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PREFACE

Recent research in the U.S. and Canada has suggested
that the flexural capacity of bridge decks is increased by in-
plane compressive forces, created when the cracked deck is res-
trained by supports that cannot move laterally. This phenomenon,
commonly referred to as "arching action," is the basis for the
semi-empirical design provisions of the current Ontario (Canada)
Bridge Design Code. That code permits the use of less flexural
steel than would be required by current AASHTO Specifications,
resulting in bridge decks which are generally more economical and
resistant to corrosion.

Previous research on arching action has been carried
out mainly using small-scale models with artificial boundary
conditions. The overall objective of Research Project 3-5-83-350
was to study the performance of full-scale bridge decks designed
taking arching action into account., Using a full-scale model of
a realistic prototype highway bridge, both cast-in-place and
precast, prestressed panel decks were considered.

During the course of Project 3-5-83-350, an opportunity
became available to study the distribution of loads to the gir-
ders of the bridge. In the United States, slab and girder brid-
ges are usually designed according to the AASHTO Specifications,
which consider the slab and girders to act independently, and
involve the use of empirical moment distribution coefficients.
Several other procedures are also available, The specific objec-
tives addressed in Report 350-2 were:

1. To measure the girder loads and bending moments in
a full-scale bridge;

2. To compare the girder bending moments with those
predicted using some of the available methods;

3. Based on this comparison, to assess the relative
merits of the procedures studied.
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SUMMARY

Background material on refined and simplified methods for
the analysis of bridge superstructures was presented. Seven
methods Wwere briefly described: five refined methods and two
simplified methods. Using the full-scale experimental specimen
of Project 350, subjected to vertical loads at 4 points on the
deck surface, the variation of bending moments along the length
of center girder was determined, both before and after deck
cracking. These experimentally determined girder moments were
compared with the moments obtained from the AASHTO Specifica-
tions, from the Ontario Highway Bridge Design Code, and from a
finite element model of the bridge.

The experimentally determined values were approximated
fairly closely by those of the Ontario Code and the finite ele-
ment analysis. The peak moment predicted using the AASHTO pro-
cedure exceeded the corresponding experimental value by about 80
percent.

In assessing the proper role of these methods for estimating
girder moments, it is important to recognize that each method has
its place., An AASHTO-type method (or perhaps a simplification of
the Ontario procedure) is necessary for preliminary design.
After preliminary deck and girder sizes have been picked, an
Ontario-type procedure can be used to produce a more efficient
revised design. The finite element method appears advantageous
primarily for checking local behavior,






IMPLEMENTATION

While the results discussed in this report were not included
in the original objectives of Project 350, they were obtained
during that Project's investigation into the behavior of Ontario-
type bridge decks., The distribution of girder loads and moments
in composite highway bridges is a current topic of several re-
search projects being conducted in the United States. Because
the results discussed here represent a valid set of data re-
garding the distribution of moments in composite bridges, it was
believed worthwhile to present them in the form of a research
report,
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CHAPTER 1

INTRODUCTION

1.1 General

Slab and girder bridges, which carry loads by the combined
action of the slab and the girders, are a common element in modern
highway systems. Because such structures are usually statically
indeterminate, girder moments and loads cannot easily be determined.
Estimates of girder loads in slab and girder bridges are important both
for evaluating existing bridges and for designing new ones. As will be
discussed later, the theoretical methods which can be used to analyze
slab and girder bridges are rather complicated.

In the United States, slab and girder bridges are usually
designed according to the Specifications of the American Association of
State Highway and Transportation Officials (AASHTO) [1]. This design
procedure for slab and girder bridges, described in Section 3 of
Reference 1, considers the slab and girders to act independently.

The deck slab is usually designed as a one-way slab spanning
transversely between the girders. In computing design moments for the
s8lab, no longitudinal distribution of live load bending moments is
assumed. Under live load, transverse moments per foot of width of slab
are calculated using the load on one rear wheel of a truck. Once the
transverse moments in the slab are obtained, the size and spacing of the
main transverse reinforcement are determined. Longitudinal distribution
reinforcement, placed perpendicular to the main reinforcement, is
calculated as a percentage of the transverse reinforcement.

Bending moments in the longitudinal girders are calculated
according to Section 3.23 of the AASHTO Specifications. An individual
girder is first isolated from the structure; if shear connectors are
used to provide composite action, then an effective width of the sladb is
included as part of the girder. A single line of wheel loads from one
truck is applied to the girder. The loads are placed on the span so as
to produce maximum stress, and multiplied by an empirical distribution
factor. Values of these empirical distribution factors for various
types of bridges are listed in Table 3.23.1 of the AASHTO Specification
(Table 1.1 on the following page). Design moments for the girder are
calculated from these factored loads.
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TABLE 1.1 AASHTO Empirical Load Distribution Factors
(Table 3.23.1, Ref., 1)

TABLE 3.23.1 Distribution of Wheel Loads In
Longitudinal Beams

Bridge Designed for

Bridge Designed for

Two or Mo

Glued Laminated®
Panels On Glued

I S exceeds 3°
use footnote f.

Laminated Stringers

4" thick
6" or more thick

On Steel Stringers
47 thick
6" or more thick

Concrete:
On Steel 1-Beam
Stringers¥ and

5/4.5
5/6.0
If § exceeds &'
gse footnote f.

$/4.5
$/5.28

If § exceeds 5.5°

use footnote f.

Prestressed Concrete

Girders

On Concrete

T-Beams

On Timber
Stringers

Concrere Box
Girders"

On Steel Box Girders

§/7.0
If S exceeds 10’
use footnote f.

§$/6.5
1€ S exceeds 6°
use footnote f.

§/6.0
If S exceeds 6
use footnote f.

§/8.0
It S exceeds 12°
use footnote f.

On Prestressed Con-

crete Spread Box

Beams

Kind of Floor One Traffic Lane Traffic Lanes
Timber:*

Plank® $/4.0 $.3.75

Nail laminated®

4° thick or multiple

tayer? floors over 3~

thick $/4.5 $/4.0

Nail laminated®

6" or more thick  5/5.0 $/4.25

If S exceeds 6.3°
use footnote f.

§/4.0

5/3.0

If S exceeds 7.5°
use footnote f.

$/4.0
§/4.5
If § exceeds 7°
use footnote f.

S$/8.5
If S exceeds 147
use footnote f.

$/6.0
If S exceeds 10°
use footnote f,

5/5.0
tf S exceeds 107
use footnote I,

$/7.0
If S exceeds 16’
use footnote f.

See Article 10.39.2,

See Article 3.28.

Bridge Designed for
Two or More
Traffic Lanes

Bridge Designed for

" Kind of Floor One Traffic Lane

Steel Grid:
{Less than 47 thick} $/4.5 $/4.0
(4”7 or more) $/6.0 5/3.0

If S exceeds 6
use footnote f.

If S exceeds 10.5°
use footnote f.

Steel Bridge
Corrugated Plank'
(27 min. depth} $/5.35 5/4.5

§ = average stringer spacing in feet.

‘Timber dimensions shown are for nominal thickness.

"Plank floors consist of pieces of lumber laid edge 1o edge with the
wide faces bearing on the supports (see Article 20. | 7--Disision 111

“Nail laminated floors consist af pieces of lumber laid face to face
with the narrow edges bearing on the supports. ¢ach picce being
nailed 1o the preceding piece tsee Articte 20.18—Division 1.

“Multiple layer floors consist of rwo or more lavers of planks. cach
laver being laid at an angle 1o the other (see Article 20.17—Division
1.

*Glued laminated panel floors consist of vertically giued laminated
members with the narrow edyes of the Janiinations bearing on the
supports (see Articie 20.1. {—Division ]},

in this case the load on each stringer shall be the reaction of the
w heel loads. assuming the flooring between the stringers to actasa
simple beam.

£ Design of [-Beam Bridges” by N. M. Newmark—Proceedings,
ASCE. March 1948,

"The sidewaik live load tsee Article 3. 15) shall be omitted for inte-
rior and exterior box girders designed in accordance with the wheel
load distribution indicated herein.

‘Distribution factors for Steel Bridge Corrugated Plank set forth
above are based substantially on the following reference:

Jotirnal of Washington Academy of Sciences, Vol. 67. No. 2,
1977 *Wheet Load Distribution of Steel Bridge Plank.” by Conrad
P. Heins, Professor of Civil Engineering, University of Marviand.

These distribution factors were developed based on studies us-
ing 6 X 27 steel corrugated plank. The factors should yield safe
results for other corrugation configurations provided primary bend-
ing stiffness is the same as or greater than the 6% X 2* corrugated
plank used in the studies.



A qualitative example of this AASHTO procedure is illustrated
in Fig. 1.1, and described below. The structure is a slab and steel
girder bridge, simply supported, and loaded by four concentrated loads P
which could represent the concentrated loads from a standard AASHTO H-20
truck loading. 1In this example, the center girder is chosen for design.
As shown in Fig. 1.1b, two wheel loads are applied to that girder so as
to produce maximum stress. The loads are multiplied by a distribution
factor $/C, where S is the stringer spacing in ft, and C is a constant
whose value depends on the bridge type. 1In the case of a slab and steel
girder bridge designed for two or more lanes of traffic¢, the constant is
5.5, resulting in a distribution factor of about 1.0 for typical girder
spacings. The resulting moments (Fig. 1.1¢) are used to design the
center (interior) girder. The design moments in the exterior girders
can be obtained similarly. Girder design moments can also be calculated
using the lane loading described in Section 3.6 of the AASHTO
Specifications. The larger moment from either the lane loading or the
truck loading should be used for design.

In addition to the AASHTO procedure, distribution factors can
be obtained from the Ontario Highway Bridge Design Code {[2].
Alternatively, the designer can calculate girder moments using one of
the more accurate analytical techniques described in Chapter 3 of this
thesis.

