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Abstract 
 
Inverted "T" bent caps are used extensively in concrete highway bridges because they are 

aesthetically pleasing and offer a practical means to increase vertical clearance. The problem is 
that at service load unacceptable diagonal cracks frequently occur at the re-entrant corners 
between the cantilever ledges and the web. In order to control the diagonal cracks, an extensive 
three-phase investigation was carried out. The first phase was to predict the diagonal crack 
widths at the interior portions of the bent caps. A 2-D analytical model, called Compatibility-
Aided Strut-and-Tie Model (CASTM), was developed. This model was calibrated by the test 
results of seven full-size 2-D test specimens. The second phase was to predict the diagonal crack 
widths at the end faces of the exterior portions of bent caps. In this phase the CASTM was 
extended to 3-D analysis, which was calibrated by the test results of ten 3-D specimens. In the 
third phase, two whole-bent-cap specimens were tested to determine the effective distribution 
width in the vicinity of an applied load on the ledge. Crack control methods for the interior spans 
and the exterior end faces were recommended. 

 
The first and second phases of research were reported in TxDOT research reports 0-1854-

3 and 0-1854-4, respectively. This report (0-1854-5) serves two purposes: (1) to describe the 
third phase of research in details, and (2) to summarize all three phases of research. 
 
 
 
 
Keywords: Bent Caps; Bridges; Crack control; Crack Width; Inverted-T Beam; Re-entrant 

corner; Reinforced Concrete; Serviceability. 
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Chapter 1. Introduction 
 
1.1 Project Objectives 
 

Inverted "T" bent caps are used extensively on Texas bridges because they are 
aesthetically pleasing and offer a practical means to increase vertical clearance.  As shown in 
Fig. 1(a), the cross-section of an inverted "T" bent cap consists of a "web" with short cantilever 
"ledges" at the bottom to support the bridge girders, thus minimizing the structural depth of 
bridges.  The problem is that at service load unacceptable diagonal cracking frequently occurs 
between the cantilever ledges and the web as shown in Fig. 1(b) and (c).  In addition to giving 
the appearance of structural distress, excessive crack widths can lead to the corrosion of 
reinforcement and the shortening of service life of bridges. 

At present, the design of inverted ‘T’ bent caps is based on ultimate strength concept 
(Mirza and Furlong, 1983, 1983, 1985, 1986), and is susceptible to high service-load stresses in 
reinforcement that cause excessive crack width. That is, the current design guidelines do not 
address the problem of crack control at service load adequately; thus, explicit design provisions 
for cracking need to be developed. The research described in this report seeks to fill this need by 
developing an intelligible behavioral theory that supports serviceability designs for inverted T 
bent caps. 

The research is divided into three phases: Phase One deals with two-dimensional (2-D) 
test specimens, Fig. 1(b), that represent the interior portions of inverted T bent caps and dapped 
ends of bridge girders. Phase Two deals with three-dimensional (3-D) test specimens, Fig. 1(c), 
that represent the exterior portions of the bent cap where cracking is most visible. Phase Three 
deals with the bent caps as a whole, Fig. 1(d), including both the interior span and the exterior 
cantilever portions. 

 
1.2 Phase One Research 

Phase One Research followed a two-step methodology: First, develop a theoretical model 
for crack widths; and secondly, test full-size specimens and use the test results to calibrate the 
forces and deformations in the model to the crack widths. 

The first step produces a theoretical model that not only provides a physical basis for 
crack widths, but also leads to a conceptually clear method of design. For the D-regions of 
reinforced concrete structures such as the re-entrant corners, the strut-and-tie model (Schlaich et 
al., 1987) is a very powerful tool for visualizing the internal flow of forces and for arranging the 
steel bars and concrete struts. In this type of application, only the equilibrium condition at 
ultimate load stage needs to be satisfied. In this research, the strut-and-tie model was applied to 
the prediction of crack widths by taking into account the compatibility condition at service load. 
This Compatibility-Aided Strut-and-Tie Model (CASTM) satisfies both the equilibrium of 
forces and the compatibility of deformations. 

In the second step, in order to relate the forces of struts and ties to their deformations, and 
then to the crack widths, the formulation of CASTM must be accompanied by the testing of 2-D 
specimens as shown in Fig. 1(b). The 2-D specimens must be full-sized to avoid the similitude 
problems involved in reinforced concrete structures. Seven full-sized specimens were tested to 
calibrate the theoretical model. Since each end of a specimen supplies a set of test data, a total of 
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14 sets of test data is available for analysis. The calibration resulted in simple, accurate equations 
for predicting the diagonal crack widths at interior locations of inverted "T" bent caps and 
dapped ends of bridge girders.  

Complete records of Phase One Research can be found in a research report TxDOT 0-
1854-3 (Zhu, Wanichakorn and Hsu, 2001). A condensed version was published in a paper in the 
ACI Structural Journal (Zhu et al, 2003). 

 
1.3 Phase Two Research 

Phase Two Research deals with the diagonal crack widths at the exterior portion of the 
bent cap, Fig. 1(a).  The 3-D specimen representing this region is shown in Fig. 1(c). In this 
region, the stresses and strains of the bent caps are three-dimensional (3-D), rather than two-
dimensional (2-D) as in Phase One. Therefore, the analytical model CASTM, which applied to 
the 2-D specimens, was extended to 3-D specimens to predict the crack widths on the end faces. 

Ten 3-D specimens were tested to study the effect of two primary variables on the crack 
widths of end faces. These two variables were: (1) distance from the most exterior load to the 
end face, and (2) the number of diagonal bars. The crack widths measured at the end faces were 
correlated to the CASTM model while incorporating the effect of these two variables. The 
proposed design formulas are reasonably simple and easy to follow. 

Complete records of Phase Two research can be found in a research report TxDOT 0-
1854-4 (Zhu and Hsu, 2003). 

 
1.4 Phase Three Research 

Phase Three Research deals with the tests and analyses of whole specimens. Two whole 
specimens were tested as shown in Fig. 1(d). The main purpose of this phase of research was to 
find out how far an applied service load on the ledge can distribute along the span and how many 
hanger bars contribute to resisting the load. This effective distribution width of hanger bars along 
the span is required to determine the width of a 2-D model for the calculation of the crack width. 
The second purpose of Phase Three Research was to check the effect of the hanger bar spacing 
and the size of the bearing pad on the crack width. 

No separate report was issued for Phase Three research. The test specimens, test facility, 
and the extensive test results of the whole bent caps are described in this final report. 
 
1.5 Scope of This Final Report 

 
This final report summarizes the research done in phases one, two and three in chapters 2, 

3, and 4, respectively. Chapter 4 contains more details of Phase Three research, because the tests 
of the two whole bent caps were not recorded in a separate report. In addition to describing the 
test facility for the whole bent caps, careful descriptions are given on the measurements of the 
hangar strain variation along the span and the determination of the effective distribution widths 
for hanger bars. 

Chapter 5 summarizes the recommended design method for crack width prediction, 
method of crack control, and proposed code provisions. The principle of similitude is also 
discussed. Finally, a design example is given in Chapter 6 to illustrate the application of the 
proposed design method. 
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Chapter 2. Phase One Research: 2-D Specimens 
 
2.1 Experimental Work 

 The dimensions and steel arrangement of a typical test specimen with diagonal bars 
(Specimen T5) are shown in Fig. 2.1(a). Because of the symmetry about its mid-span plane, each 
specimen can provide test data for two re-entrant corners at service load. The vertical shear 
reinforcement in the web of the specimen will be referred to as  “hanger bars” and the horizontal 
flexural reinforcement in the ledge as “flexural bars”. Two other types of reinforcement are 
“diagonal bars” oriented perpendicular to the diagonal crack and “shear-friction bars” placed 
horizontally at the mid-depth of ledges (flanges). Specimen T5 in Fig. 2.1(a) contains diagonal 
bars, but no shear-friction bars. 

In order to study the effectiveness of these four types of reinforcement, different 
proportions of steel were provided in the seven specimens as shown in Table 2.1. The service 
load capacities of these seven specimens are given. The ultimate load capacities are also given, 
except that of specimen BPC1. This special specimen was tested with a different objective in 
mind (studying a repair method using carbon fiber sheets). 

Service load is difficult to define because the yielding sequences of hanger, flexural and 
diagonal bars vary for reinforcing steel arrangements. For convenience, service load is defined as 
a range from 60% of the first bar yield load to 60% of the last yield load.  
 4000 psi ready-mix concrete and Grade 60 deformed No. 6 steel bars with average yield 
strength of 64,000 psi (441 MPa) were used for all specimens.  

A total of 38 linear voltage displacement transducers (LVDTs) and 24 SR4 electrical 
strain gauges were used to instrument each specimen.  The average strains of concrete and steel 
bars were measured by 14 LVDTs on each side of a specimen. Eleven LVDTs were arranged in a 
pattern according to the proposed strut-and-tie model and in such a way that the strain data could 
be cross-checked (Fig. 2.1(b)).  At three locations along the diagonal cracks, LVDTs were 
installed to measure the diagonal crack widths over a gauge length of 9.5 in. (241 mm). 

Hand-held microscopes were also used to measure widths of the diagonal cracks at the re-
entrant corners of the specimens.  

 
2.2 Crack Width Prediction Using CASTM 

The CASTM (Compatibility-Aided Strut-and-Tie Model) without diagonal bars is shown 
in Fig. 2.2(a). This truss model is statically determinate so that the forces in the hanger bars H 
and in the flexural bars F can be calculated directly from the applied loads V on the ledges. 
These forces H and F are converted into strains H ε  and F ε , respectively, using their axial 

stiffness. These strains are used to form the diagonal crack strain 2
F

2
HHF ε+ε=ε . 

Multiplying HF  ε  by a CASTM gauge length HFL   results in the diagonal crack width w at the re-
entrant corners. This CASTM gauge length HFL   was calibrated by the tests of full-size 2-D 
specimens to be HFL   = 9500 HFε  - 3.0 (in.). 

