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PREFACE

This investigation was initiated on 1 July 1975 for the State Department
of Highways and Public Transportation by Sam Cox, District 21 (Pharr) through
Kenneth D, Hankins, D-10 Research (Austin) and Don W, McGowan, D-18, Main-
tenance and Operations Division (Austin), Field studies were conducted
on 9 July 1975 by Center for Highway Research personnel, Dr. Clyde E. Lee,

J. Leon Snider, and Randy Wallin, in cooperation with Mr. McGowan and per-
sonnel from the Resident Engineer's office in Raymondville.

Data reduction and analysis were performed at the Center by Dr. Hugh J.
Williamson, Research Engineer Associate IV; J. Leon Snider, Technical Staff
Assistant V; Randy Wallin, Computer Programmer I; Joe D. Word, Laboratory
Research Assistant II; Steven H. Golding, Laboratory Research Assistant II;
and other staff using facilities at the University and at the State Department
of Highways and Public Transportation and computer programs developed through
previous studies under the continuing Cooperative Highway Research Program.
Professor Emeritus Phil M, Ferguson, Department of Civil Engineering, The
University of Texas at Austin, contributed freely of his observations to the
study, also.

This is the third report dealing with bridge roughness that has been
prepared for the State Department of Highways and Public Transportation during
the past two years. All these investigations are direct examples of applying
the results of research in solving field design, maintenance, and operational

problems that are of immediate concern and of long-range interest.

Photographs were provided by Don W. McGowan.
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SUMMARY

The half-mile~long twin reinforced concrete bridges on U.S, 77 which
cross the North Floodway above Harlingen, Texas, were opened to traffic
in 1974. The 12-in. deck has developed an undulating longitudinal profile
with sags of 1/4 to 1/2 inch in most of the 25-ft spans; thus the riding
quality is impaired, vehicles using the highway are subject to extra wear, and
dynamic loads in excess of the static weight of traffic are induced.

In this study, a computer simulation technique was used to investigate
the complex interaction between the existing road surface profile and two
representative trucks in order to assess the magnitude and placement of the
potentially large dynamic wheel loads on the bridge structure. Maximum wheel
forces from 50 to 100 percent greater than static wheel weight were predicted
for the heavy vehicles operating at speeds between 40 and 55 mph.

Since these large dynamic loads occur in the normal speed range for
traffic, smoothing the surface profile with an overlay is recommended.
Speed-zoning can be used for temporary alleviation, but effective enforcement

will be very difficult on this particular highway.
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DYNAMIC VEHICULAR LOADING OF THE
NORTH FLOODWAY BRIDGES, 1975

The North Floodway Bridges are located on U.S. 77 in Cameron County
some 8 miles north of Harlingen, Texas. Twin bridges, each approximately
one-half mile long, carry two lanes of traffic in each direction about 15 ft
above the floor of the broad, shallow floodway. The 44-ft wide deck of each
bridge, which includes the two 12-ft traffic lanes, a 12-ft right shoulder,
and a 6-ft left shoulder, consists of a 12-in. reinforced concrete slab
supported on 106 five-column concrete bents spaced nominally at 25-ft
intervals (see photos). The slab is dowelled to each bent cap, and armored
expansion joints are provided between the 200-ft, 125-ft, or 80-ft deck units.
A 20-ft approach slab is added at the ends of both bridges.

These structures, which were opened to traffic in 1974, were constructed
with a nominal 1/4-in. upward longitudinal camber in each span, but recent
profile surveys show that virtually all spans now have sag of this magnitude
or greater (see Appendix A). In some cases, elevation differences of up to an
inch or more in a 30-ft longitudinal distance exist. This undulating profile
extends over the full length of both bridges and is consistent in the trans-
verse direction. The longitudinal profile of each shoulder is quite similar
to the profile of each traffic lane; therefore, traffic loading up to now has
apparently not had additional detrimental effects on the structure. Because
of this similarity in the longitudinal profiles of all the adjacent lanes, and
since the bridges are less than two years old, the cause of the sagging
profile is probably related more to construction technique or to concrete
shrinkage and creep than to traffic loading.