1.2 Objectives

As will be discussed subsequently, the current AASHTO procedure
for determining girder moments usually provides a conservative estimate
of the actual moments. To assess the validity of the AASHTO procedure,
it was decided to investigate experimentally the distribution of girder
moments and loads in a typical bridge. The specimen selected for study
was a full-scale composite highway bridge on steel girders, constructed
in the laboratory as part of another investigation [3]. 1In this thesis,
some aspects of the testing of that bridge model will be described. The
experimentally determined girder moments will be compared with the
values obtained by theoretical analyses, both exac¢t and approximate,
This study has the following objectives:

1. to measure the girder loads and bending moments in a full-scale
bridge;

2. to compare the girder bending moments with those predicted
using some of the available methods; and

3. based on this comparison, to assess the relative merits of the
procedures studied.
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1.3 Scope

In Chapter 2, background material is presented on various
theoretical methods used to analyze bridge superstructures. The
experimental test program and test results are discussed in Chapters 3
and 4, and the observed and predicted girder moment distributions are
compared in Chapter 5. In Chapter 6, the findings are summarized, and
conclusions are presented.






CHAPTER 2

THEORETICAL BACKGROUND

2.1 BRefined Methods of Analysis

Refined methods of analysis for analyzing highway bridge
superstructures and determining girder moments and loads can Dbe
classified into six categories:

1. orthotropic plate theory methods [4,5,6];
2. harmonic analysis methods [7];

3. grillage analogy methods [8,9,10,11];

4, finite element methods [12,13,14];

5. finite strip methods [15,16,17]; and

6. folded plate methods [18,19,20].

Refined methods of analysis with general applications are well reported
in the technical literature. The references listed above are
representative of a large number of published papers.

The orthotropic plate approach idealizes the actual bridge
structure as an equivalent orthotropic plate, which is then treated by
classical theory [21]. This approach was first developed by Guyon for
grillages with negligible torsional stiffness [22] and later Ffor
isotropic slabs [23]. Massonnet [24] extended this approach by
including the effects of torsion. The combined work of Guyon and
Massonnet, referred to as the Guyon-Massonnet load distribution theory
[25], has been extended by others [26,27,28,29].

The harmonic analysis procedure, developed in the 1950's by
Hendry and Jaeger [7], considers the same flexural and torsional
rigidities as the orthotropic plate analysis, but neglects the torsional
rigidity in the transverse direction [30]. Loads are distributed to the
individual girders as though the slab were a continuous beam over non-
deflecting supports. The loading is expressed as a harmonic series or
Fourier sine series. Expressions for shear, moment, slope, and
deflection are found by successive integration of this load series.
Girder bending moments are determined by considering the above series in
conjunction with transverse force equilibrium and slope-deflection
expressions in the transverse direction [30].
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The grillage analogy method idealizes the bridge structure
using an equivalent grid system, which is then analyzed [30] by:

a) slope-deflection and compatibility equations;
b) moment or torque distribution;

¢) shear distribution; or

d) reaction distribution.

This method usually involves the solution of a large number of
simultaneous equations or numerous arithmetic calculations [30].

The finite element and finite strip methods are widely used in
the analysis of structures. A discussion of the theory and application
of the finite element method to two-dimensional and three-dimensional
systems involving plane stress, plane strain, plate bending, shells, and
solids is given by Zienkiewicz [31]. The finite element and finite
strip methods are general techniques for obtaining numerical solutions
to boundary value problems. As discussed in Ref. 31, the finite element
method involves dividing the structure to be analyzed into a finite
number of simple elements, whose deformations are assumed to follow
prescribed basis functions. The basis functions are selected to ensure
compatibility between adjacent elements. Using variational concepts,
the combination of basis functions (for each element) is found which
minimizes the static potential of the entire idealized structure. The
resulting solution is an approximation to the exact response.

Folded plate theory can be divided into two categories: a) the
ordinary method [32], in which the longitudinal behavior of the plate is
calculated according to beam theory, and the transverse behavior
according to one-way theory; and b) the stiffness method [33], which
combines slab theory and plane stress theory. The bridge is considered
as an assembly of individual, elastic, isotropic rectangular plate
elements interconnected at the longitudinal joints, and simply supported
at the ends [34].

Six refined methods of analysis have been briefly discussed. A
more rigorous description of these methods can be found in the cited
references. As will be discussed later, the power and versatility of
the finite element method led to its choice for modeling the bridge
specimen described in this report.

2.2 Simplified Methods of Analysis

Simplified methods have been developed from these more complex
theories. The AASHTO distribution procedure, discussed in Section 1.1,



was developed over several years. The first edition of the AASHTO
Specifications, published in 1931 [35], provided load fractions to be
used for calculating design moments in interior stringers (of any type)
with concrete or timber floors. The 7th edition of the AASHTO
Specifications [36] introduced a separate modification factor for
moments in interior steel stringers. This modification resulted from
analytical and experimental studies conducted in the 1940's by Newmark
[37]. The load distribution fractions for concrete decks on steel or
prestressed concrete stringers in the current 13th edition of the AASHTO
Specifications [l]are based on Newmark's work. According to that
procedure, each girder is designed to carry a fraction, K, of the wheel
load, where

K = S/C (1.1)
and S = average girder spacing in ft; and
C = specified constant depending on bridge type.

The constant C is 5.5 for a slab and girder bridge designed for two or
more lanes of traffic, and is 7.0 for one lane. Equation 1.1 usually
provides a conservative estimate of the actual girder loads, and is easy
for the designer to apply to specific bridge types [34].

Another simplified method, developed in the 1970's by the
Ontario (Canada) Ministry of Transportation and Communication, is
described in Section 3.7 of the Ontario Bridge Design Code [2]. The
distribution factor procedure of this method is comparable to that
described in Section 3 of the current AASHTO Specifications, except that
the distribution factors are selected from charts. Most of the key
parameters affecting load distribution are considered: bridge span,
bridge geometry, bridge width, girder spacing, number of loaded lanes,
and bridge stiffness properties [34]. This is intended to provide
improved accuracy. The charts were derived using orthotropic plate
theory, and checked using the grillage analogy method.






CHAPTER 3

EXPERIMENTAL TEST PROGRAM

3.1 General

As explained in the introduction, one objective of this study
was Lo measure the girder loads and bending moments in a full-scale
highway bridge. As part of another investigation [3], a full-scale
composite highway bridge was constructed and tested at the Phil M.
Ferguson Structural Engineering Laboratory at The University of Texas at
Austin. In the following sections, a description will be given of the
bridge components, the construction procedure, the testing procedure,
and the instrumentation. Appendix A lists the material properties.

3.2 Specimen Description

3.2.1 Steel Girders. As shown in Figs. 3.1 through 3.4, the
three steel girders were W36x150 sections, 60 ft long, simply supported
on a 48-ft span. The girders, donated to the project by the Texas State
Department of Highways and Public Transportation (District 14}, had been
recovered from a bridge that had been replaced, and were in excellent
condition. To ensure composite action, 7/8-in. diameter studs were
welded to the top flange of each girder. The studs were placed in rows
of three along the top flange, as shown in Figs. 3.5, 3.6 and 3.7. In
the southern half of the bridge, the rows of studs were placed
diagonally to allow adequate spacing between the panels. The girders
were connected by steel diaphragms, shown in Figs. 3.8 and 3.9. The
girders were simply supported on neoprene bearing pads, resting on
anchor blocks, which in turn rested on the laboratory floor.

3.2.2 Cast-in-Place Deck, Cast-in-place concrete with #4
reinforcement was used for the entire deck on the northern half of the
bridge, the deck above the precast, prestressed panels, and the
cantilever overhangs. The design strength of the concrete was L4000 psi.
The concrete used for the deck, supplied by Texas Readymix (Austin) met
the Specifications of the Texas Department of Highways and Public
Transportation for Class C concrete [38]. The deck thickness averaged
7-1/2 in. To facilitate construction and subsequent evaluation of test
results, the deck was cast with a uniform thickness,

11
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3.2.3 Precast, Prestressed Panels. Six precast, transversely-
prestressed panels, fabricated by J.D. Abrams Precast (Austin) spanned
between the longitudinal girders. These panels, illustrated in Figs.
3.2 and 3.10, rested on 1 x 1/2-in., asphalt-impregnated fiberboard
strips. The panels were 6.5 ft wide by either 7T or 8 ft long. They
were of 6000-psi concrete, 4 in. thick, and were later covered by a 3-
1/2 in. topping of 4000-psi concrete.

3.3 Construction

3.3.1 Steel Girders. Construction began in the summer of 1983
with the placement of the three girders on top of the neoprene pads and
anchor blocks. After positioning the three girders at a 7-ft spacing,
the interior and exterior diaphragms were welded to the girder webs.
The shear studs were then welded to the top flanges of the girders with
a portable stud welding machine, and all welds were checked for
soundness.

3.3.2 Precast, Prestressed Panels. The six precast,
prestressed panels were transported by truck to the laboratory, lifted
into position with an overhead crane, and placed between the girders as
shown in Fig. 3.7.

3.3.3 Formwork. The bridge was unshored. Wooden formwork was
installed between the girders on the northern (cast-in-place) half of
the bridge, and was supported by the girders using steel hangers. 0On
the southern half of the bridge, the panels spanned between the girders,
and served as formwork. Wooden formwork was used for short sections of
deck underneath the north and south ends, and along the entire length of
the bridge for the cantilever overhangs.

Wooden formwork consisted of 1/2-in. plywood stiffened with 2x4
and 2x6 lumber, lacquered and oiled. Care was exercised to prevent the
form o0il from getting onto the steel reinforcement., Caulking and
styrofoam were used to seal cracks and prevent leaks, and all removable
bolts and inserts were coated with grease to facilitate removal.

3.3.4 Reinforcement for Cast-in-Place Deck. Steel
reinforcement for the cast-in-place deck was supplied by Alamo Steel and
Machine Company (Austin). Chairs provided 1-1/2 in. cover between the
bottom formwork and the bottom layer of reinforcement. Top
reinforcement was supported on 4-1/2 in. chairs. The mat of
reinforcement lying on top of the precast, prestressed panels was
elevated 1/2 in. above the surface of the panels with short lengths of
#4 bar placed between the panels and the mat. Most of the deck was
reinforced by #4 bars at 8-3/4 in. in both directions. The cantilever
overhangs had #4 bars at 4-3/4 in, spacing in both directions, top and
bottom. The layout of the steel reinforcement, shown in Fig. 3.11,
conformed to Texas Standard Department of Highways and Public
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Transportation Drawing Number 1284 (Texas State Department of Highways
and Public Transportation, Bridge Division, Drawing File 1284, Research
Project 3-5-83-50, April 14, 1982) [39].