The CASTM model with diagonal bars is shown in Fig. 2.2(b). This truss model is 
statically indeterminate, but can be decomposed into two statically determinate sub-trusses, one 
consists of hanger bars and flexural bars while the other is made of diagonal bars. When a load 
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2V is applied at midspan, these two sub-trusses must deflect the same amount at this point. This 
deformation compatibility condition is used to determine the distribution factor B for diagonal 
bars. The sub-truss with diagonal bars should resist a load of BV at each ledge, while the sub-
truss with hanger bars and flexural bars must resist a load of (1-B)V at each ledge. Using 
extensive virtual work analysis, the distribution factor was calculated and then simplified to be B 

= 
SDSFSH

SD

AA5.0A
A

++
. 

The CASTM model with or without diagonal bars was verified by the tests of seven full-
size 2-D specimens. The design equations of CASTM with diagonal bars are identical to those 
without diagonal bars, except that the former involves the distribution factor B.  When B is taken 
as zero, the CASTM with diagonal bars simplifies to the CASTM without diagonal bars.  

The diagonal crack widths w at the re-entrant corners of inverted T bent caps with or 
without diagonal bars can be predicted by CASTM as follows: 

 
                                                  HFHFLw ε=              (2.1)  

where  
 w   =  predicted diagonal crack width (in.) 
       HFL   =  CASTM gauge length for calculated hanger and flexural steel strains  
   = 9500 HFε  - 3.0 (in.) 
       HFε  =  diagonal crack strain calculated by hanger and flexural strains   

                   =  2
F

2
H ε+ε  

     Hε  =  hanger strain or strain in the vertical direction  = 
SHSAE2.1
V)B1( −

 

     Fε  =  flexural strain or strain in the horizontal direction  = 
SFS

V

AE2.1
cotV)B1( θ−

 

    V   =  applied service load at each ledge (in kips) 
                              Vθ  =  angle between flexural steel bars and the diagonal strut at the point of  
                                                 load V 

      B     =  distribution factor for diagonal bars   = 
SDSFSH

SD

AA5.0A
A

++
 

    SDA   =  total cross-sectional area of diagonal reinforcement at each ledge of 2-D  
                        specimen (in.2) 
    SHA   =  total cross-sectional area of hangar reinforcement at each ledge of 2-D 
                        specimen (in.2) 
    SFA   =  total cross-sectional area of flexural reinforcement at each ledge of 2-D  
                        specimen (in.2) 
      SE     =   29,000 ksi 

It should be noted that a simplification has been made in the above derivation, as 
compared to previous reports (Zhu, Wanichakorn, and Hsu, 2001; Zhu, Wanichakorn, Hsu and 
Vogel, 2003), in which the stiffness of a steel tie surrounded by concrete cover was calculated by 

CCSS AEAEEA += . In this expression, CE is the tensile modulus of elasticity of concrete given 
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as ,)psi(f87.1)ksi(E CC ′=  not the compressive modulus of elasticity given as 

.)psi(f57)ksi(E CC ′=  CA  is the area of concrete surrounding the steel tie.  In this 
simplification, we assume that CCAE = 0.2 SSAE , resulting in SSAE2.1EA = (see Appendix A). 
This simplified stiffness of steel tie is used in the above calculation of hanger steel strain H ε  and 
the flexural steel strain F ε . 
 
2.3 Comparison of CASTM with Tests 

 
The predicted results based on recommended design equation (2.1) are compared to the 

crack widths measured by LVDTs as shown in Figure 2.3(a). It can be seen that the CASTM 
predictions match the test results very well, particularly in the service load range. Table 2.3 
compares the CASTM predictions with the test results at the mid-point of the service load range. 
Two test data points, one from each end of a specimen, are compared to the predicted crack 
widths in Figure 2.3(b). It can be concluded that the predictions are well supported by the test 
results. 

 
 

Chapter 3. Phase Two Research: 3-D Specimens 
 

3.1 Experimental Work 

Ten 3-D specimens are listed in Table 3.1. Two primary variables were investigated; (1) 
the load position from the most exterior load to the end face, and (2) the number of diagonal 
bars. The spacing of hanger bars, flexural bars and diagonal bars are maintained at a constant of 
4 in. center-to-center. 

The 3-D test specimens as shown in Fig. 3.1(a) and (b) are symmetrical about the vertical 
centerlines of the end face, so that each end face can furnish two diagonal crack widths, one on 
the west side and one on the east side. Figure 3.1(c) shows the steel cage without diagonal bars 
and Figure 3.1(d) shows the steel cage with diagonal bars. 

The concrete used in the 3-D specimens of Phase Two study was the same as that used in 
the 2-D specimens of Phase One study.  Grade 60  No. 5 rebar was used for the hanger and 
flexural bars. The average yield stress was 64.0 ksi, and the yield strain was 0.0022. 
 The nominal shear resistance nV  for the service limit state is calculated based on the 
following equation according to AASHTO Standard Specifications for Highway Bridges Eq. 
(5.13.2.5.5-1) (AASHTO, 2000): 

                                          )a3W(
S

)f5.0(A
V v

yhr
n +=                                   (3.1)   

where nV  = the nominal shear resistance, in kips, for single-beam ledges 
  hrA  =  area of one leg of  hanger reinforcement (in2) 
 S  = spacing of hangers (in) 
 yf  = yield strength of reinforcing steel (ksi) 
 W  =  width of bearing (in) 



  6

 va  =   distance from face of wall to the load (in) 
Eq. (3.1) does not take into account the cases where va3W + is larger than the spacing of 

the bearings or is larger than 2 times the distance LE from the center of bearing pad to the end 
face. In the case of exterior bearing pad and Ev L2a3W >+ , the following equation should 
apply: 

                                               E
yhr

n L2
S

)f5.0(A
V =                                              (3.2) 

The nominal shear resistance nV  for the service limit state calculated for the ten 3-D specimens 
are given in Table 3.1. 
 All specimens were tested in the 2.5-million lbs MTS testing system, located at the 
University of Houston Structural Research Laboratory.  The test set-up is shown in Fig. 3.1(a) 
and (b).  
 As shown in Fig. 3.1(b) the load V was calculated from the applied load P by the 
following formula: 

                                                          







−

=
EL.in67

.in13
2
PV                          (3.3) 

When EL = 10 in., V = 0.114 P. 
This MTS test system is controlled by a versatile TestStar system, which can provide 

both load-control and strain-control procedures. The load was first applied by the load-control 
procedure in the linear stage of load-deformation curve, and was then switched to the strain-
control mode when the curve became non-linear. A continuous record of the stresses and strains 
was obtained during the test. 

A total of 35 LVDTs and 40 SR4 electrical strain gauges were available to test each 
specimen. They were placed at the most desirable locations to maximize the required information 
according to the design of each specimen. For most of the specimens, the strains of concrete and 
steel on the end face of a specimen were measured by 16 LVDTs. For specimens used to study 
the variation of strains in hanger bars along the span direction, the hanger strains were measured 
by 14 LVDTs as shown in Fig. 3.1(e).  

 
3.2 Design Equations for Crack Width Control 

The model for predicting crack widths at re-entrant corners of 3-D specimens was 
developed based on the CASTM for 2-D specimens. The first curtain of exterior hanger bars, 
flexural bars and diagonal bars are treated as a 2-D truss. The steel area of the first curtain of 
exterior hanger bars, flexural bars and diagonal bars are used to calculate the diagonal crack 
width as follows: 

                                       .in004.0
)L1(

L8.1w 2
E

HFHF ≤
+

ε
=   (3.4) 

                    .in015.0.in004.0
)L1(

)VV()B1(18.0w 2
E

004.0
5

≤+
+

−−
=                 (3.5) 

where  
w   =  predicted diagonal crack width (in.) 
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       HFL   =  CASTM gauge length for calculated hanger and flexural steel strains  
   = 9500 HFε  - 3.0 (in.) 
      EL  = distance from end face to the service load V applied on the exterior bearing pad. 

       HFε  =  diagonal crack strain calculated by hanger and flexural strains  

                    =   2
F

2
H ε+ε  

     Hε  =  hanger strain or strain in the vertical direction  = 
SHSAE2.1
V)B1( −

 

     Fε  =  flexural strain or strain in the horizontal direction  = 
SFS

V

AE2.1
cotV)B1( θ−

 

    V   =  applied service load at an exterior  loading pad (kips) 
     Vθ  =  Angle between flexural steel bars and the diagonal strut at the point of load V 

      B      =  distribution factor for diagonal bars   = 







+++ E

D

SDSFSH

SD

L1
NS44.0

AA5.0A
A

 

    SDA   =  cross-sectional area of a diagonal steel bar at end face of inverted ‘T’ bent 
                         cap(in.2) 
    SHA   =  cross-sectional area of a hangar steel bar at end face of inverted ‘T’ bent  
                         cap(in.2) 
    SFA   =  cross-sectional area of a flexural steel bar at end face of inverted ‘T’ bent 
                         cap(in.2)  

  N      =  number of diagonal bars from the end face to the center of first bearing. 
        DS   =   center-to-center spacing of diagonal bars, same as spacing of hangar bars. 
       SE    =  29,000 ksi. 
       004.0V =  applied service load V (kips) at exterior bearing pad corresponding to a crack 

width of 0.004 in. 004.0V  can be calculated from Eq. (3.4) using a successive 
approximation method easily performed on a spreadsheet. 

It should be noted that EL  (distance from the exterior load to the end face) has been used 
in Eqs. (3-4) and (3-5) to replace VL  (distance from the exterior load to the most exterior bar) 
used in the research report TxDOT 0-1854-4 (Zhu and Hsu, 2003). Accordingly, the power of 
1.9 in the denominator becomes 2 and a constant 1.8 is inserted in the numerator. This change 
makes it much easier and more convenient to use Eq. (3.4) and (3.5). Also, the expression for the 
distribution factor B has also been simplified. 
 
