees).

Computations Series No. 2

The second series of computations is performed with a vertical crack
{ntroduced. The crack depth is 6.5 feet. This depth (6.5 feet) is calculated
in the manner described previously for Example Problem B (Computation Series

No. 2) using the following equation (for ¢ = 0):

g = 2-¢ (5.1)

To calculate the crack depth a cohesion value (c) of 1500 psf, a unit weight (¥)

of 128 pcf, and a factor of safety of 3.68 (estimated based on the results of
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Computation Series No. 1) are used. Except for the introduction of the verti-
cal crack, everything else in the second computation series is identical to the
first computation serieé.

The center of the critical circle for the second computation series is
found to be at x = 30.0, y = 44.0; the corresponding radius is 64.0 feet. the
critical circle is shown in Fig. 5.2. The minimum factor of safety correspond-
ing to the critical circle is 3.56 (side force inclination = 5.0 degrees). In
this case (Example Problem D) the factor of safety is only reduced by approxi-
mately 3 percent by the introduction of the vertical crack. Thus, the crack
has 1ittle influence except that it eliminates a significant zone where the
stresses are calculated to be negative (tensile). Such negative stresses may

be unrealistic.

LONG-TERM STABILITY COMPUTATIONS

The long-term stability computations are performed using effective
stresses. The shear strength parameters are determined from either consolidat-
ed-drained (CD, S) or consolidated-undrained (CU, R) tests with pore water
pressure measurements. The effective stress shear strength parameters are c=
100 psf and ¢ = 25 degrees. The total unit weight of the soil is 125 pcf. This
value (125 pcf) is slightly lower than the value (128 pcf) used for the short-
term stability computations, reflecting the fact that the soil has swelled with
time as a result of the stress relief associated with excavation of the slope.

Four series of long-term stability computations are performed. The four
series are similar except that different sets of pore water pressure conditions
are used for each series. For each series of computations an automatic search
is performed to locate a critical circle beginning with finding the most crit-
ical circle passing through the toe of the slope. In the input data the most

critical circle is not aliowed to pass below the top of the rock; however,
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there is no tendency for the circle to pass that deeply and, thus, no such Timit
needs to be imposed. The automatic search is initiated at an estimated center
point at the coordinates x = 30, y = 30. A grid spacing of 0.5 foot is used.

Computation Series No. 1

Pore water pressures are zero for the first series of long-term stability
computations. The center of the most critical circle is found to be at x =
13.5, y = 69.5 and the corresponding radius is 70.8 feet. Although the crit-
jcal circle was not restricted to pass through the toe of the slope, the crit-
ical circle was found to pass essentially through the toe of the slope. The
minimum factor of safety for the critical circle is 2.05 (side force inclina-
tion = 15.7 degrees).

Computation Series No. 2

For the second series of computations the pore water pressures are defined
by the piezometric line shown in Fig. 5.3. The automatic search locates a cri-
tical circle with the center point at the coordinates x = 17.0, y = 50.0 and
with a radius of 55.1 feet. The corresponding factor of safety is 1.56 (side
force inclination = 13.4 degrees). A comparison of the results of the first
and second series of computations, shows that the factor of safety is reduced
by approximately 24 percent (from 2.05 to 1.56) by the presence of seepage and
pore water pressures like those assumed for the second series of computations.
However, the factor of safety (1.56) still appears to be adequaté with the pore
water pressures used.

The critical circles for Computation Series Nos. 1 and 2 are shown togeth-
er for comparison in Fig. 5.4. The critical circle shown for Computation
Series No. 2, Qhere the pore water pressures are higher, can be seen to pass to
a greater depth then the critical circle for Computation Series No. 1 (zero

pore water pressures). This trend of an increase in depth for the critical
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shear surface with an increase in pore water pressure is generally observed and
should be expected.

Computation Series No. 3

The third series of computations is identical to the second series except
that negative pore water pressures (above the piezometric line) are permitted,
while in the second series of computations negative pore water pressures were
not permitted and, thus, the pore water pressures were set to zero above the
piezometric 1ine. The center of the critical circle for the third series of
computations is found to be at x = 18.0, y = 48.0 and the radius of the circle
is 54.6 feet. The corresponding minimum factor of safety is 1.64 (side force
inclination = 11.2 degrees). This value for the factor of safety (1.64) is
approximately 5 percent higher than the value (1.56) which was calculated with
no negative pore water pressures. However, negative pore water pressures are
not normally relied on for slope stability.

Computation Series Nos. 4, 5 and &

The next three series of computations are performed with pore water pres-
sures defined using a constant value of the pore water pressure coefficient Yy
Values for L of 0.13, 0.21 and 0.26 are used for Computation Series Nos. 4, 5
and 6, respectively. These values of "y represent hverage values of "y which
were calculated by averaging values over selected areas of the slope in the
manner first suggested by Bishop and Morgenstern (1960). The aQeraged values
were obtained by first calculating values of L at selected points, using the
pore water pressure from the piezometric line shown in Fig. 5.3 and the corre-
sponding overburden pressure at the selected point. The selected points repre-
sent the approximate centroids of rectangular or triangular subdivisions of the
slope as illustrated in Fig. 5.5. The extent of the region which was subdi-

vided into triangles and rectangles was varied. In the first case the region
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Figure 5.5 - Subdivision Regions Used to Average Values of r
for Example Problem D - Computation Series
Nos. 4, 5 and 6.
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consisted of the area beneath the slope face down to the level of the toe of the
slope as shown in Fig. 5.5a. In the second case, the region included the region
shown 1in Fig. 5.5a, plus an additional area extending to a depth below the
slope equal to 25 percent of the slope height, as shown in Fig. 5.5b. In the
third case, the region extended to an even greater depth below the slope, equal
to 50 percent of the slope height, as shown in Fig. 5.5c. Once values of "
were calculated at the centroids of each triangular or rectangular area an ove-
rall average value of r for the slope was calculated by averaging values from
the subdivided areas (weighted based on the size of the area).

The coordinates for the center of the critical circles found for each val-
ue of Ty and the corresponding factors of safety (and side force inclination)
are summarized in Table 5.1. The critical circle for Computation Series No. §

(ru = 0.21 - intermediate value) is shown in Fig. 5.6.

COMPARISON OF FACTORS OF SAFETY FOR SHORT-TERM AND LONG-TERM STABILITY

The factors of safety calculated for the long-term stability condition are
all lower than the factors of safety calculated for the short-term stability
condition, regardless of the pore water pressures used. This reflects the fact
that the soil will probably swell with time and the factor of safety will
diminish. In such cases the slope will frequently fail a number of years after

it has been completed.
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TABLE 5.1. SUMMARY OF LONG-TERM STABILITY COMPUTATION
SERIES NOS. 4, 5 AND 6 FOR EXAMPLE PROBLEM D

Critical Circle Information
Minimum Side

Pore Water X-Coordinate | Y-Coordinate Factor Force
Pressure of Center of Center Radius of Inclination
Coefficient, ry (feet) (feet) (feet) | Safety (degrees)

0.13 14.5 66.5 68.1 1.83 15.5

0.21 15.0 65.5 67.2 1.69 15.4

0.26 15.0 65.5 67.2 1.60 15.3
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Figure 5.6 - Most Critical Circular Shear Surface from Long-Term Stability Computation
Series No. 5 for Example Problem E.
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SECTION 6

EXAMPLE PROBLEM E - EMBANKMENT ON FOUNDATION WITH WEAK STRATUM

INTRODUCTION

Example Problem E consists of a cohesionless earth fill embankment resting
on a foundation containing a relatively weak, thin clay stratum as shown in
Fig. 6.1. This example is taken from the FHWA "Soils and Foundations Workshop
Manual" by Cheney and Chassie (1982). The embankment is 30 feet high and has
2(horizontal)-to-1(vertical) side slopes. The embankment consists of sand
having a total unit weight of 120 pcf and an angle of internal friction of 30
degrees.

The foundation for the embankment is predominately sand with a 5 foot
thick clay stratum located between the depths of 10 and 15 feet. The sand in
the foundation has an angle of internal friction of 30 degrees. The ground-
water table is located at the top of the clay layer at a depth of 10 feet,
except for Computation Series No. 7, where the effect of a rise in the water
table is examined. The total unit weight of the sand above the water table is
120 pcf; below the water table the sand has a submerged unit weight of 60 pcf.
The clay stratum is saturated. The undrained shear strength of the clay is 250
psf (i.e. c = 250 psf, ¢ = 0). The clay is submerged and has a submerged unit
weight of 37.6 pcf (total unit weight = 100 pcf).