The transverse and longitudinal bars were continuous (without
splices). The additional transverse steel in the overhangs extended 21
in. inside of the top edge of the exterior girders.

3.3.5 Placement and Curing of Concrete. The concrete deck was
cast monolithically using ready-mix concrete, placed with a 1-yd. bucket
on an overhead travelling crane. The conc¢rete was vibrated with two
portable vibrators, and finished with a 25-ft long vibratory screed,
moved longitudinally. Additional finishing was unnecessary Twenty-one
standard 6x12-in. cylinders were cast, as well as nine 6x6x18-in. beams.
Polyethylene sheets as well as a membrane curing compound were used to
cure the deck. The test cylinders and beams were cured under the same
conditions as the deck.

3.3.6 Removal of Formwork. Wooden formwork was removed about
seven days after the deck was cast. Four 3-in. diameter cores were
removed from the deck to permit attachment of the hydraulic loading
rams.

3.4 Test Setup

The test setup, shown in Figs. 3.12 and 3.13, consisted of four
identical 72-kip hydraulic rams attached to two reaction beams. The
rams were supplied by two hydraulic pumps with a combined capacity of 55
gpm at 3000 psi [40,41]. The hydraulic lines on the rams were
interconnected to a single servovalve, so that an equal pressure could
be applied to all four rams, producing an equal load in each ram. A
schematic diagram of the loading system is shown in Fig. 3.14. A
servocontroller and strain gage actuated load cell controlled the
loading.

Each of the two 21-ft reaction beams consisted of two S10x2u.5
sections attached together, and bolted at 4-ft intervals to the tie-down
points on the test slab (Figs. 3.15 and 3.16).

3.5 Instrumentation

3.5.1 Beam Strain Measurement. The distribution of loads to
the girders was determined using 54 electrical resistance strain gages,
located as shown in Figs. 3.17, 3.18, and 3.19. Before the strain gages
were applied, the steel surface was polished and cleaned. The strain
gages were Precision Measurements W32 [42], attached to the steel with
M-Bond 200 adhesive. The lead wires for these strain gages were
soldered to shielded cable. The connection to the lead wires, and the
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3.15 Reaction beam

Fig.
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Fig.

3.19 Typical strain gage on steel girder
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strain gage itself, were protected with M-Coat D waterproofing compound,
and a Barrier-E rubber pad.

The data acquisition system for these 54 strain gages consisted
of 6 switch and balance units and 2 strain indicator boxes. Three
switch units, wired to one strain indicator unit, were used to read the
gages for each girder,

3.5.2 Deflection and Slip Measurement. Vertical deilections
along the steel girders wWwere measured with dial gages and linear
potentiometers, as shown in Figs. 3.20 and 3.21. Horizontal slip
between the deck and girders was measured with dial gages and clip
gages, as illustrated in Figs. 3.22 through 3.24.

3.5.3 Crack Measurement. Crack widths in the concrete deck
were measured visually with a crack template. Crack propagation was
followed by marking cracks as the test progresged.

3.6 Loading Sequence and Testing Procedure

Figure 3.25 outlines the loading sequence. The bridge was
first loaded statically to 30 kips per ram in increments of 5 kips. The
loading continued from 30 kips to a maximum of 60 kips in increments of
2.5 kips. The weld between the center diaphragm and the east girder
failed when the peak load of 60 kips was attained, as shown in Figs. 3.9
and 3.26, The load was then decreased from 60 kips to 0 kips in
increments of 20 kips. At each of these load stages, all gages were
read. About 8 minutes were required per load stage to scan 54 channels
on the switch and balance units and record the strains.

After re-welding the broken diaphragm, the structure was then
subjected to 5 million cycles of fatigue loading. The load varied
sinusoidally from 5 kips to 26 kips, the average load being 15.5 kips.
The loading frequency was about 2 c¢ycles per second, as shown in
Fig. 3.27. The diaphragm welds broke again in several 1locations during
the fatigue loading.

After the 5 million cycles had been attained, the diaphragms
were again re-welded. The bridge was then loaded statically to 40 kips
per ram in increments of 5 kips, and unloaded in increments of 10 kips.
Readings were again taken at each load stage.



N
—_—
l l
dc i 'c :l.a 2
= T
4 o F‘

o
O
o
<O

Fig.

LP (VERTICAL DEFLECTION)

DIAL GAGE (VERTICAL DEFLECTION)

DIAL GAGE (SLIP BETWEEN DECK AND GIRDER)
DIAL GAGE (SLIP BETWEEN DECK AND GIRDER)

3.20 Layout of deflection and slip instrumentation

e



Fig.

3.21

Dial gage and linear potentiometer to measure
vertical deflection of steel girders
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Fig. 3.22 Dial gage to measure slip between deck and girder

Fig. 3.23 Clip gage to measure slip between deck and girder
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CHAPTER 4

TEST RESULTS

4.1 General

The results of the pre-cracking and post-fatigue tests are
presented in this chapter. The pre-cracking test was conducted in July
1984, The post-fatigue test was conducted in August 1984, after the
structure had been subjected to several static tests (to a maximum load
of 60 kips/ram), 5 million cycles of fatigue loading, and several more
static tests to a maximum load of 40 kips/ram.

The distribution of girder loads was determined from strain
readings. The procedure for doing this, discussed in detail in Section
4.5, involved the following steps:

1. 1longitudinal strains were measured in the girders at a series
of evenly spaced points along the bridge, at 3 different
heights at each point;

N

at each point, the strain variation with height was used to
compute the curvatures of the girders along the bridge;

3. at each point, these curvatures were multiplied by the
calculated flexural stiffness (EI) of the girder to determine
the moment variations along the length of each girder; and

4, the moment variations were numerically differentiated twice to
obtain the load applied to each girder over its length.

As will be discussed in Section 4.6, errors were introduced by
the strain gages, and also from approximations used in the data
reduction. Such errors are generally increased by the process of
differentiation. In order to assess the accuracy of the above
procedures for calculating girder loads, other types of data were also
collected during the testing: vertical deflections of the steel
girders; slip between the deck and the girders; and cracking patterns in
the deck. These were used to check the validity of the numerical
procedure, and also to check the internal consistency of the strain
readings. These data are analyzed in Sections 4.2, 4.3 and 4.4, and the
results are compared with the strain data in Section A4.5.

41



42

4.2 peflections

4,2.1 Load vs. Deflection. Figures 4.1 and 4.2 show the
curves of load vs. midspan deflection for the exterior and interior
girders, Girder deflections varied linearly with applied load. One
assumption (which will be discussed in Section 4.8), involving the
procedure used to smooth the strain readings, was that the structure was
linear and elastic. The linearity of Figs. 4.1 and 4.2 clearly
substantiates this assumption.

In Fig. 4.1, the results of the pre-cracking test are shown by
the solid line, and the post-fatigue test, by the dashed line. Vertical
deflections of the girders were measured with dial gages, which
registered deflections at the bottom flange of the steel girders, and
were placed at the center of the span, at the loaded points, and over
the supports., During the pre-cracking test, the dial gage at the center
of the interior girder malfunctioned at the 40-kip load stage.
Consequently, Figs. 4.1 and 4.2 show load-deflection data for both tests
up to a maximum load of only 40 kips.

During the pre-cracking test, the girders had a linear load-
deflection relationship under loads ranging from 0 kips up to about 35
kips. When the cracking load of 38 kips was attained, the solid lines
shown in Figs. 4.1 and 4.2 exhibited a decrease in slope, reflecting the
decreased flexural stiffness of the cracked deck.

The load-deflection plots for the post-fatigue test were
similar to those for the pre-cracking test. Because the deck was
already cracked, the load-deflection behavior was linear throughout the
entire test. At each load stage, corresponding deflections increased by
about 6 percent after the 5 million fatigue cycles, reflecting some
softening as a result of the fatigue loading.

4,2,2 Variation of Deflection in Longitudinal Direction. The
deflections shown in Figs., 4.1 and 4.2 were obtained from dial gages
located at the girder midspans., As will be explained subsequently,
vertical deflections at other points along the length of the girders
were calculated from measured girder strains, in order to compare the
calculated deflections with the experimentally determined ones, and to
assess the accuracy of the strain gage readings.

The vertical deflections were calculated from measured girder
strains {curvatures) using the moment-area theorems, and included the
experimentally measured deformations of the bearing pads. The measured
midspan deflections are compared with the calculated values in Figs. 4.3
through 4.6, and the centerline values are seen to agree within about 5
percent.

The fact that these deflections agreed so closely is important,
The variation of deflection in the longitudinal direction was calculated
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using curvatures obtained from girder strain readings, and a comparison
with the experimental deflections provides a check on the accuracy of
the strain gage readings.

These strain gage readings are used in Section 4.5 to calculate
the variation of moment and load in the longitudinal direction. Error
was introduced by approximating the lcads from the moments, and from
several other sources. Based on the comparison of deflections presented
here, it is concluded that a relatively small percentage of the total
error was contributed by the strain gages themselves.

4,3 Slip Between Deck and Girders

The pre-cracking and post-fatigue slip between the deck and the
steel girders is shown in Appendix B. In most cases the slip was small
(less than 0.01 in.) indicating that the bridge was behaving as a
composite structure.

Two typical load-slip diagrams, shown in Figs. 8.7 and 4.8,
correspond to the northern ({cast~in-place) end. Figure 4.7 shows the
pre-cracked load-slip relationship, and Fig. 4.8 illustrates the load-
slip behavior at the same point after fatigue loading.

The slip between the deck and the steel beams can be described
by [43]:

dy/dx = eg€y 4.1)

8lip between the deck and steel beam,

where: Y

X

#

distance along the heam,

€g = longitudinal strain in the slab, and

€p longitudinal strain in the beam.
The slip is zero at the center of the bridge, and increases to a maximum
at the ends.

