Technical Report Documentation Page

1. Report No. FHWA/TX-97/1393-4F	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle PROCEDURES TO DETERMINH OF SERVICE AND RAMP SPAC	 5. Report Date August 1996 6. Performing Organization Code 			
7. Author(s) Kay Fitzpatrick, R. Lewis Nowlin	, and Angelia H. Parham	8. Performing Organization Report No. Research Report 1393-4F		
9. Performing Organization Name and Add Texas Transportation Institute The Texas A&M University Syste	dress	10. Work Unit No. (TRAIS)11. Contract or Grant No.		
College Station, Texas 77843-313	Study No. 0-1393			
12. Sponsoring Agency Name and Address Texas Department of Transportati Research and Technology Transfe P.O. Box 5080 Austin, Texas 78763-5080	 13. Type of Report and Period Covered Final: September 1993 - August 1996 14. Sponsoring Agency Code 			

15. Supplementary Notes

Research performed in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

Research Study Title: Determination of Capacity and Level of Service on Freeway Frontage Roads

16. Abstract

The main objectives of this study were to develop procedures for estimating the level of service on freeway frontage roads and to determine desirable spacings for ramp junctions. The tasks involved developing 1) procedures for analyzing frontage road weaving sections, 2) recommended spacing requirements for ramp junctions, and 3) a technique to evaluate overall operations on a continuous frontage road section. The two weaving segments analyzed included a one-sided weaving area formed by an exit ramp followed by an entrance ramp and connected by an auxiliary lane and a two-sided weaving area formed by an exit ramp followed by a downstream signalized intersection. Spacing guidelines were developed for the following frontage road sections: exit ramp to entrance ramp; exit ramp to downstream signalized intersection to metered entrance ramp. The technique to analyze overall frontage road operations can be used to estimate the level of service for a frontage road section several kilometers in length.

17. Key Words		18. Distribution State	ement	
Level of Service, Frontage Roads, Weaving, Two-Sided Weaving, Ra	One-Sided amp Spacing	No restrictions. to the public thro National Technic 5285 Port Royal Springfield, Virg	This document is av ugh NTIS: al Information Serv Road inia 22161	ailable
19. Security Classif. (of this report)	20. Security Classif	C (of this page)	21. No. of Pages	22. Price

148

Unclassified

Unclassified

.

PROCEDURES TO DETERMINE FRONTAGE ROAD LEVEL OF SERVICE AND RAMP SPACING

by

Kay Fitzpatrick, P.E. Associate Research Engineer

R. Lewis Nowlin Assistant Research Scientist

and

Angelia H. Parham, P.E. Assistant Research Engineer

Research Report 1393-4F Research Study Number 0-1393 Research Study Title: Determination of Capacity and Level of Service on Freeway Frontage Roads

> Sponsored by the Texas Department of Transportation In Cooperation with U.S. Department of Transportation Federal Highway Administration

> > August 1996

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

IMPLEMENTATION STATEMENT

This report presents procedures for estimating the level of service on freeway frontage roads. The results from this report will aid engineers in evaluating one-way and two-way continuous frontage road sections. In addition, procedures are provided for evaluating one-sided and two-sided weaving segments on one-way frontage roads. Engineers can use the procedures to estimate the level of service on these types of facilities, which, in turn, can aid in prioritizing frontage road improvement projects and/or predicting future operations. Recommended spacing requirements for ramp junctions are also contained in this report.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation (TxDOT) or the Federal Highway Administration (FHWA). This report does not constitute a standard, specification, or regulation, nor is it intended for construction, bidding, or permit purposes. This report was prepared by Kay Fitzpatrick (PA-037730-E), R. Lewis Nowlin, and Angelia H. Parham (TN-100,307).

ACKNOWLEDGMENT

The Texas Department of Transportation study 1393 technical advisory panel chair, Wayne Dennis, along with the technical panel (Lilly Banda, Cheryl Flood, and Fred Marquez) are recognized for their time in providing direction and comments for this research. This study was performed in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

The authors would also like to recognize the following persons for helping with the data collection, reduction efforts, and report preparation: Jon Collins, Shirley Kalinec, Stacy King, Molly Marshall, Chuck McIlroy, Kelly Quy, Jason Vaughn, and Dan Walker.

TABLE OF CONTENTS

<u>Cł</u>	Page Page
LI	ST OF FIGURES xi
LI	ST OF TABLES xiii
SU	J MMARY xv
1	INTRODUCTION
	PROBLEM STATEMENT1
	OBJECTIVES
	ORGANIZATION
2	ONE-SIDED WEAVING ANALYSIS
	DEVELOPMENT OF LEVEL-OF-SERVICE CRITERIA
	TECHNIQUE FOR DETERMINING LEVEL OF SERVICE
	SAMPLE CALCULATION
	WEAVING LENGTH
3	TWO-SIDED WEAVING ANALYSIS
	DEVELOPMENT OF LEVEL-OF-SERVICE CRITERIA
	TECHNIQUE FOR DETERMINING LEVEL OF SERVICE
	SAMPLE CALCULATION
	EXIT RAMP-TO-INTERSECTION SPACING
4	SPACING NEEDS FOR METERED ENTRANCE RAMPS
	DETERMINING METERED ENTRANCE RAMP SPACING NEEDS

TABLE OF CONTENTS (continued)

Second States N

<u>C1</u>	hapter Page
	RECOMMENDED PROCEDURE
5	LEVEL-OF-SERVICE ANALYSIS PROCEDURE
	OPERATIONS APPLICATION
	PLANNING APPLICATION
	EXAMPLE CALCULATION 1 - COMPUTATION OF FRONTAGE ROAD
	LEVEL OF SERVICE, ONE-WAY FRONTAGE ROAD
	EXAMPLE CALCULATION 2 - COMPUTATION OF FRONTAGE ROAD
	LEVEL OF SERVICE, TWO-WAY FRONTAGE ROAD
	EXAMPLE CALCULATION 3 - PLANNING APPLICATION
6	FINDINGS AND RECOMMENDATIONS
	FINDINGS
	RECOMMENDATIONS FOR ADDITIONAL RESEARCH
R	EFERENCES
A	PPENDIX A -WORKSHEETS A-1
A	PPENDIX B - FRONTAGE ROAD LEVEL-OF-SERVICE ANALYSIS
	FLOW CHARTS B-1
A	PPENDIX C - USING HIGHWAY CAPACITY SOFTWARE TO DETERMINE
	FRONTAGE ROAD LEVEL OF SERVICE

LIST OF FIGURES

Figure	Page
1-1	Frontage Road Analysis
2-1	One-Sided Weaving Maneuvers on Frontage Roads
2-2	Breaking Points for Weaving Speed and Lane Change Relationship
2-3	Breaking Point for Prior Speed and Lane Change Relationship
2-4	Sample Calculation for One-Sided Weaving Analysis
2-5	Weaving Speed and Weaving Length Relationship
3-1	Two-Sided Weaving Maneuver Between Exit Ramp and Intersection
3-2	Three Frontage Road Configurations
3-3	Relationship Between Speed and Density
3-4	Sample Calculation for Two-Sided Weaving Analysis
4-1	Typical Ramp Metering System
4-2	Queuing Section and Metering Section
4-3	Distance Requirements for Queue Storage for a Four-Minute Analysis Period
4-4	Distance Requirements for Freeway Merging Operation
4-5	Entrance Ramp Dimensions
4-6	Ramp Distance Available for Ramp Signal Offsets
4-7	Speeds Attainable for Ramp Signal Offsets
5-1	Level-of-Service Analysis Procedure
5-2	Terminology Used to Describe Frontage Roads
5-3	Schematic of One-Way Frontage Road Study Section
5-4	Compute Running Time
5-5	Compute Intersection Delay
5-6	Calculate Ramp Delay
5-7	Assess Level of Service
5-8	Schematic of Two-Way Frontage Road Study Section
5-9	Compute Running Time
5-10	Compute Intersection Delay

LIST OF FIGURES (continued)

<u>Figure</u>]	<u>Page</u>
5-11	Calculate Ramp Delay	. 72
5-12	Compute Average Travel Speed	. 73
5-13	Assess Level of Service	. 75

LIST OF TABLES

.

<u>Table</u>	Page
2-1	Level-of-Service Criteria
3-1	Level-of-Service Criteria
3-2	Levels of Service for Two-Lane Frontage Roads
3-3	Levels of Service for Three-Lane Frontage Roads
3-4	Levels of Service for Two-Lane Frontage Roads with Auxiliary Lane
3-5	Minimum and Desirable Ramp-to-Intersection Spacings for Two-Lane
	Frontage Roads (m)
3-6	Minimum and Desirable Ramp-to-Intersection Spacings for Three-Lane
	Frontage Roads (m)
3-7	Minimum and Desirable Ramp-to-Intersection Spacings for Two-Lane
	Frontage Roads with Auxiliary Lane (m)
4-1	Distance Requirements for Queue Storage for a Four-Minute Analysis
	Period (m)
5-1	Data Required for Analyzing Frontage Road Operations
5-2	Equations for Predicting Running Time on Frontage Roads
5-3	Running Time for One-Way and Two-Way Frontage Road Segments
5-4	Arrival Type and Incremental Delay Calibration Term (m) Values
5-5	Uniform Delay Adjustment Factor (DF)
5-6	Signalized Intersection Level-of-Service Criteria
5-7	Equations for Predicting Frontage Road Delay at Ramps
5-8	Maximum Ramp Volumes to Be Used With Capacity Equations
5-9	Frontage Road Level-of-Service Criteria
5-10	Roadway Characteristics and Traffic Data for One-Way Frontage
	Road Study Section
5-11	Signal Data for One-Way Frontage Road Study Section

LIST OF TABLES

<u>Table</u>	Pa	<u>ige</u>
5-12	Roadway Characteristics and Traffic Data for Two-Way Frontage	
	Road Study Section	68
5-13	Signal Data for Two-Way Frontage Road Study Section	68

SUMMARY

Using frontage roads as a component of freeway design has important advantages, including operational flexibility to handle emergency traffic situations, accessibility to connecting streets and commercial development along the freeway corridor, and additional capacity when the freeway reaches maximum flow. The state of Texas has realized the importance and advantages of the freeway frontage road system as witnessed by the extensive incorporation of frontage roads into the Texas urban freeway system.

Techniques to estimate capacity and level of service on freeways and urban arterials are detailed in the current *Highway Capacity Manual (HCM)*; however, these procedures cannot be applied directly to frontage roads, as they often combine features from both freeways and arterials. Even when weaving is expected to dominate frontage road operations, the speed assumptions in the *HCM* freeway weaving analysis make it unusable for frontage road analysis. Techniques must be developed to enable engineers to adequately design frontage roads for expected volumes, to predict operating conditions under a range of flows, and to guide in the selection of alternatives for solving operational problems.

The overall objectives of this study were to develop procedures for estimating the level of service on freeway frontage roads and to determine desirable spacings for ramp junctions. The study involved developing 1) procedures for analyzing frontage road weaving sections, 2) recommended spacing requirements for ramp junctions, and 3) a technique to analyze overall operations on a continuous frontage road section. The two weaving segments analyzed included a one-sided weaving area formed by an exit ramp followed by an entrance ramp connected by an auxiliary lane and a two-sided weaving area formed by an exit ramp followed for the following frontage road sections: exit ramp to entrance ramp; exit ramp to downstream signalized intersection; and signalized intersection to metered entrance ramp. The technique to analyze overall frontage road operations can be used to estimate the level of service on a frontage road section several kilometers in length.

CHAPTER 1 INTRODUCTION

Frontage roads are an integral part of the Texas freeway system. They provide access to land development adjacent to the freeway and connect the freeway with local streets. In addition, frontage roads can serve as alternate routes to the freeway during congestion, maintenance activities, or emergencies. The state of Texas has realized the importance and advantages of the freeway frontage road system as witnessed by the extensive incorporation of frontage roads into the Texas urban freeway system.

Frontage roads contain characteristics of both freeways and arterial streets. Frontage roads are one-way or two-way, contain entrance and exit ramps servicing the freeway, and provide access to local driveways and low priority streets. In addition, the frontage road system is interconnected with the major streets intersecting the freeway, usually as signalized or stop-controlled intersections.

PROBLEM STATEMENT

Procedures are currently available in the 1994 Highway Capacity Manual (HCM) (1) to estimate capacity and level of service on freeways and urban arterials; however, these procedures may not be appropriate for frontage roads as features from both freeways and arterials are often present. Because of this limitation, procedures must be developed to enable engineers to adequately design frontage roads for expected volumes, to predict operating conditions under a range of conditions, and to guide in the selection of alternatives for solving operational problems.

OBJECTIVES

An objective of this study was to develop procedures for estimating the level of service on freeway frontage roads. Separate procedures were developed to evaluate traffic operations for the following three scenarios: a continuous frontage road section up to several kilometers in length, a

one-sided weaving area formed by an exit ramp followed by an entrance ramp connected by an auxiliary lane, and a two-sided weaving area formed by an exit ramp followed by a downstream signalized intersection. In addition, spacing guidelines were developed for the following frontage road sections: exit ramp to entrance ramp; exit ramp to downstream signalized intersection; and signalized intersection to metered entrance ramp.

ORGANIZATION

Texas Department of Transportation (TxDOT) Project 1393 developed several procedures to evaluate frontage roads and portions of frontage roads. The research conducted during the development of these procedures is documented elsewhere (2, 3, 4). This report contains the stepby-step procedures that an analyst would use to evaluate the performance along a frontage road. Figure 1-1 illustrates the different portions of a one-way frontage road that can be evaluated using techniques presented in this report. The material in Chapter 5 can also be used to evaluate the operations on a two-way frontage road section.

This report is divided into six chapters. Chapter 1 contains some background information concerning frontage roads and defines the problem statement, research objectives, and organization of this report. Chapter 2 provides the procedure for evaluating the operations on a one-sided weaving segment. It also presents the recommended spacing between an exit ramp and an entrance ramp when joined by an auxiliary lane. Chapter 3 contains the procedure for evaluating two-sided weaving operations when an exit ramp is followed by a signalized intersection. It also includes recommended spacing between an exit ramp and the intersection. The desired location for a ramp meter can be determined using the procedure presented in Chapter 4. The procedure provides estimates for the queue storage length and the acceleration and merging distance. Chapter 5 contains the procedure for determining level of service on freeway frontage road sections. For purposes of this procedure, a section is typically defined as being at least 0.8 km in length, with a signal spacing between 0.5 to 3.0 km. The findings and recommendations drawn from this research project are presented in Chapter 6.

Appendix A contains blank worksheets that can be used in the procedures. Summary flowcharts on how to determine the level of service on freeway frontage road sections are presented in Appendix B. Techniques on how to use the *Highway Capacity Software* to evaluate frontage roads are provided in Appendix C.

CHAPTER 2 ONE-SIDED WEAVING ANALYSIS

When all weaving movement takes place on one side of a roadway, it is referred to as onesided weaving. One-sided weaving occurs on frontage roads when an exit ramp is followed by an entrance ramp connected by a continuous auxiliary lane (see Figure 2-1). There are many factors that influence traffic operations on one-sided weaving sections, including traffic volume, ramp spacing, and number of lanes.

The efforts documented in this chapter focus on one-sided weaving operations on one-way frontage roads. The objectives of this study were to develop a technique for evaluating one-sided weaving operations and to develop recommendations on minimum and desirable ramp spacing. To meet these objectives, both field data and computer simulation (NETSIM) were used. The intent was to use the results from the field study to calibrate a NETSIM model and use the NETSIM model to predict various measures of effectiveness (MOEs) under different conditions.

Figure 2-1. One-Sided Weaving Maneuvers on Frontage Roads.

DEVELOPMENT OF LEVEL-OF-SERVICE CRITERIA

By studying the relationships of the MOEs predicted by NETSIM, a procedure could be developed for determining the level of service (LOS) within a weaving area. The researchers investigated several MOEs, including speed, delay, travel time, and number of lane changes. After an analysis of one-sided weaving areas, it was concluded that the average speed on the weaving link (i.e., weaving speed) would be the proposed MOE. Speed is easy to measure in the field, and it is easy to explain and understand.

Findings

In an attempt to use weaving speed to determine the LOS on a weaving section, the relationships between weaving speed and several other variables were studied. These variables included weaving volume, total volume, and number of lane changes. From the analysis, it was concluded that weaving speed is most closely related to lane changes.

Figure 2-2 illustrates the relationship between weaving speed and number of lane changes per hour (lc/hr) for one-sided weaving areas with weaving lengths of 100 to 500 meters. Observing this figure, there appear to be certain critical points (or break points) in which the weaving speed begins to drop noticeably. For instance, there is a critical lane change value (approximately 2000 lc/hr) in which the weaving speed begins to drop more rapidly. Also, as the number of lane changes increases, there is another point (approximately 4000 lc/hr) in which speeds drop significantly and become more variable. The latter critical point was also evident in the relationship between the speed prior to the weaving link and lane changes (see Figure 2-3). As shown in Figure 2-3, the speeds prior to the weaving link are relatively stable up to approximately 4000 lc/hr. Above 4000 lc/hr, the speeds drop and become more variable. For both Figures 2-2 and 2-3, the 100 meter weaving sections began to break down sooner than weaving sections with lengths of 200 meters and above.

Figure 2-2. Breaking Points for Weaving Speed and Lane Change Relationship.

Figure 2-3. Breaking Point for Prior Speed and Lane Change Relationship.

Level-of-Service Criteria

Using the critical lane change values, each weaving section was divided into three levels of service: unconstrained, constrained, and undesirable. These three levels of service correspond to the following levels of service defined by the *HCM*: unconstrained = LOS A-B, constrained = LOS C-D, and undesirable = LOS E-F. Unconstrained operations represent free flow to stable operations in which drivers can maneuver with relatively little impedance from other traffic. Constrained operations represent stable operations in which drivers' ability to maneuver becomes more restricted due to other traffic. Undesirable operations represent unstable operations in which flows are approaching capacity and drivers' ability to maneuver is highly restricted.

Because the number of lane changes is difficult to measure in the field, a method was developed for converting lane changes to weaving volume. Weaving volume is defined as the sum of the exit ramp volume and the entrance ramp volume. Results from the field data showed that a linear relationship existed between weaving volume and the number of lane changes: average number of lane changes = $1.33 \times$ weaving volume. Using this relationship, the level-of-service criteria were defined in terms of weaving volume. The LOS criteria are shown in Table 2-1.

	Average Lane Changes	Weaving Volume*
Level of Service	(lcph)	(vph)
Unconstrained	< 2000	< 1500
Constrained	2000 - 4000	1500 - 3000
Undesirable	> 4000	> 3000

Table 2-1. Level-of-Service Criteria.

* weaving volume = average lane changes / 1.33

Due to the range of data included in this study, the criteria in Table 2-1 apply to one-sided weaving areas on one-way frontage roads with the following characteristics:

- frontage road section containing a freeway exit ramp followed by an entrance ramp connected by an auxiliary lane,
- either two or three frontage road through lanes, and
- spacing between exit ramp and entrance ramp of 100 to 500 meters.

TECHNIQUE FOR DETERMINING LEVEL OF SERVICE

To estimate the level of service for an existing one-sided weaving segment, the following procedures should be followed:

- (1) Collect peak hour exit ramp and entrance ramp volumes for the one-sided weaving section.
- (2) Calculate weaving volume (vph): weaving volume = exit ramp volume + entrance ramp volume.
- (3) Compare the calculated weaving volume to the values listed in Table 2-1 to estimate the LOS.

A worksheet for determining the level of service on one-sided weaving sections is provided in Appendix A of this report.

The level-of-service criteria in Table 2-1 are not meant to represent exact divisions in LOS. The values are intended to provide a general idea of the LOS which might be expected for a particular weaving segment; therefore, engineering judgement should be used when applying these criteria.

SAMPLE CALCULATION

As an example, consider a one-sided weaving section on a one-way frontage road with the following peak period volumes: exit ramp volume, 750 vph; entrance ramp volume, 1000 vph. Adding the exit ramp volume and the entrance ramp volume results in a weaving volume of 1750

vph. Comparing the weaving volume to the level-of-service criteria in Table 2-1, traffic operations in this area are predicted to be operating in the constrained region (see Figure 2-4 for an example of the worksheet).

ONE-SIE	DED WEAVING	ANALYSIS WORKSHEET	
Location: <u>IH-20</u>		Direction: West	- bound
Description: <u>Betweer</u>	<u>1 45th and Crosby</u>		
Date: <u>07/10/96</u>	······	Prepared By: <u>Sally</u>	
X Exit Ramp Volume (X)	:750 vph Weaving Volume (X	Entrance Ramp Volume (N): _1000	vph
<u>Weaving Volume</u> <u>I</u> < 1500 vph U 1500 - 3000 vph > 3000 vph	Level of Service Jnconstrained Constrained Undesirable	Level of Service: <u>Constrained</u>	

Figure 2-4. Sample Calculation for One-Sided Weaving Analysis.

WEAVING LENGTH

The spacing between an exit ramp and a downstream entrance ramp can have a great effect on the operations of a weaving section. The effect of weaving length on traffic operations becomes more evident as traffic volumes increase. To illustrate this point, the results from NETSIM were used to examine the speeds of weaving vehicles on weaving sections with different lengths at high traffic volumes. In particular, the weaving speeds were examined at the boundary between unconstrained and constrained operations (2000 lc/hr), and at the boundary between constrained and undesirable operations (4000 lc/hr).

Figure 2-5 shows the relationships between weaving speed and weaving length. This figure illustrates that weaving speed decreases at a relatively low rate as weaving length decreases for lengths above 300 meters. The rate at which the speeds decrease becomes greater for weaving lengths between 200 and 300 meters, and the rate of decrease is greatest for weaving lengths below 200 meters. These findings correspond to other findings in this study that showed that the weaving sections with a length of 100 meters began to break down sooner than those weaving sections with lengths of 200 meters and above (see Figures 2-2 and 2-3). From these results, it was concluded that it is desirable to have a weaving length greater than 300 meters. If this length is not achievable, then the absolute minimum length should be approximately 200 meters.

Figure 2-5. Weaving Speed and Weaving Length Relationship.