This irregular, undulating surface profile, regardless of its cause,
forces the wheels of vehicles crossing the bridges to translate vertically,
and at certain speeds, the sprung mass (body) of some vehicles is caused to
bounce, roll, and pitch severely. Under critical conditions when the vertical
movements of the vehicle are reinforced by each wave in the deck profile,

large dynamic wheel forces are produced. Previous research (Refs 1, 2,3, and4)



View of southbound Harlingen North Floodway Bridge
showing arrangement of bents.

View of northbound Harlingen North Floodway Bridge
showing deck and support structure.



has shown that the resulting wheel impact forces can be more than twice the
corresponding static wheel weight. These severe dynamic loads need to be
minimized in order to prolong the service life of the structure, prevent
excessive wear or damage to vehicles using the bridges, and provide acceptable
riding quality.

There are several possible approaches to reducing or minimizing the
magnitude of dynamic loading caused by traffic operating on a rough surface
profile. An obvious solution is to smooth the profile. Sometimes, this is
undesirable or economically unfeasible. Speed control, when practical, tends
to reduce the effects of a rough surface and offers temporary alleviation if
properly enforced. Or, load-zoning can be applied in extreme cases to restrict
the magnitude of permissible static vehicle weight.

The Center for Highway Research at The University of Texas at Austin was
asked to analyze the nature and magnitude of dynamic loading that is resulting
from mixed traffic using the North Floodway Bridges and to suggest possible
remedial measures for controlling the loads. Through previous research,
computer simulation techniques which describe the complex dynamic behavior of
various types of vehicles traveling at different speeds over defined surface
profiles have been developed. Equipment for measuring the essential charac-
teristics of the road profile was available at the Center, and experience in
using the computer models was available. Therefore, the requested study was

under taken.

‘Field Measurements

Longitudinal profile measurements in each wheel path of each lane of
interest on the bridges were required as input data to the computer simulation
program. The General Motors Road Surface Dynamics Profilometer operating
under Center for Highway Research Study No. 3-8-71-156 was used to obtain
these data on 9 July 1975. Preliminary tests showed that the best speed for
the profilometer to operate was at 20 mph. Profile waves up to 100 ft long
can be measured without significant distortion at this speed. It was found
that the profilometer vehicle pitched and oscillated excessively at 40 mph, a
speed at which somewhat longer waves could be measured. A cursory analysis of

the preliminary profile data and observation of traffic using the bridges



indicated that waves 100 ft or shorter would be of primary interest;
therefore, all profile measurements were made at 20 mph .

Profiles of the full length of each bridge were plotted and examined
visually to determine zones which included profile characteristics that are
likely to cause large impact loads. While it is possible to run the simulated
vehicles over the full length of the bridges, this was deemed unnecessary and
wasteful. Three sections, each about 350 ft long, were selected to be repre-
sentative of profile patterns that would probably cause large dynamic loads.
The first section, shown in Fig 1, includes about 125 ft of the approach in
the right traffic lane of the southbound bridge plus the first 125 ft of the
adjoining deck at the north end. This section includes a long wave on the
approach pavement, a sudden drop of about an inch onto the 20-ft approach
slab, and a series of 25-ft waves in the first few spans of the bridge.

The second section, shown in Fig 6, includes parts of two 200-ft deck
units near the center of the northbound bridge and contains the repeating
sawtooth pattern of 25-ft waves that are 1/4 to 1/2-inch in amplitude found
throughout the length of both bridges. The third section (see Fig 12)
includes about 150 ft of the north end of the northbound bridge, the
tilted 20-ft approach (departure) slab, and some 150 ft of pavement just off
the bridge in the right traffic lane. An elevation difference of 1-1/2 inches
has developed in the 25-ft zone beyond the approach slab. All these profile
plots show only the left wheel path, but measurements were made and used in
the simulation model for both wheel paths. Visual examination and statistical
analysis of the relationship between right and left wheel path profiles
indicated great similarity; therefore, only the left wheel path profiles have
been illustrated in these figures. Plots of the right wheel path profiles in
the outside lane of both bridges are given in Appendix A.