Only the short-term stability condition was considered by Cheney and Chas-
sie (1982) for this example and, thus, only the short-term stability condition

is considered for the computations presented herein. However, as previously
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shown and discussed for Example Problem C, the short-term stability condition
is often the most critical stability condition for embankments on weak founda-

tions, like the embankments considered in this example and Example Problem C.

COMPUTATION SERIES NO. 1

The first series of computations is performed using a single, selected
noncircular shear surface. The noncircular shear surface used is shown in Fig.
6.2 and is essentially identical to the shear surface used by Cheney and Chas-
sie (they considered only one shear surface for all of their computations).
The shear surface passes downward from the crest of the embankment as a plane
through the embankment and upper sand portion of the foundation, then horizon-
tally along the top of the clay, and finally exits upward through the upper
sand of the foundation as another plane surface.

The factor of safety computed for the shear surface shown in Fig. 6.2,
using the computer program UTEXAS, is 1.20 (side force inclination = -10.6
degrees). This value for the factor of safety (1.20) is significantly higher
than the value of 1.03 which is reported by Cheney and Chassie. The difference
in values (1.20 versus 1.03) for the factor of safety occurs because different
theoretical procedures have been used to compute the factor of safety. The
procedure used by Cheney and Chassie to compute the factor of safety is a
"force equilibrium" procedure, which 1s approximate and has been found to con-
sistently produce lower values for the factor of safety than the more rigorous

procedures used in the computer program, UTEXAS.

COMPUTATION SERIES NO. 2
The second series of computations consists of performing an automatic
search to locate a critical circular shear surface. The search is initiated by

finding the most critical circle tangent to a line coinciding with the bottom




Figure 6.2 - Single Noncircular Shear Surface Used for Example Problem E -
Computation Series No. 1.
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of the clay layer for the initial mode of search and, then, the search is per-
mitted to continue to find a more critical circle if a more critical circle
exists. The minimum grid spacing (required accuracy) specified for the search
is 0.5 feet. This distance (0.5 feet) is selected to represent a small frac-
tion of both the slope height and the thickness of the clay stratum. The dis-
tance corresponds to less than 2 percent of the slope height and is a small
fraction (10 percent) of the thickness of the clay stratum.

The critical circle found by the automatic search is shown in Fig. 6.3.
The critical circle has its center located at the coordinates x = -24.0, y =
40.0 and has a radius of 55.0 feet. The corresponding minimum factor of safety
is 1.15 (side force inclination = 9.2 degrees). The most critical circle pro-
duces a slightly lower value for the factor of safety than the noncircular
shear surface which was used in Computation Series No. 1 (1.15 versus 1.20).
However, the noncircular surface used in Computation Series No. 1 is not neces-

sarily the most critical noncircular shear surface.

COMPUTATION SERIES NO. 3

The third series of computations consists of an automatic search to locate
a critical noncircular shear surface. The search is initiated with a noncircu-
lar shear surface similar in shape to the one shown in Fig. 6.2 for Computation
Series No. 1, except that the horizontal portion of the shear surface passes
along the bottom of the clay layer, rather than the top of the clay layer. As
discussed previously for Example Problem D and illustrated by the results of
Computation Serjes No. 2 for this current example, the most critical shear sur-
face usually passes to the bottom of any layer where the shear strength is con-
stant, although this is not always the case. The bottom of thé clay layer was
considered to be a logical starting point for the automatic search for this

example.
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Figure 6.3 - Critical Circle Located with Automatic Search for
Example Problem E.
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The minimum incremental shift distance (accuracy) specified for the auto-
matic search is 0.25 feet. This specified distance of 0.25 feet will result in
an initial increment for shifting the shear surface of 1.25 feet (= 5 times
0.25). The distance is selected because it produces an incremental shift dis-
tance which 1s a small fraction of the thickness of the clay layer (25 percent
initially and decreasing to 5 percent as a critical shear surface is
approached).

The critical noncircular shear surface located by the automatic search is
shown in Fig. 6.4. The factor of safety calculated for the critical noncircu-
lar shear surface is 0.93 (side force inclination = -6.3 degrees) and is
approximately 19 percent less than the value (1.15) found for the most critical
circular shear surface in Computation Series No. 2. Thus, a noncircular shear
surface is clearly more critical for this example and should be employed in any

computations which are to be used for design.

COMPUTATION SERIES NO. 4

Computation Series No. 4 is performed to determine the effect which flat-
tening the slope would have on the factor of safety. The slope is flattened
from 2:1 to 3:1 and an automatic search is performed to locate a critical non-
circular shear surface. The critical noncircular shear surface is shown in
Fig. 6.5 and has a factor of safety of 1.01 (side force inclination = -5.6
degrees). The effect of flattening the slope is to produce an approximately 8
percent increase in the factor of safety. Such a small increase (8 percent) in
the factor of safety would probably be considered inadequate for a slope which

is unstable before flattening.
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Figure 6.4 - Critical Noncircular Shear Surface Found with
Automatic Search for Example Problem E.

09



Clay/

Figure 6.5 - Critical Noncircular Shear Surface Found with Automatic Search for
Example Problem E when the Slope is Flattened from 2:1 to 3:1.
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COMPUTATION SERIES NO. 5

This computation series is similar to the previous one (4) except that the
slope is benched rather than flattened. The bench is 10 feet high and 30 feet
wide as shown in Fig. 6.6. The toe of the bench is located at the same point as
the toe of the slope was located when the slope was flattened for Computation
Series No. 5. Thus, in both cases the same portion of the foundation is covered
by the embankment and the critical shear surfaces for both cases would be
expected to be similar. Consequently, the factor of safety for this computa-
tion series was computed using only the critical shear surface found in Compu-
tation Series No. 4 (shown in Fig. 6.6 and previously in Fig. 6.5). The new
factor of safety is 1.02 (side force inclination = -5.7 degrees) and, as
expected, is almost identical to the value of 1.01 computed for Computation

Series No. 4.

COMPUTATION SERIES NO. 6

For this series of computations an alternate measure for increasing the
stability of the embankment is considered: A "shear key" is placed through the
clay stratum as shown in Fig. 6.7. The shear key replaces the clay with sand
and the sand has identical properties to the adjacent foundation sand. The
shear key is 10 feet wide. Due to the assumption of two-dimensional plane con-
ditions, which is made in the computer program for all stability calculations,
the shear key is implicitly assumed to extend along the full length of the
slope, perpendicular to the plane of reference and Fig. 6.7.

The shear key in this computation series is represented in a manner some-
what similar to the manner in which "Stone Columns" (Engelhardt et al., 1974)
have been represented in using the computer program in other instances. Howev-
er, in the case of "Stone Columns," or any other cylindrical element placed in

the cross-section, the width of the column in the cross-section must be an
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“Shear Key'

Figure 6.7 - Cross-Section of Slope for Example Problem E
with "Shear Key" - Computation Series No. 6.
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equivalent width. The equivalent width should be the width of a continuous

"strip" having the same average amount of material per lineal distance (foot,

inch, meter, etc.) of slope as the actual cylindrical elements would provide.
(Stauffer and Wright, 1984)

Computations with the shear key are performed using only a single noncir-
cular shear surface, rather than an automatic search. The shear surface
employed for the computations is the same as the most critical noncircular
shear surface found in Computation Series No. 3 (shown in Fig. 6.4). Although
a more critical shear surface may exist, this surface 1s used for illustrative
purposes only and is not intended to produce necessarily the minimum factor of
safety. The factor of safety calculated with the selected noncircular shear
surface is 1.18 (side force inclination = -8.7 degrees). This value of (1.18)
is approximately 27 percent higher than the value calculated for the slope
without the shear key and indicates that if such a key could be constructed, it
could potentially have a significant effect on stability. Before such an
alternative is adopted, an automatic search should be performed to locate the

appropriate critical shear surface.

COMPUTATION SERIES NG. 7

The final set of computations is performed to determine the effect of a
rise in the water table from a depth of 10 feet below the ground surface (top of
clay) to the ground surface. In the input data file it can be seen that the
“shear key" from Computation Series No. 6 is replaced with clay to return the
foundation to its original condition and the upper sand is assigned a submerged
unit weight of 60 pcf which is used for all previous computations.

