
1. Report No. 2. Government Accession No. 

FHWA/TX-95-1 308-1 F 

4. rttle and Subtitle 

INTERACTIVE GRAPHICS INTERSECTION 
DESIGN USER'S MANUAL 

7. Author(s) 

Thomas W. Rioux, Robert F. Inman, Randy B. Machemehl, and Clyde E. Lee 

9. Performing Organization Name and Address 

Center for Transportation Research 
The University of Texas at Austin 
3208 Red River, Suite 200 

Technical Report Documentation Page 

3. Recipient's Catalog No. 

5. Report Date 
December 1994 

6. Performing Organization Code 

8. Performing Organization Report No. 

Research Report 1308-H 

10. Work Unit No. (TRAIS) 

11. Contract or Grant No. 

Research Study 0-1 308 
Austin, Texas 78705-2650 

1-----------------------------l 13. Type of Report and Period Covered 
12. Sponsoring Agency Name and Address 

Texas Department of Transportation 
Research and Technology Transfer Office 
P. 0. Box 5051 
Austin, Texas 78763-5051 

15. Supplementary Notes 

Final 

1.4. Sponsoring Agency Code 

Study conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. 
Research study title: "Interactive Graphics Intersection Design" 

16. Abstract 

The Interactive Graphics Intersection Design System (IGIDS) has been developed at the Center for 
Transportation Research at The University of Texas at Austin in cooperation with the Texas Department of 
Transportation and the Federal Highway Administration. IGIDS is a package of drawing, analysis, and data 
manipulation tools for use by the designer of street intersections. These tools are aids to the designer in 
reviewing and revising existing designs or in the design of new intersections. This report serves as the 
IGIDS reference manual. It describes the structure of the IGIDS database and contains descriptions of 
each IGIDS command. 

17. Key Words 

Interactive graphics, intersection design, street 
intersections, Interactive Graphics Intersection 
Design System (IGIDS) 

1 8. Distribution Statement 

No restrictions. This document is available to the 
public through the National Technical Information 
Service, Springfield, Virginia 22161. 

19. Security Classif. {of thisreport) 

Unclassified 

20. Security Class if. (of this page) 

Unclassified 

21. No. of Pages 22. Price 

249 

Form DOT F 1700.7 (8-72) Reproduction of completed poge authorized 



INTERACTIVE GRAPHICS INTERSECTION 

DESIGN USER'S MANUAL 

Thomas W. Rioux 

Robert F. Inman 

Randy B. Machemehl 

and 

Clyde E. Lee 

Research Report Number 1308-1F 

Research Project 0-1308 

Interactive Graphics Intersection Design 

conducted for the 

Texas Department of Transportation 

in cooperation with the 

U.S. Department of Transportation 

Federal Highway Administration 

by the 

CENTER FOR TRANSPORTATION RESEARCH 

Bureau of Engineering Research 

THE UNIVERSITY OF TEXAS AT AUSTIN 

December 1994 



ii 



IMPLEMENTATION 

The Interactive Graphics Intersection Design System (IGIDS) has been developed and is 

recommended for implementation by the Texas Department of Transportation. 

It is suggested that implementation be in two stages. First, IGIDS should be routinely used as 

part of the day to day operations in design offices. The available tools will be extremely useful to the 

Design Engineer. It is recommended that IGIDS become part of the series of training sessions supported 

by TxDOT. 

Secondly, additional tools and standards should be cataloged for addition to IGIDS, with the goal 

of making all aspects of intersection design a part of IGIDS. With this done, IGIDS may be adapted as 

the standard for TxDOT intersection design. 

Prepared in cooperation with the Texas Department of Transportation 

and the U.S. Department of Transportation, Federal Highway Administration 

DISCLAIMERS 

The contents of this report reflect the views of the authors, 
who are responsible for the facts and the accuracy of the 
data presented herein. The contents do not necessarily 
reflect the official views or policies of the Federal Highway 
Administration or the Texas Department of Transportation. 
This report does not constitute a standard, specification, or 
regulation. There was no invention or discovery conceived 
or first actually reduced to practice in the course of or 
under this contract, including any art, method, process, 
machine, manufacture, design or composition of matter, or 
any new and useful improvement thereof, or any variety of 
plant which is or may be patentable under the patent laws 
of the United States of America or any foreign country. 

NOT INTENDED FOR CONSTRUCTION, 

PERMIT, OR BIDDING PURPOSES 

Clyde E. Lee, P.E. (Texas No. 20512) 

Thomas W. Rioux, P.E. (Texas No. 48008) 

Randy B. Machemehl, P.E. (Texas No. 41921) 

Research Supervisors 

iii 



iv 



TABLE OF CONTENTS 

IMPLEMENTATION.................................................................................................................. iii 

LIST OF FIGURES . .... .. .. .. .. . ... .. .... .. .. .. .. .. ..... .. .. ... .. ...... . .. ..... . .. .. . .. .. .. .. .... .......... .. .. .. .......... .... . .. .. .. vii 

LIST OF TABLES..................................................................................................................... ix 

SUMMARY............................................................................................................................... xi 

CHAPTER 1 - INTRODUCTION.................................................................................................. 1 

CHAPTER 2 - IGIDS SYSTEM DEVELOPMENT.......................................................................... 3 

CHAPTER 3- IGIDS SOFTWARE DEVELOPMENT.................................................................... 19 

CHAPTER 4- IGIDS FUNCTIONAL DESIGN................................................................................ 47 

CHAPTER 5- GETTING STARTED............................................................................................ 57 

CHAPTER 6- TRAFFIC SIGNAL DATA EXAMPLE...................................................................... 67 

REFERENCES......................................................................................................................... 73 

APPENDIX A -IGIDS INSTALLATION INSTRUCTIONS.............................................................. 75 

APPENDIX B- IGIDS COMMAND MENUS................................................................................. 81 

APPENDIX C -IGIDS COMMAND DESCRIPTIONS.................................................................... 101 

APPENDIX D -IGIDS VEHICLE TURN TEMPLATE PARAMETERS............................................ 201 

APPENDIX E- IGIDS ABBREVIATIONS.................................................................................... 217 

APPENDIX F -IGIDS TERMINOLOGY....................................................................................... 221 

APPENDIX G -INDEX TO COMMANDS.................................................................................... 229 

v 



vi 



Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 2.6 

Figure 2.7 

Figure 2.8 

LIST OF FIGURES 

Object Hierarchy..................................................................................................... 7 

IGIDS Alternative..................................................................................................... 8 

IGIDS Text on Alternative......................................................................................... 8 

IGIDS Leg............................................................................................................... 9 

IGIDS Leg (enlarged)............................................................................................... 9 

IGIDS Inbound Lane................................................................................................ 1 0 

IGIDS Inner Edge Segment..................................................................................... 10 