In addition to the profile measurements, live-load deflection measure-
ments were made near the middle of a 200-ft unit of the southbound bridge. A
dial indicator with a least reading of 0.0001 inch was supported from the
ground under the outside traffic lane and allowed to contact the bottom
surface of the deck slab midway between two bents. The maximum live-load
deflection observed was approximately 0.060 inch. The dead-load-only
reading of the dial changed about 0.007 inch in the 4-hr period beginning
at 11:00 A.M. Deflections of this magnitude can be assumed to have negli-

gible effects on the dynamic behavior of vehicles on the bridge.



Vehicle Simulation

Although a wide variety of vehicles uses the bridges, critical dynamic
loading is most likely to result from a few truck configuratioms. Grain and
other agricultural produce are primary products hauled by the large trucks in
the area. A single-unit two-axle dual-rear-tire vehicle (Type 2D; see
Plate A) was chosen as representative of smaller trucks, and a five-axle
articulated tractor-semi-trailer (Type 35-2; see Plate B) unit was selected to
represent the larger trucks. The parameters needed to characterize these
vehicles were available from previous research and are summarized in Table 1.

Other types of vehicles such as mobile homes, cars towing camping
trailers, and pickups with covers may experience adverse riding conditions on
these bridges at certain speeds, but since these lighter vehicles will
probably not create critical dynamic loads they were not included in this
study. Further analysis of the effects of bridge roughness on ride quality is
highly desirable, however.

The speed limit on U.S. 77 is normally 55 mph, and the bridges are
expected to accommodate at least this speed. Observation of traffic and
recent test rides over the North Floodway bridges by engineers in District 21
initiated the installation of advisory speed signs at 45 mph early in
July 1975. Vehicle speeds between 20 mph and 60 mph were therefore used in

the simulation study.

Analysis

Mathematical models of the two vehicles described above were, by computer
simulation, "driven" over the selected sections of the bridges at various
speeds. Tire forces that would result from the vehicles interacting with the

surface profile were plotted and examined.
Figures 2 through 5 show the wheel forces predicted from the simulated

vehicles operating over the profile shown in Fig 1. At 40 and 45 mph the
dynamic rear wheel force of the 2D type truck varied from its static weight
of 7,000 pounds by as much as 5,000 pounds (70 percent), and a similar
percentage variation in wheel force for the rear axles of the 35-2 type
vehicle was produced at 50-55 mph (see Figs 4 and 5)., The dynamic wheel
force variations were found to be less than this at lower and higher speeds

and the plots are therefore not included in this report.
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Schematic diagram of single-unit two-axle dual tire

Plate A.

(Type 2D) vehicle model.



Schematic diagram of five-axle tractor-semi-trailer articulated
(Type 38-2) vehicle model.

Plate B.



TABLE 1. VEHICLE CHARACTERISTICS

I. Two axle single unit (2D)

Body Mass
Tread Width

Axle 1
Axle 2

Axle Spacing
Wheel Weights

1 Right
1 Left
2 Right
2 Left

Suspension System

Spring Stiffness

Axle 1 Right
Axle 2 Right
Damping

Axle 1 Right
Axle 2 Right

Tires
Stiffness

Axle 1 Right
Axle 2 Right
(Duals)

Damping

Axle 1 Right
Axle 2 Right

and
and

and
and

and
and

and
and

Left
left

Left
left

Left
Left

Left
Left

47.91

74.0
70.0

153.0

3139
3012
7780
7103

535
3750

w

4000

8000

N

(1b—sec2) / in.
in.
in.
in.
1b.
1b.

1b.
1b.

1b/in.
1b/in.

percent of critical
percent of critical

1b/in.

1b/in.

percent of critical
percent of critical

(continued)



TABLE 1. (continued)
II. Five axle articulated (35-2)
Cab Mass 40.5 (1b-sec2) / in.
Trailer Mass 143 (1b-secz) / in.
Tread Width
Axle 1 77.0 in.
Axle 2 71.0 in.
Axle 3 71.0 in.
Axle & 73.0 in.
Axle 5 73.0 in.
Axle Spacing
Axle 1-2 147.0 in.
Axle 1-3 196.0 in.
Axle 1-4 472.0 in.
Axle 1-5 523.0 in.
Wheel Weights
1 Right 6000 1b.
1 Left 6000 1b.
2 Right 8500 1b.
2 Left 8500 1b.
3 Right 8500 1b.
3 left 8500 1b.
4 Right 8500 1b.
4 Left 8500 1b.
5 Right 8500  1b.
5 Left 8500 1b.