Computations are performed using the most critical noncircular shear sur-
face found in Computation Series No. 3 where the water table was at its lower

location, 10 feet below the ground surface. This single shear surface is
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selected and used to reduce the computations required for this illustrative
example, but ordinarily an automatic search would have been performed. The
factor of safety for the shear surface considered is 0.80 (side force inclina-
tion = =7.9 degrees). This value (0.80) is approximately 14 percent lower than
the value (0.93) determined when the water table was at a depth of 10 feet below
the ground surface. If a critical shear surface had been located for the cur-
rent computation series, the differences in the factors of safety would have
been even greater. Thus, fluctuations in the ground water level could have a

potentially significant effect on the stability of the embankment.



SECTION 7

EXAMPLE PROBLEM F - "NATURAL" SLOPE

INTRODUCTION

Example Problem F consists of a slope which could be either a natural or
an excavated slope. The example slope is taken from the user's manual for the
slope stability computer program, STABL, by Siegel (1978). The example problem
is selected to provide a comparison with results obtained using another slope
stability computer program (STABL) to provide an additional example problem,
which could be representative of a natural slope.

A cross-section of the slope for example Problem F is shown in Fig. 7.1.
The slope consists primarily of a relatively homogeneous stratum of soil which
is underlain by rock and overlain by approximately 11 feet of relatively weak
soil. The underlying rock is considered to have sufficient strength to prevent
any potential sliding surface from passing through the rock. Thus, the actual
strength of the rock is immaterial; a shear strength of 200,000 psf is assigned
to the rock for the stability computations.

A1l of the stability computations for this problem are performed for the
long-term condition using effective stresses. As shown'previously for Example
Problem D, the long-term stability condition is usua]]& more critical than the
short-term stability condition for an excavated slope. For a natural slope
only the long-term stability condition has any meaning. Thus, regardless of
whether the slope in this example is an excavated o;ia natural slope, the

long-term stability condition would probably be of most interest.
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The intermediate clay stratum which comprises most of the slope material
in this example contains a free water surface (water table) which is shown in
Fig. 7.1. The pore water pressures are assumed to be zero above the water sur-
face; below the water surface the pore water pressures are assumed to be equal
to the vertical depth below the water surface times the unit weight of water.
Thus, the water surface is a piezometric 1ine for the soil below the water sur-
face. The intermediate clay stratum has total unit weights of 116.4 pcf above
the water surface and 124.2 pcf below the water surface. The shear strength
parameters for the intermediate stratum of clay were apparently determined from
either consolidated-drained (CD, S) tests or consolidated-undrained (CU, R)
tests with pore water pressure measurements. The effective stress shear
strength parameters for the clay are ¢ = 500 psf and ¢ = 14 degrees.

The shear strength for the uppermost stratum is considered to be negligi-
ble and is covered in further detail in the discussion of the various Computa-
tion Series below. Four series of stability computations are performed for

this example problem.

COMPUTATION SERIES NO. 1

The first series of computations is performed assuming that the uppermost
stratum of soil has zero shear strength and a total unit weight of 116.4 pcf.
This is identical to what Siegel (1978) alse assumed. Computafions are per-
formed for the single shear surface shown in Fig. 7.2. This shear surface 1is
identical to one reported by Siegel (1978) to be a "most critical” shear sur-
face for an initial series of trial computations, which Siegel referred to as a

“first run."

The factor of safety computed for this surface using the current
slope stability computer program (UTEXAS) 1s 1.42 (side force inclination =

16.4 degrees). This value for the factor of safety (1.42) is aproximately 7
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percent higher than the value of 1.325 reported by Siegel. Such a difference
(7 percent) is to be expected because the procedure used by Siegel to compute
the factor of safety is an approximate procedure which does not satisfy static
equilibrium completely. The procedure used by Siegel has been shown to con-
sistently produce lower values for the factor of safety than those computed by
the theoretical procedure (Spencer's) used in UTEXAS, which fully satisfies

static equilibrium.

COMPUTATION SERIES NO. 2

The second series of computations is performed to locate a most critical
circular shear surface using the same material properties as those used in Com-
putation Series No. 1. A search is initiated by locating the most critical
circle passing through a point near the toe of the slope; the search is then
allowed to continue to determine if a more critical circle than the one through
the toe of the slope exists. The minimum grid spacing specified for the search
is 1 foot. This distance corresponds to approximately 2 percent of the slope
height and is only a small fraction of the thickness of any strata. According-
ly, good accuracy is expected.

The center of the most critical circle is found to be at x = 61.0, y =
190.0 and the corresponding radius is 129.1 feet. The critical circle is shown
in Fig. 7.3. It can be seen that the circle is limited in the depth to which it
passes by a portion of the underlying rock foundation. The factor of safety

for the critical circle is 1.37 (side force inclination = 17.0 degrees).

COMPUTATION SERIES NO. 3
Computation Series No. 3 is performed to locate a critical noncircular
shear surface. However, because the upper portion of the soil in the

cross-section shown in Fig. 7.1 is considered to have zero strength a search
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for a critical shear surface can be meaningless. That is, the search may cause
the shear surface to migrate to entirely within the zero strength zone where
the factor of safety is zero and an obvious minimum. This, in fact, occured
when an automatic search for a critical noncircular shear surface was first
attempted for this example, although no such similar problem was encountered
with the automatic search for the critical circle in Computation Series No. 2.
Accordingly, for a search for the critical noncircular shear surface to be
meaningful, the zero strength zone needs to be treated in a different manner.
For the present computations the upper, zero strength zone is replaced by an
equivalent series of surface pressures applied at the top of the intermediate
clay stratum as shown in Fig. 7.4. The surface pressures applied consist of
both a normal stress and a shear stress to account for the sloping surface,
along which the surface pressures are applied. The surface pressures are cal-
culated using "infinite slope" procedures to determine the normal and shear
components of stress as shown in Fig. 7.4. (Note: The shear component is con-
sidered to be negative in the input data because it acts to the left.)

The automatic search to locate the critical noncircular shear surface is ;
initiated using approximately the same shear surface used in Computation Series {
No. 1 as a starting point. The minimum incremental shift distance specified in
the input data is 0.5 feet.

The most critical noncircular shear surface located is shoﬁn in Fig. 7.5.
The effect of a protruding segment of the rock foundation on the position of
the critical shear surface can be clearly seen in this figure. The factor of
safety for the most critical noncircular shear surface found is 1.45 (side
force inclination = 14.0 degrees).

The value for the factor of safety (1.45) for the critical noncircular

shear surface found in Computation Series No. 3 is greater than the value for

[
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the critical circle found in Computation Series No. 2. However, this does not
suggest that a circle is a more critical shear surface. Instead, a difference
exists between the two ;ets of computations due to the fact that with the cir-
cular shear surface the overburden was assigned zero shear strength, while for
the noncircular shear surface the overburden was treated as a surcharge. In
the first case, where a circular shear surface and zero strength overburden is
used, a significant horizontal stress is exerted by the overburden; in the sec-
ond case, where the noncircular shear surface is used and the overburden is
represented by surface pressures, no such horizontal thrust is exerted by the
weak overburden. Thus, this problem {llustrates the effect of horizontal
thrust in surface materials in a way which is similar to what was shown for
Example Problem C, where the embankment was treated both as a surcharge and as

a zero strength material.

COMPUTATION SERIES NO. 4

The fourth series of computations is performed using the same conditions
used for Computation Series No. 3, with the upper, weak soil represented as a
surcharge, except that an automatic search is performed to locate a critical
circular shear surface. Results of this series of computations can be compared
with those of Computation Series No. 3 to determine the effect of the assumed
shapes of the shear surface alone, independently of treatment of the weak over-
burden. The search for a critical circle is performed in the same manner as the
search performed for Computation Series No. 2, only the slope profile is
changed (Surface pressures versus zero strength overburden).

The critical circle for Computation Series No. 4 has a center at the coor-
dinates x = 61.0, y = 193.0 and a radius of 132.0 feet. the corresponding mini-
mum factor of safety is 1.49 (side force inclination = 154.2 degrees). This

factor of safety (1.49) is greater than the value determined for the circular
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shear surface in Computation Series No. 2 because the surface pressures do not
reflect the horizontal thrust which would be applied by the zero strength mate-
rial. However,clearly no material with zero strength could remain at the slope
angle of approximately 22 degrees shown in Fig. 7.1 and, thus, the results of
Computation Series No. 2 are perhaps of little practicial interest. Comparison
of the results of Computation Series Nos. 3 and 4 shows that the computations
employing a noncircular shear surface produced only a slightly lower value for
the factor of safety than the computations employing a circular shear surface:
1.45 versus 1.49,

The critical circle found for Computation Series No. 4 is shown in Fig.
7.6. Also shown 1in this figure (broken line) is the critical noncircular shear
surface from Computation Series No. 3. The two critical shear surfaces can be
seen to be very similar. The close similarity between the two surfaces and the
corresponding factors of safety suggest that a circular shear surface could
have been assumed for the computations for this problem with little loss of
accuracy. In fact, in virtually all cases where the slope is as homogeneous as
the slope considered in this example, circular shear surfaces are adequate for

computing the factor of safety.
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SECTION 8

EXAMPLE PROBLEM G - PARTIALLY SUBMERGED SLOPE

INTRODUCTION

This example consists of a series of stability computations for a partial-
ly submerged slope. The slope is 20 feet high and has a
2.5(horizontal)-to-1(vertical) side slope. The slope is homogeneous and the
foundation has the same properties as the slope. The water level is 15 feet
above the toe of the slope (5 feet below the crest of the slope). A cross-sec=
tion of the slope and the coordinate axes are shown in Fig. 8.1.