IG IDS Outer Edge Segment ..... .. . .. .. . .. .. .. . .. . .. .. . . .. . . .. .. . .. .. .. .. . .. .. . .. .. . .. . .. .. .. .. . .. ...... ..... .. 1 0 

Figure 2.9 IGIDS Stop Line Segment....................................................................................... 11 

Figure 2.10 IGIDS Outer Edge Curb Return Segment................................................................. 11 

Figure 2.11 IG IDS Beginning Alert Box....................................................................................... 13 

Figure 2.12 IGIDS Ending Alert Box ................... .... . ...... ...... .... .. .. .. .... .. .... .. ... ..... ......... .... .. .. ..... ... 14 

Figure 5.1 Starting MicroStation'M for use with IGIDS.................................................................. 57 

Figure 5.2 MicroStationTM Command Window............................................................................ 58 

Figure 5.3 Starting IGIDS in the MicroStation'" Command Window.............................................. 58 

Figure 5.4 IGIDS Beginning Alert Box....................................................................................... 59 

Figure 5.5 MicroStationTM Command Window after Starting IGIDS................................................ 59 

Figure 5.6 IGIDS Menu............................................................................................................ 60 

Figure 5.7 Starting the IGIDS Command LOADFROM STANDARD 4x4 ...................................... 61 

Figure 5.8 MicroStation'" Command Window with First Prompt from 

the Command LOADFROM STANDARD 4x4............................................................ 61 

Figure 5.9 Standard 4x4 Intersection....................................................................................... 64 

Figure 5.1 0 Example Intersection .. .. .. .. .. .. .. .. .. .... .. .. ..... .. .. .. .. .. . .. ..... ....... ............. ..... .. ...... ..... .. . . .. . 65 

Figure 5.11 Enlarged Example Intersection................................................................................ 66 

Figure 6.1 Standard 5x4 Intersection .. ... .. .. .... .............. .. .. . .. .. .. .. .......... .... . .. . ... ........ ........... ...... . 70 

Figure 6.2 Enlarged Standard 5x4 Intersection......................................................................... 70 

Figure 6.3 Enlarged Example Intersection................................................................................ 71 

Figure 6.4 Traffic Turn Movement Count.................................................................................. 73 

vii 



viii 



Table 3.1 

Table 3.2 

Table 3.3 

Table 3.4 

Table 3.5 

Table 3.6 

Table 3.7 

Table 3.8 

Table 3.9 

Table 3.10 

Table 3.11 

Table 4.1 

Table 4.2 

Table 4.3 

Table 4.4 

Table 4.5 

Table 4.6 

LIST OF TABLES 

Example Function Names........................................................................................ 25 

Example Variable Names......................................................................................... 25 

Example of "#define" Statements............................................................................ 2 7 

Example of a Nested "if" and "else" Statement.......................................................... 29 

Example of a "switch" and "care" Statement.............................................................. 29 

Examples of Statement Alignment........................................................................... 30 

Examples of Statement Spacing.............................................................................. 3 0 

Hierarchial Relationships of IGIDS Objects ... ..... ..... ..... .. .. .. ............... .... ..... .. ... ... .. .. . ... 35 

Relationship Between Primary Operations and IGIDS Objects.................................... 41 

IGIDS Objects and Object Types.............................................................................. 44 

IGIDS Objects and Processing Masks....................................................................... 45 

IGIDS Level Assignments........................................................................................ 47 

IGIDS Global Variables to Implement Stages.............................................................. 49 

IGIDS Stages.......................................................................................................... 50 

IGIDS Function Pointers.......................................................................................... 50 

IG IDS Generalized Command Processing................................................................. 51 

Generalized NounNerb and Verb/Noun Command Processing................................. 54 

ix 



X 



SUMMARY 

The Interactive Graphics Intersection Design System (IGIDS) has been developed at the Center for 

Transportation Research at the University of Texas at Austin in cooperation with the Texas Departmant of 

Transportation and the Federal Highway Administration. 

IGIDS is a package of drawing, analysis, and data manipulation tools for use by the designer of street 

intersections. These tools are aids to the designer in reviewing and revising existing designs or in the 

design of new intersections. 

This report is the IGIDS reference manual. It describes the structure of the IGIDS database and 

contains descriptions of each IGIDS command. 

xi 



xii 



CHAPTER 1 INTRODUCTION 

BACKGROUND 

Intersection design is a complex process that involves a number of different transportation 

engineering skills. Elements of transportation planning, traffic engineering, and geometric design 

contribute to the process of designing the best practicable traffic handling facility. Traditionally, the design 

engineer has relied upon the application of manual, or sometimes computer-aided, procedures to 

determine the most appropriate alternative that satisfies the objectives. Intersection design involves 

geometric layout, traffic analysis, channelization, selection and placement of traffic control devices, timing 

of traffic signals, lighting, drainage, fuel-consumption evaluation, pollution analysis, cost estimating and 

many other engineering functions which are eventually reduced to practice in a set of plans and 

specifications. Virtually all the engineering requirements and analysis procedures needed to complete 

the intersection design process are well known and documented. 

OB .. IECTIVES 

The ultimate objective of this study is the development of an Interactive Graphics Intersection 

Design System (IGIDS) which assists engineers in the analysis and design of individual, at-grade 

intersections and which operates on personal computers and workstations. The role of IGIDS is to provide 

the Intersection Design Engineer with suitable tools to assist with each process stage. The available tools 

may be loosely divided into three groups. 

First are the drawing tools. IGIDS uses MicroStation'~1 as a graphics engine to perform all graphics 

input and output. The user may select from a library one of several typical intersection designs to be 

considered and then modify it as needed to define the particular intersection of interest. Alternately, the 

user may define the intersection geometry by pointing at selected elements in a reference file created by 

another source, such as a topographical map of the area (with optional use of a superimposed aerial 

photo). Finally, the user can create the key components of the intersection geometry on the scratch level 

using MicroStation'M commands (with optional use of a superimposed aerial photo) and then define the 

intersection geometry by pointing at these elements. After the centerline of each leg is defined, IGIDS 

has several commands to place lanes and curb returns and manipulate the intersection elements. The 

elements of the design can be specified by the most convenient method for the particular situation. The 

width of a lane may sometimes be specified by keyboard entry of a numerical value. At times, it may be 

more convenient to identify lane edge graphics that exist in a file that is being viewed concurrently with the 

1 MicroStation"' is a trademark of Bentley Systems, Inc. 

1 



IGIDS graphics file. Alternately, requesting that the lane edges be located by identifying existing 

landmarks on a superimposed aerial photo may be most convenient. 