The pre-cracked plots indicate that the slip increased
nonlinearly with increasing load. In general, the cast-in-place end
seemed to slip more than the panel end, and the slab over the center
girder slipped more than the slab over either of the two exterior
girders., The largest slip occurred at the north end of the center
girder.

The post-fatigue load-slip plots, shown in Appendix B, were
also nonlinear, and the maximum slip was only 0.005 in. Slip at all
load stages showed a slight but consistent decrease after 5 million
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Fig. 4.8 Post-fatigue load-slip data, center girder, north end
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cycles of fatigue loading. This decrease in slip under fatigue loading
suggests that the composite behavior of the bridge did not deteriorate
under fatigue. The reasons for the decrease are not clear. Although it
might have been expected to result from a decrease in the in-plane
stiffness of the deck owing to cracking, little change in overall bridge
stiffness is apparent in Figs. 4.1 and 4.2.

4.4 Cracking Patterns in Deck

Cracking patterns in the deck are shown in Fig. 4.9 and 4.10.
Strains and deflections were originally assumed to be equal in both
exterior girders, and the symmetry of the cracking patterns about the
center girder substantiated this assumption., The cracking patterns were
non-symmetric about midspan, and the strains and deflections also
differed from one end of the bridge to the other.

Most of the cracking occurred in the bottom of the deck at the
cast-in-place end. Four short cracks formed on the bottom of the panel
end, near the loaded points, and some cracks formed on the top surface
of the deck over the panel joints. The 5 million cycles of fatigue
loading extended many of the cracks, and produced several new ones.

Crack widths under load ranged from less than 0.005 in. to
about 0.05 in. The narrowest cracks formed on the top of the deck, and
were caused primarily by shrinkage of the concrete. The widest cracks
were observed near the loaded points on the bottom of the cast-in-place
deck. These wide cracks opened up as the load was applied, and closed
almost completely when the load was removed.

The absence of longitudinal cracks over the exterior girders
indicated that the slabs there, and the girders supporting them, rotated
parallel to the longitudinal axis of the bridge as the load was applied.
The pattern of cracks on the bottom of the cast-in-place end suggested
the start of yield line fans on each side of the north end.

4,5 Calculation of Girder Loads from Strain Data

4.5.1 General. The distribution of girder loads was
determined from steel strain readings. Usefulness of raw strain data
was decreased by significant scatter as a result of errors caused by the
gages themselves, and also by errors introduced in reading the data.
Scatter was particularly noticeable for the gages near the supports,
which registered small strains. As will be discussed subsequently, the
steel strain readings were first smoothed, and the smoothed values were
used to calculate girder curvatures and the longitudinal variation of

girder moments and loads.
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4,5.2 Load-Strain Diagrams. The 108 plots of load vs. girder
strain data are shown in Appendices C and D. The plots in Appendix C
correspond to the pre-cracking test, and the plots in Appendix D
correspond to the post-fatigue test. A typical pre-cracking load-strain
plot (for Strain Gage 19) is shown in Fig. 4.11. This straln gage was
located on gage line 7, on the top flange of the west girder (refer to
Fig. 3.18).

The triangles in Fig. 4.11, representing original load-strain
data points, were rather scattered. It was reasoned that load-strain
data from an ideal gage would lie on a straight line passing through the
origin. The line shown in Fig. 4.11 represents load-strain data from
such an ideal gage. It passes through the origin, and is drawn to
minimize the sum of the squares of the deviations on the horizontal
axis., This smoothing procedure was used for all 108 load-strain plots
in Appendices C and D,

The smoothing procedure of Fig. 4.11 forced the experimentally
recorded load-strain behavior of the girders to be linear and elastic.
As noted earlier, this assumption is consistent with the linearity of
the bridge's behavior as evidenced by load-deflection plots (Figs. 4.1
and 4.2), and the correspondence between measured deflections and those
computed using linear elastic theory (Figs. 4.3 through 4.6).

4,5.3 Strain Gradient Diagrams. The strain gradients over the
depth of the girders for the pre-cracking and post-fatigue tests are
shown in Appendix E. Fig. 4.12 shows a typical strain gradient diagram
for the interior girder near the supports on the panel end, at the 25-
kip load stage. The three points on each strain gradient diagram are
smoothed strains corresponding to the 25-kip load stage. Each gradient
was then obtained as that line which would result in the smallest least-
square error for the three strain readings. Because the smoothed load-
strain curves were straight lines passing through the origin, the strain
gradients at each point were proportional to the applied loads. If the
load of 25 kips per ram were increased to 50 kips, then all smoothed
strains would double, and so would the strain gradients. The location
of the neutral axis of the composite section, read directly from the
plots in Appendix E, ranged from 24 to 34 in. above the bottom fiber of
the steel girders, with an average value of about 31 in.

The position of the neutral axis was also calculated assuming a
fully composite section with an effective width of 84 in. as given by
the AASHTO Specifications [1]. Because the concrete strains were small
under the applied loads, it was thought that the initial tangent modulus
should be used for concrete. The initial tangent modulus was calculated
by modifying the current ACI formula [44] for the secant modulus at 0.5
fd as explained below:
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1. E, was calculated using the current ACI formula [441,
_y 1.5 0.5
Ec = W, 33 (£g)

2. Assuming a stress-strain curve of the form suggested by
Hognestad [U5], the ratio between E, and Ey was calculated.

£, = £102¢ /e ) - (c_le ),

when €, = 0, Ep = 2(f3/€,)s

when ¢, = 0.5 rg, 2(e /e ) - (¢ /e ) = 0.5
2x - x2 = 0.5, x = 0.293

ET = 0.5f4/0.293 €,

Er/Eqx = 2/(0.5/0.293) = 1.17

3. Er was computed by multiplying the current ACI value for Ec by
that ratio:

Ep = 1.17 Eo = 1.17 (wo' *233(£4)0-3)

Young's modulus for the steel girders was taken as 29,000 ksi, giving
tangent modular ratios (Eg/Et) of 5.76 and 4.86 for the cast-in-place
and panel ends of the bridge, respectively. Using the AASHTO effective
width of 84 in., and considering the contribution of the reinforcement
in the deck, the theoretical position of the neutral axis was calculated
to be about 33 in. from the bottom of the girder. This number was close
to the average experimental value of 32 in. The calculation of the
position of the neutral axis according to the AASHTO Specification
assumes complete composite action. This assumption was substantiated by
the slip data in Section 4.3. The small slip between the deck and the
girders, shown in Figs. 4.7 and 4.8, indicated that the bridge was
indeed behaving as a composite structure.

4.,5.4 Moment Diagrams. Once the strain gradients had been
determined, the longitudinal distribution of girder moments was
calculated using the following procedure:

1. the curvatures (strain gradients in Fig. 4.12) were calculated
at each point along the girder;

2. these curvatures were multiplied by the corresponding
theoretical transformed EI values (calculated as discussed
above) to obtain the moments according to Eq. 4.2 below:

Eglg = d2y/dx2 = M(x) (4.2)
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where Eg = Young's modulus for steel;

Ig = moment of inertia of the composite section
transformed to steel;

M(x) = moment

The calculated moment diagrams for the exterior and interior girders are
shown in Figs. 4.13 and 4.14, for an applied load of 25 kips per ram.
As a result of the smoothing procedure used for the load-strain data,
the ordinates of each diagram are proportional to the applied load, and
the moment at any other load stage can be obtained by scaling. The pre-
cracking moment diagram is shown by the solid line, and the post-fatigue
diagram, by the dashed line. Because the panel end experienced little
cracking, the moment diagrams for that end were about the same before
and after the fatigue loading. Adjacent to the loads, cracks formed
over the girders on the cast-in-place end. These reduced the transverse
stiffness of the deck near the loads, and transferred the load
longitudinally to adjacent transverse slab strips. As a result, the
load was smoothed out along the length of the girder after cracking; the
moment diagrams refliected this behavior by also becoming smoother and
more rounded after fatigue loading.

4,5.5 Load Diagrams. Girder loads were computed from the
moments in Section U4.5.4 using the differential equation of a beam
deforming in flexure:

(d2(M(x))/dx2 = W(x) (4.3)

load, and

where W{x)
M{(x) = moment.

The previously discussed moment diagrams were numerically differentiated
twice using the central difference operator:

Wi = (Mj-q = 2Mj; + Mj4q)/h® (4.%)
where Wy = load at the ith point on the girder;
M; = moment at the 1M point on the girder; and
h = uniform distance between points on the girder.
The load diagrams for the exterior and interior girders are shown in
Figs. 4.15 and 4.16 for an applied load of 25 kips per ram. The pre-

cracking load diagram is shown by the solid line, and the post-fatigue
diagram, by the dashed line.
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The panel deck on the southern end of the bridge was stiffer
than the totally cast-in-place deck on the northern end, did not crack
much, and did not exhibit the longitudinal redistribution of load shouwn
by the cast-in-place end. As a result, the load diagrams for the panel
end had peaks at the loaded points that were consistently higher than
the corresponding peaks on the cast-in-place end,

Before the cast-in-place end cracked, it transferred the load
transversely (between the girders), as shown in Figs. 4.15 and 4.16:
the peak value at the loaded point was -110 1lbs/in. for the exterior
girder, and =150 1bs/in. for the interior girder. After the deck over
the interior girder cracked, its transverse stiffness was reduced, and
more load was transferred from the interior to the exterior girder,
This behavior is shown in Fig. 4.15 by the increase in load on the
exterior girder at the cast-in-place end from -110 1lbs/in. to -190
1bs/in. at the loaded point.

4.6 Computed vs. Experimentally Determined Load Diagrams

The load diagrams shown in Figs. 4.15 and 4.16 were used for
checking the accuracy of the techniques used to measure and reduce the
experimental data. Using the trapezoidal rule, the area under the load
diagrams was calculated (for both the interior and exterior girders),
and the total load so calculated was compared with the total load
actually applied at each load stage. This comparison, shown in Table
4,1, provided an overall check on the procedure used to compute girder
ioads from smoothed curvatures,

As shown in Table 4.1, the calculated load was 13 percent low
in the pre-cracked test, and 6 percent low in the post-fatigue test.