CHAPTER 3 TWO-SIDED WEAVING ANALYSIS

A frontage road section typically influenced by weaving maneuvers is the area between a freeway exit ramp and a downstream intersection. This type of area is said to have two-sided weaving operations because exit ramp vehicles desiring to make a right turn at the downstream intersection must maneuver from one side of the frontage road to the opposite side of the frontage road (see Figure 3-1). The level of operations in this type of area may be influenced by several factors, including traffic volumes, turning percentages, and ramp-to-intersection spacing.

The objectives of the study documented in this chapter were to develop a technique for evaluating two-sided weaving operations on one-way frontage roads between an exit ramp and a downstream intersection, and to develop recommended ramp-to-intersection spacings. To meet these objectives, field data and computer simulation (NETSIM) were used.

Figure 3-1. Two-Sided Weaving Maneuver Between Exit Ramp and Intersection.

DEVELOPMENT OF LEVEL-OF-SERVICE CRITERIA

Results from the field study were used to calibrate a NETSIM model. Researchers then used the calibrated model to study two-sided weaving operations under various conditions. The variables modified during simulation included: frontage road volume (500 to 2000 vph), exit ramp volume (250 to 1250 vph), exit ramp to intersection spacing (100 to 400 meters), and percentage of exit ramp vehicles making a two-sided weaving maneuver (25 to 75 percent). In addition, three frontage road configurations were investigated: two-lane frontage road (2LFR), three lane frontage road (3LFR), and two-lane frontage road with an auxiliary lane connecting the exit ramp to the downstream intersection (2LFR+Aux). Figure 3-2 illustrates the three configurations studied.

To develop a procedure for determining the level of service on a two-sided weaving segment, several MOEs were investigated, including speed, travel time, and density. After an analysis of two-sided weaving segments using NETSIM, it was concluded that the density on the weaving link would be the proposed MOE. Density is a good measure of weaving operations because it measures the proximity of vehicles and is a reflection of drivers' freedom to maneuver.

Findings

In an attempt to define level-of-service criteria, the researchers used the results from NETSIM to investigate the relationships between density and other factors. Results from the investigation revealed that a correlation exists between speed and density. Figure 3-3 illustrates the relationships between speed and density for the three frontage road configurations.

As shown in Figure 3-3, speed decreases significantly as density increases for lower density values (below approximately 40 veh/km/ln). In this range, the operations on the weaving link diminish noticeably with relatively small increases in density, and traffic operations vary from free-flow to restricted. From approximately 40 veh/km/ln to 100 veh/km/ln, the rate of decrease in speed becomes less. In this density range, traffic operations are beginning to break down and become predominately unstable. Above approximately 100 veh/km/ln, the rate of decrease begins to level off and become relatively constant, signifying that traffic operations are at their lowest level.

Figure 3-2. Three Frontage Road Configurations.

Using the relationship between speed and density, two critical values of density exist at approximately 40 and 100 veh/km/ln. These values divide the level of operations into three areas. To support the findings from computer simulation, observations at existing field sites were made.

Figure 3-3. Relationship Between Speed and Density.

The objective of studying field data was to view actual two-sided weaving operations and use engineering judgement to estimate the critical densities at which there was a change in the level of service. This was accomplished by viewing the video tapes collected during the field study and estimating the level of service for varying densities.

Results from the field study corresponded to the findings derived from the relationship between speed and density for the NETSIM data. From the field data, it was determined that the critical densities dividing the levels of operations occurred at approximately 40 and 100 veh/km/ln.

Level-of-Service Criteria

Using the results from computer simulation and from the field data, traffic operations on twosided weaving sections were divided into three levels: unconstrained, constrained, and undesirable. These three levels of operation correspond to the following levels of service defined by the 1994 HCM (1): unconstrained = LOS A-B, constrained = LOS C-D, and undesirable = LOS E-F. Unconstrained operations represent predominantly free-flow operations in which drivers can maneuver with relatively little impedance from other traffic, and delay is minimal. Constrained operations represent situations in which drivers' ability to maneuver becomes more restricted due to other traffic, and delay is moderate. Undesirable operations represent situations in which flows are approaching capacity, drivers' ability to maneuver are highly restricted, and delay is high.

The level-of-service criteria are shown in Table 3-1. The ranges shown in this table are not meant to represent exact divisions in level of service; they are to be used as guides in determining the level of service on a two-sided weaving segment.

Level of Service	Density (veh/km/ln)
Unconstrained	< 40
Constrained	40 - 100
Undesirable	> 100

Table 3-1. Level-of-Service Criteria.

Predicting Density

Traffic density is defined as the number of vehicles occupying a given space at a given time. Density can be determined directly from field data; however, the process is very difficult and time consuming. In an effort to develop an easier method for estimating density, data bases were created from the NETSIM output. Stepwise regression was used to develop regression equations to predict density based on the following factors: frontage road volume, exit ramp volume, exit ramp-to-intersection spacing, and percentage of exit ramp vehicles making a two-sided weaving maneuver. With the exception of percentage of two-sided weaving maneuvers, these factors are relatively easy to collect in the field using traffic counters and a measuring wheel. To simplify the procedure of estimating percentage of two-sided weaving, the percentage of two-sided weaving vehicles was separated into the following: less than or equal to 50 percent and greater than 50 percent. The researchers felt that this separation would not affect the results since results from computer

simulation showed that traffic operations were only significantly affected when the percentage of two-sided weaving maneuvers was high (i.e., above approximately 50 percent).

Density equations were derived for each of the three frontage road configurations included in the study (i.e., 2LFR, 3LFR, and 2LFR+Aux). Following are the equations that were developed:

Two-Lane Frontage Road (2LFR)

$$D_L = 0.034(FR) + 0.098(R) - 0.132(L) + 9.51(T)$$
 [R² = 0.90]

Three-Lane Frontage Road (3LFR)

$$D_L = 0.055(FR) + 0.080(R) - 0.200(L) + 27.4(T)$$
 [R² = 0.84]

Two-Lane Frontage Road with Auxiliary Lane (2LFR + Aux)

$$D_L = 0.021(FR) + 0.077(R) - 0.150(L) + 23.4(T)$$
 [R² = 0.83]

where:

 D_L = density on weaving link, veh/km/ln

FR =frontage road volume, vph

R = exit ramp volume, vph

L = ramp-to-intersection spacing, m

T = factor based on percentage of exit ramp vehicles turning right at downstream intersection

 $(T = 0, Percent \le 50; T = 1, Percent > 50)$

Level-of-Service Evaluation

To estimate the level of service for a particular frontage road configuration, Tables 3-2, 3-3, and 3-4 were generated. These tables contain densities based on the developed regression equations for each frontage road configuration. Calculated densities are given for various frontage road volumes, exit ramp volumes, ramp-to-intersection spacings, and percentages of exit ramp vehicles turning right at the downstream intersection (\leq 50 percent or > 50 percent). The estimated levels of service are shown using various shades: white (unconstrained), light grey (constrained), and dark grey (undesirable). The levels of service are based on the criteria shown in Table 3-1.

and the second second

The criteria developed in this study did not include the effects of turn bays. Turn bays can relieve congestion, resulting in less density and improved level of service. When evaluating frontage road configurations with turn bays, engineering judgement should be used when applying the criteria developed in this study, especially when predicted densities are close to the density boundaries defining level of service (i.e., 40 or 100 veh/km/ln). For example, if a two-lane frontage road with a turn bay is predicted to have a density of approximately 105 veh/km/ln, traffic operations may be within the constrained region. If, however, the density is predicted to be 150 veh/km/ln, the traffic operations are most likely in the undesirable region.

In addition, two-sided weaving operations were analyzed in this study assuming that the cross street traffic at the intersection was moderate and the traffic signal was optimally timed to minimize overall intersection delay. Frontage road operations can be significantly impacted by poor signal timing, especially when volumes are high. Therefore, for situations in which the traffic signal is causing high delays for the frontage road approach, engineering judgement should again be used when applying the criteria developed in this study.

Spacing ^b	Ramp	250	vph ^c	500) vph	750	vph	1000) vph
(m)	Volume	< 50 ^d	> 50	<50	> 50	< 50	> 50	<50	> 50
100	(vph)	<u></u>		≤30	- 50	220	- 50	≤30	- 50
100	250	20	29	28	38	37	46	45	55
	500 750	44 60	54 10	73	62	61 04	11	70	79
	1000	07		and the second	8/ ///	80 610	92 	94	Li A
	1250	112	112	104	111	111	120	117	140
200	250	7	16	15	25	24	33	32	
-00	500	31	41	40	40	27 49	33 29	52	
	750	56	65	64	74	73	82	81	91
	1000	80	90	89	98	97	107	186	14
	1250	105	114	E13	123	122	131	130	140
300	250	N/A ^e	3	2	11	10	20	19	28
	500	18	28	26	36	35	44	43	53
	750	43	52	51	61	59	69	68	77
	1000	67	77	76	85	84	94	92	102
	1250	92			110		118	4.17	
400	250	N/A	N/A	N/A	N/A	N/A	7	6	15
	500	5	14	13	23	22	31	30	40
	750	29	39	38	47	46	56	55	64
	1000	54	64	62	72	71	80	79	89
	1250			10 M M	· · · · · · · · · · · · · · · · · · ·	1000 mar 1000 m		8 8538368292938986866666	
Spacing	1250 Ramn	*9 125(88) vnh	87 150	97 0 yph	95 1750	105		
Spacing (m)	1250 Ramp Volume	1250	88) vph	87 150	97 0 vph	95 1750	105 Vph	104 2000) vph
Spacing (m)	1250 Ramp Volume (vph)	1250 ≤50	88 0 vph > 50	87 150 ≤50	07 0 vph > 50	95 1750 ≤50	105 vph > 50	104 2000 ≤50) vph > 50
Spacing (m) 100	1250 Ramp Volume (vph) 250	79 1250 ≤50 54	88) vph > 50 63	87 1500 ≤50 62	97 0 vph > 50 71	95 1750 ≤50	105 vph > 50 80	104 2000 ≤50 79	113) vph > 50
Spacing (m) 100	1250 Ramp Volume (vph) 250 500	79 1250 ≤50 \$4 78	88) vph > 50 63 88	87 150 ≤50 62 87	97 0 vph > 50 71 96	95 1750 ≤50 70 95	105 vph > 50 80 104	104 200(≤50 79 103	113) vph > 50 88 113
Spacing (m) 100	1250 Ramp Volume (vph) 250 500 750	*9 125(≤50 54 78 103	88) vph > 50 63 88 112	87 150 ≤50 62 87 111	97 0 vph > 50 71 96 121	95 1750 ≤50 70 95 119	105 vph > 50 80 104 129	104 2000 ≤50 79 103 125	113) vph > 50 88 113 137
Spacing (m) 100	1250 Ramp Volume (vph) 250 500 750 1000	*9 125(≤50 \$4 78 103 127	88) vph > 50 63 88 112 137	87 150 ≤50 62 87 111 136	07 0 vph > 50 71 96 121 145	95 1750 ≤50 70 95 119 144	105 vph > 50 80 104 129 154	104 2000 ≤50 79 103 128 152	113) vph > 50 88 113 137 162
Spacing (m) 100	1250 Ramp Volume (vph) 250 500 750 1000 1250	*9 1250 ≤50 54 78 103 127 157 157	88) vph > 50 6.3 88 112 1.37 161	87 150 ≤50 62 87 111 136 160	97 0 vph > 50 71 96 121 145 170	95 1750 ≤50 70 95 119 144 169	105 vph > 50 80 104 129 154 178	104 2000 ≤50 79 103 125 152 177	113) vph > 50 88 113 137 162 187
Spacing (m) 100 200	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500	79 1250 ≤50 54 78 103 127 157 40 65	88) vph > 50 63 83 112 137 161 50 71	87 150 ≤50 62 87 111 136 169 49 73	97 0 vph > 50 71 96 121 145 170 58 93	95 1750 ≤50 70 95 119 144 169 57 87	105 vph > 50 80 104 129 154 178 67 81	104 2000 ≤50 79 103 128 152 177 66	113) vph > 50 88 113 137 162 187 75
Spacing (m) 100 200	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750	79 1250 ≤50 54 78 103 127 152 40 65 89	88) vph > 50 63 88 112 137 161 50 74 99	87 150 ≤50 62 87 111 130 169 49 73 98	97 0 vph > 50 7,1 96 121 145 170 58 83 107	95 1750 ≤50 70 95 119 144 169 57 82 105	105 vph > 50 80 104 129 154 178 67 93 115	104 2000 ≤50 79 103 125 152 177 66 941 115	113 vph > 50 88 113 137 162 187 75 100 121
Spacing (m) 100 200	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000	*9 125(≤50 54 78 163 127 157 40 65 89 114	88) vph > 50 63 88 112 137 161 50 74 99 124	87 ≤50 62 87 111 136 169 49 73 98 122	07 0 vph > 50 71 96 121 145 170 58 83 107 132	95 1750 ≤50 70 95 119 144 169 57 82 106 131	105 vph > 50 80 104 129 154 178 67 91 116 140	104 2000 ≤50 79 103 125 152 177 66 90 115 119	113) vph > 50 88 113 137 162 187 75 100 124 149
Spacing (m) 100 200	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250	79 1250 ≤50 54 78 103 127 157 40 65 89 114 139	88) vph > 50 6,3 88 112 1,37 161 540 7,4 99 124 148	87 ≤50 62 87 111 136 169 49 73 98 122 147	07 0 vph > 50 71 96 121 145 170 58 83 107 132 157	95 1750 ≤50 70 95 119 144 169 57 82 106 131 155	105 vph > 50 80 104 129 154 178 67 91 116 140 165	104 2000 ≤50 79 103 128 152 177 66 90 115 139 164	113) vph > 50 88 113 137 162 187 75 100 124 149 173
Spacing (m) 100 200 300	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250	**9 1250 ≤50 54 78 103 127 157 40 65 89 114 139 27	88) vph > 50 63 83 112 137 161 56 74 99 124 148 37	87 150 ≤50 62 87 111 136 169 49 73 98 122 147 36	97 0 vph > 50 71 96 121 145 170 58 83 107 132 157 45	95 1750 ≤50 70 95 119 144 169 57 82 196 131 155 44	105 vph > 50 80 104 129 154 128 67 91 116 140 165 54	104 2000 ≤50 79 403 128 152 177 66 90 115 139 164 52	113 > vph > 50 88 113 137 162 187 75 100 124 149 173 62
Spacing (m) 100 200 300	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 500	79 1250 ≤50 54 78 103 127 152 40 65 89 114 139 27 52	88) vph > 50 63 88 112 137 161 54 74 99 124 148 37 61	87 150 ≤50 62 87 111 136 169 49 73 98 122 147 36 60	97 0 vph > 50 71 96 121 145 170 58 63 107 132 157 45 70	95 1750 ≤50 70 95 119 144 169 57 82 106 131 155 44 69	105 vph > 50 80 104 129 154 178 67 91 116 140 165 54 78	104 2000 ≤50 79 103 128 152 177 66 90 115 139 164 52 77	113 > vph > 50 88 113 137 162 187 75 100 124 149 173 62 87
Spacing (m) 100 200 300	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	79 1250 ≤50 54 78 103 127 152 40 65 89 114 139 27 52 76	88) vph > 50 63 88 112 137 161 50 74 99 124 148 37 61 86	87 150 ≤50 62 87 111 136 169 49 73 98 122 147 36 60 85	97 0 vph > 50 7,1 96 121 145 170 58 83 107 132 187 132 187 45 70 94	95 1750 ≤50 70 95 119 144 169 57 82 106 131 155 44 69 93	105 vph > 50 80 104 129 154 178 67 91 116 140 165 54 78 103	104 2000 ≤50 79 103 125 152 177 66 90 115 139 164 52 77 102	113 vph > 50 88 113 137 162 187 75 100 124 149 173 62 87 111
Spacing (m) 100 200 300	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	*9 125(≤50 54 78 103 127 152 40 65 89 114 139 27 52 76 101 125	88) vph > 50 63 88 112 137 161 50 74 99 124 148 37 61 36 110 115	87 ≤50 62 87 111 136 160 49 73 98 122 147 36 60 85 109	07 0 vph > 50 71 96 121 145 170 58 83 107 132 157 45 70 94 119	95 1750 ≤50 70 95 119 144 169 57 82 186 131 155 44 69 93 118	105 vph > 50 80 104 129 154 178 67 91 116 140 165 54 78 103 127	104 2000 ≤50 79 103 125 152 177 66 90 115 139 164 52 77 102 126	113 vph > 50 88 113 137 162 187 75 100 124 149 173 62 37 111 136
Spacing (m) 100 200 300	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250	79 125(≤50 54 78 103 127 152 40 65 89 114 139 27 52 76 101 125 14	88) vph > 50 63 88 112 137 161 56 74 99 124 148 37 61 86 110 135 24	87 ≤50 62 87 111 136 169 49 73 98 122 147 36 60 85 109 134 22	07 0 vph > 50 71 96 121 145 178 58 83 107 132 157 45 70 94 119 143 143	95 1750 ≤50 70 95 119 144 169 57 82 106 131 155 44 69 93 118 142 31	105 vph > 50 80 104 129 154 178 67 91 116 140 165 54 78 103 127 152 40	$ \begin{array}{c} 104 \\ 2000 \\ \leq 50 \\ \hline 79 \\ 103 \\ 125 \\ 152 \\ 177 \\ 60 \\ 90 \\ 115 \\ 139 \\ 164 \\ 52 \\ 77 \\ 162 \\ 126 \\ 151 \\ 20 \\ \end{array} $	113 > vph > 50 88 113 137 162 187 75 100 124 149 173 62 87 111 136 160
Spacing (m) 100 200 300 400	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	79 1250 ≤50 54 78 103 127 152 40 65 89 114 139 27 52 76 101 125 14 39	88) vph > 50 6,3 88 112 137 161 540 74 99 124 148 37 61 86 110 135 24 48	87 ≤50 62 87 111 136 160 49 73 98 122 147 36 60 85 109 134 22 47	07 0 vph > 50 71 96 121 145 170 58 83 107 132 157 45 70 94 119 143 32 57	95 1750 ≤50 70 95 119 144 169 57 82 106 151 155 44 69 93 118 142 31 55	105 vph > 50 80 104 129 154 178 67 91 116 140 165 54 78 103 127 152 40 6*	104 2000 ≤50 79 103 128 152 177 66 90 115 139 164 52 77 102 126 151 39 64	113 > vph > 50 88 113 137 162 187 75 100 124 149 173 62 87 111 136 160 49 73
Spacing (m) 100 200 300 400	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	79 1250 ≤50 54 78 103 127 152 40 65 89 114 139 27 52 76 101 125 14 39 63	88) vph > 50 63 88 112 137 161 50 74 99 124 148 37 61 86 110 135 24 48 73	87 1500 ≤50 62 87 111 136 109 49 73 98 122 147 36 60 85 109 134 22 47 72	97 0 vph > 50 7,1 9,6 121 145 170 58 83 107 132 157 45 70 94 119 143 32 57 81	95 1750 ≤50 70 95 119 144 169 57 82 106 151 155 44 69 93 118 142 31 55 80	105 vph > 50 80 104 129 154 178 67 91 116 140 165 54 78 103 127 152 40 65 90	104 2000 ≤ 50 79 103 128 152 177 66 90 115 139 164 52 77 162 126 151 39 64 88	113 > vph > 50 88 113 137 162 187 75 100 124 149 173 62 87 111 136 160 49 73 38
Spacing (m) 100 200 300 400	1250 Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	*9 1250 ≤50 54 78 103 127 152 40 65 89 114 139 27 52 76 101 125 14 39 63 88	88) vph > 50 63 88 112 137 161 50 74 99 124 148 37 61 86 110 135 24 48 73 97	87 150 ≤50 62 87 111 136 169 49 73 98 122 147 36 60 85 109 134 22 47 72 96	97 0 vph > 50 7,1 96 121 145 170 58 83 107 132 187 132 187 45 70 94 119 143 32 57 81 106	95 1750 ≤50 70 95 119 144 169 57 82 106 131 155 44 69 93 115 44 69 93 115 82 106 131 155 44 69 93 119 142 31 55 80 105	105 vph > 50 80 104 129 154 178 67 93 116 140 165 54 78 103 127 152 40 65 90 114	104 2000 ≤ 50 79 103 125 152 177 66 94 115 139 164 52 77 102 126 151 39 64 88	113 > vph > 50 88 113 137 162 187 75 100 124 149 173 62 87 111 136 160 49 73 98 123

Table 3-2. Levels of Service for Two-Lane Frontage Roads.^a

^a Density (veh/km/ln) = 0.034(FR Vol, vph)+0.098(Ramp Vol, vph)
 -0.132(Spacing, m)+9.51(Ramp RT%, 0 for ≤ 50%; 1 for > 50%)
 ^b Spacing between exit ramp and downstream intersection
 ^c Frontage road volume
 ^d Percentage of ramp vehicles turning right at downstream intersection