3.3 Comparison with Tests 
 

Figure 3.3 shows that the predicted results match the test results well, except for 
specimen E-0-14. This figure also shows that the predicted values are usually larger than the test 
values when the crack width w is less than 0.004 inch. This is because a constant concrete 
stiffness for cracked concrete is used for the whole process. If a varied concrete stiffness were 
used, the prediction would be more precise. However, the use of varied concrete stiffness would 
be too complicated for practical design. For the purpose of controlling crack width under 0.007 
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inch, a limit recommended by ACI Committee 224 (2001) for exposure to deicing chemicals, the 
prediction of the crack widths between 0.004 in. and 0.007 in. is useful.   

Table 3.3 compares the test values and the predicted values of the loads 004.0V  and 007.0V , 
corresponding to crack widths of 0.004 in. and 0.007 in. For most specimens, the force 
differences between test results and predictions are about 5%. In short, the crack widths should 
be comfortably less than 0.004 in., when the service loads are limited to 004.0V . 
 
3.4 Characteristics of Diagonal Crack Development 

Fig. 3.3 clearly shows a remarkable characteristic of diagonal crack development at the 
end face of 3-D specimens. The diagonal crack width versus load V curve exhibits two very 
distinctive load stages. When the crack width is less than 0.004 in., the crack development is 
slow and the slope of the curve is small. Beyond a value of 0.004 in., however, crack width 
increases rapidly and the curve exhibits a large slope. 

This difference in cracking behavior before 0.004 in. and after 0.004 in. can be explained 
by the two photographs of specimen E-1-10 shown in Fig. 3.4(a) and (b). Fig. 3.4(a) shows the 
crack pattern at P = 425 kips when w is less than 0.004 in. and Fig. 3.4(b) shows the crack 
pattern at P = 435 kips (a 10 kips increase) when w is larger than 0.004. When w reaches about 
0.004 in., the horizontal cracks became connected and a new mechanism of resistance arises. In 
this post-0.004 in. stage, the concrete stiffness reduces dramatically and the stresses in the steel 
bars increase rapidly. In short, the value of 0.004 in. is a “critical crack width” that should not be 
exceeded. 

This observed characteristic of diagonal crack development at end faces of bent caps 
leads us to a sensible criterion for crack control. Instead of checking a crack width at service 
limit state and comparing it to a specified value, we can simply calculate the force that will 
produce a critical crack width and compare it to the load designed for service limit state. 
 
 

Chapter 4. Phase Three Research: Whole Bent Caps 
 

4.1 Objectives and Scope 
 
Phase Three research deals with both the interior portion and the exterior cantilever 

portions of an inverted T bent cap. In the interior portion, the primary purpose is to predict the 
maximum crack width in the vicinity of a load V acting on the ledge. To do so, we can isolate a 
slice of the interior portion (a 2-D specimen) that contains the load V as shown in Fig. 1(a). The 
width of this 2-D specimen (studied in Chapter 2) will be called the effective distribution width, 
LD. This width LD is determined by measuring the strains of hanger bars along the span on both 
sides of the load V. Dividing the load V by the total steel area of hanger bars in the width LD will 
give the maximum hanger stress for the calculation of the maximum crack width. 

 The exterior cantilever portions of a whole bent cap have been simulated by the 3-D 
specimens discussed in Chapter 3. Equations for crack width prediction were derived from these 
tests. Therefore, the testing of whole bent caps can serve two additional purposes: (1) to check 
the recommended equations derived from the 3-D test specimens, and (2) to check the effect of 
spacing of hanger bars and number of diagonal bars on the crack width. 
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4.2 Experimental Work 
 
4.2.1 Test Specimens 
 Two 20-feet long specimens W1 and W2, as shown in Fig. 4.2.1, were tested. Labels N 
and S represent the north and south ends, respectively, of the whole specimen. Labels A, B, C 
and D denote the location of the four actuators. The hanger bars under Actuators B and C are 
loaded to obtain the effective distribution width LD along the span. 

Table 4.2 shows the variables in the tests. First, the two variables affecting the width LD 
are the bearing pad width and the spacing of hangar bars in the interior span. Second, the number 
of diagonal bars and the spacing of hanger bars are the variables in the study of crack widths in 
the exterior portions. 
 The same concrete was used in all three phases of research. The concrete was Class F, 
six-sack, ready-mix, and had a compressive strength of 4700 psi or more. The hanger and 
flexural bars were made of No. 5 reinforcing bars of Grade 60. The average yield stress of the 
steel bars was 64.0 ksi, and the yield strain was 0.0022. 
 
4.2.2 Loading Method 
 The test specimen was installed in the test frame as shown in the photos of Fig. 4.2.2(a) 
and (b). The test frame was specially designed to have a working capacity of 1050 kips, and was 
located in the Structural Research Laboratory at the University of Houston. Four MTS hydraulic 
actuators, A, B, C and D, of 223, 340, 340 and 147-kip capacity, respectively, were used to apply 
loads on the bent cap. These four loads ensure pure bending between frames B and C, thus 
guaranteeing an unbiased failure zone. 

The actuators were controlled by a versatile FlexTestGT system that allowed load-control 
as well as strain-control procedures. This system has a Multipurpose Test (MPT) feature that 
allows the four actuators to work independently or in unison under either a force-control or a 
displacement-control mode. Moreover, this system offered a unique feature to “hold” (or 
maintain constant) the forces or the displacements of the actuators. Loading was first applied by 
the load-control procedure in the linear stage of the load-deformation curve. When the load-
deformation curve became non-linear, the loading was switched to the strain control mode. 

Initially, the four actuators applied equal loads at the rate of 20 lbs/sec, until actuator D 
reached its capacity of 147 kips. In the second stage, actuators A and D were kept on “hold” at 
147 kips force, while the forces in actuators B and C were increased until failure in the interior 
span. In the third stage, the actuators B, C and D were on “hold”, while the force in actuator A 
was increased until failure occurred at the north end. In the last stage of the test, the specimen 
was rotated 180 degree and reinstalled to test its south end using actuator A until failure. 

 
4.2.3 Test Frame 

The test frame is depicted in a series of Figures 4.2.3(a) to (d). Fig. 4.2.3(a) shows the 
horizontal plan view of the test frame, consisting of two longitudinal beams (anchored to the 
strong floor) on which are mounted the four vertical frames: A, B, C and D. Each vertical frame 
is equipped with a corresponding actuator with the same label, Figs. 4.2.3(b) to (d). Frame A, 
along with its bottom anchoring beam, was designed to be detachable and movable, thus 
allowing easy installation and removal of a 20-ft specimen. 

The inverted-T cap is supported on the bottom by two reaction load cells of 500 kips 
capacity each. Each load cell sits on an assembly of a rod sandwiched between two plates, on top 
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of a pedestal. Pedestal 1 offers a hinged support while Pedestal 2 serves as a roller support. The 
roller support allows free longitudinal movement of the test specimen. 

Actuators B, C and D are each provided with a swivel base at the top end and one at the 
bottom end, allowing for compensation of eccentricities, rotation and movements of the test 
specimen. Actuator A serves to anchor the test specimen in space and is, therefore, not provided 
with swivel bases at both ends. The force exerted by each actuator is split equally to the west and 
east ledges of the test specimen by the Π-shaped steel rig. Each of the two legs of the steel rig 
sits on the ledge through a high-strength steel ball and a bearing plate. Bearing plates of sizes 6 x 
6 x 1.25 inch were used for frame A, C & D, while 10 x 6 x 1.25 inch plates were used for frame 
B.  

The three actuators, B, C and D, are each equipped with a spherical hinge at the lower 
end, allowing the Π-shaped steel rigs to pivot. In order to prevent the lateral buckling of an 
actuator at this location, a lateral bracing system is provided, which consists of a pair of channel 
beams spanning between the two frame columns at the level of the spherical hinge. 

 
4.2.4 Instrumentation  

A total of 35 LVDTs and 40 SR4 electrical strain gauges were available for testing each 
specimen. The instruments were placed at the most desirable locations to maximize the required 
information according to the design of each specimen. The strains on each end face along the 
steel bars and perpendicular to a diagonal crack were measured by 6 LVDTs as shown in Fig. 
4.2.4(a) and (b). 

In order to study the variation of strains in hanger bars along the span direction, 23 
LVDTs were installed to measure the hanger bar strains as shown in Fig. 4.2.4(c) and (d). Before 
casting concrete, two short threaded rods were first welded to a vertical leg of the hanger bar, 
one near the top corner and the other near the bottom corner. After casting the concrete, the 
upper threaded rod protruded from the vertical surface of the web and received an aluminum 
bracket. The lower threaded rod, which protruded from the bottom surface of web, also received 
an aluminum bracket that clamps an LVDT. The LVDT, which is under the ledge, is attached to 
the upper bracket via a vertical aluminum rod passing through a plastic-tube-lined hole in the 
ledge. In this manner, the LVDT measured the vertical displacement between the two aluminum 
brackets, thus giving the average strain of a hanger bar. 

 
4.3 Test Results 
 
4.3.1 Crack Width Control 
 Figure 4.3.1(a) compares the crack widths at C2 (see Fig. 4.2.4(b)) measured by 
microscopes (MS) and by LVDTs. The labels NE, NW, SE and SW in these graphs represent the 
locations of the instruments. The first letter, N and S, indicates the north and south end faces. 
The second letter, E and W, indicates the east and west sides on the end faces. Crack widths 
measured by these two different methods match well overall. However, the crack widths on the 
west side and on the east side measured by microscopes show some differences, while they 
should theoretically be the same. 
 Figure 4.3.1(b) shows the effect of two variables on crack widths measured by LVDTs, 
namely, the number of diagonal bars and the spacing of hanger bars. Each exterior cantilever 
span of a whole specimen is assigned a label according to the labeling convention for 3-D 
specimens (see Table 3.1, first column).  For example, (E-2-14, s = 4) means that the 3-D 
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specimen has two diagonal bars and the distance from the outer-most load to the end face is 14 
in. And, the spacing of the hanger bars s is 4 in. 
 Fig. 4.3.1(b) compares the test results from Specimens W1-NE (E-2-14, s=4) and 
Specimen W1-SW (E-4-14, s=4). It can be seen that under the same conditions, a specimen with 
4 diagonal bars achieved better crack width control than a specimen with 2 diagonal bars. 
 Fig. 4.3.1(c) compares the test results obtained from the LVDTs at C2 with the prediction 
based on equations proposed for 3-D specimens (Phase Two research). It can be seen that the 
actual test results match the theoretical prediction satisfactory, except for specimen W1-NE (E-2-
14, s=4). In this case, there was a discrepancy when the crack width was larger than 0.004 in., 
but was acceptable when crack width was less than 0.004 in.  
 