(continued)
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TABILE 1. (continued)
Suspension System
Spring Stiffness
Axle 1 Right and Left 2000 1b/in.
Axle 2 Right and Left 6000 1b/in.
Axle 3 Right and Left 6000 1b/in.
Axle &4 Right and Left 6000 1b/in.
Axle 5 Right and Left 6000 1b/in.
Damping
Axle 1 Right and Left 4.5 percent of critical
Axle 2 Right and Left 3.0 percent of critical
Axle 3 Right and Left 3.0 percent of critical
Axle 4 Right and Left 1.5 percent of critical
Axle 5 Right and Left 1.5 percent of critical
Tires
Stiffness
Axle 1 Right and Left 4500 1b/in.
Axle 2 Right and Left 8000 1b/in.
Axle 3 Right and left 8000 1b/in.
Axle 4 Right and Left 7500  1b/in.
Axle 5 Right and Left 7500  1b/in.
Damping
Axle 1 Right and Left 0.01 percent of critical
Axle 2 Right and Left 0.50 percent of critical
Axle 3 Right and Left 0.50 percent of critical
Axle 4 Right and Left 0.25 percent of critical
Axle 5 Right and Left 0.25 percent of critical
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The dynamic wheel forces expected to result from the simulated vehicles
operating on the profile shown in Fig 6 are illustrated in Figs 7 through 11.
The repeating 25-ft waves in the bridge profile cause the 2D type truck to
oscillate most severely at 40 mph and produce dynamic wheel forces up to
about 50 percent greater than static wheel weight (see Figs 7 and 8). This
profile induced the greatest dynamic effects in the front axle and the trailer
axles of the 3S-2 type vehicle at 50 mph (see Figs 9, 10, and 11). In Fig 10,
it can be noted that the rearmost wheel almost leaves the surface and causes
downward loads nearly double the static wheel weight. At 45 and 55 mph, the
oscillations of the vehicle are not in phase with the waves in the profile,
damping occurs, and resulting dynamic wheel forces do not reach this same
magnitude.

Dynamic forces caused by the profile shown in Fig 12 are expected to be
quite large since traffic moves off the upward-tilted approach (departure)
slab and vehicle wheels fall into a 1-1/2-inch depression. Figures 13 and 14
show the predicted wheel forces for the 2D type vehicle running at 45 and
at 60 mph. The unsprung mass (wheels and axles) oscillate at a frequency of
about 10 to 12 Hz, as is typical, and the sprung mass (body and load) trans-
lates at about 2.5 Hz. The severe oscillations of the undercarriage caused by
the step-off bump damp out in about 40 ft, and the sprung mass goes through
about three cycles before its oscillations are damped. Wheel forces range
from about zero to some 70 percent greater than static wheel weight. It is
interesting that the peak predicted forces occur at 45 mph rather than
at 60 mph in this case. Oscillations of the sprung and unsprung masses were
in proper phase with each other and with the profile to cause a severe peak
load in the first cycle of the vehicle oscillation beyond the large profile
depression.

Individual wheel loads are of concern when considering local stress
conditions in the bridge deck, but the magnitude and position of the gross
dynamic load on a particular span must also be accounted for in design. The
gross dynamic force on the span is simply the accumulation of all the wheel
forces at a given instant. Figure 15 shows a plot of the gross dynamic load
that results from the 3S-2 vehicle operating over the sawtooth deck profile
near the middle of the northbound bridge (see Fig 6). The dynamic forces
produced by the simulated 80,000 pound vehicle varied more than 30 percent

from the static weight of the truck. This variation is of the same order as
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the impact factor that is normally applied in the structural design of major

bridge elements.