^e N/A - Regression equation resulted in negative density value

Constrained (40-100) Undesirable (> 100)
Spacing ^b	Ramp	250 vph ^c		500	500 vph		vph	1000 vph	
(m)	Volume	< 50 ^d	> 50	< 50	> 50	<50	> 50	< 50	> 50
100	(vph)	<u> </u>	~~	≤30		220	- 50	≤50	- 50
100	250	14	41	27	55	41	68	55	82
	500	34 #4	01 01	4/	- 3	61	<u>88</u>	75	5 J 1 2
	/50	22 71	61 401	0	95	16	108	94 20002200000000	142
	1000	01 01	100	0/	114		148	114	142
200	250	NT/AC	21	7	25	31		25	
200	250 500	N/A 14	<i>4</i> 1	27	35	21	48	35	62
	750	14	41	21	22	41	08	- 27	84
	1000		91	4. 24		01	88 100		102
	1250		Int	97	114	O1 FAL	100	94 1111	
300	250	N/A	1	N/A	15	1	28	15	1000000.55.2.50000000 100000000
000	500	N/A	21	7	35	21	40 40	15	44 63
	750	14	#1 	27	55 KK	21 41	40	35	02
	1000	33	61	47	75	61	99 99	71	84 102
	1250	53	81	67	94	81	102		123
400	250	N/A	N/A	N/A	N/A	N/A	8	N/A	22
	500	N/A	1	N/A	15	1	28	15	42
	750	N/A	21	7	35	21	48	35	62
	1000	13	41	27	55	41	68	54	82
	1250	33	61	47	74	61	88	74	182
									COULD CALL & A 12 M COULD A 1000 A
Spacing	Ramp	1250) vph	150) vph	1750	vph	2000) vph
Spacing (m)	Ramp Volume	1250) vph	1500) vph	1750	vph	2000	vph
Spacing (m)	Ramp Volume (vph)	1250 ≤50) vph > 50	1500 ≤50) vph > 50	1750 ≤50	vph > 50	2000 ≤50) vph > 50
Spacing (m) 100	Ramp Volume (vph) 250	1250 ≤50 68) vph > 50 96	1500 ≤50 82) vph > 50 109	1750 ≤50 96	vph > 50	2000 ≤50 109) vph > 50
Spacing (m) 100	Ramp Volume (vph) 250 500	1250 ≤50 68 88) vph > 50 96 116	1500 ≤50 82 H02) vph > 50 109 129	1750 ≤50 96 116	vph > 50 123 143	2000 ≤50 109 129) vph > 50 137 157
Spacing (m) 100	Ramp Volume (vph) 250 500 750	1250 ≤50 68 88 105) vph > 50 96 116 136	1500 ≤50 82 102 132) vph > 50 109 129 149	1750 ≤50 96 116 135	> 50 123 143 163	2000 ≤50 109 129 149	> 50 137 157 177
Spacing (m) 100	Ramp Volume (vph) 250 500 750 1000	1250 ≤50 68 88 195 125) vph > 50 96 116 136 155	1500 ≤50 82 102 122 142	> 50 > 50 109 129 149 169	1750 ≤50 96 116 135 155	> 50 23 143 163 183	2000 ≤50 109 129 149 169	> 50 > 50 137 157 177 196
Spacing (m) 100	Ramp Volume (vph) 250 500 750 1000 1250	1250 ≤50 68 88 148 125 148) vph > 50 96 116 136 155 175	1500 ≤50 82 102 122 142 162) vph > 50 109 129 149 169 189	1750 ≤50 96 116 135 155 175	> 50 23 143 143 163 183 203	2000 ≤50 109 129 149 169 189	> 50 > 50 137 157 177 196 216
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250	1250 ≤50 68 88 145 125 145 48) vph > 50 96 116 136 155 175 76	1500 ≤50 82 102 122 142 162 02) vph > 50 109 129 149 169 189 89	1750 ≤50 96 116 135 155 175 76	> 50 123 143 163 183 203 103	2000 ≤50 109 129 149 169 189 89	> 50 > 50 137 157 177 196 216 117
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750	1250 ≤50 68 88 145 125 145 145 48 68 88) vph > 50 96 116 136 155 175 76 96 16	1500 ≤50 82 102 122 142 162 62 82) vph > 50 109 129 149 169 189 89 109 109	1750 ≤50 96 116 135 135 135 135 76 96	> 50 123 143 163 183 203 103 123	2000 ≤50 109 129 149 169 189 89 109	> 50 137 157 177 196 216 117 137
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000	1250 ≤ 50 68 88 105 125 145 48 68 88) vph > 50 96 116 136 155 175 76 96 116 135	1500 ≤50 82 102 122 142 162 62 82 102	> 50 149 129 149 169 189 89 109 129 149	1750 ≤50 96 116 135 155 175 76 96 115	> 50 123 143 163 183 203 103 123 143 143 143	2000 ≤50 109 129 149 169 189 89 109 129 129	> 50 37 157 177 196 216 117 137 157 157
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250	1250 ≤50 68 88 195 125 145 48 68 88 195 135) vph > 50 96 116 136 155 175 76 96 116 135 155	1500 ≤50 82 102 142 142 162 62 82 102 122 143	> 50 109 129 149 169 189 89 109 129 149	1750 ≤50 96 116 135 155 175 76 96 115 135	> 50 2 50 123 143 163 183 203 103 123 143 163 183 183 183 183 183 183 183 18	2000 ≤50 109 129 149 169 189 89 189 189 129 129 149	> 50 37 157 177 196 216 117 137 157 176 176 126
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250	1250 ≤50 68 88 148 125 148 48 68 88 105 128 28) vph > 50 96 116 136 155 175 76 96 116 135 155 56	1500 ≤50 82 102 122 142 162 62 82 102 122 142 142) vph > 50 109 129 149 169 189 89 109 129 149 169 69	1750 ≤50 96 116 135 155 175 76 96 115 135 155	> 50 123 143 163 183 203 103 123 143 163 183 93	2000 ≤50 109 129 149 169 189 89 109 129 149 169	> 50 137 157 177 196 216 117 137 157 176 196 97
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500	1250 ≤ 50 68 88 105 125 145 48 68 88 105 125 28 28) vph > 50 96 116 136 155 175 76 96 116 135 155 56 76	1500 ≤50 82 102 122 142 162 62 82 102 122 142 142 42 62	> 50 109 129 149 169 189 89 109 129 149 169 69 80	1750 ≤50 96 116 135 155 155 175 76 96 115 135 155 56 76	> 50 123 143 163 183 203 103 123 143 163 183 83 104	2000 ≤ 50 109 129 149 169 189 89 109 129 149 149 169 69 69 69	> 50 137 157 177 196 216 117 137 157 176 196 97 117
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	1250 ≤50 68 88 145 125 148 68 88 145 125 28 48 68 88) vph > 50 96 116 136 155 175 76 96 116 135 155 56 76 96	1500 ≤50 82 102 122 142 162 02 82 102 122 143 42 62 83	> 50 109 129 149 169 189 89 109 129 149 169 69 89 109 149 169 19 149 169 19 149 19 149 19 19 19 19 19 19 19 19 19 1	1750 ≤50 96 116 135 155 175 76 96 115 135 155 56 76 96	vph > 50 123 143 163 183 203 103 123 143 163 183 83 103 103 123	2000 ≤ 50 109 129 149 169 189 89 109 129 149 169 169 69 89	> 50 37 157 177 196 216 117 137 176 196 97 117 137
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000	1250 ≤50 68 88 145 125 145 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 88 88 88 88 88 88 88 8) vph > 50 96 116 136 155 175 76 96 116 135 155 56 76 96 14	1500 ≤50 82 102 122 142 162 62 82 102 122 142 142 62 82 102 122 142 142 62 82	> 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 169 129 149 169 129 149 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 169 129 149 129 149 169 129 149 129 149 129 149 169 129 149 169 129 149 129 149 169 129 149 129 149 129 149 129 149 129 149 129 149 169 129 149 129 149 169 129 149 169 129 149 169 129 149 169 169 199 199 199 199 199 19	1750 ≤50 96 116 135 155 155 76 96 115 135 155 56 76 96 115	vph > 50 123 143 163 183 203 103 123 143 163 183 83 103 123 143 143 163 183 103 123 143	2000 ≤ 50 109 129 149 169 189 89 109 129 149 169 169 89 89 109 189	> vph > 50 137 157 177 196 216 117 137 157 176 196 97 117 137 157 176 196
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	1250 ≤50 68 88 105 125 145 48 68 88 105 128 28 48 68 88 105 128 28 48 68 88 105 128 28 48 68 88 105 128 148 128 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 148 158 158 158 158 158 158 158 15) vph > 50 96 116 136 155 175 76 96 116 135 155 36 76 96 116 135 155 36 76 96 116 135 155 36 76 96 116 135 155 155 155 16 135 16 136 155 175 16 135 16 136 135 155 175 16 135 16 135 155 175 16 135 16 135 175 16 135 16 135 155 175 16 135 16 135 155 175 16 135 155 175 16 135 155 175 16 135 155 175 16 135 155 175 16 135 155 175 16 135 155 175 175 16 16 135 155 155 175 16 16 135 155 155 175 16 16 135 155 175 16 155 175 16 16 135 155 155 16 16 135 155 155 155 16 16 135 155 155 16 16 16 135 155 155 16 16 16 16 155 155 1	1500 ≤50 82 102 142 162 62 82 102 122 142 142 62 82 142 142 142 142 142 142 142 14	> 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 149 169 149 149 149 149 149 149 149 14	1750 ≤50 96 116 135 155 175 76 96 115 135 155 56 76 96 115 135	> 50 123 143 163 183 203 103 123 143 163 183 83 103 123 143 163 123 143 163	2000 ≤50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 129 149 149 149 149 149 149 149 14	> vph > 50 137 157 177 196 216 117 137 157 176 196 97 117 137 157 177 137 157 176
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250	1250 ≤50 68 88 145 125 145 145 145 145 125 145 125 28 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 88 105 125 145 145 145 145 145 145 145 14) vph > 50 96 116 136 155 175 76 96 116 135 56 76 96 116 135 36	1500 ≤50 82 102 122 142 162 62 82 102 122 142 62 82 102 122 142 122 12	> 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 19 19 149 149 169 149 149 149 149 149 149 149 14	1750 ≤ 50 96 116 135 155 175 76 96 115 135 155 56 76 96 115 135 36	> 50 123 143 163 183 203 103 123 143 163 183 83 103 123 143 163 63	2000 ≤ 50 109 129 149 169 189 89 109 129 149 169 169 169 169 169 169 169 169 169 16	> vph > 50 137 157 177 196 216 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 196 97 177 177 177 177 177 177 177
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	1250 ≤ 50 68 88 105 125 148 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 145 125 125 145 125 125 125 145 125 125 125 125 125 125 125 12) vph > 50 96 114 136 155 175 76 96 116 135 155 56 76 96 116 135 155 56 76 96 116 135 36 56	1500 ≤50 82 102 122 142 162 62 82 102 122 142 62 82 102 122 142 62 82 102 122 142 142 142 142 142 142 14) vph > 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 69 89 109 129 149 69 69	1750 ≤50 9% 115 135 155 175 76 9% 115 135 56 76 9% 115 135 36 56	> 50 123 143 163 183 203 103 123 143 163 183 83 103 123 143 163 63 63 83	2000 ≤ 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 129 149 169 129 149 169 169 169 169 169 169 169 169 169 16	> vph > 50 137 157 177 196 216 117 137 157 176 196 97 117 137 157 176 97 177 177 176 97 177 177 177 177 177 177 177
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	1250 ≤ 50 68 88 145 125 145 48 68 88 105 125 28 48 68 88 105 125 28 48 68 88 105 28 48 68 88 105 28 48 68 88 88 105 125 28 48 68 88 88 105 125 125 145 145 125 145 145 125 145 125 145 145 125 145 145 125 145 145 125 145 145 145 125 145 145 145 125 145 145 125 145 145 145 125 145 145 145 125 145 145 125 145 145 145 125 145 145 145 145 145 145 145 14) vph > 50 36 116 136 155 175 76 96 116 135 155 56 76 96 116 135 155 56 76 96 116 135 36 36 36 36 76	1500 ≤50 82 102 122 142 162 62 82 102 122 142 62 82 102 122 142 62 82 102 122 142 62 82 102 122 142 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 142 162 162 162 162 162 162 162 16	> 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 69 89 109 129 149 169 89 89 89 89 89 89 89 89 89 8	1750 ≤ 50 96 116 135 155 155 175 76 96 115 135 155 56 76 96 115 135 36 56 76 36 76	> 50 123 143 163 183 203 103 123 143 163 183 83 103 123 143 163 123 143 163 63 83 103	2000 ≤ 50 109 129 149 169 189 109 129 149 169 169 169 169 169 19 19 19 19 19 19 19 19 19 19 19 19 19	> 50 137 157 177 196 216 117 137 157 176 196 97 117 137 157 176 97 117 137 157 176 97 176
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	1250 ≤50 68 88 145 125 145 145 145 125 28 48 68 88 105 125 28 48 68 88 105 88 105 88 88 105 88 88 105 125 125 145 125 125 145 155 125 125 145 125 145 125 145 125 125 125 125 125 125 125 12) vph > 50 96 116 136 155 175 76 96 116 135 155 56 76 96 116 135 36 56 76 96 16 135 36 56 76 96	1500 ≤50 82 102 122 142 162 02 82 102 122 142 62 82 102 122 142 62 82 102 122 122 122 22 42 62 82 102 122 122 122 142 122 122 142 122 142 14	> 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 49 69 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 129 149 169 89 109 129 149 169 89 109 129 149 169 89 109 129 149 169 89 89 109 129 149 169 89 89 109 129 149 169 89 89 109 129 149 169 89 89 109 109 129 149 169 89 89 109 129 149 169 89 89 109 129 149 169 89 89 109 129 149 169 89 89 109 129 149 169 89 109 129 149 149 169 89 109 129 149 149 149 149 149 149 149 14	1750 ≤ 50 96 116 135 155 155 175 76 96 115 135 155 56 76 96 115 135 36 56 76 95	> 50 123 143 163 183 203 103 123 143 163 183 183 103 123 143 163 63 83 103 123 143 163 63 83 103 123	2000 ≤ 50 109 129 149 169 189 89 109 129 149 169 69 89 109 129 149 169 169 129 149 169 109 129 149 169 109 129 149 169 109 129 149 169 109 129 149 169 109 109 109 109 109 109 109 109 109 10	> vph > 50 137 157 177 196 216 117 137 157 176 196 97 117 137 157 176 97 117 137 157 176 97 117 137 157 176 196 97 117 137 157 177 196 216 117 137 157 177 196 216 117 137 157 177 196 216 117 137 157 177 196 216 117 137 157 177 196 216 117 137 157 177 196 216 117 137 157 177 196 216 97 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 196 97 117 137 157 176 176 176 176 176 176 176 17

Table 3-3. Levels of Service for Three-Lane Frontage Roads.^a

^a Density (veh/km/ln) = 0.055(FR Vol, vph)+0.080(Ramp Vol, vph)
 -0.200(Spacing, m)+27.4(Ramp RT%, 0 for ≤ 50%; 1 for > 50%)
 ^b Spacing between exit ramp and downstream intersection
 ^c Frontage road volume

Unconstrained (< 40) Constrained (40-100) Undesirable (> 100)

Percentage of ramp vehicles turning right at downstream intersection
 N/A - Regression equation resulted in negative density value

Spacing ^b	Ramp	250 vph ^c		500	vph	750 vph		1000 vph	
(m)	Volume	< 50 ^d	> 50	< 50	> 50	< 50	> 50	< 50	> 50
100	(vpn) 250		22	15	10	300	2000000000 25 100000000000	200	
100	200 500	20	33	15	38	20	43	25	48
	750	29 40	74	34 51	5/	39 #0	04 03	44	6-8
	1000	40	/4 01	53 #1		58	84	63	a annsa <u>n</u> ananan
	1000	07 04	71 71	79 00	946 11 8	78	181	53 	190
200	250	N/A ^e	10	NI/A	22	=	20	10	22
200	500	1VA 14	10	10/A	43 49	3	28 28	10	33
	750	14	37 24	19	44	24	47	29 	33
	1000	55 \$9	46	30 20	91	40	0) 06	40 20	14
	1250		05		51 100	00 01	ou Frit	040 071	91 141
300	250	N/A	3	N/A	8	N/A	13	N/A	19
	500	N/A	22	4	2.7	0 0	32	14	38
	750	18	42	23	47	28	49	33	50
	1000	37	61	43	66	48			76
	1250	57	80	62	85	67	90	77	96
400	250	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3
	500	N/A	7	N/A	12	N/A	17	N/A	23
	750	3	27	8	32	13	37	18	42
	1000	22	46	28	51	33	56	38	61
	1250	42	65	47	70	52	75	57	81
		1250 vnh							
Spacing	Ramp	1250) vph	1500) vph	1750	vph	2000	vph
Spacing (m)	Ramp Volume	1250) vph	1500) vph	1750	vph	2000	vph
Spacing (m)	Ramp Volume (vph)	1250 ≤50) vph > 50	1500 ≤50) vph > 50	1750 ≤50	vph > 50	2000 ≤50	vph > 50
Spacing (m) 100	Ramp Volume (vph) 250	1250 ≤50 30) vph > 50 53	1500 ≤50 35) vph > 50 58	1750 ≤50 40	vph > 50 64	2000 ≤50 45	vph > 50 69
Spacing (m) 100	Ramp Volume (vph) 250 500	1250 ≤50 30 49) vph > 50 53 73	1500 ≤50 35 54) vph > 50 58 78	1750 ≤50 40 59	vph > 50 64 83	2000 ≤50 45 63	vph > 50 69 83
Spacing (m) 100	Ramp Volume (vph) 250 500 750	1250 ≤50 30 49 69) vph > 50 53 73 92	1500 ≤50 35 34 74) vph > 50 58 78 97	1750 ≤50 40 59 79	vph > 50 64 83 102	2000 ≤50 45 63 84	vph > 50 69 83 107
Spacing (m) 100	Ramp Volume (vph) 250 500 750 1000	1250 ≤50 30 49 69 38) vph > 50 53 73 92 111	1500 ≤50 35 54 74 93) vph > 50 58 78 97 116	1750 ≤50 40 59 79 98	vph > 50 64 83 102 122	2000 ≤50 45 63 84 103	vph > 50 69 83 107 127
Spacing (m) 100	Ramp Volume (vph) 250 500 750 1000 1250	1250 ≤50 30 49 69 88 107) vph > 50 53 73 92 111 131	1500 ≤50 35 54 74 93 112) vph > 50 58 78 97 116 136	1750 ≤50 40 59 79 98 117	vph > 50 64 83 102 122 141	2000 ≤50 45 65 84 103 123	vph > 50 69 88 107 127 146
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250	1250 ≤50 30 49 69 88 107 15) vph > 50 53 73 92 111 131 38	1500 ≤50 35 54 74 93 112 20) vph > 50 58 78 97 116 136 43	1750 ≤50 40 59 79 98 117 25	vph > 50 64 83 102 122 141 49	2000 ≤50 43 65 84 103 123 30	vph > 50 69 88 107 127 146 54
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750	1250 ≤ 50 30 49 69 88 107 15 34) vph > 50 53 73 92 111 131 38 58 58	1500 ≤50 35 54 74 93 112 20 39) vph > 50 58 78 97 116 136 43 63	1750 ≤50 40 59 79 98 117 25 44	vph > 50 64 83 102 122 141 49 68	2000 ≤50 45 63 84 103 123 30 50	vph > 50 69 83 107 127 146 54 73
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000	1250 ≤ 50 30 49 69 88 107 15 34 54 54) vph > 50 53 73 92 111 131 38 58 57 77 77	1500 ≤50 35 54 74 93 112 20 39 59 79) vph > 50 58 78 97 116 136 43 63 82	1750 ≤50 40 59 79 98 117 25 44 64	vph > 50 64 83 102 172 141 49 68 87	2000 ≤50 45 65 84 103 123 30 50 69	vph > 50 69 83 107 127 146 54 73 92
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250	1250 ≤ 50 30 49 69 38 107 15 34 54 73 83) vph > 50 53 73 92 111 131 38 58 77 96 115	1500 ≤ 50 35 54 74 93 112 20 39 59 78 87	> vph > 50 58 78 97 116 136 43 63 82 101 121	1750 ≤ 50 40 59 79 98 117 25 44 64 83	vph > 50 64 83 102 122 141 49 68 87 107 125	2000 ≤50 45 63 84 103 123 30 50 69 88	vph > 50 69 88 107 127 146 54 73 92 112 122 142 142 142 142 142 14
Spacing (m) 100 200	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A) vph > 50 53 73 92 111 131 38 58 77 96 116 23	1500 ≤ 50 35 54 74 93 112 20 39 59 78 97 55) vph > 50 58 78 97 116 136 43 63 82 101 121 28	1750 ≤ 50 40 59 79 98 117 25 44 64 83 102	vph > 50 64 83 102 122 141 49 68 87 107 126	2000 ≤50 45 65 84 103 123 30 50 69 88 108 15	vph > 50 69 88 107 127 146 54 73 92 112 131
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A 19) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43	1500 ≤ 50 35 54 74 93 112 20 39 59 78 97 5 24) vph > 50 58 78 97 116 136 43 63 82 101 121 28 19	1750 ≤ 50 40 59 79 98 117 25 44 64 83 102 10 29	vph > 50 64 83 102 122 141 49 68 87 107 126 34 53	2000 ≤50 45 65 84 103 123 30 50 69 89 108 15 35	vph > 50 69 83 107 127 146 54 73 92 112 131 39 59
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	1250 ≤50 30 49 69 88 107 15 34 54 73 92 N/A 19 39) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 63	1500 ≤50 35 54 74 93 112 20 39 59 78 97 5 24 44) vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67	$ \begin{array}{r} 1750 \\ \leq 50 \\ 40 \\ 59 \\ 79 \\ 98 \\ 117 \\ 25 \\ 44 \\ 64 \\ 83 \\ 102 \\ 10 \\ 29 \\ 49 \\ \end{array} $	vph > 50 64 83 102 122 141 49 68 87 107 126 34 53 73	2000 ≤ 50 43 65 84 103 123 30 50 69 89 108 15 35 €4	vph > 50 69 88 107 127 146 54 73 92 112 131 39 58 77
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A 19 39 58) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 62 81	$ \begin{array}{r} 1500 \\ \leq 50 \\ \hline 35 \\ 54 \\ 74 \\ 93 \\ 112 \\ 20 \\ 39 \\ 59 \\ 78 \\ 97 \\ 5 \\ 24 \\ 44 \\ 63 \\ \end{array} $) vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67 86	1750 ≤ 50 40 59 79 98 117 25 44 64 83 102 10 29 49 68	vph > 50 64 83 102 122 141 49 68 87 107 126 34 53 72 93	2000 ≤50 45 65 84 103 123 30 50 69 89 108 15 35 54 73	vph > 50 69 83 107 127 146 54 73 92 112 131 39 58 77 07
Spacing (m) 100 200 300	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250	1250 ≤ 50 30 49 69 38 107 15 34 54 73 92 N/A 19 39 58 77) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 62 81 101	$ \begin{array}{r} 1500 \\ \leq 50 \\ 35 \\ 54 \\ 74 \\ 93 \\ 112 \\ 20 \\ 39 \\ 59 \\ 78 \\ 97 \\ 5 \\ 24 \\ 44 \\ 63 \\ 82 \\ \end{array} $) vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67 86 105	1750 ≤ 50 40 59 79 98 117 25 44 64 83 102 10 29 49 68 87	vph > 50 64 83 102 122 141 49 68 87 167 126 34 53 72 92 114	2000 ≤50 45 63 84 103 123 30 50 69 89 108 15 35 54 73 93	vph > 50 69 88 107 127 146 54 73 92 112 131 39 58 77 97 115
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A 19 39 58 77 N/A) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 62 51 101 8	1500 ≤ 50 35 54 74 93 112 20 39 59 78 97 5 24 44 63 82 N/A	> vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67 86 106 13	1750 ≤ 50 40 59 79 98 117 25 44 64 83 102 10 29 49 68 87 $N/4$	vph > 50 64 83 102 122 141 49 68 87 107 126 34 53 72 92 111 19	2000 ≤50 45 63 84 103 123 30 50 69 83 108 15 35 54 73 93 N/4	vph > 50 69 88 107 127 146 54 73 92 112 131 39 58 77 97 116 24
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A 19 39 58 77 N/A 4) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 62 81 101 8 28	1500 ≤ 50 35 54 74 93 112 20 39 59 78 97 5 24 44 63 82 N/A 9	> vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67 86 106 13 33	1750 ≤ 50 40 59 79 98 117 25 44 64 83 10 29 49 68 87 N/A 14	vph > 50 64 83 102 122 141 49 68 87 197 126 34 53 72 92 111 19 38	2000 ≤50 45 65 84 103 123 30 50 69 88 108 15 35 54 73 93 N/A 20	vph > 50 69 88 107 127 146 54 73 92 112 131 39 58 77 97 116 24 43
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A 19 39 58 77 N/A 4 24) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 62 81 101 8 28 47	1500 ≤ 50 35 54 74 93 112 20 39 59 78 97 5 24 44 93 82 N/A 9 29) vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67 86 106 13 33 52	1750 ≤ 50 40 59 79 98 117 25 44 64 83 10 29 49 68 87 N/A 14 34	vph > 50 64 83 102 122 141 49 68 87 167 126 34 53 72 92 111 19 38 57	2000 ≤50 45 65 84 103 123 30 50 69 89 108 15 35 54 73 93 N/A 20 39	vph > 50 69 88 107 127 146 54 73 92 112 131 39 58 77 97 116 24 43 67
Spacing (m) 100 200 300 400	Ramp Volume (vph) 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000	1250 ≤ 50 30 49 69 88 107 15 34 54 73 92 N/A 19 39 58 77 N/A 4 24 43) vph > 50 53 73 92 111 131 38 58 77 96 116 23 43 62 81 101 8 28 47 66	1500 ≤ 50 35 54 74 93 112 20 39 59 78 97 5 24 44 63 82 N/A 9 29 48	D vph > 50 58 78 97 116 136 43 63 82 101 121 28 48 67 86 13 33 52 71	1750 ≤ 50 40 59 79 98 17 25 44 64 83 102 10 29 49 68 87 N/A 14 34 53	vph > 50 64 83 102 122 141 49 68 87 107 126 34 53 72 92 111 19 38 57 77	2000 ≤ 50 45 65 84 103 123 30 50 69 89 108 15 35 54 73 93 N/A 20 39 58	vph > 50 69 83 107 127 146 54 73 92 112 131 39 58 77 97 116 24 43 62 87