Second are the built-in analysis tools. Both graphical aids and computational analysis procedures 

are incorporated. Vehicle turning templates can be quickly drawn for the standard American Association 

of State Highway and Transportation Officials (AASHTO) [REF 1 J design vehicles to a user-specified turn 

radius for the turn angle defined by the user-selected legs. These templates can be moved dynamically 

over the intersection geometry to evaluate pavement edge and channelization requirements. For 

checking sight distance restrictions, sight lines for stopped vehicles, yielding vehicles, or vehicles 

approaching an uncontrolled intersection can be drawn. The analysis detailed in Chapter 9 of the Highway 

Cagacity Manual [REF 2] can be used to find v/c ratios and delay values for intersections with pretimed 

controllers and are displayed in bar chart format for each leg. 

Finally, there are data-manipulation tools that prepare data files for analyses; these are executed 

outside IGIDS and retrieve the results back into the IGIDS-compatible context. The TEXAS Model for 

Intersection Traffic (TEXAS) [REF 3] and the Signal Operations Analysis Package (SOAP) [REF 4] are 

supported by IGIDS. The TEXAS Model provides simulation of vehicular traffic flow through a single 

intersection or a diamond interchange and generates both a statistical summary and animated graphics 

which show drawn-to-scale, color-coded vehicle types moving through the intersection geometry. 

Selected TEXAS Model statistics can be displayed in bar chart format for each leg and for the total 

intersection. SOAP develops and assesses single intersection signal timing plans. 

Data for both built-in and external-analysis computer programs are drawn from a common database 

that is maintained by IGIDS. Many of these data are extracted from the graphical intersection geometry that 

has been constructed by the user. Some non-graphical data, such as traffic volumes, must be entered 

through the keyboard. 

The development of IGIDS is discussed in the next three chapters, then a scripted beginning 

example is presented, and finally a scripted example of entering traffic signal data is given. The 

Appendices contain the IGIDS installation instructions, command menus, command descriptions in 

alphabetical order, tables of the parameters used for the AASHTO vehicles in the Vehicle Turn Template 

commands, a list of abbreviations, a definition of terminology, and a command index in alphabetical order 

with page numbers. 

2 



CHAPTER 2 IGIDS SYSTEM DEVELOPMENT 

OBJECTIVE 

The goal for this study was the development of an Interactive Graphics Intersection Design 

System (IGIDS) which operates on personal computers and workstations and assists engineers in the 

analysis and design of individual, at-grade intersections. The functions IGIDS performs were identified 

early in the study. That identification evolved into definition of the requirements and capabilities of 

selected functions that the automated system would support. Modular computer applications were 

structured to permit staged system development. Candidate computer hardware, operating systems, and 

software applications were selected after a thorough investigation was made to determine capabilities, 

limitations, and compatibility with other system components. Conceptual development then proceeded 

to writing the computer code necessary for managing the various IGIDS components so that the desired 

functions could be realized. 

OVERVIEW 

Determination of functional performance was achieved through examination of the conventional 

intersection design procedure. Analysis of the different activities involved in intersection design, 

together with the general order in which they are accomplished, identified functions which should be 

incorporated into the system. 

The selection of system hardware and software components was based on how each component 

relates to the intersection design process in addition to ensuring access to IGIDS through the type of 

hardware currently used by many public and private design professionals. 

IGIDS initially required an operating system which allows multi-tasking (the concurrent operation of 

multiple programs). With the development by Bentley Systems, Incorporated (BSI) of the MicroStation""' 

Development Language (MDL) in MicroStation,.,.. Version 4, IGIDS could operate in an MS-DOS 

environment and could be easily ported to other operating and hardware systems supported by 

MicroStationrM Version 4. 

Generic requirements for the system hardware components were designed to permit use of 

equipment from different manufactures. Development of the first-stage version of IGIDS was performed 

on lntergraph Corporation's workstation hardware. lntergraph equipment was selected for its versatility 

and widespread use among public and private engineering professionals. Final development was 

performed on an IBM compatible personal computer using an Intel Pentium processor and the MS-DOS 

operating system. 

The software needed to perform the graphics operations of IGIDS was selected for it's availability 

on different types of equipment on which the system would likely be used. The first-stage version of 

3 



IGIDS supported the MicroStationn• graphics application from Bentley Systems, Incorporated using the 

workstation version of MicroStationTW 3 and using the "ms_app_login" type of MicroCSL programming. All 

programming was performed in the ANSI Standard C language, except for the Texas Truck Off-Tracking 

Model [REF 5], which was in Fortran. Final development employed the workstation and PC version of 

MicroStationTM Version 4 using the MDL All previous software was converted to MDL including the Texas 

Truck Off-Tracking Model. 

The selected combination of hardware components, operating system, and interactive graphics 

applications, together with design and analysis software which support intersection design, provides a 

convenient, useful tool for the transportation engineer. 

CONCEPTUAL DESIGN 

IGIDS is intended to assist the engineer in analyzing and designing individual, at-grade, vehicular­

traffic intersections. This involves the development of computer-aided tools for defining the geometry of 

the intersection, the type and location of traffic control devices, and the traffic flow conditions. IGIDS 

provides a convenient and user-friendly interface for storing and accessing data that are needed to 

execute several analysis and design software packages, and also allows for adding or developing related 

expert systems. 

IGIDS uses a graphics engine (software) to perform all interactive graphics operations and to 

maintain the graphics-engine database. IGIDS software operates above and drives the graphics engine 

through a higher-level language interface. IGIDS allows the user to switch easily between executing IGIDS 

commands and graphics-engine commands. The commands available within the graphics engine are 

used for this purpose as much as possible. IGIDS does not provide any plotting capabilities, but relies 

upon the graphics engine to perform these operations. 

IGIDS accommodates up to 15 alternative designs for one intersection. Existing intersection 

conditions normally constitute one alternative. Each alternative, and its major graphical component 

groupings, is placed on separate graphical levels, or planes, so that it can be displayed independently, or 

not displayed in a particular view, by the graphics engine. IGIDS allocates a user graphical level, or plane, 

and a scratch graphical level, or plane. The user graphical level is allocated to level1 in MicroStationTM and 

all graphics can be viewed but not accessed by IGIDS or MicroStation™. The scratch graphical level is 

allocated to level 2 in MicroStationTM and all graphics can be viewed and accessed by IGIDS and 

MicroStationTM. All, or part, of an intersection alternative can be copied to another alternative, and all, or 

part, of an intersection alternative can be modified by IGIDS commands. In addition, any number of 

reference files can be attached to the master design file by the graphics engine. IGIDS can locate 

elements in these reference files to be added as graphics for IGIDS. Finally, a raster image, scanned 

photograph or other raster data, may be displayed by the graphics engine. 

4 



In its first-stage development, IGIDS graphics provides a two-dimensional in plan view and uses a 

state plane coordinate system. There are no programming impediments to a future three-dimensional 

system. Coordinates, distance, and other real numeric data are stored as 16 significant digit, 64 bit, 

double precision, floating-point variables in the master units of the graphics engine (normally feet or 

meters). All angular data are stored as the same type variables, but in degrees. All counter, or indexing­

type, numbers are stored as 10 significant digit, 32 bit, integer variables. All other integer numbers with no 

perceived possibility of exceeding several hundred are stored as 5 significant digit, 16 bit, integer 

variables. 