A1l stability calculations for this example are performed for the
long-term stability condition, which in most cases will be more critical than
the short-term stability condition. The shear strengths are determined from
either consolidated-drained (CD, S) or consolidated-undrained (CU, R) tests
with pore water pressure measurement. The shear strength parameters are
expressed in terms of effective stresses. The effective stress cohesion value
{s 100 psf and the effective stress friction angle is 18 degrees. The soil is
saturated both above and below the water surface; the saturated (total) unit
weight of soil is 124 pcf.

Three series of stability computations are performed. The three series of
computations differ only in the way in which the water {s represented for the
analyses. Al1l three series should produce essentially identical values for the

factor of safety.
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Figure 8.1 - Cross-Section of Partially Submerged Slope
for Example Problem G.
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COMPUTATION SERIES NO. 1

The first series of computations is performed using submerged unit weights
for the soil below the water level and total unit weights above the water lev-
el. The submerged unit weight of soil is 61.6 pcf (= 124 - 62.4 pcf). By using
submerged unit weights for the soil below the water level, the effect of the
water on the effective stresses AND the effect of the water loads on the face of
the slope are both automatically accounted for in the equilibrium equations
used to compute the factor of safety.

An automatic search is performed to locate the most critical circle
through the toe of the slope. As discussed for Example Problem A, the most cri-
tical circle for a homogeneous slope, like the slope in this example, usually
passes through the toe of the slope. Accordingly, and to reduce the computa-
tional effort required for this illustrative example problem, the search is
terminated once the critical circle through the toe of the slope is found.

The most critical circle found for the first series of computations is
shown in Fig. 8.2. The circle has its center point at the coordinates x =
~-16.0, y = 51.5, and the radius is 53.9 feet. The corresponding factor of safe-

ty 1s 1.48 (side force inclination = 17.0 degrees).

COMPUTATION SERIES NO. 2

The second series of computations is performed using total unit weights
and the pore water pressures are defined using a piezometric 1ine. When total
unit weights and pore water pressures are used, any external loads on the slope
due to water must also be defined. Accordingly, "surface pressures" are used
to define the water loads imposed on the slope by the partial submergence.
Even though the piezometric line data reflect the fact that there is water

above the slope, the piezometric line data do not result in the application of
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Figure 8.2 -~ Critical Circle for Example Problem G - Computation Series
No. 1 (Also Computation Series Nos. 2 and 3).
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surface pressures; separaie surface pressure data are required to define the
external loads.

For the second series of computations it is more convenient to start the
input data anew, rather than modify the data from the previous series of compu-
tations. Thus, a line of asterisks (*****) appears in the input data file sep-
arating the data for Computation Series No. 2 from the data for Computation
Series No. 1.

The computations for Computation Series No. 2 employ an automatic search
with parameters identical to those used in the first series of computations.
The center of the critical circle is found to be at the coordinates x = -16.0, y
= 51.5 and the radius is 53.9 feet. The factor of safety is 1.48 (side force

inclination = -7.2 degrees).

COMPUTATION SERIES NO. 3

The third series of computations is identical to the second series except
that the pore water pressures are defined using the interpolation option avail-
able in UTEXAS. 1In the input data pore water pressures are defined at 6 dis-
crete points as shown in Fig. 8.3. The points are at three levels: the crest
of the slope, the water surface, and a point twenty feet below the toe of the
slope. The location of the points was chosen to insure that there would always
be at least one point in each of the four quadrants surrounding‘any point on a
potential sliding surface. The value of the pressure at each level where
points are input is the same for all points in the horizontal direction; the
value of the pressure (u) is also shown in Fig. 8.2. Because of the linear
nature of the interpolation function used in the computer program to calculate

pore water pressures, the pore water pressures calculated from the points shown



Pressure Data Point
/— Pressure,u7

o ° 0'psf
® —___!__ == ® 0 psf
20 ft
° e 2184 pst
x=-100 x = +50

Figure 8.3 - Points Where Pore Water Pressures are Defined for Interpolation
in Example Probliem G - Computation Series No. 3
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in Fig. 8.2 will be identical to those calculated using the piezometric line in
Computation Series No. 2.

The center of the critical circle in Computation Series No. 3 is at x =
-16.0, y = 51.5 and the radius is 53.9 feet. The factor of safety is 1.48 (side

force inclination = -7.2 degrees).

COMPARISON OF RESULTS FROM COMPUTATION SERIES NOS. 1, 2 AND 3

The first series of computations was performed using submerged unit
weights, while the second two series of computations were performed using total
unit weights and water pressures (pore pressure and surface pressure). As
expected, the three series of computations yield essentially identical
results; the factors of safety differ in only the fourth significant figure
(1.480 for the first series versus an identical 1.484 for each of the second
two series).

The inclination of the side forces between slices is significantly differ-
ent from the first to the second two computation series (-17.0 degrees versus
-7.2 degrees). This difference is due to the fact that in the first case the
forces between slices are the effective forces, while in the second two cases
the forces between slices are the total forces. The effective side forces
(Computation Series No. 1) will generally be more steeply inclined than the
total side forces (Computation Series No. 2 and 3). However, differences in
the side force inclinations, whether total of effective have very little effect
on the factor of safety as demonstrated by this example.

This example problem illustrates that it is possible to represent the
influence of the water in two ways: with submerged unit weights, and with
total unit weights and water pressures. However, if there had been any flow

(seepage) within the slope, only the procedure employing total unit weights and
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water pressures could have been used. Use of submerged unit weights where
there is flow also requires that any seepage forces be input as body forces on
each individual slice. Such body forces are difficult to compute and represent
as input data and, accordingly, the computar program does not allow such body
forces to be specified in the input data. In cases where there is flow of water

the approach is based on total unit weights and water pressures should be used.
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APPENDIX A
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM A






MEADING FOLLOWS = = - c e s s c cccc e e e e e e e eceeeeeeeee-
EXAMPLE PROBLEM A ~ SIMPLE. HOMOGENEOUS SLOPE

PROFILE LINE DATA FOLLOW -
1 1 ALL SOTL
-100 0
00
38 12
100 12

UATERIAL PROPERTY DATA FOLLOW -
1 ALL SOIL
123 = UNIT WEIGHT OF 9031
N0 PORE WATER PRESSURES
CONVENTIONAL SHEAR STRENGTHS
200 22

AMAL YS13/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
10 24 1 =80

POINT THROUGH WHICH CIRCLE PASSES FOLLOWS -

91






APPENDIX B
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM B
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HADINC FOLLOWS = @ - c c e c ccc o cccccaneansecnceecenee=-
CXAMPLE PROBLEM 8 = CAMBANKMENT ON A STRONG FOUNDATION
SHORT=TERM STABILITY COMPUTATIONS USING TOTAL STRISSES

PROFILE LINE DATA FOLLOW -
1 % ALL MATERIAL
00
78 28
180 28
228 0

VATERIAL PROPERTY DATA FOLLOW -
1 ALL MATEIRIAL
128
NHO PORE WATEIR PRESSURES - TOTAL STRESS ANALYSIS
CONVENTIONAL SHEAR STRENGTHS
1000 10

MEADING FOLLOWS = = = - s e e c e ccccceneccececeneecneee
CXAMPLE PROBLEM B — EMBANKMENT ON A STRONG FOUNDATION
SHORT-TERM STABILITY COMPUTATIONS USING TOTAL STRESSES
COMPUTATION SCRIES NO. 1 — CRACK DEPTH = 0 (NO CRACK)
ANALYSIS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
28 30 0.5 0
TANGENT LINE ELEVATION FOLLOWS
[