Table 3-4. Levels of Service for Two-Lane Frontage Roads with Auxiliary Lane.^a

^a Density (veh/km/ln) = 0.021(FR Vol, vph)+0.077(Ramp Vol, vph)
 -0.150(Spacing, m)+23.4(Ramp RT%, 0 for ≤ 50%; 1 for > 50%)
 ^b Spacing between exit ramp and downstream intersection
 ^c Frontage road volume

Percentage of ramp vehicles turning right at downstream intersection
 N/A - Regression equation resulted in negative density value

Unconstrained (< 40)

Constrained (40-100) Undesirable (> 100)

TECHNIQUE FOR DETERMINING LEVEL OF SERVICE

To estimate the level of service between an exit ramp and an intersection on a one-way frontage road, the following procedures should be followed:

- (1) From the field, collect exit ramp and frontage road volumes and determine the exit ramp-to-intersection spacing. In addition, estimate the percentage of exit ramp vehicles making a right turn at the downstream intersection as either less than or equal to 50 percent or greater than 50 percent.
- (2) Based on the frontage road configuration, use Table 3-2 (2LFR), Table 3-3 (3LFR), or Table 3-4 (2LFR+Aux) to estimate the level of service.
- (3) For volumes and ramp-to-intersection spacings that fall between the increments shown in the tables, one should either interpolate between the columns and rows to predict density or calculate the density using the appropriate regression equation (given at the bottom of each table).

A worksheet for determining the level of service on one-sided weaving sections is provided in Appendix A of this report.

The criteria developed in this study are not meant to represent exact divisions in level of service. The values are intended to provide a general idea of the level of service which might be expected for a particular two-sided weaving segment; therefore, engineering judgement should be used when applying these criteria. Special considerations should be given to frontage road configurations with turn bays and situations in which a signalized intersection is causing high delays for the frontage road approach.

SAMPLE CALCULATION

As an example, consider a two-lane frontage road with a ramp-to-intersection spacing of approximately 200 meters, a frontage road volume of 1000 vph, a ramp volume of 500 vph, and an

exit ramp right turn percentage less than 50 percent. Using Table 3-2, the estimated density would be approximately 56 veh/km/ln. This results in a level of service in the constrained region (40 - 100 veh/km/ln). The completed worksheet is shown in Figure 3-4.

TWO-SIDED WEAVING	G ANALYSIS WORKSHEET
Location: IH-19 at University	Direction: <u>South</u> - bound
Description: <u>2-Lane Frontage Road</u>	
Date:6/30/96	Prepared By: <u>Sally</u>
Exit Ramp Volume (R): <u>500</u> vph	Ramp Spacing (L): <u>200</u> m
Frontage Road Volume (FR): <u>1000</u> vph	Percent 2-Sided Weaving (T): <u>0</u> [T=0 for ≤ 50%, T= 1 for > 50%]
2LFR	2LFR+Aux
D _L = 0.034(FR) + 0.098(R) - 0.132(L) + 9.51(T)	D _L = 0.021(FR) + 0.077(R) - 0.150(L) + 23.4(T)
3LFR	Density (D _L): <u>56</u> veh/km/ln
D _L = 0.055(FR) + 0.080(R) - 0.200(L) + 27.4(T)	
Density, veh/km/lnLevel of Service< 40	Level of Service: <u>Constrained</u>

Figure 3-4. Sample Calculation for Two-Sided Weaving Analysis.

EXIT RAMP-TO-INTERSECTION SPACING

The spacing between an exit ramp and a downstream intersection can have a significant effect on the operations of a weaving section. In an effort to develop recommendations for minimum and desirable spacings, the regression equations developed to predict density were used. Since spacing was a variable in the equations, the equations could be used to back-calculate for spacing given frontage road volume, ramp volume, and percentage of two-sided weaving maneuvers. To estimate minimum spacing, the density value between constrained and undesirable operations (100 veh/hr/ln) was used in the equations. To estimate desirable spacings, the density value between unconstrained and constrained operations (40 veh/km/ln) was used.

Using the density equations to predict minimum and desirable ramp-to-intersection spacings, small spacings (near zero) were computed for low traffic volumes. Therefore, an absolute minimum spacing had to be selected. The 1994 AASHTO *Green Book* (5) states that ramps should connect to the frontage road a minimum of 105 meters upstream of the crossroad. It also states that desirable lengths should be several meters longer to provide adequate weaving length, space for vehicle storage, and turn lanes at the cross road. From the field studies, it was determined that the majority of drivers used between 60 and 120 meters to weave from the exit ramp to the right-most lane when frontage road traffic and/or queues from the downstream intersection did not significantly influence exit ramp driver behavior. In a study by Turner and Messer (6), a rule-of-thumb ramp-to-intersection spacing of 150 meters was recommended. This spacing corresponds to recommendations from the *Green Book* and findings from the field. Therefore, based upon findings from this study and findings from previous research, an absolute minimum exit ramp-to-intersection spacing of 150 meters is recommended. Using this minimum spacing value and the results from the regression equations, Tables 3-5 through 3-7 were generated to estimate minimum and desirable spacings for the three frontage road configurations.

Exit Ramp From From					ntage Road	l Volume (v	vph)		
Volume	ne Right Turn 500		00	1000		1500		2000	
(vph)	Percent	Min	Desr	Min	Desir	Min	Desir	Min	Desir
250	≤ 50%	150	150	150	150	150	150	150	235
	> 50%	150	150	150	150	150	180	150	305
500	≤ 50%	150	150	150	170	150	295	150	420
	> 50%	150	150	150	240	150	370	150	490
750	≤ 50%	150	235	150	360	150	485	150	610
	> 50%	150	305	150	430	150	555	150	680
1000	≤ 50%	150	420	150	545	150	670	150	795
	> 50%	150	490	150	620	150	740	185	865
1250	≤ 50%	150	610	150	735	175	860	300	985
	> 50%	150	680	150	805	250	930	375	1055

 Table 3-5. Minimum and Desirable Ramp-to-Intersection Spacings for Two-Lane Frontage Roads (m).

 Table 3-6. Minimum and Desirable Ramp-to-Intersection Spacings for Three-Lane Frontage Roads (m).

Exit Ramp	Exit Ramp	Frontage Road Volume (vph)								
Volume	Right Turn	5(500		1000		1500		2000	
(vph)	Percent	Min	Desr	Min	Desir	Min	Desir	Min	Desir	
250	≤ 50%	150	150	150	175	150	310	150	450	
	> 50%	150	175	150	310	150	450	290	585	
500	≤ 50%	150	150	150	275	150	410	250	550	
	> 50%	150	275	150	410	250	550	390	685	
750	≤ 50%	150	235	150	375	210	510	350	650	
	> 50%	150	375	210	510	350	650	490	785	
1000	≤ 50%	150	335	175	475	310	610	450	750	
	> 50%	175	475	310	610	450	750	590	885	
1250	≤ 50%	150	445	275	575	410	710	550	850	
	> 50%	275	575	410	710	550	850	690	985	

Exit Ramp Exit Ramp Frontage Road Volume (vph)									
Volume	Right Turn	50	500 1000 1500		20)00			
(vph)	Percent	Min	Desr	Min	Min Desir		Desir	Min	Desir
250	≤ 50%	150	150	150	150	150	150	150	150
	> 50%	150	150	150	155	150	230	150	295
500	≤ 50%	150	150	150	150	150	200	150	270
	> 50%	150	215	150	285	150	355	150	425
750	≤ 50%	150	185	150	255	150	325	150	400
	> 50%	150	345	150	415	150	480	150	555
1000	≤ 50%	150	315	150	385	150	455	150	525
	> 50%	150	470	150	540	210	615	280	680
1250	≤ 50%	150	445	150	515	185	585	255	655
	> 50%	200	600	270	670	340	740	410	810

Table 3-7. Minimum and Desirable Ramp-to-Intersection Spacings for Two-Lane Frontage Roads with Auxiliary Lane (m).

CHAPTER 4

SPACING NEEDS FOR METERED ENTRANCE RAMPS

Ramp metering is a form of entrance ramp control that restricts traffic flow in order to limit the rate at which traffic can enter a freeway. Its primary function is to maintain the freeway's capacity to efficiently serve high-priority urban traffic demands. Figure 4-1 illustrates a typical ramp metering system. Traffic signals are placed on freeway entrance ramps to regulate the ramp traffic. The ramp meter signals and stop bar are placed at a predetermined point on the ramp. Ramp meters minimize congestion on the freeway by maintaining a balance between demand and capacity.

Figure 4-1. Typical Ramp Metering System.

Although ramp metering can control freeway congestion, it may also produce queues that shift congestion to surrounding surface streets. Adequate storage must be provided to assure that the queues of waiting vehicles will not seriously affect non-freeway traffic. Therefore, the spacing between a metered freeway entrance ramp and a signalized cross street intersection is critical for

Procedures to Determine Frontage Road Level of Service and Ramp Spacing

efficient freeway and frontage road operation. If sufficient storage space is not provided on the ramp or on the frontage road, queues formed at metered ramps may back across the cross street, causing congestion and a negative effect on traffic signal operations.

This chapter presents a methodology, developed by Sharma and Messer (7), for determining spacing needs for metered entrance ramps. An example problem using the methodology was developed and is included at the end of this chapter. The example demonstrates how to determine the distances required for ramp metering and the location of the ramp meter signal, how to check the adequacy of a given location, and how to decide upon specific geometric elements.

DETERMINING METERED ENTRANCE RAMP SPACING NEEDS

The queuing section and acceleration and merging (or metering) section are the two components needed to determine spacing requirements for ramp metering (see Figure 4-2). The queuing section is the storage distance needed for vehicles waiting to enter the freeway at the ramp signal. This distance is dependent upon the ramp demand volume and the operating capacity of the ramp metering signal. The metering section is defined as the distance between the ramp signal and the point of merge that allows a vehicle to accelerate to a reasonable merge speed and select a gap.

Sharma and Messer (7) developed a methodology for determining the distance requirements for ramp metering for a wide range of traffic volumes and freeway geometric conditions. A queue storage model was developed to determine distance requirements for queue storage, and the constant acceleration models of linear motion were used to determine the distance required for the freeway merging operation. Following is a discussion of the procedures developed by Sharma and Messer for determining spacing for ramp metering.

Chapter 4 - Spacing Needs For Metered Entrance Ramps

Figure 4-2. Queuing Section and Metering Section.

Queue Storage

The queue storage model relates storage distance to the ramp vehicle arrival rate, the time period under consideration, and the acceptable delay. This model was developed using the following assumptions:

- 95% Poisson arrivals.
- A storage requirement of 7.6 meters per vehicle. This was assumed because it accounts for a normal proportion of trucks in the entrance ramp traffic mix.
- A minimum ramp metering rate of 200 vph. This metering rate cycles a vehicle every 18 seconds, which is believed to be close to the maximum time a driver will wait once the ramp meter signal is reached.
- An analysis time period of four minutes. This four-minute period accounts for approximately two cycle lengths from the upstream traffic signal. (Analysis time periods of two minutes and four minutes were used in the original study because they represent approximate durations of one and two signal cycles of possible demand overload from the upstream intersection, assuming a cycle length of 120 seconds. The example

problem uses four minutes to simulate the more severe situation of two cycle lengths where additional queuing is required.)

• An acceptable delay of one to five minutes for a vehicle in queue. Acceptable ramp delay is the maximum delay for a vehicle in queue which would be accepted by the driver before major ramp signal violations begin to occur. Sharma and Messer state that a ramp delay of more than five minutes is considered unreasonable and can lead to frequent violations of the ramp meter signal.

[4-1]

The queue length model is represented by the following equation:

$$L_{Q} = \underline{0.122 (\alpha VT)}$$

$$(1 + T/D)$$

where:

 L_0 = Length of queue, meters

V = Vehicle arrival rate, vph

T = Analysis time period under consideration, min

D = Acceptable ramp delay, min

 $\alpha = 2$, a constant corresponding to 95% Poison arrivals

0.122 = a constant to account for unit conversions and the assumptions previously described

Table 4-1 lists the distance requirements for the queuing section, or the upstream part of a metered entrance ramp. Part of this distance may be accommodated on the frontage road if the left most lane is used exclusively for ramp operation. The values in Table 4-1 are based upon the queue length model. The table provides the queue storage requirements for four-minute analysis time periods for delay values of one to five minutes. Figure 4-3 illustrates the information provided in Table 4-1.

Entrance Ramp	Acceptable Delay (min)									
Arrival Rate (vph)	1	2	3	4	5					
200	39	65	84	98	108					
300	59	98	125	146	163					
400	78	130	167	195	217					
500	98	163	209	244	271					
600	117	195	251	293	325					
700	137	228	293	342	380					
800	156	260	335	390	434					

Table 4-1.	Distance Requirements	for Queue Storage t	for a Four-Mi	inute Analysis]	Period (m).
------------	------------------------------	---------------------	---------------	------------------	-------------

Merging Operation

The freeway merging operation includes the distance required to accelerate to freeway speed from the ramp meter stop bar and to find a gap in the freeway traffic stream. An acceleration rate of 3 mpsps assumes uniform acceleration, which is a rapid but usable acceleration for low speeds. A headway of 1.5 seconds over an adjacent freeway vehicle was considered acceptable for the merging operation. Constant acceleration models for linear motion were used to calculate the merging distances required.

Figure 4-4 shows the distance required to achieve freeway speed, the distance required to achieve a 1.5 second headway, and the total merge distance required. Freeway speed is defined as the speed of main lane freeway traffic and is represented on the x-axis. The freeway speeds included in this figure range from 48 to 113 km/h. This range includes the speeds most frequently observed on urban freeways during ramp metering. The distance required to merge is defined as the distance

Figure 4-4. Distance Requirements for Freeway Merging Operation.

from the ramp meter stop bar to the final merge point on the freeway and is presented along the yaxis. Therefore, the distance required for a freeway merging operation, from the ramp meter stop bar to the point of merging on the freeway, can be obtained from this figure. Additional distance may be needed for ramps with positive grades due to the additional acceleration time required.

Geometric Considerations

The ramp meter signal location is critical for satisfactory operation of a metered entrance ramp. The ramp meter signal should be located to provide adequate distance downstream of the ramp to achieve a safe freeway merge and to provide adequate distance upstream of the ramp for queue storage. Additionally, more violations of the ramp meter occur when the meter is so close to the freeway that the driver can see the freeway operations.

The location of the ramp meter signal is determined by the geometry of the merge area length requirements and the frontage road separation from the freeway, and it should satisfy both safety and operational needs. Most urban freeway entrance ramps' merges are at an angle of three, four, or five degrees. Also, roadside design safety practice recommends a 9 meter clear zone adjacent to the outside freeway travel lane. The ramp meter signal is presumed to be placed 1.2 meters away from the edge of the entrance ramp travel lane, and this lane is assumed to be 4.9 meters wide. These dimensions are illustrated in Figure 4-5.

The location of the ramp meter signal in terms of the distance from the final merge point must be determined in order for a vehicle to merge safely. This location also effectively defines the signal offset, which is the distance from the edge of the freeway travel lane to the ramp meter signal post nearest to the freeway.

Figure 4-6 relates the ramp signal offset to the ramp distance available downstream of the ramp meter signal to achieve freeway merging. This figure was developed using trigonometric principles to determine the distance available on the entrance ramp, downstream from the ramp meter signal, for a given ramp meter signal offset. Figure 4-7 relates ramp signal offset to

Figure 4-5. Entrance Ramp Dimensions.

maximum speed attainable by the ramp upon discharge at green. This figure was developed using laws of constant linear acceleration to determine the speed a ramp vehicle will be able to reach after leaving the ramp meter signal for a given meter signal offset and a given distance available on the ramp.

The signal offset can be determined from Figure 4-6 when the ramp distance available for merging is known. Also, Figure 4-7 can be used to determine the speed that can be achieved for the specific signal offset. By adding the length of the acceleration lane to the available ramp distance and checking this total available distance with Figure 4-4, it can be determined whether the distance requirements for safe freeway merging are satisfied.

Sharma and Messer also recommend verifying that the ramp meter signal is actually on the entrance ramp and not on the frontage road. If the ramp meter signal is on the frontage road, other problems are involved due to the dual signal heads required and the potential to cause confusion for through frontage road traffic.

Figure 4-6. Ramp Distance Available for Ramp Signal Offsets.

Figure 4-7. Speeds Attainable for Ramp Signal Offsets.

RECOMMENDED PROCEDURE

The work completed by Sharma and Messer provides a methodology for determining queuing and merging sections for entrance ramp metering systems. A step-by-step procedure was developed from the Sharma/Messer method and is presented in the form of an example problem. This procedure is intended to provide engineers and designers with guidelines for the planning, design, and installation of ramp metering systems. Worksheets for completing the procedures are included in Appendix A.

The procedures and methodology presented should be used for new urban entrance ramp designs in order to accommodate metering systems. This method should also be used to evaluate existing entrance ramps where metering systems are currently installed, or are proposed to be installed, to determine the potential need to redesign those ramps with deficient spacings.

WORKSHEET: SPACING NEEDS BETWEEN ME RAMPS AND UPSTREAM INTERSECTION	TERED ENTRANCE IS Page 1
Site: <u>Example</u> Date: <u>8/25/95</u> Time: <u>4:00 PM</u> Name: <u>Sally Smith</u> Checked by: <u>K F</u>	COMMENTS
I. DESIRED SOLUTION The following figure illustrates the design requirements: distance for acceleration and merging, ramp meter signal location and clear zone, and queue storage. FREEWAY FREEWAY FREEWAY FREEWAY FREEWAY FRONTAGE ROAD & - Signal Location	
II. GEOMETRIC DATA Frontage road leaving cross street: 2,3, or 4 lanes: <u>3</u> Angle of merge = 3,4, or 5 degrees: <u>4</u> Separation between outside freeway travel lane and left frontage lane (edge-to-edge) = <u>18</u> m Length of entrance ramp = <u>260</u> m Length of acceleration lane = <u>150</u> m Storage space available between the cross street and the entrance ramp = <u>245</u> m	
FREEWAY 245 m 245 m 260 m FRONTAGE ROAD CROSS STREET Existing Conditions	
III. OPERATIONAL CONDITIONS Entrance ramp peak hour arrival rate = <u>650</u> vph Freeway speed = <u>90</u> km/h Minimum ramp metering rate = <u>200</u> vph	

	WORKSHE RAN	ET: SF IPS AN	N ME' TION	TERED ENTRANCE S Page 4				
VI.	DETERMINE (QUEUE S	STORAG	E REQU	JIREME	NT		COMMENTS
The po queue	ortion of the ramp n storage: <u>260</u> m (ra <u>140</u> m (p	Since 140 m of the entrance ramp is being used for acceleration and merging, this leaves 120 m available for queuing.						
=	<u> 120 </u>	ortion ava	ailable for	r queue si	torage)			
Detern and a _	nine the queue stora 5_minute delay Entrance	age length from the	table bel	for an ar		of <u>650</u>	 vph	352 m is an interpolation between 325 and 380 for arrival rates of 600 and 700 vph.
	Ramp Arrival	Ac	ceptabl	le Delay	y (min)			
	Rate (vph)	1	2	3	4	5		
	200	39	65	84	98	108		
	300	59	98	125	146	163		
	400	78	130	167	195	217		
	500	98	163	209	244	271		
	600	117	195	251	293	325		
	700	137	228	293	342	380		
	800	156	260	335	390	434		
Requir Detern	red queue storage l	ength = _ queue stor	<u>352</u> n rage leng	n th:				The required length is less than the available length. Therefore, the design is good.
	<u>245</u> + <u>120</u> = <u>365</u>	m (on m (on t m (ava	the fronta he ramp) ilable que	age road) eue storag	ge length)			
If the availat	required queue stople, the design is go	orage len ood.	gth is les	s than th	e queue	storage l	ength	
If the p betwee require	provided distance is en the queue stor ement may be mad	s less that age dista e dependi	n the requince and ing upon	uired distate the road the judge	ance, som side safe ment of t	e compro ty clear he engine	omise zone eer.	