IGIDS uses relational, hierarchical geometry. Relational geometry refers to the fact that the only 

absolute coordinate needed by IGIDS is the center of the intersection. A leg of the intersection is defined 

relative to the center of the intersection; then, the lanes of a leg are defined relative to the leg's centerline, 

and so on. IGIDS data are stored as objects and IGIDS maintains the parent-child relationships among 

IGIDS objects. IGIDS works by manipulating a defined set of objects. There is a strict set of rules used by 

IGIDS that fixes the way in which these IGIDS objects are related to each other. The task of complying with 

these rules is assigned to IGIDS, so the user need not be too concerned with the relationship details. By 

using the IGIDS drawing tools to specify and group IGIDS objects, one or more alternative designs can be 

developed. Both the absolute and relative definitions of an item are calculated and stored. The data can 

be presented using a relative definition, and the absolute definition will be automatically calculated; or the 

data can be presented using the absolute definition, and the relative definition will be automatically 

calculated. IGIDS defines the relative object for each type of IGIDS object. IGIDS calculates the station and 

offset of a coordinate from the leg centerline for all items that are children of the leg. Only IGIDS 

commands can be used to manipulate the geometry because of the need to update the data in the IGIDS 

database. IGIDS generally does not require the user to enter data in a defined order or sequence. To 

accomplish this objective, IGIDS automatically sorts each list of children IGIDS objects as new children 

IGIDS objects are added to the list; so, the user can enter geometry data items in any order. IGIDS 

automatically sets the direction of any entered graphicaiiGIDS object so that it will be in conformance with 

the sorted direction of the list of which it is a part. 

Hierarchical geometry refers to the fact that the IGIDS objects are related in a parent-child 

relationship. Each IGIDS object comprises only one parent IGIDS object and can have zero or more 

children IGIDS objects. An IGIDS object can have more than one parent IGIDS object type with the type of 

parent being an attribute of the IGIDS object. Each IGIDS object knows the type of its parent IGIDS object 

and which specific IGIDS object entry is its parent. An IGIDS object can have more than one category of 

child IGIDS object. The number of children IGIDS objects accommodated by IGIDS is virtually infinite. Each 

parent IGIDS object maintains the current number of children IGIDS objects and has a pointer to the 

beginning and ending children IGIDS objects for each category of children IGIDS objects. Each IGIDS 

object has a pointer to the previous and to the next IGIDS object on the list. An IGIDS object with a null 

5 



previous-pointer is the first IGIDS object on the list and an IGIDS object with a null next-pointer is the last 

IGIDS object on the list. An IGIDS object with a null previous-pointer and a null next-pointer is the only 

IGIDS object on the list. Most higher-leveiiGIDS objects serve to group the children IGIDS objects, and 

only the lowest-leveiiGIDS objects have a graphical representation. Any procedure applied to an IGIDS 

object is automatically applied to all children of the IGIDS object. 

The six IGIDS objects are Intersection, Alternative, Leg, Lane, Seg (Segment), and Text. Figure 

2.1 shows the hierarchical relationship. Figures 2.2 through 2.10 show the geometry typically associated 

with most of the IGIDS objects using the Standard 4X4 Intersection; the IGIDS object is in bold. There is 

only one intersection IGIDS object, and it has intersection data and a list of up to 15 alternatives. Each 

alternative IGIDS object has alternative data, an intersection parent pointer, a list of legs, and a list of text 

(see Figure 2.2). Each leg IGIDS object has leg data, an alternative parent pointer, a list of centerline 

segments, a list of inbound lanes, a list of outbound lanes, a list of inner edge curb return segments, and a 

list of outer edge curb return segments (see Figures 2.4 and 2.5). Each lane IGIDS object has lane data, a 

leg parent pointer, a list of inner edge segments, a list of outer edge segments, and a fist of stop line 

segments (see Figure 2.6). Each segment IGIDS object has data for either an arc of a circle or a line, a 

leg/lane parent pointer, and a list of texts (see Figures 2.7 through 2.10). Each text IGIDS object has text 

data and an alternative/segment parent pointer (see Figure 2.3). Each IGIDS object may have either a 

parent or child relationship with other different-type IGIDS objects. Any IGIDS object may have only one 

parent, but a parent may have none, one, or more children. In Figure 2.1, for each class of IGIDS object 

the suitable parent IGIDS object type is found by following a line to the immediate left. Likewise, suitable 

child IGIDS object types(s) are found on a line to the immediate right. Only Segs and Text have 

displayable graphic elements. All others have graphical visibility due solely to the attached child IGIDS 

objects. Although Figure 2.1 shows each IGIDS object having only one child of each type, each IGIDS 

object can have a virtually unlimited number of children. The one exception to this is that the number of 

Alternatives is limited to 15. There is always only one Intersection. The leg centerline must be entered 

and completed before any lanes can be attached. An IGIDS command applied to an IGIDS object is 

automatically applied by IGIDS to all child IGIDS objects of the selected IGIDS object. The IGIDS "rotate­

leg" command thus causes each centerline segment, each inbound lane, each outbound lane, each inner 

edge curb return segment, and each outer edge curb return segment to be rotated. Then, each lane 

causes each inner edge, each outer edge, and each stopline segment to be rotated. Finally, each 

segment causes each text object to be rotated. It is convenient to sub-classify some IGIDS object types. 

The IGIDS object type Text can possibly have more than one type of parent. When each Text object is 

created, it is sub-classified to be either Text on a Seg, or Text on an Alternative. This designation remains 

unchanged for the life of the Text object. Both Lane and Seg can also have sub-classifications. A Lane is 

either an Inbound Lane or an Outbound Lane. A Seg is either a Lane Inner Edge Seg, Lane Outer Edge 

6 



Inner Edge~ 

Outbound Lane Stopline~ 

Outer Edge~ 

Centerline Seg 

Inner Edge~ 

Inbound Lane Stopline Seg 

Outer Edge~ 

1---------l Inner Edge Curb 
Return~ 

.__ ______ --1 Outer Edge Curb 
Return Seg 

Figure 2.1 Object Hierarchy 

7 

Text on Seg 

llx1 on Seg 

Text on Seg 

llx1 on Seg 

llx1 on Seg 

Text on Seg 

Text on Seg 

Text on Seg 

Text on Seg 



Slondatd 414 

! Slondatd 414 IG!DS Al ter-nat1ve 

Figure 2.2 JGJDS Alternative 

Slondatd414 

Slondatd 414 

I I 

II 
II 
II 
II 
II 
II 

II 
II 
II 
II 
II 
II 
I I . ' 

IGIDS Text on Alter-nattve 1 

Figure 2.3 JGJDS Text on Alternative 

8 



Standard 4X4 

1 Standard 4X4 

I I 

I I 
I I 
II 
II 
I 
I 

II 
II 
II 
II 
I I 
II 
I I IG!DS Leg 

Figure 2.4 IGIDS Leg 

/ 
I 

----------
IGIDS Leg 

Figure 2.5 IGIDS Leg (enlarged) 

9 



1 -~) I l"~~----------1 
i ! I n I 

a------r-----~r--L ~~~-------1 
I """ / 

! \ I 

I I 
IGIDS Inbound Lene 

Figure 2.6 IGIDS Inbound lane 

I ~) l" ____________ j 
lJU. I I--. ------

1 ' . . -------+---- __ .~....---______ _ 

ti" • /~L----------1 
\ ( ' I IGIDS Inner Edge Segment I 

Figure 2.7 IGIDS Inner Edge Segment 

I I I I I 
' \ I 

/ ' ' a~ __ I ·-------------· 
I 
' 

- -+-------I ! 