STOP SEARCH AFTER INITIAL WMODE COMPLETED

COMPUTE
MEADING FOLLOWS = = = e s s cc c e cccaeccrcecaececcecrcaece-
EXAMPLE PROBLEN B ~ CMBANKGMENT ON A STRONG FOUNDATION
SHORT=TERM STABILITY COMPUTATIONS USING TOTAL STRESSES
COMPUTATION SERIES NO. 2A - CRACK DEPTH = 3 FEET.
ANAL YSTS/COMPUTATION DATA FOLLOW =
CIRCULAR STARCH
28 50 0.5 ©
TANGENT LINE ELEVATION FOLLOWS
°
CRACK DEPTH FOLLOWS
3

COMPUTE
MEADING FOLLOWS = = = = s e s s s m c e ccccc e e eme-e----
EXAMPLE PROSLEM 8 — CMBANKMENT ON A STRONG FOUNDATION
SMORT=TERM STABILITY COMPUTATIONS USING TOTAL STRESSES
COMPUTATION SZRIES NO. 28 — CRACK DEPTH = & FELT.
ANAL YSIS/COMPUTATION DATA FOLLOW ~
CIRCULAR SEARCH
29 50 0.5 0
TANGENT LINE ELLVATION FOLLOWS
0
CRACK DEPTN FOLLOWS
s

COMPUTL
MEADING FOLLOMS ~ = = ~ = -~ cc e c e ccccrcecccccncecenen=
EXAPLE PROSLEM § - CIBANGENT ON A STRONG FOUNDATION
SHORT=TZRM STASILITY COMPUTATIONS USING TOTAL STRESSES
COMPUTATION SERIES MO. 2C — CRACK DEPTH = 9 FEET.

AIALYSIS/COMPUTATION DATA FOLLOW -
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CIRCULAR SEARCH
23 50 0.5 ¢

TANGENT LINE ELEVATION FOLLOWS
o

CRACK DEPTH FOLLOWS
®

COMPUTE
HEADING FOLLOWS = = = = = e m e m e e m e m e m o m - o ----wwea
EXAMPLE PROBLLM B — EMBANKMENT ON A STRONG FOUNDATION
SHORT-TERM STABILITY COMPUTATIONS USING TOTAL STRESSES
COMPUTATION SERIES NO. 2D - CRACK DEPTH = 12 FEET.
ANALYSIS/COMPUTATION DATA FOLLOW ~
CIRCIA.AR SEARCH
2550 0.50
TANGENT LINE ELEVATION FOLLOWS
°
CRACK DEPTM FOLLOWS
12

COMPUTE
HEADING FOLLOWS « = = - e m s c m c v rarm oo oo -o-woww-
EXAMPLE PROBLEM B ~ EMBANKMENT ON A STRONG FOUNDATION
SHORT-TERM STABILITY COMPUTATIONS USING TOTAL STRESSES
COMPUTATION SERIES NO. 34 — TRAFFIC LOADS ON SLOPE ~ NO CRACK
SURFACE PRESSURE DATA FOLLOW -
78 28 200 O
100 23 300 O

ANALYSIS/COMPUTATION DATA FOLLOW ~
CIRCULAR SEARCH
23 500.50
TANGENT LINL ELEVATION FOLLOWS
°
CRACK DEPTH FOLLOWS (RE~SETS DEPTH TO ZERO)
0

COMPUTE
HEADING FOLLOWS = « o « w e e e e e s e c m m e oo e m-----——---
EXAMPLE PROBLEM B ~ CMDANQIENT ON A STRONG FOUNDATION
SHORT-TERM STABILITY COMPUTATIONS USING TOTAL STRESSLS
COMPUTATION SERIES NO. 38 — TRAFFIC LOADS ON SLOPL — NO CRACK
ANALYSTS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
70 38 0.8 0
TANGENT LINE ELIVATION FOLLOWS —
15
CRITICAL CIRCLE TO BE FOUMD AFTER IMITIAL MODE COMPLETED
FACTOR OF SAFETY
0.0
SIBE FORCE INCLINATION
20,0

coNPUTE
MADING FRLOWS = - c e e meccccccecccncccamceeae--
EXAPLE PRODLEM 8 ~ EMBAMGENT ON A STRONG FOUNDATION
SHORT-TERM STABILITY COMPUTATIONS USINO TOTAL STRESSES
COMPUTATION SERIES MO. 4 ~ NONLINEAR SHEAR STRENGTH EWVELOPL
MATERIAL PROPERTY DATA FOLLOW -
1 AL MATERIAL
18
NO PORE WATIR PRESSURES ~ TOTAL STRESS ANALYSIS



NONLINEAR SHEAR STRENGTH ENVELOPE
o 88
300 1000
700 1150
1100 1250
1800 1300
2500 1300

SURFACE PRESSURE DATA FOLLOW (RE-SETS VALUES TO ZERO) -~
ANALYSTS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
25 30 0.5 0
TANGENT LINE ELEVATION FOLLOWS
°
CRACK DEPTH FOLLOWS

s
FACTOR OF SAFETY (RE-SETS VALUE TO DEFAULT VALUE)

1.8
SIDE FORCE INCLINATION (RE-SETS VALUE TO DEFAULT VALUE)
15.0
STOP SEARCH AFTIR INITIAL MODEL
COMPUTE
NEADING FOLLOWS = = = = c mc cmccc e - == == cecece e -

EXAMPLE PROBLEM B — EMBANKMENT ON A STRONG FOUNDATION
LONG-TERM STABILITY COMPUTATIONS USING LFFECTIVE STRESSES

MATERIAL PROPERTY DATA FOLLOW -
1 ALL MATERIAL
128
NO PORZ WATER PRESSURLS
CONVENTIONAL SHEAR STRENGTMS
100 20

HEADING FOLLOWS = = = = = = = = ccecce e -- e mcce -
EXAMPLE PROBLEM B — EMBANKMENT ON A STRONG FOUNDATION
LONG-TERM STABILITY COMPUTATIONS USING EFFECTIVE STRELSSES
COMPUTATION STRIES NO. 1 — NO PORE WATER PRESSURES — NO CRACK
ANALYSIS/COMPUTATION DATA FOLLOW -
CIRCULAR STARCH
28 50 0.5 0
TANGENT LINE ELEVATION FOLLOWS
0
CRACK DEPTH FOLLOWS (RE-SETS DEPTH TO ZERO)
0

COMPUTE
HEADING FOLLOWS -~ - = mc ccccccccccecreceeee- -
EXAMPLE PROBLEM B - EMBANKMENT ON A STRONG rouunou
LONG-TERM STASILITY COMPUTATIONS USING EFFLCTIVE STRESSES
COMPUTATION SERIES NO. 2 — NO PORE WATER PRESSURES - 1 FT. CRACK DEPTH
ANALYSIS/COMPUTATION DATA FOLLOW -
CIRCULAR SZARCH
28 50 0.5 0
TANGENT LINE ELEVATION FOLLOWS
0
CRACK DEPTN FOLLOWS -~
|
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HAING FOLLOIB =~ - - - s e c e e rccrcerecrcercrcrer e e~
EXAMPLE PROBLEM B ~ EMBANKGIENT ON A STRONG FOUNDATION
LONO-~TERM STABILITY COMPUTATIONS USING EFFECTIVE STRESSES
COMPUTATION SERILS NO. 3 = R=SUB-U = 0.15 = NO CRACK
MATERIAL PROPERTY DATA FOLLOW -~
1 ALL MATERIAL
128
CONSTANT R-BUB-U
0.18
CONVENTIONAL
100 20

ANALYSTS/COMPUTATION DATA FOLLOW-
CIRCULAR SEARCH
25 80 0.5 0
TANGENT LINE ELEVATION FOLLOWS
°

CRACK DEPTH FOLLOWS (RE-SETS DEPTH TO ZERO)
°

COMPUTE
HEADING FOLLOIB = = = m c e e s c e crcnrcrcrnrrsrrcecrrcrcrcnna-
EXAMPLE PROBLEM B ~ EAMBANGENT ON A STRONG FOUNDATION
LONG-TERM STABILITY COMPUTATIONS USING EFFECTIVE STRESHES
COMPUTATION SERILS NO. 4 - A=SUB-U = 0.15 ~ ND CRACK ~ CONESION ST T0 ZERO
MATERIAL PROPERTY DATA FOLLOW -
1 ALL MATERIAL
128
CONSTANT R-SUB-U VALUL FOLLOWS
0.18
CONVENTIONAL
0 20