4.3.2 Hanger Strain Variation Along Span 
 Hanger strain variations measured in specimen W1 and W2 are shown in Fig. 4.3.2(a) to 
(d). The horizontal axis represents the distance of a hanger bar from the center of bearing pad. 
The line at 0 distance represents the center of bearing pad, and the positive distance means that a 
hanger bar is in the pure bending region; while the negative distance means that a hanger is in the 
shear-flexure region.  The two dash vertical lines represent the two edges of the bearing pad. Fig. 
4.3.2(a) to (d) shows that when load V is around 70 kips, the hanger strains begin to increase 
very quickly, signifying a rapid opening of diagonal cracks. 
 In order to study the effect of bearing pad width on the strain variations, the hanger strain 
variations along the B and C regions are plotted together in Figures 4.3.2(e) and (f). The bearing 
pad width for Actuator B and C is 10 in. and 6 in., respectively. It can be seen that the bearing 
pad width does have an effect on the distribution of hanger bar strains along the span. The 
distribution of strains was more spread out in the B region than in the C region. This is 
particularly true in Figure 4.3.2(f) where the two hanger bars just outside the bearing pad for 
W2-C show roughly the same or even larger strains than the two bars under the bearing pad. 
Overall, the evidence shows a direct relationship: the larger the loading pad width, the larger the 
effective distribution width along span. 
 Figures 4.3.2(g) and 4.3.2(h) illustrate the effect of hanger bar spacing on the hanger 
strain variation. The hanger spacing for W1 and W2 is 4 in. and 5.5 in., respectively. It can be 
seen that the hanger spacing has no discernable effect on the distribution of hanger bar strains 
along the span, and, therefore, should have no effect on the effective distribution width of hanger 
bars. 
 
4.3.3 Effective Distribution Width of Hanger Bars 
 The effective distribution width  can be determined experimentally using the measured 
strain variation along the span. Fig. 4.3.2(a) to (d) show that the hanger strain variation is 
distributed like a bell-shaped curve. The strain of hanger bars within the width of bearing pad is 
generally larger than the strain of hanger bars outside the width of bearing pad. The average 
value of the hanger bar strains within the bearing pad width is used in calculating the crack 
width. Since the hanger strain variations in the pure flexure region between B and C is different 
from those in the shear-flexure regions between A and B or C and D, only the hanger strains in 
pure bending regions have been used. 
    Assuming that the effective distribution width  DL   is a function of the bearing pad width 
W and  the effective depth of  ledge ed :                                                     
                                                              eD dxWL +=                                                 (4.1) 
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where x is a coefficient to be determined by tests. 
Summing the hanger bar forces in the pure flexure region, the distribution width DL  can 

be determined by the following equation: 

                                                              

S
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i

D

∑
==                                                        (4.2) 

where  
   N   =   number of  hanger bars in pure flexure region between B and C 
   iF   =   hanger bar  force in  ith bar, kips (see Fig. 4.2.1) 
   NF  =  average force of two hanger bars within the pad width such as B7 and B8 of W1, 
             kips. The average value of two hanger bars is used to get a more stable result. 
    S  =   hanger bar spacing. 

The coefficient x can be obtained by equating Eq. (4.1) with (4.2) as shown in Tables 
4.3.3(a) to (c). The first two rows in each table are the loading stages in which the hanger bar 
strains begin to jump or increase rapidly. The distribution width obtained in those two loading 
stages should be used to predict crack width at service load. The distribution width of W2-C 
given in Table 4.3.3(d) was not taken into account, because concrete was not well compacted 
during casting in this region. 

The results from Table 4.3.3(a) to (c) show that the effective distribution width is not a 
function of hanger spacing. At service load stage, the distribution width can be taken as 

ed9.0W + . At the ultimate load stage, however, the distribution width can be taken as ed8.1W + . 
 

4.3.4 Diagonal Crack Width Prediction at End Faces 
 One of the purposes for testing the whole pile caps was to check the validity of Eqs. (3-4) 
and (3-5) derived from testing 3-D specimens. Fig. 4.3.1(c) compares the measured values to the 
predicted values of diagonal crack widths at the end faces of whole specimens. It can be seen that 
Eqs. (3-4) and (3-5) can be applied to the whole specimen without modification. The agreement 
also means that the test set-up and the test method for 3D specimens, as shown in Fig. 3.1(a) and 
(b), is validated. 
 It should be noted that Eqs. (3-4) and (3-5) do not include the hanger bar spacing as a 
variable.  However, the hanger bar spacing is different in each of the four end cantilever spans of 
the two specimens, W1 and W2. This agreement between the experimentally measured and the 
predicted crack widths in Fig. 4.3.1(c) proves that the hanger bar spacing is in fact not a variable 
in the crack prediction and can be excluded from consideration. In general, such simplified 
equations can very well predict the important load 004.0V  at the critical crack width of 0.004 in. 
at the end faces of inverted T beams. This is a significant step towards more clarity in crack 
prediction. 
 
4.4 Similitude Requirements 
 

Eq. (3.4) is valid for inverted T-beam of the size tested in this research and can produce 
the correct value of 0.004 in. for the critical crack width. However, Eq. (3.4) is not expected to 
be valid when applied to the full-size bent caps, because a scaling ratio must be incorporated. 
This scaling ratio can be derived from the principle of similitude. 
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When a prototype structure is the object of investigation, numerical or physical modeling 
is usually taken. The knowledge and experience gained by working with small-scale models are 
important. Muller (1992) pointed out that “the actual behavior of  a reinforced concrete structure 
with regard to cracking loads and failure is very strongly influenced by the bond between 
concrete and reinforcement, and this cannot be reproduced by numerical models, not even by 
very elaborate ones.” Therefore, the scale of a test model should be as large as possible to 
prevent introducing unpredictable scale effects. But practical laboratory constraints will limit the 
test model size. 

For this research project, experimental specimens were designed as large as possible.  No. 
5 steel bars were used in the ten 3-D specimens and in the two whole test specimens to provide 
the best bond similarity with the No. 6 bars used in full-size bent caps. The scale ratios of the test 
specimens and the full-size bent caps are shown in Table 4.4(a). The theory involved in the 
relationship between physical quantities was given by Gibson (1992) and summarized in Table 
4.4(b). A listing of quantities, their dimensions and scaling factors are given in Table 4.4(c), 
where the independent scaling factors chosen are the modulus of elasticity ES  and the length lS .  

In reinforced concrete structures, the scaling ratios for modulus of elasticity and stress 
ES  can be taken as unity. The scaling ratios for length lS  can be taken as the root average of the 

three scaling ratios for lengths that are crucial in determining the strength and cracking of the 
bent caps: (1) the height measured from the centroid of bottom flexural bar to the centroid of top 
flexural bar ( bd d5.0cd −− ), (2) the distance from the load V to the center of hanger bar ( fa ), 
and (3) the area of hanger steel bar ( SHA ). The average scaling ratio is calculated as follows: 

                                         S  =  lS  =
4
1
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where the subscript p means prototype and the subscript m indicates model. 
 Eqs. (3.4) and (3.5) obtained from the model tests are converted to equations for the 
prototype structure based on scaling factor as follows: 
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Substituting S = 1.43 into Eqs. (4.4) and (4.5) gives: 
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Appendix B gives a simplified equation to calculate 006.0V  from Eq. (4.6) for use in Eq. (4.7). 
 
            To verify the applicability of Eqs. (4.6) and (4.7) considering similitude requirement, the 
crack widths at re-entrant corners of inverted “T” bent caps in the bridge at Laura Koppe road, 
Houston, were measured as shown in  Fig. 4.4(a) and (b). The input data and the predicted results 
are shown in Table 4.4(d). It can be seen from the table that the calculated crack width 
considering similitude requirements matches the measured crack width surprisingly well. 
 It is interesting to mention that Eqs. (4.6) and (4.7) with similitude consideration were 
derived prior to the measurements of crack widths in the bridge at Laura Koppe Road. Since Eq. 
(4.7) gave unexpected large crack widths, an arrangement was made with TxDOT to measure the 
crack width on-site. It was very satisfying to find that the measured crack widths matched the 
predictions so well. 
  
 

Chapter 5. Recommended Design Method 
 
5.1 Crack Control 
 
5.1.1 Vicinity of Interior Applied Load 
 Crack control at the vicinity of interior applied load can be achieved by limiting the crack 
width to 0.013 in. (ACI 318, 1995). An interior applied load could act on the interior span or on 
an exterior portion. Diagonal crack widths are calculated directly from Eq. (2.1) based on the 
CASTM model for 2-D specimens. The width of the 2-D specimens is the effective distribution 
width LD, given by eD d9.0WL += . 

Eq. (2.1) shows that adding diagonal bars is an effective way to control crack widths at 
the vicinity of the interior applied loads. 
 
5.1.2 End Face of Exterior Portion 

To control diagonal crack widths at the end faces, it is very important to limit the service 
load to a “critical load” where crack widths begin to widen rapidly. As specimen W1 (E-4-14) in 
Fig. 5.1 shows, when the crack width reaches about 0.004 inch, cracks opened up very rapidly 
even with a very small increase of load. Even though the load 004.0V  was held constant at 74 kips 
for four hours, the crack width continued to open up until reaching a value beyond 0.007 in.  

In short, crack control at the end face of exterior span is to keep the load within the 
“critical load”. For the inverted T beams W1 and W2, the critical crack width was 0.004 in. and 
the critical load was 004.0V . The critical load can be calculated from Eq. (3.4) using a spread sheet 
and a trial and error method. 
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It should be noted from Eq. (3.4) that the most effective variable to control crack width at 
the end faces of cantilever portions is EL , the distance from end face to the most exterior load. 
Adding diagonal bars was found to be not very effective. 