TABLE 4.1 Comparison of Calculated Load with Actual Applied Load

Calculated Load, Kips Actual
Applied
Exterior Interior ’ Load, %
Girder Girder Total Kips Error
Pre-Cracking 24,7 37.6 87.0 100 13
Post-Fatigue 26.5 41.0 94.0 100 6

———— - . . o . S o e et " ———— "~ ->——— -~ " ——————" o " —— . " " """ — o o

One possible source of error was the approximation of the actual area
under the load diagram by a series of trapezolids. Another possible
source of error was the fact that the data were collected from strain
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gages using switching and balance units. Errors were introduced from
the strain gages themselves, and from the recording of the strains
during the testing.

The reduction in percent error (Table 4,1) from 13 percent
before cracking to 6 percent after fatigue loading could be explained by
the fact that the post-fatigue load plots are smoother than the pre-
cracking plots. The smoothness would be expected to reduce the error in
approximating the curved load diagrams by straight lines. The error in
the experimentally determined loads was between 6 and 13 percent. Since
the experimental load diagrams were obtained by differentiating the
moments, the error in the moment diagrams is believed to be at most 6 to
13 percent., Because of this small error, the experimentally determined
moment diagrams are used as a reference for the moment comparisons shown
in the next chapter.






CHAPTER 5

COMPARISON OF EXPERIMENTALLY DETERMINED MOMENTS WITH THEORY

5.1 General

In this chapter, the moment diagrams derived using the
procedures of the AASHTO Code, the Ontario Highway Bridge Design Code,
and those obtained from a finite element model will be compared. As
discussed in Chapter 1, the AASHTO design moments for a bridge girder
are determined by loading the bridge with part of a truck load so as to
produce a maximum stress in a particular girder, and the design moments
in that girder are then calculated using a distribution factor times the
moment in that girder acting alone. Because the loads on the test
bridge were placed so as to produce a maximum stress in the center
girder, those girder moments can meaningfully be compared with predicted
code values.

5.2 Design Moments from AASHTO

The AASHTO procedure used to calculate girder moments for a
bridge was outlined quantitatively in Chapter 1. This procedure is
illustrated numerically in Fig. 5.1 for the center girder of the
laboratory specimen. A pair of 25-kip loads were applied to the center
girder, and multiplied by a distribution factor of (7/5.5), producing a
peak design moment in the center girder of 5730 in.-kips. The
experimental and theoretical moments are compared in Figs. 5.2 and 5.3.
The shapes of the curves are clearly different, and the peak moment
exceeds the experimentally determined value by about 80 percent.

5.3 Design Moments from Ontario Highway Bridge Code

The Ontario design approach for determining girder loads for a
highway bridge is similar to that of the AASHTO Code, except that the
distribution constant C is determined from charts. The design procedure
for calculating the moments in the interior girder of the laboratory
specimen is illustrated in Appendix F. The design moment for the center
girder is also shown in Figs. 5.2 and 5.3, The peak value of 4230 in.-
kips 1s higher than the experimental value by about 30 percent.

67
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5.4 Moments from Finite Element Method

The laboratory specimen was modeled using the finite element
method, which can closely approximate the actual solution for a wide
range of structures with complex geometry, connectivity, and material
characteristics.

The finite element model was developed as part of another
investigation [46]. 1In this finite element model, two types of elements
are used to model the composite bridge. The reinforced concrete deck is
modeled by two layers of thick shell elements in order to follow the
cracking of the deck at top and bottom surfaces. The steel girder is
modeled by three-dimensional beam elements. The computer program used
for this analysis, SAPIV [47], was designed for linear elastic analyses
only, and its application to the nonlinear analysis of reinforced
concrete was achieved using a sequential linear elastic technique.
Cracking of the deck was modeled using a smeared cracking model [48].

The finite element program gave moments for the steel girders,
but computation of overall longitudinal moments in the composite girders
was difficult and time-consuming. Examination of the output from the
finite element program showed that transverse sections through the steel
girder and concrete deck remained plane under load. Because plane
sections remained plane, composite girder moments were calculated from
steel beam moments by multiplying the steel beam moments by the ratio of
the flexural stiffness of the composite girders to the flexural
stiffness of the steel bean.

Moments so obtained from the finite element model are shown in
Figs. 5.2 and 5.3. The finite element moment diagrams follow the
experimental diagrams in the outer two 15-ft sections of the bridge,
nearest the supports. Adjacent to the loaded points, the finite element
solution is still close to the experimental solution. In the middle 20
ft, however, between the loaded points, the peak finite element moments
are 40 percent lower than the experimental values for the precracked
case, and 28 percent lower after cracking. In this middle portion, the
shape of the finite element solution also differs significantly from the
experimental data.

The reasons for this are not clear. Other comparisons [46]
showed that local finite element results agreed very well with
experimental values. The most logical explanation is that the procedure
used to calculate overall girder moments (multiplying steel beam moments
by the ratio of overall girder EI to steel beam EI) was not sufficiently
accurate in regions of the bridge subjected to higher 1local deformations
under concentrated loads. While it might have been possible to use more
precise procedures, this was not attempted due to lack of time, and
because a more exact comparison was not essential to the scope of this
study.






CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

The objectives of this thesis, given in Chapter 1, were as
follows:

1. to measure the girder loads and bending moments in a full-scale
bridge;

2. to compare the experimental girder bending moments with those
predicted using some of the available analytical methods; and

3. based on this comparison, to assess the relative merits of the
procedures studied.

Background material on refined and simplified methods for the analysis
of bridge superstructures was presented in Chapter 2. Seven methods
were briefly described: five refined methods and two simplified
methods. An experimental test program for a slab and girder bridge was
described in Chapter 3, and the test data were presented and discussed
in Chapter 4. Although many plots and figures were described in Chapter
4, the test data were used primarily to obtain plots of the longitudinal
moments (both pre-craciking and post-fatigue) for the center girder. In
order to confirm the validity of the data reduction program, computed
girder loads were compared with those actually applied. Other data,
such as load-deflection or load-slip plots, were useful for checking
purposes. The experimentally determined girder moments of Chapter U4 were
compared with the moments obtained from the AASHTO Specifications, from
the Ontario Highway Bridge Design Code, and from a finite element model
of the bridge. These comparisons are presented in Chapter 5.

6.2 Conclusions

No method for determining girder design moments is clearly
superior for all applications. Each has advantages and disadvantages.

One advantage of the experimental procedure is its accuracy.
The error in girder moments (probably within 13 percent) was considered
low enough to permit the use of the experimental moment diagrams as a
basis against which to compare the other moment diagrams. A disadvantage
of this approach, however, was the time and expense involved in testing
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a full-scale model, and the difficulty in applying the laboratory
results to other structures.

The finite element method is more suited for analysis than
typical design., One advantage of the finite element method was that the
predicted moments were very close to the experimental values for some
regions along the girder. It is believed that more precise procedures
for computing overall girder moments from finite element results would
have given good accuracy for the entire girder span. A second advantage
of the finite element method was its ability to predict the cracking
behavior of the deck. Disadvantages included: the need to use a
computer; the time required to develop a model; and the need for prior
knowledge of member sizes and material properties.

The AASHTO load distribution method is a simplified design
procedure which calculates girder design moments as though each girder
were acting alone. As a result, the shape of the AASHTO-predicted
moment diagram will not match the shape of the experimental diagram, and
predicted peak moments can be expected to differ significantly from
actual values. In the experiment described here, the peak moment value
predicted by AASHTO was 80 percent higher than the experimental value
(uncracked case). One advantage of the AASHTO load distribution method,
however, is its speed. The load distribution fractions are simply read
from a table. A second advantage is the fact that the designer does not
have to know the relative stiffnesses of the bridge members. The only
parameters needed for design are the beam type, the stringer spacing,
and the number of lanes. The convenience of the AASHTO Code, and its
long history of successful use in this country have led to general
acceptance by U.S. highway designers.

Like the AASHTO Code, the Ontario Bridge Code provides a
simplified method of design that determines the girder design moments
assuming the girder to act alone., It can therefore be expected to show
the same kinds of inaccuracies as the AASHTO procedure. The Ontario
procedure attempts to offer the designer more precise moment estimates.
For the bridge studied here, Ontario-predicted peak moments were 30
percent higher than experimental values. This prediction was not only
much more accurate than that of AASHTO, it also compares favorably wWwith
the solution obtained using the finite element method. However, the
Ontario Bridge Code has several disadvantages: 1) determination of
girder moments required much more extensive calculations than needed for
AASHTO; and 2) the designer had to know beforehand the relative
stiffnesses of the girders and deck.

Accuracy should not be the only c¢riterion by which these
methods are judged. When predicted moments are used for design, the
overall factor of safety of the resulting structure will depend on the
accuracy of the analysis and the conservatism of the design, and also on
the degree of indeterminacy and quality of construction of the
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structure. Without looking at this total picture, it is not possible to
define the desired degree of accuracy of a given method,

In assessing the proper role of these methods for estimating
girder moments, it Is important to recognize that each method has its
place. A method such as AASHTO (or perhaps a simplification of the
Ontarioc procedure) is necessary for preliminary design. After
preliminary deck and girder sizes have been picked, a method such as the
Ontario procedure can be used to produce a more efficient revised
design. The finite element method appears advantageous primarily for
checking local behavior.

6.3 Suggestions for Further Research

In the course of this experiment, a number of gquestions arose
which were not directly within the scope of this thesis. While time was
not available to answer them here, the author feels that the following
issues deserve further study:

1. The behavior of the c¢lip gages. 1In this and other related
studies, clip gages (used here for detecting slip) showed
erratic behavior at low strain levels. Ways of reducing this
erratic behavior should be found, or the gages should be
supplemented with surface strain gages.

2. Finite element girder moments. Different techniques should be
investigated for calculating overall composite girder moments
from the finite element output. Results achieved here (by
multiplying by EI ratios) were reasonably successful, but less
accurate than would have been expected based on other
comparisons of finite element and experimental results.