Ci ' i 
I _L __________ ' 

I """ 
I 
' / 

i \ I 
' 

I I I I I 
IG!DS Outer Edge Segment 

Figure 2.8 IGIDS Outer Edge Segment 

10 



I I i l I 
\ 

" 
I _/, 

8_______ -----------------~1 
li- / __ L_ __________ ~. 

-.----- ------------ ----

I ""' 

\i-1 --r-~-,---;( IGIOS Stop Lme Segment I 

Figure 2.9 IGIDS Stop Line Segment 

I I I 
J \ 

/ ' ' ~-~- I ..._r-------------

~-------+---- . 
!--L : J= __________ j 
I ""' . / 
, \ I 

r---,--__,...-,-, IGJOS Out.<ol" Edge Curb Return Segment 

Figure 2.10 IGIDS Outer Edge Curb Return Segment 

Seg, Lane Stopline Seg, Leg Centerline Seg, Curb Return Inner Edge Seg, or Curb Return Outer Edge 

Seg. Note also that Segs can have either Lane or Leg parents. 

IGIDS automatically sorts an alternative's list of legs, a leg's list of inbound lanes, a leg's list of 

outbound lanes, and each list of segments. This automatic sorting by IGIDS allows the user to enter the 

elements of the alternative in any order. An alternative is considered to be complete when all its legs are 

completed. A leg is complete when its centerline, inbound lanes, outbound lanes, inner edge curb 

return, and outer edge curb return are all completed. A lane is complete when its inner edge, outer edge, 

and stopline are all completed. A list of segments is complete when (1) no segments are entered for 

optional elements such as curb returns, (2) one segment is entered, or (3) two or more segments are 

entered and there is no geometric gap between adjacent segments. 

11 



IGIDS maintains the design as descriptive data stored in the host computer's memory. This stored 

data is a complete record of the Intersection design. Included are the attributes of each IGIDS object and 

how IGIDS objects are related, data that have been calculated during the design process, and data that 

have been entered manually by the user. The data can be stored as a disk file and retrieved later. The 

IGIDS database is the master database. All graphics and attribute data items are contained in the IGIDS 

database, and the value stored there has precedence over any other value. The graphics engine 

database can be deleted and IGIDS can re-create the graphics previously entered into IGIDS. Coordinate, 

distance, angular, and other data in the IGIDS database are the definitive values. IGIDS uses the values in 

the IGIDS database for all calculations. IGIDS keeps the entire IGIDS database in memory within the IGIDS 

software so that no disk 1/0 is involved in reading a data item; this allows the software to operate as fast as 

possible. 

IGIDS presents a design to the user as graphics displayed by the graphics engine. The ID of each 

IGIDS object that is displayed (Segs and Text) is a part of the graphics engine's data and is used to link the 

graphics engine database with the IGIDS database. Each IGIDS graphical item in the graphics engine 

database contains the ID of the corresponding item in the appropriate IGIDS database where the attribute 

data are stored. The type of the graphics engine element (arc, line, or text) is used to determine the item 

type (segment or text) and, therefore, relates it to the appropriate IGIDS database item. The ID is a unique 

number defined by IGIDS and is the entry number, the instance number, or the row number in the 

appropriate IGIDS database. Given an ID, IGIDS searches the graphics-engine database or accesses the 

appropriate IG IDS database for the specified item. The higher-level (grouping) objects cannot have a 

graphical representation. 

During the design process, the user can interact with IGIDS to modify the design as desired. This 

interaction is through the graphics engine's user interface. The user can identify existing graphical 

elements, specify geometric points, and key-in alphanumeric data, all in response to IGIDS prompts. All 

usual graphics engine functions are always available. Graphics engine and IGIDS functions can be used in 

any desired sequence. If there is a need to construct a feature that is beyond IGIDS's capability, the 

graphics engine's tools can be used to create the feature as "scratch" graphics. IGIDS can then inspect 

these scratch graphics and add the desired feature to the design. Graphics on an existing drawing can be 

processed in a similar manner. 

Intersection analysis and design software packages are executed when the user selects from a 

menu the software package to be run. IGIDS checks the IGIDS relational database for appropriate data and 

prompts the user for any missing data. IG IDS then extracts data from the IGIDS database and builds the 

required input files for the software package that was selected. The software package is executed by the 

operating system as an external (or background) process. The user can then use graphics engine 

commands to present the output from the executed software package for review. When appropriate, the 

output from the software package can be displayed by IGIDS. 

12 



CAUTION 

IG IDS takes control of the active graphics file and deletes everything except what is recognized as 

scratch-graphics (Level 2 is the scratch level, and all graphics on Levels 3 through 62 are controlled by 

IGIDS). IGIDS presents to the user an Alert Box (see Figure 2.11 ). Pressing the "OK" push button allows 

IGIDS to continue whereas pressing the "Cancel" push button causes !GIDS to exit without deleting any 

data. IGIDS recreates graphics using IGIDS data rather than relying on stored graphics files. Therefore, at 

start-up, any graphics stored in the active file is deleted. The IGIDS design is created by user interaction or 

by the importation of a previously created design that is stored in a file. All needed graphics are drawn as a 

part of this process. Existing non-IGIDS graphics should be accessed as a reference file. Reference files 

should be attached so that their elements can be snapped-to and located. Upon ending IGIDS or ending 

MicroStationT", IGIDS determines whether any data have been modified since the last SAVETO 

DATABASE command, if any, and presents to the user an Alert Box (see Figure 2.12). Pressing the "OK" 

push button allows IGIDS to perform a SAVETO DATABASE command whereas pressing the "Cancel" 

push button causes IGIDS to exit without saving any data. 

Figure 2.11 IGIDS Beginning Alert Box 

13 



Figure 2.12 IGIDS Ending Alert Box 

OBJECTS 

Each IGIOS object has a set of attributes and characteristics that define the IGIOS object. Many of 

these are of no practical use to the user and are not discussed here. Those that may be of interest are 

described. 