WORKSHEET: SPACING NEEDS BETWEEN METERED ENTRANCE RAMPS AND UPSTREAM INTERSECTIONS Page 5							
VII. SOLUTION The following sketch illustrates the solution to the design problem.	COMMENTS						
352 m 150 m 140 m							
CROSS STREET							
VIII. NOTES							
If the entrance ramp is on a positive slope, additional distance may be required for acceleration.							
· .							

CHAPTER 5

LEVEL-OF-SERVICE ANALYSIS PROCEDURE

OPERATIONS APPLICATION

The procedure for determining frontage road level of service has been divided into seven steps (see Figure 5-1). The procedure listed in Figure 5-1 applies to both one-way and two-way frontage roads. The analysis of two-way frontage roads differs from one-way frontage roads in the following areas: data requirements, computation of running time, and computation of delay at ramp junctions. In addition, the analysis procedure should be followed twice for two-way frontage roads (once for each direction).

The level-of-service criteria are based on average travel speed. Average travel speed is computed by dividing the length of the frontage road by the total travel time. The total travel time may be estimated either by using the procedure outlined in this chapter or by measuring it directly in the field. The following sections give descriptions of the steps for predicting the level of service for frontage road operations.

Step 1: Define Frontage Road Study Section

The first step in analyzing frontage road operations is to determine the location of the frontage road to be analyzed. The analyst must then choose the length of frontage road to include in the analysis. The frontage road section being analyzed may be bound by intersections controlled by signals or stop signs, or it may begin or end at any point, such as a freeway ramp.

After the frontage road boundaries have been defined, the frontage road study *section* should be divided into segments. Each *segment* should contain similar frontage road and traffic operational characteristics (i.e., traffic volume, speed limit, roadside development, etc.). Segments are typically bound by signalized intersections but may include any combination of links. A *link* is defined by

Figure 5-1. Level-of-Service Analysis Procedure.

Figure 5-2. Terminology Used to Describe Frontage Roads.

its beginning and ending *nodes* (e.g., exit ramp, entrance ramp, signalized intersection, etc.). Figure 5-2 illustrates the use of the terms *node*, *link*, *segment*, *and study section*.

Step 2: Gather Field Data

This step involves gathering the data (e.g., roadway characteristics, traffic data, and signal data) required to perform the analysis. As mentioned earlier, total travel time may either be measured directly in the field or may be computed using the procedure in this chapter. Table 5-1 summarizes the required data for computing the total travel time for one-way and two-way frontage roads.

Step 3: Compute Running Time

The total frontage road travel time includes the running time, delay at intersections, and delay at freeway ramp junctions. The running time is the time is takes a vehicle to traverse a given section of roadway without being delayed by intersections or ramps. A procedure for estimating running

Type of Data	Data Required	One-Way	Two-Way		
Roadway Characteristics	Segment length, km	~	~		
	Type of traffic control at intersections (e.g., no-control, stop-controlled, or traffic signal) Number of all exit and entrance ramps		~		
			~		
	Number of exit ramps without auxiliary lanes	~			
	Segment access density, acs/km (number of driveways and unsignalized intersections per kilometer)	~	~		
Traffic Data	Frontage road approach volume at stop- controlled and signalized intersections, vph	~	~		
	Ramp and frontage road volumes at all exit and entrance ramps, vph		~		
	Exit ramp and frontage road volumes at exit ramps without auxiliary lanes, vph	~			
Signal Data	Signal progression data	~	~		
	Intersection capacity (c), vph	~	~		
	Cycle length (C), sec	~	~		
	Green/cycle time ratio (g/C)	~	~		
	Volume/capacity ratio (v/c)	~	~		

Table 5-1.	Data Required	for Analyzing	Frontage Road	Operations .
------------	----------------------	---------------	----------------------	---------------------

time was developed by collecting travel time data at existing frontage road sites. Regression analyses showed that length significantly affected travel time. Other factors, such as volume and free flow speed, had minor effects on travel time when compared to length. Results from the regression analyses were used to develop equations to predict running time for both one-way and two-way frontage roads. Table 5-2 shows these regression equations.

Frontage Road	Regression Equation ^a
One-Way	RT = 0.0504 (L)
Two-Way	RT = 0.0519 (L)

Table 5-2. Equations for Predicting Running Time on Frontage Roads.

^a RT = running time (sec)

L = segment length (m)

For two-way frontage roads, plots of average speed versus frontage road volume revealed some correlation between speed and volume. For frontage road volumes above approximately 400 vphpl, maximum speeds begin to drop noticeably (and travel times increase). Below 400 vphpl, maximum speeds of 89 to 97 km/h were observed while above 400 vphpl, most speeds were below 72 km/h. Travel times were predicted to increase by as much as 10 percent for frontage road volumes above 400 vphpl.

The analyses also showed that access density had an effect on travel time. For both one-way and two-way frontage roads, a critical value of access density existed at which speeds began to drop and travel times increase significantly. The critical values for one-way and two-way frontage roads occurred at approximately 20 and 16 acs/km, respectively. Above these critical values, travel times may again increase by as much as 10 percent.

Table 5-3 contains estimated running times for one-way and two-way frontage roads. The segments lengths included in the field data ranged from approximately 0.2 to 2.0 km for one-way and 0.2 to 3.2 km for two-way; therefore, these ranges are included in the table. If the frontage road segment lengths being evaluated fall outside of this range, the analyst should consider redefining the segments. The travel times shown in Table 5-3 are increased by 10 percent when access

	One-Way Frontage Roads		Two-Way Frontage Roads			5
Access Density (acs/km)	≤ 20	> 20	٤	16	>	16
Frontage Road Volume (vphpl)	All	All	≤ 400	> 400	≤ 400	> 400
Segment Length ^a (km)		.	Running Time, RT ^b (sec)			
0.2	10	11	10	11	11	13
0.4	20	22	21	23	23	25
0.6	30	33	31	34	34	38
0.8	40	44	42	46	46	50
1.0	50	55	52	57	57	63
1.2	60	67	62	69	69	75
1.4	71	78	73	80	80	88
1.6	81	89	83	91	91	100
1.8	91	100	93	103	103	113
2.0	101	111	104	114	114	126
2.2	N/A	N/A	114	126	126	138
2.4	N/A	N/A	125	137	137	151
2.6	N/A	N/A	135	148	148	163
2.8	N/A	N/A	145	160	160	176
3.0	N/A	N/A	156	171	171	188
3.2	N/A	N/A	166	183	183	201

^a If segment length falls outside of 0.2 to 2.0 km for one-way and 0.2 to 3.2 km for two-way, consider redefining segments.

^b Equations used to determine values are listed in Table 5-2.

density exceeds 20 acs/km for one-way frontage roads and exceeds 16 acs/km for two-way frontage roads. The travel times are again increased by 10 percent for two-way frontage roads when frontage road volumes exceed 400 vphpl.

Step 4: Compute Intersection Delay

For most frontage roads, intersections at major crossroads will be controlled either by a traffic signal or by stop signs. To estimate the approach delay at signalized intersections, the procedures outlined in Chapter 9 of the *HCM* are recommended. Chapter 10 of the *HCM* includes procedures for estimating approach total delay for two-way and all-way stop-controlled intersections. Updated procedures in Chapter 10 is expected to be available in late 1997. Following is a summary of the procedures in Chapter 9 of the *HCM* for calculating approach delay at signalized intersections.

Estimating Delay at Signalized Intersections

The total delay incurred at a signalized intersection includes the time that a vehicle is stopped (defined as stopped delay), as well as the time to decelerate from and accelerate to the driver's desired speed. The 1994 *HCM* defines intersection total delay as a function of stopped delay using the following equation:

$$D_I = 1.3 * d$$
 [5-1]

where:

D_I =intersection total delay, sec/veh

d = intersection stopped delay, sec/veh

Intersection stopped delay is calculated using the following equations:

$$d = d_1 DF + d_2$$
 [5-2]

$$d_1 = \frac{0.38C[1 - (g/C)]^2}{1 - (g/C)[Min(X, 1.0)]}$$
[5-3]

$$d_{2} = 173X^{2}[(X-1) + \sqrt{(X-1)^{2} + mX/c}]$$
[5-4]

where:

- d = stopped delay, sec/veh
- d_1 = uniform delay, sec/veh
- d_2 = incremental delay, sec/veh
- DF = delay adjustment factor for either quality of progression or type of control (see Table 5-5)
- X = volume/capacity ratio of lane group
- C = cycle length, sec
- c = capacity of lane group, vph
- g = effective green time for lane group, sec
- m = incremental delay calibration term representing effect of arrival type and degree of platooning (see Table 5-4)

The total delay incurred at signalized intersections will be based upon the arrival type. The arrival type is a function of the quality of progression. Table 5-4 lists the six arrival types defined in the *HCM*. The incremental delay calibration term (m) is a function of the arrival type and is also shown in this table.

The delay adjustment factor (DF) accounts for the effects of signal progression and controller type on uniform delay. To estimate the value of this factor, either the controller-type adjustment factor (CF) or the progression adjustment factor (PF) is used. Table 5-5 shows values of DF recommended in the *HCM*.

Arrival Type	Progression Quality	Incremental Delay Calibration Term, m
1	Very poor	8
2	Unfavorable	12
3	Random arrivals	16
4	Favorable	12
5	Highly favorable	8
6	Exceptional	4

Table 5-4. Arrival Type and Increment	tal Delay Calibration Term (m) Values.
---------------------------------------	--

Table 5-5. Uniform Delay Adjustment Factor (DF).

Controller-Type Adjustment Factor, CF						
Control Type			Non-Coordinated Intersections		Coordinated Intersections	
Pretimed			1.0	00	PF as computed below	
Semiactuated						
Traffic-actuated lane groups			0.3	85	1.0	00
Non-actuated lane groups			0.5	85	PF as comp	outed below
Fully actuated			0.8	85	N/A	
Progression			Adjustment F	actor, PF		
Green/Cycle			Arriva	l Type		
g/C	1	2	3	4	5	6
0.20	1.167	1.007	1.000	1.000	0.833	0.750
0.30	1.286	1.063	1.000	0.986	0.714	0.571
0.40	1.445	1.136	1.000	0.895	0.555	0.333
0.50	1.667	1.240	1.000	0.767	0.333	0.000
0.60	2.001	1.395	1.000	0.576	0.000	0.000
0.70	2.556	1.653	1.000	0.256	0.000	0.000

Equations 5-1 through 5-4 should be used to compute total delay at all signalized intersections within the study section. Chapter 9 of the *HCM* contains complete descriptions of the variables used in the equations and further discussion on computing intersection delay.

Intersection Level of Service

The *HCM* defines intersection level of service in terms of average stopped delay per vehicle. Stopped delay may be computed using Equation 5-2. Table 5-6 shows level-of-service criteria for signalized intersections suggested in the *HCM*.

Intersection Level of Service	Stopped Delay per Vehicle (sec)
А	≤ 5.0
В	5.1 to 15.0
С	15.1 to 25.0
D	25.1 to 40.0
Е	40.1 to 60.0
F	> 60.0

 Table 5-6. Signalized Intersection Level-of-Service Criteria.

Step 5: Compute Ramp Delay

Delay incurred by frontage road vehicles at freeway ramps is more of a concern for two-way frontage roads than for one-way frontage roads. For two-way frontage roads, vehicles traveling in the same direction as freeway traffic will be required to yield only at exit ramps; however, vehicles traveling in the opposite direction will be required to yield at both exit ramps and entrance ramps. For one-way frontage roads, frontage road delay at ramps is typically only experienced at exit ramps that do not have auxiliary lanes or in those cities where all drivers on the frontage road consistently yield to exit ramp vehicles. In a study conducted by Gattis et al. (8), procedures for predicting delay at ramps were developed. The recommended equations for predicting delay at ramps on one-way and two-way frontage roads are listed in Table 5-7.

As shown in Table 5-7, three values are calculated to estimate frontage road delay: frontage road capacity at ramp (C_R), average queuing system delay (W), and average total delay (D_R). These models were developed by assuming that the ramp-frontage road intersection area operates as a queuing system. Because of this assumption, the equations can only be used when the frontage road flow rate (a) does not exceed the service rate (u) (i.e., $u - a \ge 0$).

The resulting equations for predicting frontage road delay at ramps are expressed as a function of ramp volume and frontage road volume. Therefore, these are the only parameters that need to be obtained for estimating delay at ramps. For entrance ramp *opposing* delay on two-way frontage roads, the ramp volume should include all frontage road vehicles approaching the entrance ramp from the *with* direction, whether the vehicles actually enter the ramp or continue along the frontage road.

The equations in Table 5-7 were developed by assuming that ramp traffic arrivals could be described using the Poisson process and by estimating the gap acceptance tendencies of frontage road traffic. Actual delays at field sites may vary from the predicted delay depending upon the average accepted gap of frontage road drivers.

An evaluation of the equations for predicting frontage road delay at exit ramps on one-way frontage roads revealed a limitation of the equations for predicting frontage road capacity (C_R). Capacity is calculated from these equations by multiplying a factor by the ramp volume and subtracting this product from the maximum frontage road flow rate (i.e., maximum flow rate - factor x ramp volume). When the ramp volume multiplied by the factor exceeds the maximum flow rate, a negative capacity value results. Maximum ramp volumes for which the capacity equations produce positive values are shown in Table 5-8. Using the capacity equations for ramp volumes above those in this table will produce invalid results.

	1				
Case	Frontage Road	Scenario	Frontage Road Capacity, C _R (veh/hr)	Queuing Delay, W (sec/veh)	Total Delay, D _R (sec/veh)
1	One- Way	Exit Ramp without Auxiliary Lane	N[1858-1.5259(Q _R)]	1/(u-a)	-0.0719 + 1.0922(W)
2	Two- Way	Exit Ramp <i>With</i>	1724 - 1.6120(Q _R)	1/(u-a)	-0.0719 + 1.0922(W)
3	Two- Way	Exit Ramp <i>Opposing</i>	1444 - 1.6564(Q _R)	1/(u-a)	-1.6451 + 1.7785(W)
4	Two- Way	Entrance Ramp <i>Opposing</i>	1535 - 1.3852(Q _R)	1/(u-a)	0.0538 + 1.3027(W)

Table 5-7. Equations for Fredicting Frontage Road Delay at Ram	Table 5-7.	7. Equations	or Predicting	Frontage	Road Delay	v at Ramp
--	------------	--------------	---------------	----------	-------------------	-----------

Note:

N = number of frontage road through lanes

 C_R = frontage road capacity per direction, vph

W = average queuing system delay, sec/veh

 D_R = average total delay, sec/veh

 Q_R = hourly ramp volume, vph (for Case 4, includes all vehicles that approach the entrance ramp from the *with* direction, whether they enter the ramp or not)

u = service rate (C / 3600), veh/sec

a = frontage road flow rate (volume / 3600), veh/sec

Table 5-8. Maximum Ramp Volumes to Be Used with Capacity Equations.

Case	Frontage Road	Scenario	Maximum Ramp Volume (vph)
1	One-Way	Exit Ramp	1200
2	Two-Way	Exit Ramp With	1050
3	Two-Way	Exit Ramp Opposing	850
4	Two-Way	Entrance Ramp Opposing	1100

Currently, techniques are not available to predict delays at high-volume ramps or at ramp junctions on one-way frontage roads where all lanes of traffic consistently yield to exiting ramp vehicles. A potential solution to determine delay at these types of ramp junctions is the revision to
HCM, Chapter 10 ("Unsignalized Intersections"), which will be included in the next revision of the *HCM*. Until available, engineering judgement should be used if a frontage road segment includes these types of ramp junctions.

Step 6: Compute Average Travel Speed

The average travel speed can be computed by dividing the total length of the frontage road under consideration by the total travel time. The total travel time is composed of the total running time, total delay at intersections, and total delay at ramps. The average travel speed may be computed using the following formula:

$$S = \frac{3,600(L)}{RT + D_I + D_R}$$
[5-5]

where:

S = average travel speed, km/h

L = length of frontage road, km

RT = total running time, sec

 D_{I} = total approach delay for all signalized and stop-controlled intersections, sec

 D_R = total frontage road delay incurred at ramps, sec

Step 7: Assess Level of Service

Once the average travel speed has been computed, the level of service can be estimated using the criteria in Table 5-9. These criteria apply to both one-way and two-way frontage road operations. The criteria are not meant to represent exact divisions in level of service. The values are intended to provide a general idea of the level of service that might be expected for a particular frontage road section; therefore, engineering judgement should be used when applying these criteria.

Frontage Road Level of Service	Average Travel Speed (km/h)
А	≥ 56.0
В	45.0 to 55.9
С	35.0 to 44.9
D	27.0 to 34.9
Е	21.0 to 26.9
F	< 21.0

Table 5-9. Frontage Road Level-of-Service Criteria.

Alternative Evaluation

An alternative to calculating average travel speed using the above procedure is to make travel time measurements directly in the field. Collecting field data is a more direct approach to evaluating existing frontage road operations and will produce more accurate results. An example would be to measure the total time to travel through a selected study site at various times during a peak period. After obtaining an average frontage road travel time, the travel speed would be computed by dividing the length of the study site by the average travel time. The average travel speed would then be compared to the criteria in Table 5-9 to assess the level of service.

PLANNING APPLICATION

The *HCM* planning level procedure for an arterial street level-of-service analysis can essentially be used for a similar analysis of frontage roads. The major simplifying assumption in the arterial street planning application is that left turns are accommodated by providing left-turn bays at major intersections and controlling the left-turn movement with a separate phase that is properly timed. As a result of this assumption, planning application results should not be used for intersection design or traffic operations analyses. Another assumption needed for a frontage road planning level of service is that ramp junctions do not significantly contribute to the delay along the frontage road

(i.e., that all exit ramps on one-way frontage roads have auxiliary lanes). For two-way frontage roads, estimates of delay at ramp junctions need to be added. Example Calculation 3 provides an example of a planning application for a one-way frontage road.

EXAMPLE CALCULATION 1—COMPUTATION OF FRONTAGE ROAD LEVEL OF SERVICE, ONE-WAY FRONTAGE ROAD

Step 1: Define Frontage Road Study Section

The frontage road to be considered is a 3.9 km length of a two-lane, one-way frontage road in an area of moderate development. Figure 5-3 illustrates the frontage road section to be analyzed. Each of the crossroad intersections shown are controlled by traffic signals.

The selected frontage road study section is divided into the following three segments (with each segment being bound by signalized intersections): Lemon to Georgia, Georgia to 39th, and 39th to University.

Figure 5-3. Schematic of One-Way Frontage Road Study Section.

Step 2: Gather Field Data

The required field data include roadway characteristics, traffic data, and signal data (see Table 5-1). Assumptions include random arrival and a saturation flow rate of 1800 vphpl. Tables 5-10 and 5-11 summarize collected field data.

				Number of Exit Ramps	Exit	Frontage Road Volume (vph)	
Seg- ment	Segment Boundaries	Length (km)	Access Density (acs/km)	s w/o H y Aux. V n) Lanes (Ramp Volume (vph)	At Exit Ramps	At Inter- sections
1	Lemon to Georgia	1.2	21.2	2	Exit 1: 358 Exit 2: 180	Exit 1: 193 Exit 2: 97	282
2	Georgia to 39th	1.1	18.2	1	214	115	372
3	39th to University	1.6	16.2	1	98	53	261

Table 5-10. Roadway Characteristics and Traffic Data for One-WayFrontage Road Study Section.

Table 5-11. Signal Data for One-Way Frontage Road Study Section.

Intersection	Cycle Length, C (sec)	Green/Cycle Time Ratio, g / C	Intersection Capacity, c ^a (vph)	
Georgia	120	0.25	900	
45th	100	0.34	1224	
Western	75	0.26	936	

^a c = (Saturation flow rate)(# of lanes)(g/C)

Step 3: Compute Running Time

The segment lengths and access densities are entered on the Frontage Road Level-of-Service Worksheet (see Figure 5-4). Running times are obtained from Table 5-3.

Step 4: Compute Intersection Delay

Intersection delay is computed on the Signalized Intersection Delay Worksheet (see Figure 5-5). The first step is to enter cycle length (C), green/cycle time ratio (g/C), v/c ratio (X), capacity (c), and arrival type onto the worksheet. Arrival type is based on quality of progression and is estimated using the values in Table 5-4. Arrival Type 3 is selected because the vehicles are assumed to be random arrivals.

The next step is to compute the total delay (D_1) for each signalized intersection. Intersection total delay is computed using equations 5-1 through 5-4. Intersection level of service is based on stopped delay (d) and may be estimated using the criteria in Table 5-6. Intersection total delay is then entered on the Frontage Road Level-of-Service Worksheet.

Step 5: Compute Ramp Delay

Ramp delay is computed using the Ramp Junction Delay Worksheet (One-Way Frontage Roads). For one-way frontage roads, ramp delays are calculated for exit ramps without auxiliary lanes only. Segment 1 has two exit ramps without auxiliary lanes, and Segments 2 and 3 each have one exit ramp without an auxiliary lane. Delay for each ramp is calculated on a separate line of the worksheet (See Figure 5-6). Total ramp delay for each segment is entered in the "Ramp Delay" column on the Frontage Road Level-of-Service Worksheet.

	FRONTAGE ROAD LEVEL-OF-SERVICE WORKSHEET							
Location: <u>IH-99</u>					Direction:	North]	bound
Description: <u>Between Lemon and University</u> Type: <u>One-Way</u>								
Date: _	8-19	9-96			Prepared By	: <u> </u>	ly	
Seg- ment	Segment Length (km) L	Access Density (acs/km)	Running Timeª (sec) RT	Inter- section Total Delay ^b (sec) D	Ramp Delay [°] (sec) D _R	Total Travel Time ^d (sec) T	Average Travel Speed ^e (km/h) S	Frontage Road LOS by Segment ^f
1	1.2	21.2	67					
2	1.1	18.2	55					
3	1.6	16.2	81					

^a Use field data or values from Table 5-3

^b From Signalized Intersection Delay Worksheet

[°] From Ramp Junction Delay Worksheet

^d $T = RT + D_I + D_R$

 $^{\circ}S = 3600(L)/T$

^f See LOS criteria in Table 5-9.