3. Use of finite element procedures for design. Using parameter
studies with finite element bridge models, it should be
possible to develop design charts similar to, and perhaps more
accurate than, those currently used in the Ontaric Code,

4, Diaphragm behavior. It would be useful to know more about
diaphragm behavior, in order to improve diaphragm design and
detailing, and to prevent the early diaphragm failures observed
in these tests,

5. Design procedures for other situations. 1t would be useful to
conduct studies similar to this one on a bridge with continuous
girders.
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TABLE A.1 Concrete Mix Design for Cast-in-Place Deck

Design Strength: 3600 psi

Water-Cement Ratio: 0,485

Slump: 3 in,
Type I Cement: 0.36%
Water: 0.42%
Aggregate: 0.22%
Added Water: 0%

Admixture:

% air entrained

TABLE A.2 Cast-in-Place Deck Properties

Concrete
Cast date: 2/28/84
fo! 14 day: 3510 psi
28 day: 4240 psi
180 day: 5160 psi
Slump: 3 in.
Steel
Size: 4
Grade: 60
Tested
yield
strength: 73 ksi
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Fig. A.1 Strength vs. age for cast-in-place couciece
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TABLE A.3 Precast, Prestressed Panel Properties

Concrete
Release strength:
Design strength:

Type:

Casting date:

fo: 48 hr:
T day:
Slump:

Prestressing Steel:

Size of strand:
Type:
Grade:

Prestress force
per strand:

4000 psi

6000 psi

Texas Class H,
Type III (high early
strength) cement,
6-1/2 sacks/cu.yd.

2/2/84

5104 psi

6593 psi

4 in,

3/8-in. diameter
T-wire

270, stress relieved

16.1 Kkips




TABLE A.Y4 Seven-Day Modul

us of Rupture Data

Breaking Modulus
Beam Load P of Rupture
No. (1bs) (psi)
1 3465 433
2 3470 434
3 4050 506
y 3890 486
5 2880 360
6 3080 385
7 3040 380
8 3580 Lhyg
9 3700 463
Average: 433 psi
S.D.: 49,6 psi
9 in Q. o
i ,,L: n Cin
l
"l
- F
6il:
/4 %

fy = My/I = ((18P/4)3)/(6%/12) = P/8 (psi)
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LOAD VS SLIP
NORTH END EAST GIRDER
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LOAD VS SLIP
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LOAD VS SLIP
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LOAD VS SLIP
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LOAD VS SLIP

SOUTH END CENTER GIRDER
POST-FATIGUE

(KIPS)

LOAD

1 T T 1 T T

o 1 2 3 4 5 8
SLIP (THOUSANDTHS OF AN INCH)



95

LOAD VS SLIP

SOUTH END WEST GIRDER
POST-FATIGUE

(KIPS)

LOAD

¥ L !

H

0 1 2 3
SLIP (THOUSANDTHS OF AN INCH)






APPENDIX C

LOAD VS. STRAIN PLOTS

PRE~CRACKING



98

STRAIN GAGE 1

2 'y
-,
B8 .
x
’“"2‘
391
- .

nJ

»

s

g4

2 £

21 .

2 .

el

"4 (COMPRESSION POSITIVE)

1 s 10
CHANGE IN STRAIN {(MICRO IN/IN)

STRAIN GAGE 3

»
"
”~
ga' s
£
s-vg-‘
3e:
-+ s,
g.
a.
2 .
g.
b .
g.
4 (TENSION POSITIVE)

o 15 30 “ /'o
CHANGE IN STRAIN (MICRO IN/IN)

LOAD QKI?S)
4 43 S0

15 20 25 M 3

1

STRAIN GAGE 2

&

s (TENSION POSITIVE)

o
CHANGE IN

LOAD g«m)
4.0 L] 5.0 113

20 25 30 38

13
h 2

1

2 4 s
STRAIN (MICRO IN/IN)

STRAIN GAGE 4

{COMPRESSION POSTTIVE)

Q $
CHANGCE IN

W 13 20 3; 30
STRAIN (MICRO IN/IN)



STRAIN GAGE §

2
>

LOAD SKIPS)
35 40 43 S0
L d

»

31w BB
»

]
rt
>

(TENSION POSITIVE)

o "

0 S 0 15 10 :; 30
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 7

13 20 25 30 38 L?gn ‘skti;g) us
KJ
.
»
>

"
»

L3 (COMPRESETON POSITIVE)

"o 10 0 30 .0
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE €

56 58

M

Lo&n ‘;3‘3)

3 33

15 20 28

A1
2

{TENSION POSITIVE)

3

0 30 *0 0 1}'0
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 8

"

»n

.

»o
ge; .
o .
\QT &
Q .

24 »

-
S .

g- &

-

8- &

& '

&1 a

2-

4 a

04 (TENSION POSITIVE)

"o 10 20 30 40
CHANGE IN STRAIN (MICRO IN/IN)

99



100

STRAIN GAGE 9 STRAIN GAGE 10
2 2
o2 2 y
- Lo ry
Za) =1
»
33' 33' s
-t -l
L3 01 s
{3
g. 3.
s- :. »
=. s-
3- =< &
e 24
» {TENSION POSITIVE) @ 'y {COMPRESSTION POSITIVE)
¢ 46 80 120 14D, 100 © 10 20 36 40
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 11 STRAIN GAGE 12
- Y, -
el Za.
e . E
-t -t
a1 A
2 a1
o1 by
8- - o
" 2-
o o4
" {TENSION POXITIVE) " (TENSION POSITIVE)

10 20 30 0 "o 50 100 150 00
cmét IN STRAIN (MICRO :u/’m) CHANGE IN STRAIN (MICRO m7xn)



101

STRAIN GAGE 13 STRAIN GAGE 14
H . a N
- & - &
g8 281 .
g g
~% ~21 .
[y &
38 321 .
- -t &
21 21 .
& &
8 . 8{ o
=- z.
&1 D &1 o
24 £+
[-F 2- a
wl Ao (COMPRESSION POSITIVE) LY . (TENSION POSITIVE)
"o 30 Y 0 120 0 4 s 12 18, 20
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 1S STRAIN GAGE 16
H -4 2
? i ﬁo.
£ % :
21 ~21 s
&
33' 33' 2
-t -t J [
a1 a .
(Y
8 21 .
4 b A
&1 &1 .
21 21 s
t-2 e]
n {TENSION POSITIVE) "y (COMPRESSION POSITIVE)
-3 (-]

° 50 100 150 17'9 0 s 10 15 20 /zs
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



102

STRAIN GAGE 17 STRAIN GAGE 18
a . a
221 . 31
) £
=% . ~2
33 : 2%
-t -t
3 21
a
31 37
2 . 2
8 g 8
24 21
oJ a o-
n (TENSION POSITIVE) n- (TENSION POSITIVE)
“o W 20 30 40 80 "o S0 100 150 }60
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 19 STRAIN GAGE 20
H s H
-~ - a
£ o ‘
u.o:\. A 5..‘- a
A
53- s Qo.
3 a 3' . ‘
g. ' g- a
A a
S 8-
21 . 2 .
=2 I 81 .
1 21 s
29 21
nda (COMPRESSION POSITIVE) L (TENSION POSITIVE)

o s W 15 20 , 28 “o 10 20 30 40
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



103

STRAIN GAGE 21 STRAIN GAGE 22
: a 3 &
-— 4 -
2:= & ga' Y
v 4 |4 &
E, &)
a
32 . 2e A
- wt .
2 2 .
)
2 31 .
n- o .
2 &
L3 E3
o -2 IS
- {TENSION POSITIVE) 0 4 {COMPRESSION POSITIVE)
= y 3 : 5 : 8 5 10 s
m& IN’g‘YR&I‘N” (ux‘go :::ofm) 280 CHANGE IN STRAIN (MIcrO xn/fu)
STRAIN GAGE 23 STRAIN GAGE 24
H N 4 .
- & L
221 231
g d g
-od ry -as.
{3
33‘ 33.
- s - )
21 21
)
21 81 (3
2 8
8 J 8
e e 3
e 2
nia (TENSION POSITIVE) wel Jfa (TENSION POSITIVE)

0 10 20 /1'o O 25 S0 75 100 128
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



104

STRAIN GAGE 25 STRAIN GAGE 28
"
k . 2 .
wol Y
5“ . . g.‘»" b .
\-ﬂs- » ?vg- LY
[ 3
o * -
& . 3 2
g' 4 31 »
'y 'y
g- & g.
:- & 2’ 13
£ » & s
el . 2;
e o1
»n {COMPRESSTION POSITIVE) e » (TENSION POSITIVE)

3 - —_—
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN ' (MxcRO IN/IN)

STRAIN GAGE 27 STRAIN GAGE 28

] -4 N
g1 gs :

3= . 3 :

-t d A
2 F g- r

[ ]

ﬂ 21 4

by o1 s

d £ o

L] L.

e 4 2 I

2- 24

e {TENSION POSITIVE} w s (COMPRESSION POSITIVE)

“6 10 20 36 40 30 0 v 1 3 4 s
CHANGE IN STRAIN (MICRC IN/IN) CHMANGE IN STRAIN (MICRO IN/IN)



LOAD gxxrs)
P B % B W 4

]
h

e

STRAIN GAGE 28

(TENSION POSITIVE)

"o s 10 18 20
CHANGE IN STRAIN (MICRO IN/IN}

STRAIN GAGE 3%

(COMPRESSION POSITIVE)

o s Y 15
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 30

350 38

KIPS
L%o ‘.SIP)

33

2 23 %

"

1w
h

o (TENSTON POSITIVE)

o 25 s0 75
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 32

50 88

LOAD {KIPS
40 c.g )

1B 20 25 30 38

10

{TENSION POSITIVE)

s
r
»

0 10 28 30 40 ’f Y
CHANGE IN STRAIN (MICRO IN/IN)

105



106

STRAIN GAGE 33 STRAIN GAGE 34
8 2
g'% Tp‘:’s. .
X ;
vt] ~
2 2g! .
- S
a. R. [y
31 2-
£ a9
& a4
- 2. {3
gq ¥
e {TENSTON POSITIVE) o . (COMPRESSION POSITIVE)
“a s6 106 150 200 e : y y y
CHMANGE IN STRAIN (MICRO mfzu) CHANGE IN gtunumtna‘ti‘) m/:zﬁ)
STRAIN GAGE 35 STRAIN GAGE 36
- a2
»®
E,. Lol
33' gew
-t -t
:‘l. g-
81 21
:l'. z.
&1 &
2 »:
2. 2.
" (TENSION POSITIVE} " (TENSION POSITIVE)

o 20 Yy 0 Y 0 78 150 213 /:o'o
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



83

Py

30

LOAD gK!PS)
!? 4.