INTERSECTION 

The Intersection actually stores very little data that is of user interest. The user-specified 

description, the identities of each child Alternative, and the available 10 numbers for each IGIOS object 

type fill the list. Most Intersection data is used internally by IGIOS. 

ALT 

Attributes of Alternatives are: 

1) X and Y coordinates of the Intersection center, 

2) 10 number assigned by the user, 

3) a list of attached Legs and Text children, 

4) 10 of parent Intersection, 

5) 10 of the selected Leg and Text, 

6) user-supplied description, and 

7) data needed by analysis procedures. 

IGIOS automatically sorts the list of Legs of an Alternative using the centerline angle of the Leg 

converted to an azimuth (north is 0 and clockwise is positive), starting at zero and traversing clockwise. 

The Alternative itself has no displayable graphics. 

14 



LEG 
Each Leg is described by: 

1) angle of the centerline, 

2) distance and direction from center of Intersection to start of centerline, 

3) station number at start of centerline and direction of stationing 

(increasing or decreasing). 

4) 10 number assigned by the user, 

5) a list of attached Centerline Seg children, 

6) lists of attached Inbound Lane and Outbound Lane children, 

7) a list of attached Inner Edge Curb Return Seg children, 

8) a list of attached Outer Edge Curb Return Seg children, 

9) ID of the selected Lane and Centerline Seg, 

1 0) ID of parent Alternative, 

11) user-supplied description, and 

12) data needed by analysis procedures. 

The Leg Centerline is a connected list of Segs. IGIDS automatically sorts the list of Centerline 

Segs, starting at the Seg end nearest the Intersection center, and traversing away from the Intersection 

center. IGIDS automatically sorts the lists of Inbound and Outbound Lanes starting at the Lane nearest 

the median and farthest from the curb (lane 1) and traversing away from the median toward the curb (left to 

right in the direction of travel). The Inner Edge Curb Return and the Outer Edge Curb Return are each a 

connected list of Segs. The Inner Edge Curb Return Segs connect the inbound, median lane inner edge 

with the outbound, median lane inner edge of the same Leg. IGIDS automatically sorts the list of Inner 

Edge Curb Return Segs starting at the inbound, median lane inner edge and traversing to the outbound, 

median lane inner edge. The Outer Edge Curb Return Segs connect the inbound, curb lane outer edge 

with the outbound, curb lane outer edge of the adjacent, counter-clockwise Leg. IGIDS automatically 

sorts the list of Outer Edge Curb Return Segs starting at the inbound, curb lane outer edge and traversing 

to the outbound, curb lane outer edge of the adjacent, counter-clockwise Leg. The Leg itself has no 

displayable graphics. 

LANE 
Each Lane is described by: 

1) the nominal width and length, 

2) relative distance and direction from parent Leg's reference point, angle 

relative to parent Leg's absolute angle, 

3) ID number, per sort as described above, 

4) flag indicating that Leg is Inbound or Outbound, 

15 



5) lists of attached Inner Edge, Outer Edge and Stopline Seg children, 

6) 10 of parent Leg, 

7) 10 of the selected Seg, and 

8) data needed by analysis procedures. 

The Inner Edge, Outer Edge, and Stopline are connected Seg lists. IGIOS automatically sorts the 

Segs on each edge list using the distance from the Intersection center, starting at the Seg end nearest 

the Intersection center, and traversing away from the Intersection center. Stopline Segs are sorted 

starting with the Seg end with the minimum offset from the Leg Centerline and traversing away from the 

median toward the curb. The Lane itself has no displayable graphics. 

SEG 

A Seg is an arc of a circle or line string with these attributes: 

1) for the beginning end of the first Seg in a list: relative distance and 

direction from parent's reference point, angle relative to parent's absolute 

angle, station and offset. absolute angle, and X and Y coordinates, 

2) for the beginning end of all but the first Seg in a list: angle relative to 

previous Seg in the list, station and offset, absolute angle and X and Y coordinates, 

3) for the ending end of all Segs: station and offset, absolute angle and X 

and Y coordinates, 

4) flag indicating line or arc of a circle, 

5) other geometric parameters (for line, length; for arc of a circle, X andY 

coordinates of center, radius, and sweep angle), 

6) flag indicating Inner Edge, Outer Edge, Stopline, Centerline, Inner Edge 

Curb Return, or Outer Edge Curb Return, 

7) 10 number, per sort of each list as described above, 

8) lists of attached T ex1 children, 

9) 10 of parent Leg or Lane, and 

1 0) 10 of the selected Tex1. 

Segs may be displayed graphically. 

TEXT 
Tex1 has these attributes: 

1) angle, height, width, and display attributes (font, color, weight, etc.), 

2) X and Y coordinates of center, 

3) flag indicating parent is Seg or Alternative, 

4) distance and direction from parents reference point. 

16 



5) if parent is Seg, flag indicating absolute/relative angle and if flag 

indicates relative, angle relative to parent's reference angle, 

6) 10 of parent. 

Text may be displayed graphically. 

17 



18 



CHAPTER 3 IGIDS SOFTWARE DEVELOPMENT 

From a conceptual point of view, the design of IGIDS was based upon knowledge and experience 

of intersection analysis and design, computer software development, the TEXAS Model for Intersection 

Traffic, interactive graphics programming techniques, and other computer software systems. 

IGIDS is designed to assist the traffic engineer in the analysis and design of single, at-grade, 

vehicular-traffic intersections including diamond interchanges. This involves the definition of the 

geometry of the intersection, the location and type of traffic control devices, and data describing the traffic 

flow conditions. IGIDS provides a convenient and user-friendly interface for the collection of data 

necessary to execute several intersection analysis and design software packages and later provides the 

environment to add or develop expert systems. 

IGIDS uses a graphics engine to perform all interactive graphics operations and to maintain the 

graphics engine database. IGIDS software operates above and drives the graphics engine software 

through a graphics engine higher-level language interface. IGIDS takes control of the interactive graphics 

workstation and allows the user to easily switch between executing IGIDS commands and graphics engine 

commands. The graphics engine commands are used as much as possible. IGIDS provides no plotting 

capabilities but relies upon the graphics engine to perform these operations. 

The role of IGIDS is to assist the traffic engineer in analysis and design of the intersection area 

available for vehicle travel as normally defined by pavement markings and stripings. This area includes the 

intersection, inbound, and outbound lanes. A lane may be 12 feet wide for analysis and design purposes 

but have additional pavement width to accommodate shoulders, curbs and gutters, and medians. IGIDS 

will not accommodate this additional pavement width. It is assumed that the intersection design 

developed by the user with IGIDS will become the starting point or input to a roadway design systems such 

as the IGrds or a CAD software package that will assist the roadway design engineer in designing the 

complete roadway. 