Sum of Travel Times, sec (Σ T) =	
--	--

Total Frontage Road Length, km (Σ L) = _____

Average Frontage Road Speed, km/h = $3600 (\Sigma L) / (\Sigma T) =$

Frontage Road LOS =

Figure 5-4. Compute Running Time.

SIGNALIZED INTERSECTION DELAY WORKSHEET

·····

Location: <u>IH-99</u>

Direction: ______ - bound

Type: _____One-Way

Date: <u>8-19-96</u>

Prepared By: <u>Sally</u>

	T										
Seg- ment	Cycle Length (sec) C	Green/ Cycle Time Ratio g/C	v/c Ratio X	Lane Group Capacity (vph) c	Arrival Type ª	Uniform Delay ^b (sec) d ₁	DF°	Incre- mental Delay ^d (sec) d_2	Inter- section Stopped Delay ^e (sec) d	Inter- section Total Delay ^f (sec) D _I	Inter- section LOS ^g
1	120	0.25	0.316	900	3	27.9	1.0	<i>O</i> .1	28.0	36.4	D
2	100	0.34	0.304	1224	3	18.5	1.0	0.0	18.5	24.1	С
3	75	0.26	0.279	936	3	16.8	1.0	0.0	16.8	21.9	С

^a Table 5-4

^b Equation 5-3 $d_1 = \frac{0.38C[1-(g/C)]^2}{1-(g/C)[Min(X,1.0)]}$

° Table 5-5

- ^d Equation 5-4 $d_2 = 173X^2[(X-1) + \sqrt{(X-1)^2 + mX/c}]$
- Equation 5-2 $d=d_1DF+d_2$
- ^f Equation 5-1 $D_1 = 1.3 * d$

^g Table 5-6

Procedures to Determine Frontage Road Level of Service and Ramp Spacing

RAMP JUNCTION DELAY WORKSHEET (ONE-WAY FRONTAGE ROADS)							
Location: <u>IH-9</u>	9	tunkaka	Direction:	North	bound		
Description: <u>Be</u>	tween Lemon and L	Iniversity	Туре:Опе	e-Way			
Date:8	-19-96		Prepared By:	Sally			
	Exit Ramp Hourly Volume ^a (veh/hr)	Frontage Road Hourly Volume (veh/hr)	Potential Capacity of Frontage Road Lanes ^b (veh/hr)	Queuing System Delay per Vehicle ^c (sec)	Predicted Total Delay per Vehicle ^d (sec)		
Segment	Q _R	а	C _R	W	D _R		
1	35 <i>8</i>	193	2623	1.5	1.6		
1	180	97	3167	1.2	1.2		
2	214	115	3063	1.2	1.3		
3	98	53	3418	1.1	1.1		

^a Q_R must be ≤ 1200 ; otherwise, use engineering judgement. If an auxiliary lane is present, delay is negligible. ^b $C_R = \# \text{Lanes} (1858 - 1.5259 (Q_R))$ ^c $W = 3600 / (C_R - a)$ ^d $D_R = -0.0719 + 1.0922 (W)$

Figure 5-6. Calculate Ramp Delay.

Step 6: Compute Average Travel Speed

To calculate the average travel speed, the total travel time for each segment must be computed. The total travel time is the sum of the running time, intersection total delay, and ramp delay. Frontage road travel speed is calculated by dividing the total length of the frontage road study section by the total travel time (see Equation 5-5). This information is entered on the Frontage Road Level-of-Service Worksheet (see Figure 5-7).

Step 7: Assess Level of Service

The frontage road speeds for each segment are now compared to the criteria in Table 5-9 to determine the level of service by segment. The overall frontage road level of service is estimated by computing the average travel speed for the frontage road. As shown in Figure 5-7, the average travel speed for the frontage road is 48.3 km/h resulting in a LOS B.

-	FRONTAGE ROAD LEVEL-OF-SERVICE WORKSHEET							
Locatio	on: <u>IH-99</u>			Direction:	North		bound	
Description: <u>Between Lemon and University</u> Type: <u>One-Way</u>								
Date: _	8-19)-96			Prepared By	: <u> </u>	ly.	
Seg- ment	Segment Length (km)	Access Density (acs/km)	Running Timeª (sec)	Inter- section Total Delay ^b (sec)	Ramp Delay ^c (sec)	Total Travel Time ^d (sec)	Average Travel Speed ^e (km/h)	Frontage Road LOS by Segment ^f
	L		RT	DI	D _R	Т	S	
1	1.2	21.2	67	36.4	2.8	106.2	40.7	Ç
2	1.1	18.2	55	24.1	1.3	80.4	49.3	В
3	1.6	16.2	81	21.9	1.1	104.0	55.4	В
	-							

^a Use field data or values from Table 5-3

^b From Signalized Intersection Delay Worksheet

^c From Ramp Junction Delay Worksheet

^d $T = RT + D_I + D_R$

 $^{e}S = 3600(L)/T$

^f See LOS criteria in Table 5-9.

Sum of Travel Times, sec (Σ T)	=290.6
--	--------

Total Frontage Road Length, km (Σ L) = <u>3.9</u>

Average Frontage Road Speed, km/h = $3600 (\Sigma L) / (\Sigma T) = 48.3$

Frontage Road LOS = B

Figure 5-7. Assess Level of Service.

EXAMPLE CALCULATION 2—COMPUTATION OF FRONTAGE ROAD LEVEL OF SERVICE, TWO-WAY FRONTAGE ROAD

Step 1: Define Frontage Road Study Section

The frontage road to be considered is a 3.1 km length of two-lane, two-way frontage that is located in an area of low to moderate development. This example illustrates the procedure to determine the level of service for the frontage road lane that flows *with* the direction of the freeway traffic. However, the lane *opposing* freeway traffic should also be analyzed because the level of service may be different. Figure 5-8 illustrates the frontage road length to be analyzed.

Figure 5-8. Schematic of Two-Way Frontage Road Study Section.

The selected frontage road study section is divided into the following two segments: Smith to Peanut, and Peanut to Exit Ramp.

Step 2: Gather Field Data

The required field data include roadway characteristics, traffic data, and signal data (see Table 5-1). The saturation flow rate is assumed to be 1800 vphgpl. Tables 5-12 and 5-13 summarize the required field data.

	Second			Exit	Frontage Road Volume (vph)		
Segment	Segment Boundaries	Length (km)	Density (acs/km)	Ramp Volume (vph)	At Exit Ramps	At Intersections	
1	Smith to Peanut	1.8	7.3	264	84	348	
2	Peanut to Exit Ramp	1.3	15.9	204	96		

Table 5-12. Roadway Characteristics and Traffic Data for Two-WayFrontage Road Study Section.

 Table 5-13. Signal Data for Two-Way Frontage Road Study Section.

Intersection	Cycle Length, C (sec)	g / C	Intersection Capacity, c ^a (vph)
Peanut	170	0.20	360

^a c = (saturation flow rate)(# of lanes)(g/C)

Step 3: Compute Running Time

The segment lengths and access densities are entered on the Frontage Road Level-of-Service Worksheet (see Figure 5-9). Running times are computed from Table 5-3.

Direction: _____ North (With) - bound

Location: <u>IH-50</u>

Type: _____Two-Way

Date: <u>8-19-96</u>

Prepared By: <u>Sally</u>

Seg- ment	Segment Length (km) L	Access Density (acs/km)	Running Time ^a (sec) RT	Inter- section Total Delay ^b (sec) D	Ramp Delay ^c (sec) D _R	Total Travel Time ^d (sec) T	Average Travel Speed ^e (km/h) S	Frontage Road LOS by Segment ^f
1	1.8	7.3	93					
2	1.3	15.9	68					

^a Use field data or values from Table 5-3

^b From Signalized Intersection Delay Worksheet

^c From Ramp Junction Delay Worksheet

^d $T = RT + D_I + D_R$

 $^{e}S = 3600(L)/T$

^f See LOS criteria in Table 5-9.

Sum of Travel Times, sec (Σ T) = _____

Total Frontage Road Length, km (Σ L) = _____

Average Frontage Road Speed, $km/h = 3600 (\Sigma L) / (\Sigma T) =$ _____

Frontage Road LOS =

Figure 5-9. Compute Running Time.

Step 4: Compute Intersection Delay

Intersection delay is computed on the Signalized Intersection Delay Worksheet (see Figure 5-10). The first step is to enter cycle length (C), green/cycle time ratio (g/C), v/c ratio (X), capacity (c), and arrival type onto the worksheet. Arrival type is based on quality of progression and is estimated using the values in Table 5-4. Arrival Type 3 is assumed.

The next step is to compute the total delay (D_I) for each signalized intersection. The total delay is computed using Equations 5-1 through 5-4. Intersection level of service is based on stopped delay (d) and may be estimated using the criteria in Table 5-6. The intersection total delay (D_I) is then entered on the Frontage Road Level-of-Service Worksheet.

Step 5: Compute Ramp Delay

Ramp delay is computed using the Ramp Junction Delay Worksheet (Two-Way Frontage Roads). For two-way frontage road lanes flowing *with* the frontage road traffic, ramp delays are calculated for exit ramps only (i.e., exit ramp *with*). Segments 1 and 2 each have one exit ramp. Delay for each ramp is calculated on a separate line of the worksheet (see Figure 5-11). Delay at each ramp is entered in the "Ramp Delay" column on the Frontage Road Level-of-Service Worksheet.

Step 6: Compute Average Travel Speed

To calculate the average travel speed, the total travel time for each segment must be computed. The total travel time is the sum of the running time, intersection total delay, and ramp delay. Frontage road travel speed is calculated by dividing the total length of the frontage road study section by the total travel time (see Equation 5-5). This information is entered on the Frontage Road Level-of-Service Worksheet (see Figure 5-12).

	SIGNALIZED INTERSECTION DELAY WORKSHEET										
Location: <u>IH-50</u>					Direct	tion:	Nor	th (With)		bound	
Descrip	tion: <u> </u>	nith to Ex	kit Ramp	Past Peanu	t	Type:		Two-Way			
Date: 8-19-96					Prepa	red By:	e	bally	<u></u>		
Seg- ment	Cycle Length (sec) C	Green/ Cycle Time Ratio	v/c Ratio X	Lane Group Capacity (vph) c	Arrival Type ^a	Uniform Delay ^b (sec) d.	DF⁰	Incre- mental Delay ^d (sec)	Inter- section Stopped Delay ^e (sec) d	Inter- section Total Delay ^f (sec) D.	Inter- section LOS ^g
1	170	0.20	0.233	360	3	43.7	1.0	0.0	43.7	56.9	E
											<u> </u>

^a Table 5-4

^b Equation 5-3 $d_1 = \frac{0.38C[1-(g/C)]^2}{1-(g/C)[Min(X,1.0)]}$

^c Table 5-5

^d Equation 5-4 $d_2 = 173X^2[(X-1) + \sqrt{(X-1)^2 + mX/c}]$

• Equation 5-2 $d = d_1 DF + d_2$

^f Equation 5-1 $D_I = 1.3 * d$

^g Table 5-6

Figure 5-10. Compute Intersection Delay.

RAMP JUNCTION DELAY WORKSHEET (TWO-WAY FRONTAGE ROADS)								
Location:	IH-50	· ·		Direction:	North (With)	bound		
Description:Smith to Exit Ramp Past Peanut Type:Two-Way								
Date:	8-19-96			Prepared By:	Sally			
Segment	Scenario ^a	Ramp Hourly Volume (vph) O₅	Frontage Road Hourly Volume (vph) a	Potential Capacity of Frontage Road (vph)	Queuing System Delay per Vehicle (sec) W	Predicted Total Delay per Vehicle (sec)		
1	Exit Ramp With	264	84	1298	2.96	3.2		
2	Exit Ramp With	204	96	1395	2.77	3.0		

^a Scenarios and Equations:

Exit Ramp *With*: $C_R = 1724 - 1.6120 (Q_R)$ $W = 3600 / (C_R - a)$ $D_R = -0.0719 + 1.0922 (W)$

Exit Ramp Opposing: $C_R = 1444 - 1.6564 (Q_R)$ $W = 3600 / (C_R - a)$ $D_R = -1.6451 + 1.7785 (W)$

Entrance Ramp Opposing: $C_R = 1535 - 1.3852 (Q_R)$ (Note: Q_R is assumed to be total frontage road with volume) $W = 3600 / (C_R - a)$ $D_R = 0.0538 + 1.3027 (W)$

Figure 5-11. Calculate Ramp Delay.

FRONTAGE ROAD LEVEL-OF-SERVICE WORKSHEET

Location: ___IH-50

Direction: North (With) - bound

Type: ______ Two-Way

Prepared By: <u>Sally</u>

Date: <u>8-19-96</u>

Seg- ment	Segment Length (km) L	Access Density (acs/km)	Running Timeª (sec) RT	Inter- section Total Delay ^b (sec) D	Ramp Delay ^c (sec) D _R	Total Travel Time ^d (sec) T	Average Travel Speed ^e (km/h) S	Frontage Road LOS by Segment ^f
1	1.8	7.3	93	56.9	3.2	153.2	42.3	
2	1.3	15.9	68	0.0	3.0	71.0	65.9	
					·			
								-

^a Use field data or values from Table 5-3

^b From Signalized Intersection Delay Worksheet

[°] From Ramp Junction Delay Worksheet

^d $T = RT + D_I + D_R$

 $^{e}S = 3600(L)/T$

^f See LOS criteria in Table 5-9.

Sum of Travel Time, sec (Σ T) = _____

Total Frontage Road Length, km (Σ L) = _____

Average Frontage Road Speed, $km/h = 3600 (\Sigma L) / (\Sigma T) =$

Frontage Road LOS =

Figure 5-12. Compute Average Travel Speed.

Step 7: Assess Level of Service

The frontage road speeds for each segment are now compared to the criteria in Table 5-9 to determine the level of service by segment. The overall frontage road level of service is estimated by computing the average travel speed for the frontage road. As shown in Figure 5-13, the average travel speed for the frontage road is 49.8 km/h resulting in a LOS B.

	FRONTAGE ROAD LEVEL-OF-SERVICE WORKSHEET							
Location: <u>IH-50</u>					Direction:	North	(With)	bound
Descrip	tion: <u>Smit</u> l	n to Exit Ram	<u>p Past Peanut</u>	<u></u>	Туре:	Two-Way		
Date: _	8-19	9-96			Prepared By	: <u> </u>	<u>ly</u>	_
Seg- ment	Segment Length (km)	Access Density (acs/km)	Running Time ^a (sec)	Inter- section Total Delay ^b (sec)	Ramp Delay ^c (sec)	Total Travel Time ^d (sec)	Average Travel Speed ^e (km/h)	Frontage Road LOS by Segment ^f
	L					1	3	
1	1.8	7.3	93	56.9	3.2	153.2	42.3	С
2	1.3	15.9	68	0.0	3.0	71.0	65.9	А
							· · ·	

^a Use field data or values from Table 5-3

^b From Signalized Intersection Delay Worksheet

^c From Ramp Junction Delay Worksheet

^d $T = RT + D_I + D_R$

 $^{e}S = 3600(L)/T$

^f See LOS criteria in Table 5-9.

Total Frontage Road Length, km (Σ L) = _____3.1

Average Frontage Road Speed, km/h = $3600 (\Sigma L) / (\Sigma T) = 49.8$

Frontage Road LOS = _____B

Figure 5-13. Assess Level of Service.

EXAMPLE CALCULATION 3—PLANNING APPLICATION

Description

The following information has been determined for a one-way frontage road section.

Traffic Characteristics

Annual average daily traffic, for both directions (AADT) = 30,000

Planning analysis peak hour factor (K100) = 0.09

Directional distribution factor, for northbound direction (D) = 0.55

Peak hour factor (PHF) = 0.925

Adjusted saturation flow = 1,850 pcphgpl

Percentage of turns from exclusive lanes = 15

Roadway Characteristics

Through lanes = 2 lanes per direction

Section length = 3.2 km

Left-turn bays = yes

Access density is less than 20 acs/km

• Signal Characteristics

Signalized intersections = 4 (thus, average segment length = 0.8 km)

Arrival type = 3 (random arrival)

Signal types = non-coordinated, semiactuated

Cycle length (C) = 120 sec

Weighted effective green ratio (g/C) = 0.45

Solution

Use the following steps to determine the level of service for the northbound direction.

Step 1. Determine the two-way hourly volume for the planning analysis hour.

Two-Way Hourly Volume = $AADT \times K$ = 30,000 × 0.09 = 2,700 vph

Step 2. Determine the hourly directional volume based on the predominant directional flow.

Directional Volume = Two-Way Hourly Volume × D = $2,700 \times 0.55$ = 1,485 vph

Step 3. Determine the basic through-volume 15-minute flow rate.

Flow Rate = (Directional Volume / PHF) × (1 - percentage of turns) = $(1,485 / 0.925) \times (1 - 0.15)$ = 1,365 vph

Step 4. Determine running time.

The running time rate is obtained from Table 5-3 using one-way frontage road columns, less than 20 acs/km, and a segment length of 0.8 km. A running time of 40 sec per 0.8 km is obtained. For the 3.25 km segment, the running time is 162.5 seconds.

Step 5. Calculate total intersection delay.

The total delay (D) for all intersections is obtained using Equations 5-1 through 5-4. Following are the calculations performed to determine D.

Lane group capacity (c) = Saturation flow rate × number of lines × g/C = $1,850 \times 2 \times 0.45$ = 1,665

$$v/c$$
 ratio (X) = flow rate / lane group capacity

$$d_1 = \frac{0.38C[1-(g/C)]^2}{1-(g/C)[Min(X,1.0)]}$$

$$d_1 = \frac{0.38 \times 120 \times [1 - (0.45)]^2}{1 - (0.45)[0.82]}$$

 $d_1 = 21.9 \text{ sec}$

From Table 5-4, m = 16 for arrival type 3. From Table 5-5, DF = 0.85 for non-coordinated, semiactuated signals.

$$d_2 = 173X^2[(X-1) + \sqrt{(X-1)^2 + mX/c}]$$
[5-4]

$$d_2 = 173(0.82)^2[(0.82-1)+\sqrt{(0.82-1)^2+(16)(0.82)/1554}]$$

 $d_2 = 2.6 \text{ sec}$

Determine intersection stopped delay (d).

$$d = d_1 \times \mathrm{DF} + d_2 \tag{5-2}$$

1.50° (SC) Se

 $d = 21.9 \times 0.85 + 2.6$

d = 21.2 sec

Determine intersection total delay (D_I) for all intersections (number of signalized intersections on this section is 4).

$$D_{\rm I} = 1.3 \times d \tag{5-1}$$

 $D_1 = (1.3 \times 21.2) \times 4$

 $D_{I} = 110 \text{ sec}$

Step 6. Determine average travel speed using Equation 5-5.

$$S = \frac{3,600(L)}{RT + D_I + D_R}$$
[5-5]

$$S = \frac{3,600(3.2)}{162.5 + 110 + 0.0}$$

S = 42.3 km/h

Step 7. Determine the level of service for the section.

Based on an average travel speed of 42.3 km/h and the criteria in Table 5-9, the frontage road level of service is "C."

CHAPTER 6 FINDINGS AND RECOMMENDATIONS

The objectives of this project were to develop procedures to analyze freeway frontage road operations and to determine desirable spacings for ramp junctions. Several notable findings were identified during the research. They are presented below. Additional research needs were also identified and are presented below.

FINDINGS

One-Sided Weaving

- By calculating the weaving volume (exit ramp volume + entrance ramp volume) for a one-sided weaving segment, the level of service can be estimated based on the following criteria: unconstrained (weaving volume < 1500 vph), constrained (weaving volume from 1500 3000 vph), and undesirable (weaving volume > 3000 vph).
- For one-sided weaving segments, it is desirable to have a weaving length greater than 300 meters. If this is not achievable, the minimum weaving length should be 200 meters.

Two-Sided Weaving

By calculating the density for a two-sided weaving segment, the level of service can be estimated based on the following criteria: unconstrained (density < 40 veh/km/ln), constrained (density from 40 - 100 veh/km/ln), and undesirable (density > 100 veh/km/ln).

- Results from the field study revealed that the majority of drivers observed used from approximately 60 to 120 meters to weave from the exit ramp to the right-most lane on the frontage road.
- In addition, the field study showed that queues from the downstream intersection began to have significant effects on drivers making a two-sided weaving maneuver when the queue length was within approximately 90 meters of the exit ramp.
- Based upon findings from this study and findings from previous research, an absolute minimum exit ramp-to-intersection spacing of 150 meters is recommended.

Spacing Needs for Metered Entrance Ramp

• The procedures developed by Sharma and Messer (7) can be used in conjunction with the worksheets developed in this study to determine optimum spacings between intersections and metered entrance ramps.

Continuous Frontage Road Sections

- Signalized intersections have the greatest impact on the operations along a frontage road.
- For two-way frontage roads, ramp junctions also have a significant impact on operations.
- Link length has the greatest impact on travel time between signalized intersections or ramp junctions.
- The running times between signalized intersections measured at 29 frontage road sites closely matched the running times presented in the *HCM* Table 11-4. Users of the frontage road level-of-service procedure can use either the running times calculated with

the *HCM* table or the refined values from the regression equations developed as part of this research.

- Access density (i.e., the number of driveways and unsignalized intersections per km) noticeably affects the operations along a frontage road segment when greater than 20 acs/km on one-way frontage roads and 16 acs/km on two-way frontage roads.
- The models developed by Gattis et al. (8) for predicting delay at ramp junctions are appropriate when used within their acknowledged limitation range.
- For the two-way frontage road sites, volume affects operations when it exceeds approximately 400 vphpl.

RECOMMENDATIONS FOR ADDITIONAL RESEARCH

Additional research is needed in the following areas:

One-Sided Weaving

• The NETSIM model used in the study predicted a relatively high percentage of frontage road-to-entrance ramp vehicles weaving from the right-most lane when compared with the field observations. In NETSIM, the frontage road vehicles wanting to access the entrance ramp did not begin the required weaving maneuvers until they reached the weaving link. According to field observations, many of the frontage road vehicles desiring to access the entrance ramp began making the required weaving maneuvers before reaching the weaving link. Therefore, improvements are recommended for NETSIM so that weaving vehicles may begin the required maneuvers before reaching thek.