 
5.2 Proposed Code Provisions for AASHTO Specifications 

 
5.13.2.5.7 Serviceability Limit States Design 
 Using the notation in Figure 1 (Fig. 5.2 in this report), the crack widths in inverted T-
beam shall not be larger than: 
 
• For Vicinity of Interior Applied Load 
                                              013.0Lw HFHF ≤ε= in              (5.13.2.5.7-1)  
where: 
   w =  predicted diagonal crack width (in.) 
    HFL   =  CASTM gauge length for calculated hanger and flexural steel strains  
  =  9500 HFε  - 3.0 (in.) 
       HFε  =  diagonal crack strain calculated by hanger and flexural strains  

   = 2
F

2
H ε+ε   

     Hε  =  hanger strain or strain in the vertical direction  = 
SHSAE2.1
V)B1( −

 

     Fε  =  flexural strain or strain in the horizontal direction  = 
SFS

V

AE2.1
cotV)B1( θ−

 

   V   =  applied service load at the most exterior loading pad (kips) 
         Vθ  =  Angle between flexural steel bars and the diagonal strut at the point of  
                         load V 

  B     =  distribution factor for diagonal bars   = 
SDSFSH

SD

AA5.0A
A

++
 

    SDA   =  total cross-sectional area of diagonal reinforcement in the effective distribution 
width DL  (in.2) 

    SHA   =  total cross-sectional area of hangar reinforcement in the effective distribution 
width DL  (in.2) 

    SFA   =  total cross-sectional area of flexural reinforcement in the effective distribution 
width DL (in.2) 

 DL  =  ed9.0W + (in.) 
 W  =  width of bearing pad (in.) 
 ed  =  effective depth of ledge from extreme compression fiber to centroid of tensile 

force (in) 
 SE  = 29,000 ksi 
 
• For End Face of Exterior Portion  
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where: 

   B   =  distribution factor for diagonal bars  = 
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       SDA  =  cross-sectional area of a diagonal steel bar at end face of inverted ‘T’ bent cap 
(in.2) 

   SHA  =  cross-sectional area of a hangar steel bar at end face of inverted ‘T’ bent cap (in.2) 
     SFA  =  cross-sectional area of a flexural steel bar at end face of inverted ‘T’ bent cap 

(in.2) 
       EL   =   the distance from end face to the load V applied on the most exterior bearing, 

inch.  
 N     =  number of diagonal bars from the end face to the center of first bearing.  
     DS  =  center-to-center spacing of diagonal bars, same as spacing of hangar bars. 
 
                

Chapter 6. Design Example 
 

The proposed code provisions are used to check an existing inverted T-beam in the 
Spring Cypress Overpass designed by TxDOT in April, 1999. Figure 6.1 shows an interior span 
of an inverted T-beam and an exterior cantilever portion with normal (perpendicular) end face. 
Figures 6.2 to 6.4 show a cantilever span of the inverted T-beam with skew end face and its steel 
arrangement. Figure 6.5 shows a section parallel to the skew end face.  

Calculation for the cantilever portion is made by solving Eq. (5.13.2.5.7-2) to find 006.0V . 
The trial and error procedure is done by a spreadsheet program Excel as shown in Figure 6.6. 
The contents in Excel is divided into three parts: (1) input data,  (2) calculation done by Excel, 
and (3) calculated output results. 

 
(1) Input Data 

The input data includes: 
 V  =  design service load  
 θ  =  skew angle of end face 
 c  =  clear concrete cover  
 h  =  ledge height   
 Va  =  normal distance from load V to web edge  
 EL  =  distance from load V to end face  
 bHd  =  hanger bar diameter  
 SHA  =  hanger bar area in a bar or in a bundle 
 bFd  =  flexural bar diameter 
 SFA  =  flexural bar area in a bar or in a bundle 
 SDA  =  diagonal bar area in a bar  
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 N  =  number of diagonal bar in distance LE   
 DS  =  diagonal bar spacing (should be equal to hanger bar spacing)  
 SE   =  modulus of elasticity of steel reinforcement 
 
(2) Calculations done by Excel 

After all required data have been input, a trial and error method will be used to find 006.0V  
using the Excel program: 
             Assume a value of 006.0V =  135.5 kips 
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                     Since  SDA = 0 
                         SHA =  0.44 in.2 
 SFA =  0.44 in.2 
 EL  = 29.9 in. 
 DS = 4.08 in. 
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ε
=  O.K. 

The assumed 0.006V =135.5 kips is correct. If  w ≠  0.006 in., then assume another value of  

0.006V  until w = 0.006 in. is reached. The Excel calculation is automatic. 
 
(3) Calculated Output Results 

The calculated output of 0.006V  is shown in a box at the top right corner of the Excel 
page, together with the design service load V. The ratio of  0.006V / V is automatically 
calculated. If the ratio is greater than or equal to a unity, a “O.K.!” sign will appear. If the ratio is 
less than unity, a “N.G.!” sign will appear . 
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The calculated result shows that the existing inverted T beam could not satisfy the 
serviceability requirement. The allowable service load 006.0V based on 0.006 inch crack width is 
only about 60% of design service load. This explains why large crack can usually be seen in the 
inverted T-beams for highway bridges. The calculation example for skewed exterior portion of 
inverted T beam is shown in Fig. 6.7. The crack width at the interior portion of inverted T-beams 
can be checked directly by Eq. (5.13.2.5.7-1). A calculation example to find 0013.0V  using 
spreadsheet trial and error method is shown in Fig. 6.8.  

The advantage of using the Excel program is that other variables can be changed to 
redesign the T-beam, such as increasing the distance from the load V to the end face (LE), adding 
diagonal bars, increasing hanger and flexural bars, as well as reducing hanger bar spacing. 
Examples of such redesign are given in the Appendice. 
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TABLES 

                   Table 2.1  Steel Arrangement and Experimental Loads in Test Specimens 
 

Number of Bars 
Specimen cf ′  

(psi) Hanger Flexural Diagonal Shear 
Ultimate 

Loads (kips) 
Service 

Load (kips) 
BPC1 5,730 6 5 0 3 N/A 198-226 

T2 6,054 3 3 0 2 253 94-106 
T3 4,865 5 3 0 2 242 111-143 
T4 6,011 3 5 0 0 257 111-135 
T5 5,649 3 3 3 0 414 128-183 
T6 6,283 5 3 0 0 210 104-124 
T7 6,826 3 3 5 0 538 167-233 

   Note: Ultimate loads or service loads are the sum of  load V on both sides  
 
      Table 2.3  Cracking Width by Prediction and Test at the Mid-point of Service Load Range 
 

Steel bar  Test (in.) Specimen 
H F D S 

Service 
Load (kips) E or W Ends Average 

Prediction (in.) 

T2-E 3 3 0 2 100 0.0107 
T2-W 3 3 0 2 100 0.0132 0.0120 0.0120 

T3-E 5 3 0 2 127 0.0107 
T3-W 5 3 0 2 127 0.0146 0.0127 0.0126 

T4-E 3 5 0 0 123 0.0099 
T4-W 3 5 0 0 123 0.0170 0.0135 0.0148 

T5-E 3 3 3 0 156 0.0100 
T5-W 3 3 3 0 156 0.0097 0.0099 0.0105 

T6-E 5 3 0 0 114 0.0093 
T6-W 5 3 0 0 114 0.0099 0.0096 0.0093 

T7-E 3 3 5 0 200 0.0103 
T7-W 3 3 5 0 200 0.0123 0.0113 0.0102 

    Note: Service loads are the sum of  load V on both sides  
 
 
 
 
 
 
 
 
 
 
 
 



 21

 
 
 
                                  Table 3.1  Loads and Crack Widths in Test Specimens 

 
Crack Width  

at Nominal Shear 
Resistance nV  

for Service Limit State 
(in.) 

Specimen cf ′  
(psi) 

C2 C3 

Nominal Shear 
Resistance nV  for 
Service Limit State 

(kips) 
Eqs.(3.1) & (3.2) 

Ultimate 
   Test Load V 

(kips) 

E-0-6 5024 0.0031 0.0034 27.9 75.8 
E-0-10 6182 0.0039 0.0053 46.5 98.1 
E-0-12 5876 0.0024 0.0039 55.8 130.7 
E-0-14 5801 0.0049 0.0063 50.6 117.8 
E-0-18 5748 0.0002 0.0007 50.6 135.1 
E-0-20 6056 0 0.0005 56.4 151.7* 
E-1-10 5065 0.002 0.003 46.5 97.6 
E-2-6 5204 0.0013 0.0018 27.9 77.3 
E-2-10 6764 0.0025 0.0028 46.5 113.7 
E-5-12 4611 0.0011 0.0022 55.8 115.6 

     * Premature failure at the other end of specimen. 
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                                   Table 3.3  Loads 004.0V and 007.0V  Corresponding to Crack Widths of 0.004 in. and 0.007 in.  
 