ANALYSIS/COMPUTATION DATA FOLLOW =
CIRCULAR SEARCH
25 50 0.5 -28
POINT THROUGH WHICH CIRCLE PASSES FOLLOWS
00

COMPUTE



APPENDIX C
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM C






EXAMPLE PROBLEM C ~ EMBANKMENT ON WEAK FOUNDATION
SHORT-TERM STARILITY - COMPUTATION SERIES NOC. 1

PROFILE LINE DATA FOLLOW —
1 1 LOWER OME-MALF OF SOFT CLAY FONDATION STRATUM
°.° -7.‘
‘“.0 ‘7.5

2 2 UPPER OME-MALF OF SOFT CLAY FOMDATION STRATUM
0.0 0.0
150.0 0.0

3 3 COMPACTED FILL
9.0 1.0
80.0 1.0
104.0 0.0

WATERIAL PROPERTY DATA FOLLOW —
1 LOMER OME-HALF OF FOUMDATION
8 « TOTAL UIT WEIGHT
HO PORE PRESIURES
LINDAR INCREASE IN SNEAR STRENOTH WETN DEPTH
300 20
T UPPER ONE-HALF OF FOUMNDATION
8 = TOTAL WY MEINT
NO PORE PRESSURES
CONVENTIONAL SHEAR STRENGTHS
300 0
3 COMPACTED SAND FILL
115 = TOTAL WIOT WIGHT
NG PORE PRESSURES
COMVENTIONAL SMEAR STRENGTHS
o3

ANALYSIS/COMPUTATION DATA FOLLOW ~
CIRCULAR SEARCH
75 38 1 18
TANGENT LINE ELEVATION FOR INITIAL MOOE OF SEARCH FOLLOWS -
-18

COMPUTE
EXAMPLE PROBLEM C ~ ENBANKMENT OM WMEAK FOUNDATION
SHORT =TERM STARILITY ~ COMPUTATION SERIES MO. 2
EVBANKMENT ASSIONED TERC SHEAR STRENGTH
MATERIAL PROPERTY DATA FOLLOW -~
3 COMPACTED SAD FILL

115 = TOTAL UNIT WEIGHT

NO PORE PRESSURES

CONVENTIONAL SHEAR STRENGTHS

60

AALYSTS/COMPUTATION DATA FOLLOW -
CIRCLE
77.0 34.0 8.0

COMPUTE

HEADING FOLLOWE = = = = = = e m e e m cm e mcmmme-—e—-----
EXAPLE PROBLEM € — EMBANKMENT ON WEAK FOUNDATION

SHORT-TERM STABILITY - COMPUTATION SERIES MO. I - EMBAMCMINT REPRESENTED BY

101



102

VERTICAL SURCHARGE PRESSURES ACTING ON HORIZONTAL GROUND SURFACK
SLOPE GEOMETRY DATA FOLLOW -~
0.0 0.0
180.0 0.0

SURFACE PRESSURE DATA FOLLOW -
0.0 0.0 2070.0 ©.

80.0 0.0 2070.0 O.

104.0 0.0 0.0 0

ANAL YSIS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
78 38 1 =18
TANGENT LINE ELEVATION FOR INITIAL MODE OF SEARCH FOLLOWS -
-18
OPPOSITE SIGN CONVENTION FROM NORMAL TO BE USED
CRITICAL CIRCLE TO BL FOUND (MO STOP AFTER DITIAL MODE IS COMPLETE)

COMPUTE
oveeeeseee ENTIRELY MEW DATA FOLLOW eeeoceeee
MEADING FOLLOWB = = = = - m s c s c e c e e == -—_cecccccccce-

EXAPLE PROBLEM C — EMBANKMENT OM BEAK FOUBDATION
LONG-TERM STABILITY

PROFILE LINE DATA FOLLOW -
1 1 ALL FOLNDATION MATERIAL
0.0 0.0
180.0 0.0

2 2 COMPACTED SAD FILL
0.0 1.0
80.0 18.0
104.0 0.0

MATERIAL PROPERTY DATA FOLLOW -
1 FOUNDATION MATERIAL
101 = TOTAL WNOT WIGNHT
PIEZOMETRIC LINE
1
CONVENTIONAL SHEAR STRENGTHS
0 23
2 COMPACTED SAND FILL
118 = TOTAL WBNOT WIGNT
NO PORE PRESSURES
CONVENTIONAL SHEAR STRENGTHS
03

PIEZOMETRIC LINE DATA FOLLOW -
1 PILZOMETRIC LINE IN FOUMDATION REPRESENTING GRODWATER TABLE
0.0 0.0
180.0 0.0

ANALYSIS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
75 38 1 18
POINT THROUSH WHICH CIRCLES PASS FOR INITIAL MODE OF SEARCH FOLLOWS
104 ©



APPENDIX D
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM D







EXAMPLE PROBLIM D — LXCAVATED M.OPT
SHORT=TERM STABILITY — COMPUTATION SERIES NO. 1 — ND TENSION CRACK

PROFILE LINE DATA FOLLOW -
1 1 AL SOIL

UATERIAL PROPERTY DATA FOLLOW -
1 AL 30IL
128 = TOTAL WIT WEIGHT
N0 PORL WATEIR PRISSURES
CONVENTIONAL SHEAR STRENGTHS

ANAL YSTS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
30 30 0.8 -20
TANGENT LINE CLEVATION FOLLOWS
-20
STOP AFTER INITIAL MODE OF SEARCH IS COMPLETED

COMPUTE )
EXAMPLE PROBLEM D ~ EXCAVATED M. OPL
SHORT=TERM STABILITY — COMPUTATION SERIES NO. 2 ~ 6.3 FOOT DEEP TEMSION CRACK

ANAL YSTS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
30 30 0.5 -20
TANGENT LINE CLEVATION FOLLOWS -
-20
CRACK DEPTH FOLLOWS -
6.5

COMPUTE
“x“'“t“------------------------------
CEXAMPLE PROBLIM D ~ CXCAVATED SLOPL

LONG-TERM STABILITY = COMPUTATION SERIES WO. 1 ~ MO PORE WATER PRISSURES

WATERIAL PROPERTY DATA FOLLOW -
1 AL sOIL
128 = TOTAL WIQT WEIGNT
N0 PORE WATER PRESSURLS
CONVENTIONAL SHEAR STRENGTMS
100 28

ANAL YSTS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
30 30 0.5 -20
POINT THROUGH WHICN CIRCLES PASS FOR INITIAL MODE OF SEARCH FOLLOW
X
CRACK DEPTH FOLLOWS -

°
CRITICA. CIRCLE TO BE FOUND (NO STOP AFTER INITIAL MODE IS COMPLETE)

COMPUTE

105
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EXAMPLE PROBLEM D — EXCAVATED 3LOPE
LONO-TERM STABILITY = COMPUTATION SERIES NO. & -~ PORE WATER PRESSURES
DESCRIBED BY A PIETQMETRIC LINE
MATERIAL PROPERTY DATA FOLLOW -
1 AL SOIL
128 = TOTAL BOIT WEIGHT
PIEZOMETRIC LINE
1 « PIEZOMETRIC LINK NO.
CONVENTIONAL SHEAR STRENGHTS
100 28

PIEZGMETRIC LINE DATA FOLLOW -
1 PICZOMETRIC LINE FOR ALL sOIL
-80.0 0.0

HADING FOLLOWS = = =~ - c e cc e ccccccnccceccncccvcaccnca=
EXAMPLE PROBLEM D ~ EXCAVATED MOPE
LONO-TERM STASILITY — COMPUTATION SERIES MO. 3 - PORL WATER PRESSURLS
DESCRIBED Y PIEZOMITRIC LINE - FULL GAPILLARY (NEGATIVE) PRESSURES USED
MATERIAL PROPERTY DATA FOLLOW -
1 AL sOIL
128 = TOTAL BNOT WEIGNT OF SOIL
PILZOMETRIC LINE MEGATIVE O.K.
1
COMVENTIONAL SHEAR STRENGTNHS
100 28

COMPUTE
CXAPLE PROBLEM D ~ EXCAVATID MOPE
LONO-TERM STABILITY — COMPUTATION SERIES NO. 4 -~ PORE WATER PRESSURES
OESCRIBED USING A CONSTANT VALUL FOR R-8UB-U (R-8UB-U = §.13)
MATERIAL PROPERTY DATA FOLLOW -
1 AL saIL
128 = TOTAL WIIT WEIGHNT
CONSTANY R-SUB-U
0.13
CONVENTIONAL SHEAR STRENETHS
100 28