35

)

STRAIN GAGE 37

{COMPRESSION POSITIVE)

M

e £ 10 15 20 3} 30
CHANGE IN STRAIN (WMICRO IN/IN)

{KIPS)
50

LOAD
15 20 2% 30 35 40 4%

10

STRAIN GAGE 39

{TENSIGN POSITIVE)

~»
0.00 75.00 1%0.00 22%.00 300.00

CHANGE IN STRAIN ({MICRO IN/IN)

(xips)
5.0 55

43
Iy

LOAD
0

STRAIN GAGE 38

{TENSION POSITIVE)

1] 1
CHANGE IN

35

30

LOAD (KIPS
4? ‘; )

38
N

n »

0 20 30 40 /;b
STRAIN (MICRO IN/IN)

STRAIN GAGE 40

(COMPRESSION POSITIVE)

[-B 4

[}
CHANGE IN

20 40 8o,
STRAIN (MICRO IN/IN)

107



108

{KIPS)
4? 30 E2]

LOAD
o

35

STRAIN GAGE 41

)A
o
¥
/A
/‘/
v
i
J/
//
f)‘
7
vf
/
/A/ {TENSION POSITIVE}

T Y

® 10 20 30 40 56 60
CHANGE IN STRAIN (MICRO IN/IN)

30 S35
h

LOAD {KIPS
% “L PS)

1w 13 20 23 30 33

STRAIN GAGE 423

s {COMPRESSION POSITIVE)

6 S5 W 15 20 25 30
CHANGE IN STRAIN (MICRO IN/IN)

LOAD '?(IPS)

(K1IPS)

Lusd

STRAIN GAGE 42

s 88
»

i
»

30 38 40
. >
-

23
h
.

ne {TENSION POSITIVE)

"o 100 200 300
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 44

58

| S
21 ¥
0 .//‘
s/

© .
-

+
A .

0
»
S

S

P

.
»

© //
N"‘ o
v
24 b
ol
/
wd &/ (TENSION POSITIVE)

/

o 26 ‘0 60
CHANGE IN STRAIN (MICRO IN/IN)



L33

25 30 35
By S N YU v Y W N S v S

(x1es)
45 30

L OAD
40

10 15 20

S

STRAIN GAGE 45

/
/
V. (TENSION POSITIVE}

oW

N ANy

225 300

78 180
CHANGE IN STRAIN (MICRC IN/IN}

LOAD gKIPS)
30 35 40 43 50 ss

2

STRAIN GAGE 47

(TENSION POSITIVE)

-y

o 20 0 0 80
CHANGE IN STRAIN (MICRO IN/IN)

(XIPS

LOAD )
10 1S 20 25 30 35 40 45 50 ° S$

STRAIN GAGE 46

(COMPRESSION POSITIVE)

o
0.00

s.00 10.00 15.C0 20.00

CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 48

(TENSION POSITIVE)

75 150 225 3
CHANGE IN STRAIN (MICRO IN/IN)

T

00

109



110

STRAIN GAGE 49

[ . n STRAIN GAGE 50 .
[y

£81 ’ 21 ‘
- [y ] Y
5“. [ 5“

- .7 .

. .

2 : 3¢ .
pu ) . puy .

by a1 Iy

(3 .
- . -2
»

bE . nd .

& . &1

QJ QJ

24 24

wd /s (COMPRESSION POSTTIVE) nd (TENSION POSITIVE)

2 5 10 15 20 2y 30 ° T . T IS

0 0 20 30 40 50
CHANGE IN STRAIN (MICRO IN)IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 51 STRAIN GAGE S2

55
3
ss

(K1PS)
30
(Klgg)

2 2 ’
L

[=] [~}
33 3% y
- - L

21 ,'f'ﬂ Iy

8 21

QJ 84 Iy

o 31 s

v wn

e el

» (TENSION POSITIVE) n 4 (COMPRESSION POSITIVE)

r T o | T *
150 200

o 50 100 0 s 10 15
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



111

STRAIN GAGE 53 STRAIN GAGE 54
M4 L4 a &
gg. » %5’:‘
Zy) )
&

2¢ ¢ 2s-
- . 1

21 51

&,

3 8

2 &

& . &

i ] nd

S E'

we fa {TENSION POSITIVE) n (TENSION POSITIVE)
o <

0 10 26 8 % so 78 19',0
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)






APPENDIX D

LOAD VS, STRAIN PLOTS

POST-FATIGUE



114

STRAIN GAGE 1 STRAIN GAGE 2
< . < a
g . o s
;g- a 2‘.2- »
- s Z .
o8- . o a
§ 4
. & R
S S -
2 B e .
24 N 2 .
L & Y
(COMPRESSION POSITIVE) {TENSION POSIYIVE)

by 5' T T 4 Y v
[} H 4 [ ] 1 1 14
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO xn/%n)

STRAIN GAGE 3 STRAIN GAGE 4

. 2 .
» w *
S8 551 .
- bt &

2+ (] 32' (3
% g

2 2 ‘

g- { gJ 'y

nd Y il )

e . 2]

- a nd &

(TENSION POSITIVE) (COMPRESSION POSITIVE)

- " ’ g .
0 13 30 P o ° H 10 s
CHANGE IN STRAIN (MICROG IN/IN) CHANGE IN STRAIN (MICRO ZN)IN)



L]

KIPS
(xps)

LOAD
3

"

STRAIN GAGE 5

{TENSION POSITIVE)

o s W 15 20, 25
CHARGE IN STRAIN (MICRO IN/IN)

40

(k1ps)
3

LOAD
39

3

STRAIN GAGE 7

(COMPRENSION POSITIVE)}

0 10
CHANGE IN STRAIN

Y

20 30
{MICRO IN/IN)

115

STRAIN GAGE 6

38 40

{KIPS)

LOAD
%

(TENSION POSITIVE)

o 30 80 90 120
CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 8

4 40
»

35

LOAD (KIPS)
3
»

{TENSION POSIYIVE)

"6 10 20 30 40 50 jﬁ 70
CHANGE IN STRAIN (MICRO IN/IN)



116

STRAIN GAGE 9 STRAIN GAGE 10
- 2
) *
(LR Ei% &
£ X
[~
Od -4
2 g
- ™3
21 &
{1 &1
. 2.
- e.
P i )
(TENSION POSITIVE) (COMPRESSION POSITIVE)
T L) L r oo v T T
4] 40 80O 120 180 10 20 30
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 11 STRAIN GAGE 12
2 ®
-
b »
w -,
&‘3' gm.
x =8
x
-3
2" 2%
- i
a1 g.
&1 8-
2 -
21 @
e @
{TENSIOR POSITIVE) {TENSION POSITIVE)
= o

bt

0 10 20 30 40 I %0 160 1506 20
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



117

STRAIN GAGE 13 STRAIN GAGE 14
s g .
7 y, @
[’
53' Eg.
b A &
sg{ 3 -2
3 3
b2 /A o a
2 d 8 .
24 . - .
24 24
»" nq A
(COMPRESSION POSITIVE) (TENSION POSITIVE)
"o 30 o0 4 8 12 16 20 24 28 :'} 38 40
CHANGE IN STRAIN ([MICRO IN/IN) CHANGE IN STRAIN {MICRO IN/IN)
STRAIN GAGE 15 STRAIN GAGE 18
e 3 .
- L) ’u'"
w
£ ; 2 :
= a <
ga- . 39.-
- -
. » o 4
2- &7 d
o4 . o1
=8 S e .
wds PER)
{TERSION POSITIVE) (COMPRESSION POSITIVE)
o Y ©

4

° 50 100 150 0 s 10 15 20
CHANGE IN STRAIN {MICRO IN/IN) CHANGE IN STRAIN {MICRO IN/IN)



118

STRAIN GAGE 17 STRAIN GAGE 18
g 2
m . n
1 gn-
- D
g g
-t -

H
28
;

Q. =L
o ~N
21 24
21 24
O e
(TENSION POSITIVE) (TENSION POSITIVE)
"o 10 20 30 40 "o 50 160 150 200
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 19 STRAIN GAGE 20
-] LI e

(KIPS)
3
(KIPS)
3

»

o A s
-4 2n
o o
- J -
v
~ 4 -
o
“ s 2-
o a »
bid
2~ s °

{COMPRESSION POSITIVE) (TENSION POSITIVE)

5
— A1

(-1 ’ Y

o s 10 1S 20, 2% o 10 20 30 0
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN}



119

STRAIN GAGE 21 STRAIN GAGE 22

(-]
g 2 .
—
2 e ’
"
= [ a
£ i
x
251 281 :
3 3
-
n.d
4 o
o~
2- o
N- Iy
" J
2 e .
oJd
2 e{
7 1 111 i
TENSION POSITIVE 1
( ) (COMPRESSION POSITIVE)
°
o T

o st 100 / 180 o P o 15
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 23 STRAIN GAGE 24
e y g
7 7
£ Lo
< A <
-y-7 a ac
5" 3"
-d -l
2 21
& 21
" J 2.
o o4
- Py
(TENSION POSITIVE) (TENSION POSITIVE)
o

o

0 10 20 7'0 0 25 50 78 100
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



120

STRAIN GAGE 25 STRAIN GAGE 26

2 » 3 &
? » 7; -
= ‘ * ‘
- s - s

(=32 . -

8 2

- -t

51 s nd .