Test (kips) Prediction (kips) 004.0V  007.0V  
Specimen 

004.0V  007.0V  V∆  004.0V  007.0V  V∆  100
V

VV

test

.predtest ×
−

 100
V

VV

test

.predtest ×
−

 

E-0-6 29.0 32.0 3.0 29.9 30.8 0.6 -3.1 3.8 
E-0-10 46.9 48.2 1.3 47.4 49.4 2.0 -1.1 -2.5 
E-0-12 61.0 61.7 0.7 54.2 57.1 2.9 11.1 7.5 
E-0-14 49.4 51.7 2.3 62.3 66.1 3.9 -26.1 -27.9 
E-0-18 82.2 87.9 5.7 84.8 91.3 6.5 -3.2 -3.9 
E-0-20 98.4 101.3 2.9 94.6 102.6 8.0 3.9 -1.3 
E-1-10 49.9 51.0 1.1 48.6 51.0 2.4 2.6 0.0 
E-2-6 38.1 40.3 2.2 36.1 38.8 2.7 5.2 3.7 
E-2-10 53.9 60.5 6.6 55.4 59.4 4.0 -2.8 1.8 
E-5-12 65.0 69.5 4.5 66.8 74 7.2 -2.8 -6.5 

 
 

Table 4.2  Whole Specimens (inch) 
 

North Part South Part 

Specimen 
Edge 

Distance  
LE  of 

Load V 

Number of 
Diagonal 

Bar at End 
Face 

Hanger 
Spacing 
at End 
Face 

Hanger 
Spacing 
Under 

Actuator B 

Loading Pad 
Under 

Actuator  B 

Edge 
Distance 

LE of  
Load V 

Number of 
Diagonal 

Bars at End 
Face 

Hanger 
Spacing 
at End 
Face 

Hanger 
Spacing 
under 

Actuator C  

Loading Pad 
Under 

Actuator C 

W1 14 2 4 4 10 × 6  14 4 4 4 6 × 6  
W2 14 2 5.5 5.5 10 × 6  14 2 2.5 5.5 6 × 6  
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                              Table 4.3.3(a)  Calculation of  Distribution Width for W1-B 
          

Hanger Bar Force (kips) Load V 
(kips) 

7F′  6F  5F  4F  3F  2F  1F  

∑
=

7

1i
iF  

 
(kips) S

F

F2
L

7

7

1i
i

D ′
=

∑
=  

(inch) 
e

D

d
WL

x
−

=  

80 6.6 5.1 3.1 1.0 0.6 0.2 0.0 16.6 20.2 0.92 
90 10.4 8.2 4.8 1.4 0.9 0.3 0.2 26.2 20.1 0.92 

100 14.2 12.6 7.6 2.7 1.5 0.3 0.2 39.1 22.0 1.09 
110 18.0 18.0 12.5 4.5 2.4 0.3 0.2 55.8 24.8 1.35 
120 18.0 18.0 18.0 6.2 3.1 -0.1 -0.2 63.2 28.1 1.65 
123 18.0 18.0 18.0 8.7 4.2 -0.2 -0.3 66.8 29.7 1.79 

Note: S = 4 inch, W = 10 inch, ed = 11 inch. 

The hanger bar forces (F) are calculated from the measured strains using Es = 29,000 ksi 
and As =  0.31 in.2, up to an assumed yield force of 18.0 kips. 

7F′  = average of 7F and 8F .  

Strain of B5 = average strain of B6 and B4, Strain of B3 = average strain of B4 and B2. 
                                  
                              
 
                               Table 4.3.3(b)  Calculation of  Distribution Width for W1-C 
          

Hanger Bar Force (kips) Load V 
(kips) 

7F′  6F  5F  4F  3F  2F  1F  

∑
=

7

1i
iF  

 
(kips) S

F

F2
L

7

7

2i
i

D ′
=

∑
=  

(inch) 
e

D

d
WL

x
−

=  

70 2.6 1.4 1.0 0.6 0.4 0.1  6.1 18.9 1.17 
80 10.7 6.8 4.1 1.4 0.8 0.1  23.8 17.9 1.08 
90 17.8 12.4 7.4 2.4 1.4 0.5  41.9 18.8 1.16 

100 18.0 15.4 9.6 3.8 2.1 0.3  49.2 21.9 1.45 
110 18.0 18.0 18.0 9.2 4.7 0.3  68.2 30.3 2.21 

Note: S = 4 inch, W = 6 inch, ed  = 11 inch, 
        7F′  = average of 7F and 8F ,  
         Strain of  B5 = average strain of B6 and B4, Strain of  B3 = average strain of B4 and B2 
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                              Table 4.3.3(c)  Calculation of  Distribution Width for W2-B 
          

Hanger Bar Force (kips) Load V 
(kips) 

5F′    4F  3F  2F  1F  

∑
=

5

1i
iF  

 
(kips) S

F

F2
L

5

5

1i
i

D ′
=

∑
=  

(inch) 
e

D

d
WL

x
−

=  

70 1.9 0.8 0.3 0.0 0.0 3.0 17.2 0.66 
80 8.5 4.7 1.9 0.0 0.3 15.4 19.9 0.90 
90 15.2 10.4 3.7 0.0 0.4 29.6 21.4 1.04 

100 18.0 18.0 6.0 0.0 0.5 42.4 25.9 1.45 
103 18.0 18.0 6.2 0.0 0.5 42.7 26.1 1.47 

Note: S = 5.5 inch, W = 10 inch, ed  = 11 inch  
         5F′  = average of 5F  and 6F  
 
 
 
                              Table 4.3.3(d)  Calculation of  Distribution Width for W2-C 
          

Hanger Bar Force (kips) Load V 
(kips) 

5F′    4F  3F  2F  1F  

∑
=

5

1i
iF  

 
(kips) S

F

F2
L

5

5

1i
i

D ′
=

∑
=  

(inch) 
e

D

d
WL

x
−

=  

80 5.6 6.3 2.6 0.6 0.5 15.6 30.5 2.22 
90 10.7 12.1 5.9 0.8 0.6 30.2 30.9 2.27 

100 16.1 15.1 7.4 0.0 0.6 39.2 26.7 1.88 
113 18.0 18.0 13.4 0.0 0.9 50.2 30.7 2.25 

Note: S = 5.5 inch, W = 6 inch, ed  = 11 inch  
         5F′ = average of 5F  and 6F  
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     Table 4.4(a)  Comparison of Test Specimen and Prototype (inch) 

 

 Spring Cypress Overpass 
inverted T beam  

Test Specimen 
Inverted T beam 

Scale 
Ratio 

Total height of inverted T beam 71 26 2.7 
Total width of inverted T beam 83 42 2.0 
Ledge height (h) 21 13 1.6 
Ledge cantilever Length 16 10.5 1.5 
height measured from the centroid 
of bottom flexural bar to the 
centriod of  top  flexural bar 

16.25 9 1.8 

Distance from load V to center 
of hanger bar fa  11.9 7.25 1.6 

Hanger bar diameter 0.75 0.625 1.2 
Flexural bar diameter 0.75 0.625 1.2 
Hanger bar spacing 4.1 4 1.0 
Flexural bar spacing 4.1 4 1.0 
Concrete clear cover 2 1.69 1.2 
Distance from load to edge EL  29.9 6 to 20 5 to 1.5 
Design Service Load for prototype 
and 004.0V for specimens when 
crack opens up very fast (kips). 

221 29 to 98.4 7.6 to 2.2 

 
 

    Table 4.4(b)  Dimensions of  Physical Quantities 
 

Quantity Relationship Absolute System Engineering System
Length  L L 
Mass M  M 21TFL −−  
Velocity Displacement / time 1LT−  1LT−  

Acceleration Velocity / time 2LT−  2LT−  

Force F Mass ×  acceleration 2MLT−  F 

Stress Force / area 21TML −−  2FL−  
Strain = L/u  ---- ----- 

Modulus of 
Elasticity E Force / area 21TML −−  2FL−  
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                        Table 4.4(c)  Dimensions and Scaling Factors of Physical Quantities 
 

Quantity Dimensions Engineering System 

Modulus of Elasticity 2FL−  ES  

Stress 2FL−  ES  

Strain --- 1 

Length L lS  

Displacement L lS  

Area 2L  2Sl  

2nd moment of area 4L  4Sl  

Concentrated Load F 2
ESS l  

Moment FL 3
ESS l  

Shear F 2
ESS l  

 
 

                       Table 4.4(d)  Crack Width of  Inverted T Beam in the Bridge  
                                             at Laura Koppe Road 

 
Girder Span (ft) 124 

Girder Spacing (ft) 9.94 

Normal distance from load V to web edge Va   (in) 8.52 

Distance from Load V to end face LE (in) 22 

Hanger Bar Area  ASH (in2) 0.44  

Flexural Bar Area  ASF (in2) 0.6 

Skew Angle  θ (degree) 1.53 

Ledge Height  h (in) 21.96 

V0.006 (kips) Eq. (4.6) 114.3 

Service Load V (kips) 273 

Predicted Crack Width at Service Load (in) Eq. (4.7) 0.083 

Maximum Measured Crack Width  at Service Load (in) 0.09 
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FIGURES 

 
 

 

 
 
 
 
 Fig. 1(a)  An inverted ‘T’ bent cap showing an exterior 3-D specimen 
                                      and an interior 2-D specimen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
 

     Fig. 1(b)  2-D Test Specimen 

Interior 2-D Specimen

Exterior 3-D Specimen 
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                                                     Fig. 1(c)  3-D Test Specimen  
 
 

 
 
                                           Fig. 1(d)  Tests of Whole Inverted T Bent Caps 
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                            Fig. 2.1(a)  Dimensions and steel arrangement of Specimen T5 
 

 
 
                                            Fig. 2.1(b)  Test setting-up of  Specimen T5 
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                                        Fig. 2.2(a)  CASTM model without diagonal bars  
 
 

 
 
                                                     Fig. 2.2(b)  CASTM model with diagonal bars 
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                                          Fig. 2.3(a)  Comparison of CASTM with tests 
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                           Fig. 2.3(b)  Comparison of crack width by CASTM and the tests 
 
 

 
                                              Fig. 3.1(a)  General view of test set-up 
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                                  Fig. 3.1(b)  Arrangement and dimension of test set-up 
 
 

 
 
                           Fig. 3.1(c)  Steel cage without diagonal bars (Specimen E-0-6) 
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                          Fig. 3.1(d)  Steel cage with two diagonal bars (Specimen E-2-6) 
 
 

 
               Fig. 3.1(e)  LVDTs to study the variation of hanger steel  strains  along the span  
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                                         Fig. 3.3  Comparison of tests and predictions 
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                            Fig. 3.4(a)  Crack pattern when w is less than 0.004 inch 

 

 
                            Fig. 3.4(b)  Crack pattern when w is larger than 0.004 inch
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                                                                                Fig. 4.2.1  Whole specimens 
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Fig. 4.2.2(a)  Test frame setup with specimen  

 
Fig. 4.2.2(b)  Actuators A, B, C and D with whole specimen



 39

 
Fig. 4.2.3(a)  Horizontal plan of test frame 
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                                                                Fig. 4.2.3(b)  Vertical Frame A  
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                                                         Fig. 4.2.3(c)  Vertical Frame B & C  
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                                                               Fig. 4.2.3(d)  Vertical Frame D 
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                                         Fig. 4.2.4(a)  Arrangement of LVDTs on end face 
 