COMPUTE
HADING FOLLOWS = = = = s cccccercecsecrcecrcrceccaccncccaaca=
EXAPLE PROBLEM D ~ EXCAVATED SLOPL
LONO-TERM STABILITY — COMPUTATION SERIES NO. 8 — PORL WATER PREISSURLS
DESCRIBED USING A CONSTANT VALUL FOR R-SUS-U (R=-818-U = 0.21)
MATERIAL PROPERTY DATA FOLLOW -
1 AL SOIL
128 = TOTAL UNIT WEIGNT
CONSTANY R-SUD-U
0.2Y
CONVENTIONAL SHEAR STRENGTHS
100 28



10/

COMPUTE
HEADING FOLLOWE « = w = m o o e o o o e o 0 v e e o o = = ==
EXAMPLE PROBLEM D ~ EXCAVATED SLOPE
LONG-TERM STABILITY ~ COMPUTATION SERIES NO. § -~ PORE WATER PRESSURLS
DESCRIBED USING A CONSTANT VALUE FOR R-SUB-U (R-SUB-U = 0.28)
MATERIAL PROPERTY DATA FOLLOW -
1 ALL SOIL
125 w TOTAL UNIT WEIQHT
CONSTANT R-SUB-U
0.28
CONVENTIONAL SHEAR STRENGTHS
100 28

COMPUTE






APPENDIX E
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM E







MEADING FOLLOWS = m w m e m m o s e m o = = = = = = = - .-
EXAMPLE PROBLEM £ ~ FROM FHWA SOILS AND FOUNDATIONS WORKSHOF MANUAL
SAND FILL ON SAND FOUNDATION WITH S FOOT THICK CLAY LAYER

PROFILE LINE DATA FOLLOW ~
1 1 LOMER SAND STRATUM IN FOUNDATION
=130 ~135
70 -8

2 2 FOUNDATION CLAY STRATUM
=130 =10
70 -10

3 3 UPPER SAND STRATUM IN FOUNDATION
=130 ©
70 0

4 4 AL FILL
-130 30
70 30

MATERIAL PROPERTY DATA FOLLOW ~
1 LOMER SAMD
80 = SUBMEROED UNIT WEIOMT
NG PORE WATER PRESSURES
CONVEXTIONAL SHEAR STRENGTHS
o 3
2 FOUNDATAION CLAY
37.8 = SUBMEROGED UNIT WEIGNT
HO PORE WATER PRESSURES
CONVENTIONAL SHEAR STRENGTHS
50 0
3 UPPER SAND
120 = TOTAL UNIT WEIGMT
NO PORE WATER PRESSURLS
CONVENTIONAL SHEAR STRINGTHS
03
4 SAND FILL
120 = TOTAL UNIT REIOGHT
NO PORE WATER PRISSURLS
CONVENTIONAL SHEAR STRENGTMS
0 3

SLOPE GEOMETRY DATA FOLLOW -
-130 30
-$0 30
00
700

Knlmrulm-------—---—--—-----—---------
EXAMPLE PROBLEM £ ~ FROM FHWA SOILS AND FOUNDATIONS WORKSHOP MANUAL
SAND FILL ON SAND FOURDATION WITH S FOOT TMICK CLAY LAYVER
COMPUTATION SERIES NO. 1 = SELECTED NON=CIRCULAR SHEAR SURFACE
ANAL YSIS/COMPUTATION DATA FOLLOW -
NON-CIRCIUL AR
-43,09 30.0
~80.0 «10.001
0 =10. 001
17.32 0.0

111



112

COMPUTE
HEADING FOLLOWS = = - c c e c mc mcccccc e e
EXAMPLE PROBLEM E ~ FROM FHWR SOILS AND FOUNDATIONS WORKSHOP MANUAL
SAND FILL ON SAND FOUNDATION WITH 8 FOOT THICK CLAY LAYER
COMPUTATION SERIES NO. 2 — AUTOMATIC SCARCH FOR CRITICAL CIRCLE
ANAL YST3/COMPUTATION DATA FOLLOW -
CIRCLE SEARCH
=30 30 0.3 -1
TANGENT LINE
-18
CRITICAL SHEAR SURFACE

COMPUTE
MEADING FOLLOWS = - m e ccmccccccccee e =-
EXAMPLE PROSLEM [ - FROM FHWA SOILS AND FOUNDATIONS WORKSHOP MANUAL
SAND FILL ON SAND FOUNDATION WITH 3 FOOT TMICK CLAY LAYER
COMPUTATION SERIES NO. 3 — AUTOMATIC SEARCH FOR CRITICAL NON=CIRCULAR SURFACE
ANALYSTIS/COMPUTATION DATA FOLLOW -
NON=CIRCULAR SEARCH
-85.0 30,00
-£9.0 0.00
-£3.0 =10.00
-14.99
-14.99
-10. 00
.00

0.25 = MINIMUM INCREMENTAL SNIFT DISTANCE (ACCURACY)

COMPUTE
MEADING FOLLOWS = = - c c c mcccc e e ecccce e e e e e e eee=-
CXAMPLE PROBLEM £ — FROM FHWA SOILS AND FOUNDATIONS WORKSHOP MANUAL
SAND FILL ON SAND FOUNDATION WITH 5 FOOT THICK CLAY LAYER
COMPUTATION SERIES NO. 4 - SLOPL FLATTENED FROM 2/1 TO 3/1
SLOPE GEOMITRY DATA FOLLOW -
-130 30
-40 30
30 0
7 o©

ANAL YSTS/COMPUTATION DATA FOLLOW -
NON=CIRCULAR SEARCH
-$3.0 30.00
-£9.0 0.00
«83.0 =-10. 00
-$0.0 =14.99
30.0 -14.99
39.0 =10.00
83.0 0.00

0.25 = MINIMUM INCREMENTAL SHIFT DISTANCE (ACCURACY)

COMPUTE
HEADING FOLLOWS = = = = e cc e ccccc e c e e =-
EXAMPLE PROBLEM E = FROM FHWA SOILS AND FOUNDATIONS WORKSHOP MANUAL
SAND FILL ON SAND FOUNDATION WITH 3 FOOT THICK CLAY LAYER
COMPUTATION SERIES NO. 5 - SLOPE WITH 10 FT. MIGH. 30 FT. WIDE. 2/1 BERM AT TOE
SLOPE GEOMETRY DATA FOLLOW -

=130 30

=40 30

-20 10

10 10



3 0
7 0
AMAL YSIS/COMPUTATION DATA FOLLOW -
NON-CIRCUL AR
=89.21 30.00
=70.7% 0.00

-24.38 -10.00
«81.50 -14.90
22.68 4. 90
.33.04 =10.00
83.98 0.00

COMPUTE
mt“l’ﬂlﬂ------------------------------
EXAMPLE PROBLEN £ — FROM FHUR SOILS AND FOUNDATIONS WORKSHOP MANUAL
SAD FILL 0N SAD FONDATION WETH 3 FOOT THICK CLAY LAYER
COMPUTATION SERIES NO. 8 — ‘SHEAR KEY' THROUGH CLAY
PROFILE LINE DATA FOLLOW -
2 1 SHEAR KEY (SUBMERGED)
=30 =10
=20 -10

S 2 FONDATION CLAY STRATUM — UPSTREAM OF KEY
=130 -10
~30 =10

S 2 FOUNDATION CLAY STRATUM — DOUWNSTREAM OF KEY
-20 -10
70 =10

SLOPE GEOMETRY DATA FOLLOW -
-130 30
-20 30
L I ]
7 °

AMALYSIS/COMPUTATION DATA FOLLOW -
NON-CIRCULAR

-$8.71 30.00
=70.80 0.00
«84.80 =10. 00
-52.52 -14. 99
8.30 =14. 99

4. 41 =10.00
28.44 0.00

COMPUTE
HADING FOLLUB - - s cc e e rcccccc e e
EXAMPLE PROBLEM £ — FROM FHUR SOILS AND FONDATIONS WORKSHOP MAMUAL
SAD FILL ON SAND FONDATION WITH 3 FOOT THICK CLAY LAYER
COMPUTATION SERILS NO. 7 — ORIGINAL GECMETRY. EFFECT OF RISE IN WATER TABLE
PROFILE LINE DATA FOLLOW -
2 2 SHEAR KEY REPLACED WITH CLAY FOR COMPUTATION SERIES WO. 7
=30 =10
-20 =10

MATERIAL PROPERTY DATA FOLLOW -

119
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3 UPPER SAND STRATUM IN FOUNDATION
$0 = SUBMIROLD UNIT WEIOHT
HO PORE WATER PRISSURES
CONVENTIONAL SHEAR FTRINGTHZ
o3