GRAPHICS ENGINE 

Several good graphics engines (CAD software packages) which operate on popular workstations 

are available from different manufacturers. There is a wide variety of good workstations for the user to 

choose from. Each workstation has its own screen size, screen resolution, pointing device (both the 

absolute positioning cursor and the relative movement mouse), windowing system, graphics device 

driver, optional input devices, operating system, and CPU. Each provides an interface with the hardware 

and numerous commands to create, display, modify, manipulate, delete, save, and plot the graphical data. 

CAD software packages generally maintain an external graphics engine database containing the graphics 

which may be saved from session to session. CAD software packages also provide functions for reading 

19 



and writing various standard graphics engine database exchange formats. In addition, these CAD 

software packages are being constantly enhanced and corrected by a permanent staff of programmers in 

response to user requests. The IGIDS implementation decision was either: 

(1) choose a small, limited set of workstations and develop extensive graphics 

software accommodating these workstations or 

(2) choose two or more graphics engines and allow the graphics engines to perform all 

interactive graphics operations and to maintain the graphics engine database. 

IGIDS is designed to use a graphics engine and to develop interfaces to multiple graphics engines. It is 

the responsibility of the user to choose and purchase/provide the graphics engine from the list of graphics 

engines interfaced to IGIDS. 

Several criteria were established for choosing a graphics engine for interfacing with IGIDS. The 

graphics engine has to: 

(1) offer a higher-level language, real-time interface so that the IG IDS software can 

operate above and drive the graphics engine software, 

(2) allow IGIDS to take control of the interactive graphics workstation, 

(3) allow the user to easily switch between executing IGIDS commands and graphics 

engine commands, 

(4) provide plotting capabilities to numerous plotter devices, 

(5) be used by many state DOTs and by many design professionals, 

(6) operate on several moderately priced workstations from different manufacturers, and 

(7) have a graphics engine reference database capability with numerous methods of 

creating graphics engine reference database data. 

IGIDS makes calls to generic graphics functions developed specifically for IGIDS. A library of generic 

graphics functions which perform the requested graphics operation are developed for each graphics 

engine. The generic operations are: add a line, delete an arc, display a view or plane, etc. The graphics 

engines chosen are lntergraph's MicroStation"' and Autodesk's Autocad. Initial development was on 

lntergraph's MicroStationT•. Later, IGIDS was converted to the MicroStation"' Development Language 

(MDL). 

OPERATING SYSTEM 

Many operating systems alternatives are currently available. Most large computer companies offer 

proprietary operating systems developed by them to operate only on their computers. They often offer 

operating systems that adhere to international standards, government standards, or standards developed 

by a consortium of many competing computer companies. The operating systems may be designed for 

batch operation, on-line transaction processing, real-time process control, and/or interactive operation. 

The operating systems may support a single user or multiple users. They may allow only one process to 

20 



be memory resident and active at one time (example: MS-DOS), allow many processes to be memory 

resident and allow the user to designate which process is active (example: Apple's Macintosh MultiFinder), 

or allow many processes to be memory resident and allow the operating system to designate which 

process is active through a scheduling algorithm so that the processes share the CPU through multi­

tasking (example: DEC's VMS and AT&T's Unix). The operating system may support virtual memory 

addressing or direct memory addressing. 

to: 

The criteria for choosing an operating system for use by IGIDS included the fact that it would have 

(1) be designed for batch operation and interactive operation, 

(2) support multiple users, 

(3) allow many processes to be memory resident and allow the operating system to 

designate which process is active through a scheduling algorithm so that the processes 

share the CPU through multi-tasking, 

(4) support virtual memory addressing with large real memory, 

(5) support all graphics engines interfaced to IGIDS, 

(6) support higher-level language interfaces used by the graphics and database engines 

interfaced to IGIDS, 

(7) support computer software languages used by analysis programs interfaced to IGIDS, 

(8) support the computer software language chosen for IGIDS, 

(9) be used by many state DOTs and by many design professionals, and 

(1 0) operate on several moderately priced workstations from different manufacturers. 

The operating system initially chosen was AT&T's Unix or Unix clone and OSPs OS1 for the future. With 

the development of the MicroStation"' Development Language, the choice of operating system became a 

non-issue. MDL allows large applications to be developed even in the MS-DOS environment and isolates 

the operating system from the application. 

COMPUTER SOFTWARE LANGUAGE FOR IGIDS 

A computer software language may be 

(1) an assembly language where one statement in the computer software language is 

translated into one computer machine instruction, takes the most computer software 

language statements to accomplish a given task, is designed to operate on one 

computer's machine instruction set, and is generally defined by the computer company 

manufacturing the computer; 

(2) a macro language where one statement in the computer software language is translated 

into one or more computer machine instructions, takes the second most computer 

software language statements to accomplish a given task, is designed to operate on 

21 



one computer's machine instruction set, and is generally defined by the computer 

company manufacturing the computer; or 

(3) a higher-level language where one statement in the computer software language is 

translated into many computer machine instructions, takes the least computer software 

language statements to accomplish a given task, is designed to operate on many 

computer machine instruction sets, and is generally defined by an international 

standard. 

IGIDS uses a higher-level computer software language. 

Some higher-level computer software languages are ADA, ALGOL, Basic, C, COBOL, Fortran, 

LISP, Pascal, or Snobol. Each higher-level language was generally designed to make the solution of a 

particular class of problem easier for the programmer: COBOL was designed for business applications, 

Fortran was designed for engineering and scientific applications, and LISP was designed for artificial 

intelligence applications. Some higher-level languages require declaration of all variables at compile time 

and have a fixed maximum problem size. Others allow allocation and use of dynamic memory at execution 

time through pointers. The maximum problem size is limited only by virtual address space available from 

the operating system. 

Several criteria were established for initially choosing a higher-level computer software language 

for use by IGIDS. The higher-level language has to: 

(1) be supported by all graphics engines interfaced to IGIDS, 

(2) be supported by the operating system, 

(3) be applicable to engineering and geometric calculations, 

(4) be a state-oHhe-art computer software language, 

(5) be defined by an international standard, 

(6) allow the allocation and use of dynamic memory at execution time through the use of 

pointers, 

(7) support 16 significant digits, 64 bit, double precision floating point arithmetic, 

(8) support 10 significant digits, 32 bit, integer arithmetic, 

(9) support 5 significant digits, 16 bit, integer arithmetic, 

(1 0) allow the inclusion of global variable declarations and definitions from an external file, 

(11) allow upper and lower case characters in input and output records, and 

(12) be used by many state DOTs and by many computer software development 

professionals. 

The higher-level computer software language initially chosen was C. Later, IGIDS was converted to the 

MicroStation"' Development Language (MDL) developed by Bentley Systems, Inc., which is C plus one 

extension. MDL has some 3,000 documented subroutines to create, modify, and delete graphical 

elements and dialog boxes. 