                                           Fig. 4.2.4(b)  Labeling of LVDTs on end face 
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                    Fig. 4.2.4(c)  LVDTs to study effective distribution width DL  along span 
 
 

 
   Fig. 4.2.4 (d)  Special arrangement of LVDT to measure strain variation of hanger along span 
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                            Fig 4.3.1(a)  Crack width measured by microscope and LVDT 
 

                                                   Fig 4.3.1(b)  Crack width vs. load 
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                                      Fig 4.3.1(c)  Comparison of prediction with tests 
 

 
                                     Fig. 4.3.2(a)  Hanger strain variation along span (W1-B)
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                                  Fig. 4.3.2(b)  Hanger strain variation along span (W1-C) 

                             
                                  Fig. 4.3.2(c)  Hanger strain variation along span (W2-B) 
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                                 Fig. 4.3.2(d)  Hanger strain variation along span (W2-C) 

                 Fig. 4.3.2(e)  Comparison of hanger strain variation between W1-B and W1-C  
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Fig. 4.3.2(f)  Comparison of hanger strain variation between W2-B and W2-C  

 

 
Fig. 4.3.2(g)  Comparison of hanger strain variation between W1-B and W2-B 

-0.0008

-0.0004

0

0.0004

0.0008

0.0012

0.0016

0.002

0.0024

0.0028

0.0032

0.0036

-24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

Distance from center of loading pad (inch)

H
an

ge
r 

St
ra

in
W2-B-100
W2-B-90
W2-B-80
W2-B-70
W2-B-60
W2-C-100
W2-C-90
W2-C-80
W2-C-70
W2-C-60k

-0.0004

0

0.0004

0.0008

0.0012

0.0016

0.002

0.0024

0.0028

0.0032

0.0036

-24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

Distance from center of loading pad (inch)

H
an

ge
r 

St
ra

in

W2-B-100
W2-B-90
W2-B-80
W2-B-70
W2-B-60
W1-B-100
W1-B-90
W1-B-80
W1-B-70
W1-B-60k



 50

 
Fig. 4.3.2(h)  Comparison of hanger strain variation between W1-C and W2-C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4(a)  Crack width at west end face of southwest inverted “T” bent cap  
                                    at Laura Koppe Road 
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Fig. 4.4(b)  Crack width at east end face of southeast inverted “T” bent cap  
                                     at Laura Koppe Road 

 

 
                                     Fig. 5.1  Crack width open-up under constant load  
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                                                Fig. 5.2  Notation for inverted T-beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  Fig. 6.1  Inverted T-beam in Spring Cypress Overpass
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                        Fig. 6.2  Skewed end face in cantilever portion with inverted T-beam 
 

                         
                       Fig. 6.3  Steel arrangement in cantilever portion with skewed end face  
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                       Fig. 6.4  Steel arrangement in cantilever portion with skewed end face 
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                          Fig. 6.5  A section parallel to skewed end face in cantilever portion 

                            (see section A-A in Fig 6.2) 
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                    Figure 6.6  Calculation example for normal end face of  cantilever portion 

Design Example 1 for Normal End
C-S-J:    0720-03-082 Given V = 221 K

LOCATION: SH-249/Spring Cypress Overpass Calculated V0.006 = 135.5 K
Design  by: TxDOT on 4/27/99 V0.006 / V = 0.61 N.G. !

INPUT DATA
Design service load 'V' = 221 kips
Skew angle 'θ' = 0 deg
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Normal distance from load V to web edge 'aV' = 9.5 in
Distance from load V to end face 'LE' = 29.9 in
Hanger bar diameter 'dbH' = 0.75 in
Hanger bar area 'ASH' = 0.44 in2

Flexural bar diameter 'dbF' = 0.75 in
Flexural bar area 'ASF' = 0.44 in2

Diagonal bar area 'ASD' = 0 in2

Number of diagonal bar in distance LE  'N' = 0
Diagonal bar spacing 'SD' (= hanger bar spacing) = 4.08 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.006

Assume V0.006 = 135.5 kips
       af = (aV + c)/cosθ + 0.5dbH Distance from load V to center plane of hanger bar

= 11.9 in
θv = atan [(h-2c-dbF)/af]

= 0.94 rad 53.9 deg
ASD = cross-sectional area of a diagonal steel bar at end face

= 0.00 in2

ASH = cross-sectional area of hanger reinforcement in a bar or a bundle

= 0.44 in2

ASF= cross-sectional area of flexural reinforcement in a bar or a bundle

= 0.44 in2

B = distribution factor for diagonal bars
= [ASD/(ASH + 0.5ASF + ASD)][0.44NSD/(1+LE)]
= 0.000

εH = hanger bar strain 
= (1-B)V / (1.2ESASH )
= 0.008849

εF = flexural bar strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.006456

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.010954
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 101.06 in

w = predicted diagonal crack width (aim for max of 0.006" )
= 2.6LHFεHF/(1+0.7LE)2 when w <= 0.006 in.

0.0060 in

CALCULATED OUTPUT RESULTS
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                   Figure 6.7  Calculation example for skewed end face of  cantilever portion 

Design Example 2 for Skewed End
C-S-J:    0720-03-082 Given V = 215 K

LOCATION: SH-249/Spring Cypress Overpass Calculated V0.006 = 128.0 K
Design  by: TxDOT on 4/27/99 V0.006 / V = 0.60 N.G. !

INPUT DATA
Design service load 'V' = 215 kips
Skew angle 'θ' = 26.89 deg
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Normal distance from load V to web edge 'aV' = 9.5 in
Distance from load V to end face 'LE' = 29.3 in
Hanger bar diameter 'dbH' = 0.75 in
Hanger bar area 'ASH' = 0.44 in2

Flexural bar diameter 'dbF' = 0.75 in
Flexural bar area 'ASF' = 0.44 in2

Diagonal bar area 'ASD' = 0 in2

Number of diagonal bar in distance LE  'N' = 0
Diagonal bar spacing 'SD' (= hanger bar spacing) = 4.08 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.006

Assume V0.006 = 128 kips
       af = (aV + c)/cosθ + 0.5dbH Distance from load V to center plane of hanger bar

= 13.2 in
θv = atan [(h-2c-dbF)/af]

= 0.89 rad 50.8 deg
ASD = cross-sectional area of  a diagonal steel bar at end face

= 0.00 in2

ASH = cross-sectional area of hanger reinforcement in a bar or a bundle

= 0.44 in2

ASF= cross-sectional area of flexural reinforcement in a bar or a bundle

= 0.44 in2

B = distribution factor for diagonal bars
= [ASD/(ASH + 0.5ASF + ASD)][0.44NSD/(1+LE)]
= 0.000

εH = hanger bar strain 
= (1-B)V / (1.2ESASH )
= 0.008359

εF = flexural bar strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.006814

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.010785
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 99.46 in

w = predicted diagonal crack width (aim for max of 0.006" )
= 2.6LHFεHF/(1+0.7LE)2 when w <= 0.006 in.

0.0060 in

CALCULATED OUTPUT RESULTS
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                    Figure 6.8  Calculation example for interior portion of  inverted T beam  

Design Example 3 for Interior Portion
C-S-J:    0720-03-082 225 K
LOCATION: SH-249/Spring Cypress Overpass 174.0 K
Design  by: TxDOT on 4/27/99 0.77 N.G. !

INPUTS
Design service load V = 225 kips
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Distance from load V to web edge 'aV' = 9.5 in
Loading pad width 'W' = 34.0 in
Hanger bar diameter 'dbH' = 0.75 in

Hanger bar area 'ASH' = 0.44 in2

Flexural bar diameter 'dbF' = 0.75 in

Flexural bar area 'ASF' = 0.44 in2

Hanger Bar Spacing 'SH' 5 in
Diagonal bar area 'ASD' = 0 in2

Diagonal bar spacing 'SD' (same as hanger bar spacing) = 5 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.013
Assume V0.013 = 174 kips

af  = (aV + c) + 0.5dbH Distance from load V to center plane of hanger bar
= 11.9 in

θv = atan [(h-2c-dbF)/af]
= 0.94 rad

LD = W+0.9df

52.63 in
ASD = total cross-sectional area of diagonal reinforcement in LD

= 0.00 in2

ASH = total cross-sectional area of hanger reinforcement in LD

= 4.63 in2

ASF= total cross-sectional area of flexural reinforcement in LD

= 4.63 in2

B = distribution factor for diagonal bars
= ASD/(ASH + 0.5ASF + ASD)
= 0.000

εH = hanger strain 
= (1-B)V / (1.2ESASH )
= 0.001080

εF = flexural strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.000788

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.001336
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 9.70 in

w = predicted diagonal crack width (aim for max of 0.013" )
= LHFεHF

0.0130 in

Given V =
Calculated V0.013 =

V0.013 / V =

CALCULATION RESULTS
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Appendix A 
 

Simplification of Steel Tie Stiffness 

 

 Equation (2.1) and (3.4) for crack width prediction have been simplified by taking the 

stiffness EI of a steel tie with concrete cover to be 1.2 ssAE . The accuracy of this simplification 

can be demonstrated by the following derivation.                                             

                                             ccss AEAEEA +=  

                                                   )
AE
AE1(AE

ss

cc
ss +=  

                                                   )
A29000000

Af1866
1(AE

s

cc
ss

′
+=  

Based on a minimum net cover of 2-inch for No. 6 and larger bar, required by the ACI code,   

                                         2
bc )d5.02(A +π=  

Where bd = steel bar diameter (inch) 

Therefore   

                                                   



















π

+π′
+=

4
d29000000

)d5.02(f1866
1AEEA 2

b

2
bc

ss    

and                                                               ssAEEA η=  

The coefficient η  is calculated in Table A. Table A shows that η  can be approximated by a 

constant 1.2 for steel bars equal to or less than No. 6. 
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                                                              Table A  Parameter η  
 