Conclusion and Recommendations

The maximum dynamic wheel loads resulting from the simulation of two
representative trucks crossing the North Floodway bridges occurred in the
speed range between 40 and 55 mph. At these speeds, the undulating profile
which includes a repeating pattern of 25-ft waves excited the vehicles in the
range of 2.35 to 3.23 Hz, and caused the various vehicle components (sprung
masses, unsprung masses, tires, and suspension) to react in such a way that
the higher frequency oscillations of the undercarriage (around 12 Hz) were
added to the oscillations of the body/load masses (around 3 Hz) at critical
times to produce quite large dynamic wheel loads (50 to 100 percent greater
than static weight). This speed range is, of course, the normal operating
range for traffic on the bridges, and remedial measures that will reduce the
magnitude of dynamic loading are indicated.

Load-zoning nor speed zoning seems practical on this major highway;
therefore, smoothing the surface with an overlay to remove the sags between
bents and compensate for bent cap misalignment that may now exist appears to
be the best solution. The regular pattern of 25-ft waves in the profile (see
Appendix A) suggests that alignment of the bent caps is generally satisfactory,
but that the deck has sagged since construction. Special attention to the
finished grade of an overlay will be required in order to remove the waves
of 1/4 to 1/2-inch amplitude. Consideration should also be given to whether
sagging of the deck will continue.

In informal discussions with Professor Emeritus Phil M, Ferguson, he
pointed out that the pattern of longitudinal reinforcing steel used in these
bridge decks is efficient to resist bending moment but that it tends to cause
sagging between supports when the concrete shrinks or creeps. That is, the
volume change in the concrete due to these phenomena is resisted by the rein-
forcing steel. Heavier bottom steel at mid-span and heavier top steel over
the supports restrains the concrete in these zones from shrinking or creeping
as much as that in the respective top and bottom fibers of the slab where

lighter reinforcing is used.
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A supplementary design criteria based on tolerable deflection should
probably be considered. Building codes for flat slabs set the minimum
thickness of the slab as L/28 for both ends continuous unless special
deflection checks are made. The 1-ft thick deck slab over the 25-ft supports
satisfies this criteria, but the 30-ft spans exceed it slightly. Even though
there may be no direct analogy between buildings and bridges, it is inter-
esting to note that the 30-ft spans which occur in the middle of the 80-ft
units do not meet the criteria and that each of these longer spans has more
sag than is generally seen in the 25-ft spans (see Appendix A, pp A-2, A-4,
A-7, A-8, A-11, A-13, A-16, and A-17). Perhaps this observation can be noted
for reference in future design of bridges of this type.

This study has dealt primarily with dynamic loading of the bridge
structure by traffic, but consideration of the riding quality and of the
effects of road roughness on vehicles is needed. At least one truck has
already experienced severe damage (frame of the trailer collapsed) while
traveling on one of these bridges, and complaints about a rough ride have been

voiced recently. Smoothing the riding surface will solve these problems.
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APPENDIX A

The General Motors Road Surface Dynamics Profilometer operating under
Center for Highway Research Study No. 3-8-71-156 was operated at a speed
of 20 mph over the North Floodway bridges near Harlingen, Texas on 9 July 1975
to obtain the information presented herein. The analog records that were
recorded on magnetic tape were subsequently converted to digital form by
frequent sampling so that digital computer programs could be used in analysis.
The digitized raw data points have been plotted and connected by a solid line
in the following figures. For analysis purposes, each bridge was considered
in three 11,000-ft sections since standard computer programs were available to
operate in this format. The data were further separated into shorter frames
for convenience in presentation.

Most of the 1-1/4-inch-wide armored expansion joints show on the plots as
sharp spikes since the small road-following wheel of the profilometer dropped
into the joint under its 300-1b force. Approximate bent locations are shown
in the figures along with the length of the slab units between expansion
joints.

Because of certain limitation in the profilometer equipment, the road
elevations are not absolute with respect to a horizontal plane. Relative
elevations, however, over distances less than about 100 ft are fairly
accurate. Patterns of roughness can thus be determined and allowances made
for the fact that longer waves in the profile are not included precisely in
the raw data.

A special digital filtering program was used on the bridge profile data
to determine a running average of the amplitude of wavelengths between 15
and 35 ft. The dotted line in the figures shows the amplitude of the waves in
this range. A large portion of the total roughness of the bridge decks is
accounted for by these wavelengths, and a definite pattern of repeating waves

exists.
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