• Further research is recommended on one-way frontage operations between exit ramps and entrance ramps. The research should focus on lane configurations differing from that addressed in this report. Configurations identified for future study include the following: exit ramp followed by an entrance ramp with no auxiliary lane, and exit ramp followed by an entrance ramp with a lane addition beginning at the exit ramp and terminating at the downstream intersection.

Two-Sided Weaving Between an Exit Ramp and an Intersection

- The level-of-service criteria developed in this study did not take into account the effects of turn bays. Turn bays can relieve congestion resulting in less density and improved level of service. Further research should be conducted to determine the effects of turn bays on two-sided weaving operations.
- Two-sided weaving operations were analyzed in this study assuming that the cross street traffic at the intersection was moderate and the traffic signal was optimally timed to minimize overall intersection delay. Frontage road operations can be significantly impacted by poor signal timing, especially when volumes are high. Therefore, further research should be conducted in which a range of signal timings are included in the analysis of two-sided weaving operations.

Continuous Frontage Road Sections

- The equations currently used in the frontage road level-of-service evaluation to determine delay at ramps produced values similar to those observed in the field, except at high volume locations. Additional research is needed to determine the delay incurred at these high volume ramps and to develop a technique to estimate that value.
- In some locations, traffic on all frontage road lanes stops at the ramp junction. This research only examined the more common situation of the inner one or two lanes

yielding to the ramp traffic. The effects on frontage road operations of having all traffic yield need to be investigated.

REFERENCES

- Highway Capacity Manual. Special Report No. 209. Transportation Research Board, National Research Council, Washington, D.C. 1994.
- Fitzpatrick, K. and R.L. Nowlin. One-Sided Weaving Analysis on One-Way Frontage Roads. Research Report 1393-1, Texas Transportation Institute, Texas Department of Transportation. 1995.
- Nowlin, R.L. and K. Fitzpatrick. *Two-Sided Weaving Analysis on One-Way Frontage Roads*. Research Report FHWA/TX-97/1393-2. Texas Transportation Institute, Texas Department of Transportation. Draft Report. 1996.
- Fitzpatrick, K., R.L. Nowlin, and A.H. Parham. *Development of Level of Service Procedure for Frontage Roads*. Research Report FHWA/TX-97/1393-3. Texas Transportation Institute, Texas Department of Transportation. Draft Report. 1996.
- 5. *A Policy on Geometric Design of Highways and Streets*. American Association of State Highway and Transportation Officials. 1994.
- Turner, J. M., and C.J. Messer. "Distance Requirements for Frontage-Road Ramps to Cross Streets: Urban Freeway Design." *Transportation Research Record* 682. pp 58-64. 1978.
- Sharma, S. and C.J. Messer. *Distance Requirements for Ramp Metering*. Research Report 1392-5. Texas Transportation Institute, Texas Department of Transportation. 1994.
- Gattis, J.L., C.J. Messer, and V.G. Stover. *Delay to Frontage Road Vehicles at Intersections With Ramps*. Report No. FHWA/TX-86/402-2. Texas Transportation Institute, Texas Department of Transportation. June 1988.

.

APPENDIX A WORKSHEETS

Appendix A contains the worksheets to be used for evaluating weaving segments, calculating ramp junction spacing, and determining the level of service for a continuous frontage road section.

O	ONE-SIDED WEAVING ANALYSIS WORKSHEET						
Location:		Direction:	bound				
Description:			· · · · · · · · · · · · · · · · · · ·				
Date:		Prepared By:					
Exit Ramp Vol	x ume (X): Weaving V	vph Entrance Ramp Volume (N)): vph				
<u>Weaving Volu</u> < 1500 vph	me <u>Level of Se</u> Unconstrain	ervice ned					

Level of Service: ____

Undesirable

> 3000 vph

TWO-SIDED WEAVING A	ANALYSIS WORKSHEET
Location:	Direction: bound
Description:	
Date:	Prepared By:
Exit Ramp Volume (R): vp	h Ramp Spacing (L): m
Frontage Road Volume (FR): vp	h Percent 2-Sided Weaving (T): [T=0 for < 50%, T= 1 for > 50%]
2LFR D _L = 0.034(FR) + 0.098(R) - 0.132(L) + 9.51(T)	$2LFR+Aux$ $D_{L} = 0.021(FR) + 0.077(R)$ $- 0.150(L) + 23.4(T)$
$R = \frac{R}{L}$ $R = \frac{L}{L}$ $R = 0.055(FR) + 0.080(R)$ $- 0.200(L) + 27.4(T)$	Density (D _L): veh/km/ln
Density, veh/km/lnLevel of Service< 40	Level of Service:

WORKSHEET: SPACING NEEDS BETWEEN MET RAMPS AND UPSTREAM INTERSECTION	TERED ENTRANCE IS Page 1
Site: Time: Name: Checked by:	COMMENTS
I. DESIRED SOLUTION	
The following figure illustrates the design requirements: distance for acceleration and merging, ramp meter signal location and clear zone, and queue storage.	
II. GEOMETRIC DATA Frontage road leaving cross street: 2,3, or 4 lanes: Angle of merge = 3,4, or 5 degrees: Separation between outside freeway travel lane and left frontage lane (edge-to-edge) = m Length of entrance ramp = m Length of acceleration lane = m Storage space available between the cross street and the entrance ramp = m $\overline{FREEWAY} = \overline{FRONTAGE} = \overline{FRONTAGE}$ Existing Conditions	
III. OPERATIONAL CONDITIONS	
Entrance ramp peak hour arrival rate = vph Freeway speed = km/h Minimum ramp metering rate = vph	

WORKSHEET: SPACING NEEDS BETWEEN METERED ENTRANCE RAMPS AND UPSTREAM INTERSECTIONS Page 4										
VI.	. DETERMINE QUEUE STORAGE REQUIREMENT COMMENTS									
The po queue	rtion of the ramp n storage:	ole for								
	m (ra	amp lengt	h)							
-	m (p	ortion use	ed for acc	eleration	and merg	ging)				
=	m (p	ortion ava	ailable for	r queue st	orage)					
Determ and a _	nine the queue stor minute del	age lengtl ay from t	n required he table b	l for an ai elow.	rival rate	of	_ vph			
	Entrance Ramp Arrival	Ac	ceptabl	e Delay	/ (min)					
	Rate (vph)	1	2	3	4	5				
	200	39	65	84	98	108				
	300	59	98	125	146	163				
	400	78	130	167	195	217				
	500	98	163	209	244	271				
	600	117	195	251	293	325				
	700	137	228	293	342	380				
	800	156	260	335	390	434				
Requir Determ	ed queue storage l	length = _	r rage leng	n th:						
		m (on	the front	age road)						
	+ ,	m (on	the ramp)						
		m (ava	ailable qu	eue stora	ge length)				
If the availab	required queue st ble, the design is g	orage len ood.	gth is les	s than th	e queue	storage	length			
If the p betwee require	provided distance i en the queue stor ement may be mad	is less that rage dista le depend	n the requince and ing upon	uired dista the road the judge	ance, som side safe ment of t	te compr ety clear he engin	omise zone leer.			

WORKSHEET: SPACING NEEDS BETWEEN MET RAMPS AND UPSTREAM INTERSECTION	TERED ENTRANCE S Page 5
VII. SOLUTION	COMMENTS
The following sketch illustrates the solution to the design problem.	
CROSS STREET & - Signal Location	
	· · · · · · · · · · · · · · · · · · ·
VIII. NOTES If the entrance ramp is on a positive slope, additional distance may be required for acceleration.	

	FROM	NTAGE F	CE WOR	KSHEET				
Locati	ion:				Direction: _			bound
Descri	iption:				Туре:			
Date:				·	Prepared By	:		
Seg- ment	Segment Length (km) L	Approach Density (acs/km)	Running Time ^a (sec) RT	Inter- section Total Delay ^b (sec) D	Ramp Delay ^c (sec) D _R	Total Travel Time ^d (sec) T	Average Travel Speed ^e (km/h) S	Frontage Road LOS by Segment ^f
						· · · · · · · · · · · · · · · · · · ·		
		· · · · · ·						

^a Use field data or values from Table 5-3

^b From Signalized Intersection Delay Worksheet

^c From Ramp Junction Delay Worksheet

^d $T = RT + \tilde{D}_I + D_R$

° S = 3600 (L) / T

^f See LOS criteria in Table 5-9.

Sum of Travel Times, sec (Σ T) = _____

Total Frontage Road Length, km (Σ L) = _____

Average Frontage Road Speed, $km/h = 3600 (\Sigma L) / (\Sigma T) =$

Frontage Road LOS =

	SIC	GNALI	IZED	INTER	SECT	ION DE	LAY	WOR	KSHEF	ET	
Locatio	Location:					Direct	tion:			-	bound
Descrip	otion:		a n n ¹ 1 ² n			Type:					
Date: _		··· ·,·· ·	<u></u>	······	. <u></u>	Prepa	red By:				
Seg- ment	Cycle Length (sec) C	Green/ Cycle Time Ratio g/C	v/c Ratio X	Lane Group Capacity (vph) c	Arrival Type ^a	Uniform Delay ^b (sec) d ₁	DF⁰	Incre- mental Delay ^d (sec) d ₂	Inter- section Stopped Delay ^e (sec) d	Inter- section Total Delay ^f (sec) D _I	Inter- section LOS ^g

t.

^a Table 5-4

^b Equation 5-3
$$d_1 = \frac{0.38C[1-(g/C)]^2}{1-(g/C)[Min(X,1.0)]}$$

° Table 5-5

- ^d Equation 5-4 $d_2 = 173X^2[(X-1) + \sqrt{(X-1)^2 + mX/c}]$
- Equation 5-2 $d=d_1DF+d_2$
- ^f Equation 5-1 $D_I = 1.3 * d$
- ^g Table 5-6

RAMP JUNCTION DELAY WORKSHEET (ONE-WAY FRONTAGE ROADS)									
Location:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	Direction:	· · · · · · · · · · · · · · · · · · ·	bound				
Description:			Туре:						
Date:	<u> </u>	,, .	Prepared By:						
Segment	Exit Ramp Hourly Volume ^a (veh/hr) Q _R	Frontage Road Hourly Volume (veh/hr) a	Potential Capacity of Frontage Road Lanes ^b (veh/hr) C _R	Queuing System Delay per Vehicle ^e (sec) W	Predicted Total Delay per Vehicle ^d (sec) D _R				

^a Q_R must be ≤ 1200 ; otherwise, use engineering judgement. If an auxiliary lane is present, delay is negligible. ^b $C_R = \#$ Lanes (1858 - 1.5259 (Q_R)) ^c $W = 3600 / (C_R - a)$ ^d $D_R = -0.0719 + 1.0922$ (W)

Procedures to Determine Frontage Road Level of Service and Ramp Spacing

	RA	MP JUNCT (TWO-WA	FION DELA AY FRONT	Y WORKS AGE ROAI	SHEET DS)	
Location:				Direction:		- bound
Descriptio	on:			Туре:		
Date:				Prepared By:		
Segment	t Scenario ^a Ramp Frontage Hourly Road Hourly Volume Volume (vph) (vph) O _B a			Potential Capacity of Frontage Road (vph) C _R	Predicted Total Delay per Vehicle (sec) D _R	

^a Scenarios and Equations:

Exit Ramp With:

 $C_{R} = 1724 - 1.6120 (Q_{R})$ W = 3600 / (C - a) D_{R} = -0.0719 + 1.0922 (W)

Exit Ramp Opposing:

 $C_R = 1444 - 1.6564 (Q_R)$ W = 3600 / (C - a) $D_R = -1.6451 + 1.7785 (W)$

Entrance Ramp Opposing:

 C_R = 1535 - 1.3852 (Q_R) (Note: Q_R is assumed to be total frontage road *with* volume) W = 3600 / (C - a) D_R= 0.0538 + 1.3027 (W)

APPENDIX B

FRONTAGE ROAD LEVEL-OF-SERVICE ANALYSIS FLOW CHARTS

The following flow charts can be used as a quick reference for performing a level-of-service analysis of a frontage road. The first chart has metric units while the second has English units.

METRIC UNITS

No star se

STEP 2 - GATHER FIELD DATA							
Roadway Characteristics	 * Segment length, km * Type of traffic control at intersections * Number of all exit and entrance ramps (two-way only) * Number of exit ramps without auxiliary lanes (one-way only) * Segment access density, acs/km (number of driveways and unsignalized intersections per kilometer) 						
Traffic Data	 * Frontage road approach volume at stop-controlled and signalized intersections, vph * Ramp and frontage road volumes at all exit and entrance ramps, vph (two-way only) * Exit ramp and frontage road volumes at exit ramps without auxiliary lanes, vph (one-way only) 						
Signal Data	 * Signal progression data * Intersection capacity (c), vph * Cycle length (C), sec * Green/cycle time ratio (g/C) * Volume/capacity ratio (v/c) 						

STEP 3 - COMPUTE RUNNING TIMES									
	One-Way Ro	y Frontage oads	Two-Way Frontage Roads						
Access Density (acs/km)	≤ 20	> 20	<	: 16	>	16			
Frontage Road Volume (vph)	All	All	≤ 400	> 400	≤ 400	> 400			
Segment Length (km)	Running Time, RT (seconds)								
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0	10 20 30 40 50 60 71 81 91 101	11 22 33 44 55 67 78 89 100 111	10 21 31 42 52 62 73 83 93 104	11 23 34 46 57 69 80 91 103 114	11 23 34 46 57 69 80 91 103 114	13 25 38 50 63 75 88 100 113 126			
2.2 2.4 2.6 2.8 3.0 3.2	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	114 125 135 145 156 166	126 137 148 160 171 183	126 137 148 160 171 183	120 138 151 163 176 188 201			

NOTES:

If segment length falls outside of 0.2 to 2.0 km for one-way and 0.2 to 3.2 km for two-way, consider redefining segments.

If access density is unknown, assume ≤ 20 acs/km for one way and ≤ 16 acs/km for two-way. Access Density, acs/km = [(# of driveways + # of unsignalized intersections) / total length, km] Procedures to Determine Frontage Road Level of Service and Ramp Spacing

STEP 4 - COMPUTE DELAY AT INTERSECTIONS

Compute total intersection delay (D_I) for each signalized intersection using the following formulas:

 $D_{I} = 1.3 * d \qquad \qquad d_{I} = \frac{0.38C[1 - (g/C)]^{2}}{1 - (g/C)[Min(X, 1.0)]}$

 $d = d_1 DF + d_2$

 $d_{2}=173X^{2}[(X-1)+\sqrt{(X-1)^{2}+mX/c}]$

where:

d = stopped delay, sec/veh

 d_1 = uniform delay, sec/veh

 d_2 = incremental delay, sec/veh

DF = delay adjustment factor for either quality of progression or type of control

X = volume/capacity ratio of lane group

C = cycle length, sec

c = capacity of lane group, vph

g = effective green time for lane group, sec

m = incremental delay calibration term representing effect of arrival type and degree of platooning

	STEP 5 - COMPUTE DELAY AT RAMP JUNCTIONS									
Case	Frontage Road	Scenario	Frontage Road Capacity, C _R (vph)	Queuing Delay, W (sec/veh)	Average Total Delay, D _R (sec/veh)					
1	One- Way	Exit Ramp without Auxiliary Lane	N [1858 - 1.5259 (Q _R)]	1/(u-a)	- 0.0719 + 1.0922(W)					
2	Two- Way	Exit Ramp <i>With</i>	1724 - 1.6120(Q _R)	1/(u-a)	-0.0719 + 1.0922(W)					
3	Two- Way	Exit Ramp <i>Opposing</i>	1444 - 1.6564(Q _R)	1/(u-a)	-1.6451 + 1.7785(W)					
4	Two- Way	Entrance Ramp Opposing	1535 - 1.3852(Q _R)	1/(u-a)	0.0538 + 1.3027(W)					

NOTES:

These equations are not valid when volume exceeds capacity.

N = number of frontage road through lanes

W = average queuing system delay, sec/veh

 Q_R = hourly ramp volume (For Case 4, includes all vehicles which approach the entrance ramp from the *with* direction, whether or not they enter the ramp)

u = service rate in vehicles per second (C_R / 3600)

a = frontage road flow rate in vehicles per second (volume / 3600)

STEP 6 - COMPUTE AVERAGE TRAVEL SPEED

The average travel speed is computed using the following formula:

$$S = \frac{3,600(L)}{RT + D_I + D_R}$$

where:

S = average travel speed, km/h

L = length of frontage road, km

RT = total running time, sec

 D_{I} = total approach delay for all signalized and stop-controlled intersections, sec

 D_R = total frontage road delay incurred at ramps, sec

STEP 7 - ASSESS LEVEL OF SERVICE				
Level of Service	Average Travel Speed (km/h)			
А	≥ 56.0			
В	≥ 45.0 to 55.9			
C	≥ 35.0 to 44.9			
D	≥ 27.0 to 34.9			
Е	≥ 21.0 to 26.9			
F	< 21.0			

ENGLISH UNITS

	STEP 2 - GATHER FIELD DATA							
Roadway Characteristics	 * Segment length, mi * Type of traffic control at intersections * Number of exit and entrance ramps (two-way only) * Number of exit ramps without auxiliary lanes (one-way only) * Segment access density, acs/mi (number of driveway and unsignalized intersections / mile) 							
Traffic Data	 * Frontage road approach volume at stop-controlled and signalized intersections, vph * Ramp and frontage road volumes at all exit and entrance ramps, vph (two-way only) * Exit ramp and frontage road volumes at exit ramps without auxiliary lanes, vph (one-way only) 							
Signal Data	 * Signal progression data * Intersection capacity (c), vph * Cycle length (C), sec * Green/cycle time ratio (g/C) * Volume/capacity ratio (v/c) 							

STEP 3 - COMPUTE RUNNING TIMES								
	One-Way Ro	/ Frontage pads	Two-Way Frontage Roads					
Access Density (acs / mi)	≤ 33	> 33	5	27	> 27			
Frontage Road Volume (vph)	All	All	≤ 400	> 400	≤ 400	> 400		
Segment Length (mile)		R	unning Time	e, RT (seconds))			
0.1	8	9	8	9	9	10		
0.2	16	18	17	19	19	21		
0.3	25	27	25	28	28	31		
0.4	33	36	34	37	37	34		
0.5	41	45	42	46	46	51		
0.6	49	54	51	56	56	62		
0.7	57	63	59	65	65	72		
0.8	67	72	68	74	74	81		
0.9	74	81	76	84	84	92		
1.0	82	90	84	93	93	102		
1.1	90	99	92	102	102	112		
1.2	98	108	101	111	111	122		
1.3	N/A	N/A	109	120	120	131		
1.4	N/A	N/A	117	129	129	142		
1.5	N/A	N/A	125	138	138	152		
1.6	N/A	N/A	134	147	147	162		
1.7	N/A	N/A	142	156	156	172		
1.8	N/A	N/A	150	165	165	182		
1.9	N/A	N/A	159	175	175	192		
2.0	N/A	N/A	167	184	184	202		

NOTES:

If segment length falls outside of 0.1 to 1.2 mi for one-way and 0.1 to 2.0 mi for two-way, consider redefining segments.

If access density is unknown, assume \leq 33 acs/mi for one way and \leq 27 acs/mi for two-way.

Access Density, acs/mi = [(# of driveways + # of unsignalized intersections) / total length, mi]

STEP 4 - COMPUTE DELAY AT INTERSECTIONS
Compute total intersection delay (D_I) for each signalized intersection using the following formulas:
$D_{I} = 1.3 * d \qquad \qquad d_{I} = \frac{0.38C[1 - (g/C)]^{2}}{1 - (g/C)[Min(X, 1.0)]}$
$d = d_1 DF + d_2$ $d_2 = 173 X^2 [(X-1) + \sqrt{(X-1)^2 + mX/c}]$
 where: d = stopped delay, sec/veh d₁ = uniform delay, sec/veh d₂ = incremental delay, sec/veh DF = delay adjustment factor for either quality of progression or type of control X = volume/capacity ratio of lane group C = cycle length, sec c = capacity of lane group, vph g = effective green time for lane group, sec m = incremental delay calibration term representing effect of arrival type and degree of platooning

	S	STEP 5 - COMPUT	E DELAY AT RAMI	P JUNCTIO	NS
Case	Frontage Road	Scenario	Frontage Road Capacity, C _R (vph)	Queuing Delay, W (sec/veh)	Average Total Delay, D _R (sec/veh)
1	One- Way	Exit Ramp without Auxiliary Lane	N[1858 - 1.5259 (Q _R)]	1/(u-a)	- 0.0719 + 1.0922(W)
2	Two- Way	Exit Ramp <i>With</i>	1724 - 1.6120(Q _R)	1/(u-a)	-0.0719 + 1.0922(W)
3	Two- Way	Exit Ramp <i>Opposing</i>	1444 - 1.6564(Q _R)	1/(u-a)	-1.6451 + 1.7785(W)
4	Two- Way	Entrance Ramp Opposing	1535 - 1.3852(Q _R)	1/(u-a)	0.0538 + 1.3027(W)

NOTES:

These equations are not valid when volume exceeds capacity.