& - s

‘2'| D 24 L

2 e

e ™ {3

(COMPRESSION POSITIVE) (TENSION ROSITIVE)

"o 2 "6 2 4 & 8 10 12 14

CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 27 STRAIN GAGE 28

g . s

73 v

58 gz-

°d [-&

3 g°

-t -

5
;
3

&4
™~ ~
. ‘2‘
- 2+
e o a
(TENSION POSITIVE) {COMPRESSION POSITIVE)

y Y Y Y Y

2 10 20 30 40, 80 S0 01 2 3 4 8 &
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN {MICRG IN/IN)



121

STRAIN GAGE 29 STRAIN GAGE 30

40
" v
40
N

LOAD (KIPS)
3
»
»
(KIPS)
3

2 /,« ga- /
r -
2 y' 2 4
& /ﬁ,‘ &1
/

4 "
” / * (TENSION POSITIVE! (TENSION POSITIVE)
o v A
“2 5 10 o 23 0
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN}
STRAIN GAGE 3° STRAIN GAGE 32
2 7 L 3 a
e L) P a
44 0
Q-m. i o'ﬂ..
fedd] . (14
o8- a / 9‘.
2 / 3
1 ‘,/ - -
Q9 » / -2 'y
bl s 24 -
24 // o a
L v -
{COMPRESSION POSITIVE) {TENSION POSITIVE)
. . :

o s 15 °9 10 20 30 a'}
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



122

STRAIN GAGE 33 STRAIN GAGE 34
-4 S .
- / -~ IS
& L
Sl i
'y 2.
g -
- -
2 & .
&1 & 'y
04 o [y
e & -
s ©- 'Y
(TENSION POSITIVE) . {COMPRESSION POSITIVE)
© v T v © d v v v
4} 113 100 )50 0 L] 10 15 20
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN {MICRO IN/IN)
STRAIN GAGE 35 STRAIN GAGE 358
< 2
- -
— 3 —
Z g
Qg' ;3‘
L F-3-&
gﬂ 8”
- -
v w
o4 e
~ ~
21 s E3
2 s 2
L 0 & n~
{TENSION POSITIVE} (TENSION POSITIVE)
© -3

1 20 48 [} 75 15'0 2715
CHANGE IN STRAIN (MICRO IN/INY CHANGE IN STRAIN (MICRO IN/IN)



123

STRAIN GAGE 37 STRAIN GAGE 38
g . ? :
"; &
w Bn
B . -
X" x
- &
[-L8% a
<4 "
2" 3
-
]
. Y ~
~
& . &7 L
nd a bl a
-4 a 24 .
4 -
” {(COMPRESSION POSITIVE) (TENSION POSITIVE)
y N . 20 Y
N ; 6 15 20 25 %0 0 10 o
CHANgE INS STRAIN (MICRO m}m) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 38 STRAIN GAGE 40
¢ ] .
@ '5 (S
- 571
x x R
. o a
» -
3 2
- -
Eh a4
& o &
21 n.
o =X
g wne s
(TENSION POSITIVE) (COMPREISION POSTTIVE)
hd °

o s 130 218 0 }b
CHANGE IN STRAIN (WMICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



124

STRAIN GAGE 41 STRAIN GAGE 42

< . 4 .
_— ~ &
) »

&
gﬁ' 52‘ A

A -

v -1-&'

»
H 3~
-t -

21 4 1 .

&1 e

0. . .

21 s 21

] Ll .,

{TENSION POSITIVE) {TENSION POSITIVE)
~ "y L]
40

° 10 20 36 0 100 200
CHANGE IN STRAIN (MICROD IN/IN) CHANGE IN STRAIN (MICRO IN/IN)

STRAIN GAGE 43 STRAIN GAGE 44
2 S
7 Y, 7 |
Eg. Py 52.
> . <
= » as
3% ol
- -t
o 04
8 . e
- 4 24
24 . e
|
n * n s
{COMPRESSION POSITIVE) : (TENSION POSITIVE}
& .

®% 8 10 15 20 28 30 b ~
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



125

STRAIN GAGE 45 STRAIN GAGE 46
- e .
g g ,
;2' ‘;_“_;g. A
—r A &
324 ag.
2 g
HE 21
&1 2
24 o .
24 24 s
7 (TENSION POSITIVE) 7 (COMPRESSION POSITIVE)
°% 75 150 218 0 s 10 15 20
CHANGE IN STRAIN (MICRO IN/IN} CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 47 STRAIN GAGE 48
- s g
@ 17
&
53' 22'
-2 D
g g
-t wd
o3 . w3y
™ ~
g- g.
n - nd
o 2
nY A s
(TENSION POSITIVE) {TENSION POSITIVE}

o 20 40 s o 7 150 228
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



126

STRAIN GAGE 49

e N 3 STRAIN GAGE S50 .
Th\ L) - L
&-n. gn- "
x" ¥n
~ . ~ Iy
Q8- a L .

2 2
- -

o 'y 2- »

& =4 .

4 il s

24 g =1

v < L

{COMPRESSION POSITIVE) (TENSION POSITIVE)

-] T T T T T o T T

o -] 10 15 20 25 0 10 20
*  CMANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)
STRAIN GAGE 51 STRAIN GAGE 52

4 a < a
- ' o~ a
" 4 [’d
Y .
i SR :
X P x .
QSJ v o84 a
[=] s g
- S [«]

/ -
2 / 21 .
//

& /,A S

o4 v ol a
24 ;/ 21
n a/ o

// (TENSION POSITIVE (COMPRESSION POSITIVE)
© \ T - ~r

0 50 100 ,150 0 s
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN)



127

STRAIN GAGE 53 STRAIN GAGE 54
= . 2
_— {3 -
g g
o SR
~— N hd 4
o », o4
2 2
- -l
. . o
&1 bl 2
e . e
e 24
o & Lol
{TENSION POSITIVE) (TENSION POSITIVE)
td T ©

20

o 10 0 25 50 ;r/s
CHANGE IN STRAIN (MICRO IN/IN) CHANGE IN STRAIN (MICRO IN/IN}






APPENDIX E

STRAIN GRADIENT DIAGRAMS
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APPENDIX F

CALCULATIONS FOR DETERMINING GIRDER DESIGN MOMENTS

BY THE ONTARIO BRIDGE CODE
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CALCULATIONS FOR INTERIOR GIRDER OF HIGHWAY BRIDGE MODEL

The design procedure for calculating the moments in the
interior girder of the laboratory specimen according to the Ontario
Highway Bridge Design Code [2] are shown below. The notation used is
listed at the end of this appendix, and is taken directly from Ref. 2.

The first step in the Ontario procedure is to calculate the

parameter Dx for the interior girder:

D, = EI / beam spacing
D, = (E . (25,000 in.") . (3 beams) . (2.54 em/in.)%) / 213.4 cm
D, = 14,630 . E cm’

D is then calculated as:

Dy = (E x (slab thickness)3) / 12
D, = (E (19.05 em)3) 7 12
Dy = 576 L[] E

Neglecting the contribution of the steel beam to the torsional moment

of inertia:

Dyy = Dyx = (G (slab thickness)3) / 6
Dyy = (E x (19.05)3) / (2 . (1 + 0.15) . 6)
Oyy = 501 . E

Dy =Dp = vy x (lesser of Dy and Dy)

= 0,15 (576 . E)

()
]

o
—
"

86 . E
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The parameters o and 8 are then calculated as:

@ = (Dyy + Dyy + Dy + D) / (2 x (D, . DyIO+>)

((501 + 501 + 86 + 86) . E) / (2((14,630 . E) . (576E))0:5)

a =
a = 0.202
_ 0.2
6 = b/L (D,/Dy) 5
8 = 305cm/1524cm ( (14,530 . E)/(576 . E)0-25
8 = 0,449

Witha = 0.202 and & = 0,449, the values of D and C¢ can be read from

Fig. 3.7.1.2.2(b) of Ref., 2 (Fig. F.1):

D = 2.35

Ct = 9.0
The width of a design lane is calculated as:

W, = Wc/n

W, = 6.10m/2

[¢]
[}

3.05m

L~
L

The value of |y is calculated as:

M= (W = 3.3)/0.6 < 1.0
W= (3.05 - 3.3)/0.6
b= =0.417

The Ontario load distribution factor, which is analogous to the value

5.5 from the AASHTO Specifications, is calculated as:
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3—7.1.2.2(b)
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Fig. F.1 Charts for C and D (Fig. 3-7.1.2.2(b) Ref. [2])
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Dg = D (1 + (|4 C¢/100))

Dg = 2.35 (1 = (0.417 (9)/100))
Dd = 2.26 m

Dd = T.41 ft (3.280 ft = 1 in.)

According to the Ontario Code, the design moment for the center girder

is then:

P (15 ft) (8/0)

"

Design moment

25 k (15 ft) (7.0/7.41) 12

4230 in.-k
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The following notation is used in the calculation of girder
design moments by the Ontario Bridge Code:
1 a correction factor used to adjust the D value for
longitudinal moment and longitudinal shear
D the load distribution factor
the load distribution factor modified for design
D; the coupling rigidity per unit width
D> the coupling rigidity per unit length
Dx the longitudinal flexural rigidity per unit width
D the longitudinal torsional rigidity per unit width
Dy the transverse flexural rigidity per unit length
D the transverse torsional rigidity per unit length
E the modulus of elasticity
G the shear modulus
L the span of a bridge
Wa the bridge deck width, m
W the width of a design lane, m
b the half-width of a bridge
a torsional parameter = (ny + Dyx + Dq + DZ)/Z([Dny]O.S
@  a flexural parameter = (b/L) [Dx/Dy]0'25
po (Wg = 3.3)/0.6 > 1.0

Vv Poisson's ratio
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NOTATION

specified constant for various bridge types

i

= distribution factor

= secant modulus of elasticity of concrete at 0.5f]
= modulus of elasticity of steel (29,000 ksi)

= calculated flexural stiffness of girder

= initial tangent modulus of elasticity of concrete

compressive stress in concrete

28~day compressive strength of 6-in, by 12-in. concrete
cylinders

1]

average girder spacing (ft)
= uniform distance between points on the girder

calculated moment of inertia of composite girder section,
transformed to steel

H

= Span length

= moment at the itP point on the girder
= moment at distance x along girder

= concentrated load

= unit weight of concrete (pef)

= load at the ith point on the girder

= load at distance x along girder

= 5lip between deck and steel beam

= longitudinal strain in the beam

= strain in concrete

1]

compressive strain in concrete corresponding to maximum
stress

longitudinal strain in the slab

#
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