Steel Bar cf ′ (psi) η  Average η  
No. 5 4000 1.22 
No. 5 5000 1.25 
No. 6 4000 1.16 
No. 6 5000 1.18 

1.2 

No. 7 4000 1.13 
No. 7 5000 1.14 
No. 8 4000 1.10 
No. 8 5000 1.11 

1.12 
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Appendix B 

Direct Calculation of V0.006 

  There are two ways to calculate 006.0V . The first way is to use trial-and-error method 
(spreadsheet) to solve Eq. (4.6) as shown in Fig. 6.6. The second way is to solve Eq. (4.6) 
directly, resulting in: 
 

                                         
( )

2
VSF

2
SH

2
E

006.0

)tanA(
1

A
1)B1(

)L7.01(4.879383.1
V

θ
+−

+++
=  

 
 The above equation can be simplified into an expression as follows: 
 

                                        ( ) 







θ

−
−
+

=
coshA

aA45.0
1

B1
A)22L12(

V
SF

VSHSHE
006.0  

 
where:  

 B   =  distribution factor for diagonal bars  = 







+++ E

D

SDSFSH

SD

L1
NS44.0

AA5.0A
A

 

 
   V   =  applied service load at the most exterior loading pad (kips) 
         006.0V = applied service load at the most exterior loading pad when crack width reaches 

0.006 in. (kips) 
         θ      =     skew angle  
          Vθ  =  angle between flexural steel bars and the diagonal strut at the point of  
                         load V 
    Va  = normal distance from load V to web edge, inch 
  h = ledge height, inch 
          SDA  =  cross-sectional area of a diagonal steel bar at edge of inverted ‘T’ bent cap (in.2) 
   SHA  =  cross-sectional area of a hangar steel bar at edge of inverted ‘T’ bent cap (in.2) 
     SFA  =  cross-sectional area of a flexural steel bar at edge of inverted ‘T’ bent cap (in.2) 
       EL   =   the distance from end face to the load V applied on the most exterior bearing, inch  
  N     =  number of diagonal bars from the end face to the center of first bearing  
     DS  =  center-to-center spacing of diagonal bars, same as spacing of hangar bars, inch. 
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Appendix C 

Redesign Examples 
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Design Example 1 for Normal End
C-S-J:    0720-03-082 Given V = 221 K

LOCATION: SH-249/Spring Cypress Overpass Calculated V0.006 = 162.0 K
Design  by: TxDOT on 4/27/99 V0.006 / V = 0.73 N.G. !
Redesign by adding diagonal bars

INPUT DATA
Design service load 'V' = 221 kips
Skew angle 'θ' = 0 deg
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Normal distance from load V to web edge 'aV' = 9.5 in
Distance from load V to end face 'LE' = 29.9 in
Hanger bar diameter 'dbH' = 0.75 in
Hanger bar area 'ASH' = 0.44 in2

Flexural bar diameter 'dbF' = 0.75 in
Flexural bar area 'ASF' = 0.44 in2

Diagonal bar area 'ASD' = 0.44 in2

Number of diagonal bar in distance LE  'N' = 7
Diagonal bar spacing 'SD' (= hanger bar spacing) = 4.08 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.006

Assume V0.006 = 162 kips
       af = (aV + c)/cosθ + 0.5dbH Distance from load V to center plane of hanger bar

= 11.9 in
θv = atan [(h-2c-dbF)/af]

= 0.94 rad 53.9 deg
ASD = cross-sectional area of a diagonal steel bar at end face

= 0.44 in2

ASH = cross-sectional area of hanger reinforcement in a bar or a bundle

= 0.44 in2

ASF= cross-sectional area of flexural reinforcement in a bar or a bundle

= 0.44 in2

B = distribution factor for diagonal bars
= [ASD/(ASH + 0.5ASF + ASD)][0.44NSD/(1+LE)]
= 0.163

εH = hanger bar strain 
= (1-B)V / (1.2ESASH )
= 0.008859

εF = flexural bar strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.006463

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.010966
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 101.18 in

w = predicted diagonal crack width (aim for max of 0.006" )
= 2.6LHFεHF/(1+0.7LE)2 when w <= 0.006 in.

0.0060 in

CALCULATED OUTPUT RESULTS
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Design Example 1 for Normal End
C-S-J:    0720-03-082 Given V = 221 K

LOCATION: SH-249/Spring Cypress Overpass Calculated V0.006 = 221.0 K
Design  by: TxDOT on 4/27/99 V0.006 / V = 1.00 O.K. !
Redesign by increasing hanger and flexural bar

INPUT DATA
Design service load 'V' = 221 kips
Skew angle 'θ' = 0 deg
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Normal distance from load V to web edge 'aV' = 9.5 in
Distance from load V to end face 'LE' = 29.9 in
Hanger bar diameter 'dbH' = 0.75 in
Hanger bar area 'ASH' = 0.715 in2

Flexural bar diameter 'dbF' = 0.75 in
Flexural bar area 'ASF' = 0.715 in2

Diagonal bar area 'ASD' = 0 in2

Number of diagonal bar in distance LE  'N' = 0
Diagonal bar spacing 'SD' (= hanger bar spacing) = 4.08 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.006

Assume V0.006 = 221 kips
       af = (aV + c)/cosθ + 0.5dbH Distance from load V to center plane of hanger bar

= 11.9 in
θv = atan [(h-2c-dbF)/af]

= 0.94 rad 53.9 deg
ASD = cross-sectional area of a diagonal steel bar at end face

= 0.00 in2

ASH = cross-sectional area of hanger reinforcement in a bar or a bundle

= 0.72 in2

ASF= cross-sectional area of flexural reinforcement in a bar or a bundle

= 0.72 in2

B = distribution factor for diagonal bars
= [ASD/(ASH + 0.5ASF + ASD)][0.44NSD/(1+LE)]
= 0.000

εH = hanger bar strain 
= (1-B)V / (1.2ESASH )
= 0.008882

εF = flexural bar strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.006480

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.010994
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 101.45 in

w = predicted diagonal crack width (aim for max of 0.006" )
= 2.6LHFεHF/(1+0.7LE)2 when w <= 0.006 in.

0.0060 in

CALCULATED OUTPUT RESULTS
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Design Example 3 for Interior Portion
C-S-J:    0720-03-082 225 K
LOCATION: SH-249/Spring Cypress Overpass 225.0 K
Design  by: TxDOT on 4/27/99 1.00 O.K. !
Redesign by reducing hanger bar spacing

INPUTS
Design service load V = 225 kips
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Distance from load V to web edge 'aV' = 9.5 in
Loading pad width 'W' = 34.0 in
Hanger bar diameter 'dbH' = 0.75 in

Hanger bar area 'ASH' = 0.44 in2

Flexural bar diameter 'dbF' = 0.75 in

Flexural bar area 'ASF' = 0.44 in2

Hanger Bar Spacing 'SH' 3.87 in
Diagonal bar area 'ASD' = 0 in2

Diagonal bar spacing 'SD' (same as hanger bar spacing) = 3.87 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.013
Assume V0.013 = 225 kips

af  = (aV + c) + 0.5dbH Distance from load V to center plane of hanger bar
= 11.9 in

θv = atan [(h-2c-dbF)/af]
= 0.94 rad

LD = W+0.9df

52.63 in
ASD = total cross-sectional area of diagonal reinforcement in LD

= 0.00 in2

ASH = total cross-sectional area of hanger reinforcement in LD

= 5.98 in2

ASF= total cross-sectional area of flexural reinforcement in LD

= 5.98 in2

B = distribution factor for diagonal bars
= ASD/(ASH + 0.5ASF + ASD)
= 0.000

εH = hanger strain 
= (1-B)V / (1.2ESASH )
= 0.001081

εF = flexural strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.000788

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.001338
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 9.71 in

w = predicted diagonal crack width (aim for max of 0.013" )
= LHFεHF

0.0130 in

Given V =
Calculated V0.013 =

V0.013 / V =

CALCULATION RESULTS
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 Design Example 3 for Interior Portion
C-S-J:    0720-03-082 225 K
LOCATION: SH-249/Spring Cypress Overpass 225.0 K
Design  by: TxDOT on 4/27/99 1.00 O.K. !
Redesign by adding diagonal bars

INPUTS
Design service load V = 225 kips
Clear concrete cover 'c' = 2 in
Ledge height 'h' = 21 in
Distance from load V to web edge 'aV' = 9.5 in
Loading pad width 'W' = 34.0 in
Hanger bar diameter 'dbH' = 0.75 in

Hanger bar area 'ASH' = 0.44 in2

Flexural bar diameter 'dbF' = 0.75 in
Flexural bar area 'ASF' = 0.44 in2

Hanger Bar Spacing 'SH' 5 in
Diagonal bar area 'ASD' = 0.191 in2

Diagonal bar spacing 'SD' (same as hanger bar spacing) = 5 in
ES = 29,000 ksi

TRIAL & ERROR TO FIND V0.013
Assume V0.013 = 225 kips

af  = (aV + c) + 0.5dbH Distance from load V to center plane of hanger bar
= 11.9 in

θv = atan [(h-2c-dbF)/af]
= 0.94 rad

LD = W+0.9df

52.63 in
ASD = total cross-sectional area of diagonal reinforcement in LD

= 2.01 in2

ASH = total cross-sectional area of hanger reinforcement in LD

= 4.63 in2

ASF= total cross-sectional area of flexural reinforcement in LD

= 4.63 in2

B = distribution factor for diagonal bars
= ASD/(ASH + 0.5ASF + ASD)
= 0.224

εH = hanger strain 
= (1-B)V / (1.2ESASH )
= 0.001083

εF = flexural strain 
= (1-B)V cot θV / (1.2ESASF)
= 0.000790

εHF = diagonal crack strain calculated by hanger and flexural strains
= SQRT (εH

2 + εF
2)

= 0.001340
LHF = CASTM gauge length for calculated  steel strains

= 9500 εHF - 3.0
= 9.73 in

w = predicted diagonal crack width (aim for max of 0.013" )
= LHFεHF

0.0130 in

Given V =
Calculated V0.013 =

V0.013 / V =

CALCULATION RESULTS
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