N = number of frontage road through lanes

W = average queuing system delay, sec/veh

 Q_R = hourly ramp volume (For Case 4, includes all vehicles which approach the entrance ramp from the *with* direction, whether or not they enter the ramp)

u = service rate in vehicles per second ($C_R / 3600$)

a = frontage road flow rate in vehicles per second (volume / 3600)

STEP 6 - COMPUTE AVERAGE TRAVEL SPEED

The average travel speed is computed using the following formula:

$$S = \frac{3,600(L)}{RT + D_{I} + D_{P}}$$

where: S

= average travel speed, mph

L = length of frontage road, mi

RT = total running time, sec

 D_{I} = total approach delay for all signalized and stop-controlled intersections, sec

 D_R = total frontage road delay incurred at ramps, sec

STEP 7 - ASSESS LEVEL OF SERVICE						
Level of Service	Average Travel Speed (mph)					
А	≥ 35.0					
В	≥ 28.0 to 34.9					
С	≥ 22.0 to 27.9					
D	≥ 17.0 to 21.9					
E	≥ 13.0 to 16.9					
F	< 13.0					

APPENDIX C

USING THE *HIGHWAY CAPACITY SOFTWARE* TO DETERMINE FRONTAGE ROAD LEVEL OF SERVICE

OVERVIEW OF THE HIGHWAY CAPACITY SOFTWARE

The *Highway Capacity Software (HCS)* is a computer version of the *Highway Capacity Manual*. It was originally developed by the Federal Highway Administration to implement the procedures contained in the *Highway Capacity Manual (HCM)*. It performs the multiple calculations that users of worksheets must complete. *HCS* Release 2.1 is the version associated with the 1994 *HCM*. The software is distributed exclusively by Mc*Trans* (Transportation Research Center, University of Florida, 512 Weil Hall, Gainesville, FL 32611-2083, phone 904-392-0378). Software support and maintenance for the *HCS* is provided by Mc*Trans*, supported by user license fees. A manual on using the *HCS* is also available from Mc*Trans*.

The Urban and Suburban Arterial module of the HCS contains three worksheets screens:

- Description of Arterial
- Intersection Delay Estimates
- Arterial Level of Service

The Description of Arterial screen asks for information on the name of the arterial, its class, and the number of segments. The Intersection Delay Estimate screen requests the information related to signalized intersections. The determination of the level of service for the facility is computed and shown in the Arterial Level-of-Service screen.

Procedures to Determine Frontage Road Level of Service and Ramp Spacing

By using a few assumptions and modifying some of the calculated values in the screens, the *HCS* can be used to determine the level of service on a frontage road. For example, an arterial class of 1 is to be assumed for freeway frontage roads. In addition, the "Other Delay" column shown on the Arterial Level-of-Service screen is modified to account for the delay at ramp junctions. Table C-1 lists hints on how to use the *HCS* for frontage road level-of-service evaluations.

Following are examples of using the *HCS* to evaluate a one-way and a two-way frontage road. Currently, *HCS* runs in English units; therefore, the reproduction of the software's printouts are in English units. The metric values are noted in the accompanying discussion.

HCS Screen	<i>HCM</i> 1994 (<i>HCS</i> Release 2.1)
Description of Arterial	 * Divide one-way frontage road sections into segments ≥ 0.1 mi (0.2 km) and ≤ 1.2 mi (2.0 km). Divide two-way frontage road sections into segments ≥ 0.1 mi (0.2 km) and ≤ 2.0 mi (3.2 km). (A segment is typically from signal to signal but may be a traffic signal to an entrance ramp, an entrance ramp to an exit ramp, an exit ramp to a cross street, etc.) * Arterial classification is 1. * For the sites used in the evaluation, free flow speeds on the one-way frontage roads were between 40 and 50 mph (64 and 80 km/h). Two-way frontage roads typically had free flow speeds between 35 and 40 mph (56 and 64 km/h).
Intersection Delay Estimates	 * For each segment, enter the cycle length, g/C, v/c, capacity, and arrival type (see Table 5-4). NOTE: for frontage road segments that do not have signals, this information may be entered as zero. * g/C = (green + yellow) / cycle length * capacity = (# of lanes)(saturation flow rate)(g/C)
	NOTE: This software uses a saturation flow rate of 1900 vphgpl as a default value. Saturation flow rate should reflect local conditions.
Arterial Level of Service	* Actual free flow speed can be entered. For speeds > 45 mph (72 km/h), <i>HCS</i> will produce a message saying the free flow speed is out of bounds of Table 11-4.
	* Under "Sum of Time," adjust running time, as desired, with values from Table 5-3. (<i>HCS</i> Release 2.1 does not allow adjustments in the "Running Time" column.)
	* Under "Other Delay," add delay at ramp junctions as determined from the Ramp Junction Delay Worksheet.

.

Table C-1. Hints for Frontage Road Analysis Using HCS.

SAMPLE CALCULATION: ONE-WAY FRONTAGE ROAD

Step 1: Define Frontage Road Study Section

The frontage road to be considered is a 2.4 mile (3.9 kilometer) length of a two-lane, one-way frontage road in an area of moderate development. Figure C-1 illustrates the frontage road section to be analyzed. Each of the crossroad intersections shown are controlled by traffic signals. The one-way frontage road are divided into the following three segments (with each segment being bound by signalized intersections): Lemon to Georgia, Georgia to 39th, and 39th to University.

Figure C-1. Schematic of One-Way Frontage Road Study Section.

Step 2: Gather Field Data

The required roadway data (summarized in Table 5-1) are shown in Table C-2, while the traffic data are listed in Table C-3. Table C-4 lists signalized intersection data. Random arrival and a saturation flow rate of 1800 vphgpl are assumed.

Segment descriptions and free-flow speeds are entered on the Description of Arterial screen in the Urban Arterials Module (see Figure C-2). Arterial Classification is entered as 1 because frontage road characteristics are similar to those of Arterial Classification 1.

Segment	Segment Boundaries	Length (mi / km)	Free Flow Speed (mi / km)	Access Density (acs/mi / acs/km)
1	Lemon to Georgia	0.73 / 1.18	45 / 72	34.2 / 21.3
2	Georgia to 39th	0.67 / 1.08	40 / 64	29.3 / 18.2
3	39th to University	1.00 / 1.61	45 / 72	26.0 / 16.2

Table C-2. Roadway Data for One-Way Frontage Road Example.

Table C-3. Traffic Data for One-Way Frontage Road Example.

Number of Exit	Exit	Frontage Road Volume (vph)		
Ramps w/o Aux. Lanes	Ramp Volume (vph)	At Exit Ramps	At Intrsct.	
2	Exit 1: 358 Exit 2: 180	Exit 1: 193 Exit 2: 97	282	
1	214	115	372	
1	98	53	264	

Table C-4. Signal Data for One-Way Frontage Road Example.

Intersection	Intersection Capacity, c ^a (vph)	Cycle Length, C (sec)	g / C	v / c
Georgia	900	120	0.25	0.316
39th	1224	100	0.34	0.304
University	936	75	0.26	0.279

^a c = (Saturation flow rate) (# of lanes) (g/C)

Arterial From / To Direction Analyst Fime of A Date of A Dther Info	e D nalysis nalysis prmation	.1WAYEX IH-99 Fronta Lemon to Un N Sally 8 / 19/ 96	ge Road iversity					
A. Descr	iption of Arterial		· · · · · · · · · · · · · · · · · · ·					
Seg.	Intersection File Name	Street Name	Length (mi)	Art. Class		Free Flow Speed (mph)	Sect.	
		Lemon					یں پہ نہ کا کہ کہ تک کر اور اور بہ جب بند بند ن	
1		Georgia	0.73	1	*	45	1	
1 2		Georgia 39th	0.73 0.67	1	×	45 40	1 2	

Figure C-2. Enter Frontage Road Description.

Step 3: Compute Running Time

Running times are computed by *HCS* on the Arterial Level-of-Service screen (see Figure C-3). However, these values can be adjusted for frontage roads by using the running time values in Table 5-3. The running times determined for frontage roads were similar to the assumed running times for arterials. Therefore, adjustments are not required; use engineering judgement. The running times listed in Table C-5 are obtained from Table 5-3. Appendix C - Using the HCS to Determine Frontage Road Level of Service

			Int.		Secti	on		
Seg.	Sect.	Running Time	Total Delay	Other Delay	Sum of Time	Sum of Length (mi)	Arterial Speed (mph)	Arteria LOS
1	1	61.6						
2	2	61.6						
3	3	80.0						

Figure C-3. Compute Initial Running Time.

Table C-5.	Running Times	for One-Way	Frontage Road	ł Example.
------------	---------------	-------------	---------------	------------

Segment	Boundaries	Length (mi / km)	Running Time from Table 5-3 (sec)
1	Lemon to Georgia	0.73 / 1.18	67
2	Georgia to 39th	0.67 / 1.08	55
3	39th to University	1.00 / 1.61	81

Running times cannot be adjusted in the "Running Time" column; therefore, they must be adjusted in the "Sum of Time" column on the *HCS* Arterial Level-of-Service screen. The difference between the *HCS* computed values and the values in Table 5-3 must be added to or subtracted from the "Sum of Time" values, which will be done in Step 5 after intersection delay and ramp delay are computed.

Step 4: Compute Intersection Delay

Cycle length, g/C, v/c, capacity, and arrival type are entered on the Intersection Delay Estimates screen (see Figure C-4). (The hints shown in Table C-1 provide information on calculating capacity and v/c.) Arrival Type is matched with the *HCM* arrival type definitions which are

Procedures to Determine Frontage Road Level of Service and Ramp Spacing

provided in Table 5-4. Arrival Type 3 is selected for the example. On the Intersection Delay Estimates worksheet, *HCS* computes the uniform delays, incremental delays, intersection stopped delay, intersection total delay, and intersection level of service (see Figure C-5).

_					Arrival			Inter. Stopped	Inter. Total	Inter
Seg.	C	g/C	v/c	<u>с</u>	Туре	 DF	D2	Delay	Delay	LOS
1	120	0.25	0.316	900	3					
2	100	0.34	0.304	1224	3					
3	75	0.26	0.279	936	3					

Figure C-4. Enter Intersection Data.

Seg.	С	g/C	v/c	с	Arrival Type	D1	DF	D2	Inter. Stopped Delay	Inter. Total Delay	Inter LOS
1	120	0.25	0.316	900	3	27.9	1.000	0.1	28.0	36.4	D
2	100	0.34	0.304	1224	3	18.5	1.000	0.0	18.5	24.1	С
3	75	0.26	0.279	936	3	16.8	1.000	0.0	16.8	21.9	С

Figure C-5. Compute Intersection Data.

Step 5: Compute Ramp Delay

Ramp delay is computed using the Ramp Junction Delay Worksheet (One-Way Frontage Roads). For one-way frontage roads, ramp delays are calculated for exit ramps without auxiliary lanes only. Segment 1 has two exit ramps without auxiliary lanes, and Segments 2 and 3 each have one exit ramp without an auxiliary lane. Delay for each ramp is calculated on a separate line of the worksheet (see Figure C-6).

Appendix C - Using the HCS to Determine Frontage Road Level of Service

	RAMP J (ON	UNCTION D E-WAY FRO	ELAY WOR	KSHEET ADS)		
Location:	IH-99		Direction:	North	bound	
Description: _	Between Lemon	and University	Туре:	One-Way		
Date:	8-19-96		Prepared By: _	Sally		
Segment	Exit Ramp Hourly Volume ^a (veh/hr)	Frontage Road Hourly Volume (veh/hr)	Potential Capacity of Frontage Road Lanes ^b (veh/hr)	Queuing System Delay per Vehicle ^c (sec)	Predicted Total Delay per Vehicle ^d (sec)	
	Q _R	a	C _R	W	D _R	
1	358	193	2623	1.5	1.6	
1	180	97	3167	1.2	1.2	
2	214	115	3063	1.2	1.3	
3	98	53	3418	1.1	1.1	
·						

^a Q_R must be ≤ 1200 ; otherwise, use engineering judgement. If an auxiliary lane is present, delay is negligible. ^b $C_R = \#$ Lanes (1858 - 1.5259 (Q_R)) ^c W = 3600 / (C_R - a) ^d $D_R = -0.0719 + 1.0922$ (W)

Figure C-6. Ramp Delay for One-Way Frontage Road Example.

Ramp delay is entered in the "Other Delay" column on the Arterial Level-of-Service screen (see Figure C-7).

As described in Step 3, the Sum of Time values may now be adjusted so that they equal the running time values from Table 5-3 plus the intersection delay and ramp delay values (see Figure C-8). The asterisks indicate that the values have been modified.

			Int.		Se	ction		
Seg.	Sect.	Running Time	Total Delay	Other Delay	Sum of Time	Sum of Length (mi)	Arterial Speed (mph)	Arteria LOS
1	1	61.6	36.4	2.8		0.73		
2	2	61.6	24.1	1.3		0.67		
3	3	80.0	21.9	1.1		1.00		

Figure C-7. Enter Ramp Delay.

			Int.		Sec			
Seg.	Sect.	Running Time	Total Delay	Other Delay	Sum of Time	Sum of Length (mi)	Arterial Speed (mph)	Arterial LOS
1	1	61.6	36.4	2.8	* 106.2	0.73	24.7	С
2	2	61.6	24.1	1.3	* 80.4	0.67	30.0	В
3	3	80.0	21.9	1.1	* 104.0	1.00	34.6	В
Grand sum of time: Grand sum of length: Arterial Speed: Arterial LOS:		290.6 2.40 mi 29.7 mph B						

Figure (C-8. Ad	just	Sum	of	Time.
----------	---------	------	-----	----	-------

Step 6: Compute Average Travel Speed

HCS calculates frontage road speed using the following equation:

Average Frontage Road Speed =
$$\frac{3,600(\sum of \ lengths)}{\sum of \ time}$$

The resulting values are shown under "Arterial Speed" on the Arterial Level-of-Service screen (see Figure C-8).

Step 7: Assess Level of Service

The frontage road speeds are now compared to the speeds in the Frontage Road Level-of-Service Table (Table 5-9) to determine the level of service. Levels of service for each segment and for the entire length of frontage road analyzed are also printed on the Arterial Level-of-Service screen (as long as the Arterial Classification was entered as 1). As shown in Figure C-8, the average travel speed for the total length of frontage road being analyzed is 29.7 mph (47.8 km/h) and the level of service is "B."

SAMPLE CALCULATION: TWO-WAY FRONTAGE ROADS

Step 1: Define Frontage Road Study Section

The frontage road to be considered is a 1.9 mile (3.1 kilometer) length of two-lane, two-way frontage road that is located in an area of low to moderate development. This example illustrates the procedure to determine the level of service for the frontage road lane that flows *with* the direction of the freeway traffic. However, the lane *opposing* freeway traffic should also be analyzed because the level of service may be different. Figure C-9 illustrates the frontage road section to be analyzed. The selected frontage road study section is divided into the following two segments: Smith to Peanut, and Peanut to Exit Ramp.

Figure C-9. Schematic of Two-Way Frontage Road Study Section.

Step 2: Gather Field Data

Tables C-6 and C-7 summarize the required field data (see Table 5-1). Table C-8 lists signalized intersection data. Random arrivals and a saturation flow rate of 1800 vphgpl are assumed.

Segment	Segment Boundaries	Length (mi / km)	Free Flow Speed (mi / km)	Access Density (acs/mi / acs/km)
1	Smith to Peanut	1.10 / 1.77	35 / 56	11.8 / 7.3
2	Peanut to Exit Ramp	0.82 / 1.32	35 / 56	25.6 / 15.9

Table C-6. Roadway Data for Two-Way Frontage Road Example.

Table C-7. Traffic Data for Two-Way Frontage Road Example.

Exit Ramp Volume	Frontage Road Volume (vph)				
(vph)	At Exit Ramps	At Intrsct.			
264	84	348			
204	96				

Table C-8. Signal Data for Two-Way Frontage Road Study Section.

Intersection	Intersection Capacity, c ^a (vph)	Cycle Length, C (sec)	g/C	v / c
Peanut	360	170	0.20	0.233

^a c = (Saturation flow rate) (g/C)

Segment descriptions and free-flow speeds are entered on the Description of Arterial screen in the Urban Arterials Module (see Figure C-10). Arterial Classification is entered as 1 because frontage road characteristics are similar to those of Arterial Classification 1.

Step 3: Compute Running Time

Running times are computed by *HCS* on the Arterial Level-of-Service screen (see Figure C-11). However, these values may be adjusted for frontage roads by using the running time values in Table 5-3. The running times determined for frontage roads were similar to the assumed running times for arterials. Therefore, adjustments are not required; use engineering judgement. The running times listed in Table C-9 are obtained from Table 5-3.

HCS: Ar	terial Release 2.7	 *********	****	*****	****		
File Nam Arterial . From / To Direction Analyst . Time of A Date of A Other Inf	ne	2WAYEX IH-50 FR No Smith to Exi N Sally 8 / 19/ 96	orthbound (t Ramp pa	(WITH) st Peanut			
A. Desc	ription of Arterial	 					<u> </u>
Seg.	Intersection File Name	Street Name	Length (mi)	Art. Class	Free Flow Speed (mph)	Sect.	
1 2		Smith Peanut Exit Ramp	1.10 0.82	1 1	35 35	1 2	

Figure C-10. Enter Frontage Road Description.

			Int.		Sec	tion		
Seg.	Sect.	Running Time	Total Delay	Other Delay	Sum of Time	Sum of Length (mi)	Arterial Speed (mph)	Arteria LOS
1	1	113.1				,		
2	2	84.5						

Figure C-11. Compute Initial Running Time.

Segment	Intersection	Length (mi / km)	Running Time from Table 5-3 (sec)
1	Smith to Peanut	1.10 / 1.77	93
2	Peanut to Exit Ramp	1.06 / 1.71	68

Table C-9. Running Times for Two-Way Frontage Road Example.

Running times cannot be adjusted in the "Running Time" column; therefore, they must be adjusted in the "Sum of Time" column on the *HCS* Arterial Level-of-Service screen. The difference between the *HCS* computed values and the values in Table 5-3 must be added to or subtracted from the "Sum of Time" values, which will be done in Step 5 after intersection delay and ramp delay are computed.

Step 4: Compute Intersection Delay

Cycle length, g/C, v/c, capacity, and arrival type are entered on the Intersection Delay Estimates screen (see Figure C-12). (The hints shown in Table C-1 provide information on calculating capacity and v/c). Arrival Type is matched with the *HCM* arrival type definitions which are provided in Table 5-4. Arrival Type 3 is selected for the example. On the Intersection Delay Estimates screen, *HCS* computes the uniform delays, incremental delays, intersection stopped delay, intersection total delay, and intersection level of service (see Figure C-13).

3. Inter	sectior	n Delay	/ Estimat	es							
					Arrival				Inter. Stopped	Inter. Total	Inter.
Seg.	С	g/C	v/c	с	Туре	D1	DF	D2	Delay	Delay	LOS
1	170	0.20	0.233	360	3						
2	0	0.00	0.000	0	0						

Figure C-12. Enter Intersection Data.

B. Intersection Delay Estimates											
Seg.	С	g/C	v/c	С	Arrival Type	D1	DF	D2	Inter. Stopped Delay	Inter. Total Delay	Inter. LOS
1 2	170 0	0.20 0.00	0.233 0.000	360 0	3 0	43.4 0.0	1.000 0.000	0.1 0.0	43.4 0.0	56.5 0.0	E

Figure C-13. Compute Intersection Delay.

Step 5: Compute Ramp Delay

Ramp delay is computed using the Ramp Junction Delay Worksheet (Two-Way Frontage Roads). For two-way frontage road lanes flowing *with* the frontage road traffic, ramp delays are calculated for exit ramps only. Segment 1 and segment 2 each have one exit ramp. Delay for each ramp is calculated on a separate line of the worksheet (see Figure C-14).
RAMP JUNCTION DELAY WORKSHEET (TWO-WAY FRONTAGE ROADS)								
Location:	IH-50			Direction:	North (With)	bound		
Descriptio	n: <u>Smith to Ex</u>	it Ramp Past Pea	nut	Туре:Т	o-Way			
Date:	8-19-96			Prepared By:	Sally			
Segment	Scenarioª	Ramp Hourly Volume (vph)	Frontage Road Hourly Volume (vph)	Potential Capacity of Frontage Road (vph)	Queuing System Delay per Vehicle (sec)	Predicted Total Delay per Vehicle (sec)		
1	Evit Pama	QR 264	a 0.1		W	D _R		
I	With	204	04	1290	2.96	3.2		
2	Exit Ramp With	204	96	1395	2.77	3.0		
				,		:		

Scenarios and Equations:

Exit Ramp *With*:

 $\overline{C}_{R} = 1724 - 1.6120 (Q_{R})$ W = 3600 / (C_R - a) D_R = -0.0719 + 1.0922 (W)

Exit Ramp Opposing:

 $C_R = 1444 - 1.6564 (Q_R)$ W = 3600 / (C_R - a) $D_R = -1.6451 + 1.7785 (W)$

Entrance Ramp Opposing:

 $C_R = 1535 - 1.3852 (Q_R)$ (Note: Q_R is assumed to be total frontage road with volume) W = 3600 / (C_R - a) $D_R = 0.0538 + 1.3027$ (W)

Figure C-14. Calculate Ramp Delay for Two-Way Frontage Road Example.

Ramp delay is entered in the "Other Delay" column on the Arterial Level-of-Service worksheet (see Figure C-15). The Sum of Time values can now be adjusted so that they equal the running time values from Table 5-3 plus the intersection delay and ramp delay values (see Figure C-16). The asterisks indicate that the values have been modified.

Step 6: Compute Average Travel Speed

HCS calculates frontage road speed using the following equation:

Average Frontage Road Speed =
$$\frac{3,600(\sum of \ lengths)}{\sum of \ time}$$

The resulting values are shown under "Arterial Speed" on the Arterial Level-of-Service worksheet (see Figure C-16).

Step 7: Assess Level of Service

The frontage road speeds are now compared to the speeds in the Frontage Road Level-of-Service Table (Table 5-9) to determine the level of service. Levels of service for each segment and for the entire length of frontage road analyzed are also printed on the Arterial Level-of-Service screen (as long as the Arterial Classification was entered as 1). As shown in Figure C-16, the average travel speed for the total length of frontage road being analyzed is 30.9 mph (49.7 km/h) and the level of service is "B."

			Int.		Section			
Seg.	Sect.	Running Time	Total Delay	Other Delay	Sum of Time	Sum of Length (mi)	Arterial Speed (mph)	Arterial LOS
1	1	113.1	56.5	3.2		1.10		
2	2	84.5	0.0	3.0		0.82		

Figure C-15. Enter Ramp Delay.

Seg.			Int.		Section				
	Sect.	Running Time	Total Delay	Other Delay	Sum of Time	Sum of Length (mi)	Arterial Speed (mph)	Arterial LOS	
1 2	1 2	113.1 84.5	56.5 0.0	3.2 3.0	* 152.7 * 71.0	1.10 0.82	25.9 41.6	C A	
Grand sum of time: Grand sum of length: Arterial Speed: Arterial LOS:		223.7 1.92 mi 30.9 mph B							

Figure C-16. Adjust Sum of Time.