COMPUTE



APPENDIX F
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM F






HEADING FOLLOWS = = = c c s s e cccccsccccaee=- c e ee—=-
EXAMPLE PROSLEM F = PROB. DESCRIBEID IN STABL USER MANUAL. BY RONALD A. SILGLL.
REPORT JHRP-75—~8 ON JOINT HIGMWAY RESTARCH PROJECT NO. C-38-38K. PURDUL UNIV..
REPORT DATED JUNE 4. 1975 - REVISED JUNE 28. 1978
PROFILE LINE DATA FOLLOW -
1 1 UPPERMOST (ZERO SHEAR STRENGTH) STRATUM

101 88

138 103

208 110

2 2 INTERMEDIATE STRATUM — ABOYE WATER TABLL
83 73
101 88
208 o

3 3 INTERMEDIATE STRATUM = BELOW WATER TABLE
' L 1
22 87
3N
a3 n
87
104 82
122 83
140 87
208 03

4 4 LOWEST STRATUM (BEDROCK)

0 18

20 24
81 28
78 38
24 88
113 84
133 S¢
181 38
208 78

MATERIAL PROPERTY DATA FOLLOW -
1 UPPERMOST (ZERO STRENGTH) STRATUM
118.4 = INIT WIGHT
MO PORE WATER PRESSURLS
CONVENTIONAL SHEAR STRENGTHS
o0
2 INTERMEDIATE STRATUM ~ ABOVE WATER TASLE
116.4 = UNIT WIOHT
NO PORE WATER PRLSSURLS
CONVENTIONAL SHEAR STRINGTHS
8500 14
3 INTERMEDIATE STRATUM - SELOW WATER TABLE
124.2 = NIT WEIOHT
PIEZOMETRIC LINE
1
CONVENTIONAL SHEAR STRENGTMS
500 14
4 LOWEST STRATUM (BEDROCX)
128
NO PORE PAZSSURLS
CONVENTIONAL SHEAR STRENGTHS
200000 0

PICZOMETRIC LINE DATA FOLLOW -
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1 PIEZOMETRIC LINE FOR INTERMEDIATE STRATUM

0 88

22 &7
» 8
e 7
37
104 82
122 88
140 87
208 93

HEADING FOLLOWS = o o = - c e e m e e c e cccccccaee e m-e - ===
EXAMPLE PROBLEM F -
COMPUTATION SEZRILS MO. 1 = USING MOST CRITICAL SMEAR
SURFACE TOUND BY SIZOCL ON HIS FIRST RUN
ANALYSIS/COMPUTATION DATA FOLLOW -
NONCIRCIL AR

45.11 65.82

55.00 84.31

64.97 §3.57

74.97 83.83

84.93 84.47

94.80 68.10

104.51 88.50

114.00 71.88

123.21 75.88

132.08 90. 18

140.58 88.44

148.80 91.40

158.18 97.97

183. 15 105.10

183.83 108. 80

COMPUTE
.‘M!“'QLO.------------------------------
EXAMPLE PRODLEM 7 ~

COMPUTATION STRILS NO. 2 = AUTOMATIC SEARCH FOR CRITICAL CIRCLE

ANAL YSIS/COMPUTATION DATA FOLLOW =
CIRCULAR STARCH
70 140 1 18
POINT THROUGH WHICH CIRCLES PASS FOR INITIAL MODE OF SCARCH FOLLOWS
3 8

cOMPUTE
HEADING FOLLOWS = = ~ c e e ccc s ceccescrccccccccanncccna-
EXAMPLE PRODLEM 7 -
COMPUTATION STRIES NO. 3 = ZERO STRENGTM STRATUM REPLACEID W SURFACE PRCSSURLS
AUTOMATIC SEARCH FOR CRITICAL MNONCIRCULAR SHEAR SURFACL
SLOPE OLOMITRY DATA FOLLOW -

0.0 88.

SURFACE PRESSURL DATA FOLLOW -
101.0 BS.00 0.0 0.0
138.0 91.91 1278.8 -138.0
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205.0 99.00 1288.6 ~-133.9

ANALYSIS/COMPUTATION DATA FOLLOW ~
NONCIRCULAR SEARCH
45.5 ¢t

88 84
83 &4
75 &4
s 84
” s
108 89
14 72
123 78
132 20
141 98
140 #

150.7 93.3

0.5 = MINIMUM INCREMENTAL SHIFT DISTANCE / ACCURACY

COMPUTE
HEADING FOLLOWS = = = @ = e m e e m m m m m m e m e e monoeeee=-
EXAMPLE PROBLEM F
COMPUTATION SERIES NO. 4 = ZERO STRENGYH STRATUM REPLACEID W SURFACE PRESSURES
AUTOMATIC SCARCH FOR CRITICAL CIRCLE
ANALYS23/COMPUTATION DATA FOLLOW ~
CIRCULAR SEARCH
70 140 1 18
POINT THROUGH WHICH CIRCLES PASS FOR IMITIAL MODE OF SEARCK FOLLOWS
39 63






APPENDIX G
LISTING OF INPUT DATA FOR EXAMPLE PROBLEM G
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NEADING FOULLOWE = = = @ @ = o oo v = =0 = = = = = = - @ @ @ o m "o - - -
EXAMPLE PROBLEM © « PARTIALLY SUBMERGED 3LOPL
COMPUTATION SERIES NO. 1 -~ USING SUBMERGED INIT WEIOHTS

PROFILE LINE DATA FOLLOW -
1 1 B0IL ABOVE WATER
=100 20
0 20

2 2 SOIL BELOW WATER
-100 18
0 18

MATERIAL PROPERTY DATA FOLLOW -

1 SCIL ABOVE WATER
134 = TOTAL WNIT WEIONT
NO PORE WATER PRLSSURLS
CONVENTIONAL SHEAR STRENGTHS

100 18

2 SOIL BELOW WATER
$1. 8 = SUBMCRGEID MY WEIOHT
NO PORE WATER PRESSURLS
CONVENTIONAL SHEAR STRENGTHS

100 19
SLOPE GEOMETRY DATA FOLLOW -~
-100 20
-50 20
00
80 0

ANALYSIS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
=20 40 0.5 ~20
POINT THROUGH WMICH CIRCLE PASIES FOLLOWS
00
STOP AFTER INITIAL MODE OF SEARCH IS COMPLETED

coMPuTL
ssevscccer ENTIRELY NEW DATA FOLLOW eocensecee
NMEADING FTOLLOWS = = o o =@ 0 e 0 S o o e e o o oo o mwww-o o
CXAMPLE PROBLEM G ~ PARTIALLY SUBMEROED SLOPE
COMPUTATION SERIES NO. 2 = USING TOTAL IMIT WEIGHTS AND PORC WATER PRESSURLS
DESCRIBID BY A PILZOMETRIC LINE
PROFILE LINE DATA FOLLOW =
1 % ALL SOIL

=100 20

=50 20

00

800

WATERIAL PROPERTY DATA FOLLOW -
1 ALL SO3L
124 » TOTAL WY WEIOMT
PICIOMETAIC LINE
1 » PIEZOMETRIC LINE MABER
CONVENTIONAL SHEAR STRENGTHS
100 18

PIEZOMETRIC LINE DATA FOLLOW -

123
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1 PIEZOMETRIC LINE FOR ALL MATERIAL
-100 18
80 18

SURFACE PRESSURE DATA FOLLOW -~
-37.8 15800
S0
80 0938 0

ANAL YSTS/COMPUTATION DATA FOLLOW -
CIRCULAR SEARCH
«20 40 0.5 =20
POINT THROUGH WNICH CIRCLES PASS FOLLOWS -~
o0
STOP APTER INITIAL MOOL OF SEARCH IS COMPLETE

cOMPUTE
HMEADING FOLLOWS = = = = s s e s cccamwwwwmre s s e o=
CXAWPLE PROBLEM G — PARTIALLY SUNERGED M OPL
COMPUTATION SERIES MO. 3 — USING TOTAL UNIT WEIGHTS AND PORE WATER PRESSURLS
DEFINED USING THE INTERPOLATION OPTION
MATERIAL PROPERTY DATA FOLLOW -~
¥ ALL S0IL

124 = TOTAL UNIT WEIGNHT

INTERPOLATE PRESSURLS

CONVENTIONAL SHEAR STRENGTHS

100 19

INTERPOLATION DATA POINTS FOLLOW ~
PRESSURE VALULS FOLLOW -

«100 20 0

80 20 0 ¢

«~100 15 6

86 18 0 1

«~100 ~20 2104 1

80 ~20 2184 OV
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