22 



COMPUTER SOFTWARE CODING STANDARDS 

Computer software coding standards are strongly recommended as they result in computer code 

that is consistent, easily understood by another programmer, and easier to maintain. Once the coding 

standard becomes familiar, the programmer develops an expectation of the manner in which the computer 

code should look and non-conforming items are easily detected. 

The standards adopted for IGIDS specify that all items should be listed in alphabetical order. This 

standard applies to "#include" statements, in-line macro definitions, "#define" statements, function 

prototypes, "typedef" statements, variable declarations and definitions, structure declarations and 

definitions, union declarations and definitions, and most other list items. The exception to this standard is 

to list items in hierarchical order where appropriate. This standard has the advantages that items can be 

found more easily and logically. 

The standard also specifies that each logical grouping of functions should be contained in its own 

source file and that the source file name should be an expression of the logical grouping. This standard 

has the advantages that the size of each source file is minimized making backup and editing easier, a 

programmer can modify a single function without disturbing other functions, the function can be 

individually compiled, there is a corresponding object file for each source file, the programmer can easily 

test a single function, and searching for a string within all functions will display the source file name 

(function name) for each string match indicating the usage of the string. This standard has the 

disadvantages that function names are limited in size by the largest unique file name size (currently 14 

characters on AT&T's Unix) and the programmer must potentially edit multiple source files to change a 

variable used in multiple functions. 

AIIIGIDS core software global declarations and definitions are contained in a single include source 

file. A declaration refers to places where the nature of the variable is stated but no storage is allocated 

while a definition refers to the place where the variable is created or assigned storage. This standard has 

the advantage that the programmer must maintain only one include source file. It eliminates errors caused 

by differences in declarations, searching for a string within a single function or all functions will display only 

where the string is referenced or used as opposed to where the string is also declared or defined. Making 

a change in the single include source file will cause all functions which use the include file to be compiled 

when the make command is issued. All graphics engine and database software global declarations and 

definitions are contained in a single include source file. 

All global declarations, definitions, and variables are contained in the include source files. The 

include source file may contain: "#include" statements for other include source files needed by the 

functions, in-line macro definitions, "#define" statements, function prototypes, "typedef" statements, 

variable declarations and definitions, structure declarations and definitions, and union declarations and 

23 



definitions. Once included in a compile, an include source file is not included again even though it is 

requested additional times. 

All compiled IGIDS functions are contained in a single object library. This standard has the 

advantages that a single function can be easily modified and tested without changing the function in the 

archive library, and the linked image contains only the functions called. This standard has the 

disadvantages that the archive command must be used to replace object files in the object library. 

Each function name begins with "igids_" and contains a maximum of 18 upper and lower case 

characters (6 characters for "igids_" and 12 characters for the rest of the function name). Finally, there are 

2 consecutive blank lines at the end of the source file and there is no other occurrence of 2 consecutive 

blank lines in the source file. This standard has the advantages that the function name can be somewhat 

descriptive of the operations performed, there should be minimal conflicts with function names from other 

software, a programmer can readily distinguish the IGIDS functions from other functions, the source files 

may be concatenated into one large source file and later broken up into individual source files by a 

program, and the end of each function is standard and can be easily located while editing. Example 

function names are shown in Table 3.1. 

Each variable name begins with a 5 character prefix, followed by the name, optionally ends with a 4 

character suffix, and contains a maximum of 31 upper and lower case characters. The 5 character prefix is 

a single character indicating the scope of the variable, followed by 2 characters indicating the type of the 

variable, followed by a single character indicating the dimension, and terminated with an "_" character. 

Each variable that is a pointer has the mandatory 4 character suffix "_ptr" for pointer to a variable or "_pfn" 

for pointer to a function. The single character scope is: "g" for global static, "I" for local dynamic, "p" for 

parameter dynamic (parameters to the function), "s" for local static, "s" for structure member, "u" for union 

member, or "z" for zone. The 2 character type is: "ch" for a single character, "cz" for character string zero 

(null) byte terminated, "df" for double floating point, "fs" for file stream, "si" for signed int, "sl" for signed 

long, "ss" for signed short, "td" for typedef variables, "uc" for unsigned char, "ui" for unsigned int, "ul" for 

unsigned long, "us" for unsigned short, or "vo" for void. The single character dimension is "a" for array or 

"v" for single variable. This standard has several advantages. The variable name can be descriptive of the 

data storage allowing a programmer to readily distinguish the scope, type, and dimension of the variable 

and whether the variable is a pointer. Parameters to a function are treated in a special manner, and errors 

in formal parameter types not matching actual parameter types is reduced. Example variable names are 

presented in Table 3.2. 

24 



Table 3.1 Example Function Names 

igids_addLegCIKey 

igids_dbload 

igids_deiSegCntrln 

igids_drwarc 

igids_errmsg 

igids_lansrt 

igids_loadAJtLib 

igids_moveLeglatrl 

igids_openlnterNew 

igids_segswp 

igids_sellanOutNxt 

igids_turn Template 

igids_tx_mdl 

igids_vnumdf 

Table 3.2 Example Variable Names 

gslv _dest_seg_id_num 

gstv _inter_ entry _ptr->sslv _num_alters 

gstv_leg_ent_ptr->ssla_num_lanes[LANE_INB] 

gstv _lane_ent_ptr->sdfv _width 

gstv _seg_ent_ptr->sslv _iosc_flag 

gstv _text_ent_ptr->sslv _font 

ldfv _initial_angle 

lfsv _file_ptr 

lslv _return_ code 

lstv _previous_leg_ptr 

pczv _error _message_ptr 

pucv _bit_mask_ptr 

scza_file_name[FILE_NAME_NC+ 1] 

sslv _resetfunc_pfn 

suna_element[2] 

ztdv_statedata 

25 



Each function that can directly detect an error or call a function that can return an error must return 

a signed long error code indicating the success or failure of the function. All other functions can return 

nothing (void) or can return a value. A function that properly completed returns an error code of 

"RETURN_SUCCESS", while a function that detected an error returns an error code of 

"RETURN_NON_FATAL_ERROR" for non-fatal (user recoverable) errors (warning messages are issued) 

or return an error code of "RETURN_FATAL_ERROR" for fatal (programming) errors (error messages are 

issued), while a function that calls a function that returns an error deals with the error or returns the error 

code. It is the responsibility of the function detecting the error to issue an appropriate error message and 

the detecting function name. It is the responsibility of a function that calls a function that returns an error 

and decides to return the error to issue the calling function name (i.e. provide a trace back for the error). 

Virtually all constants are coded using the symbolic name capability within C. The syntax of the 

symbolic name statement is "#define", followed by the name, and followed by the replacement string. 

Subsequent occurrences of the name in the source code (not in quotes and not part of another name) are 

substituted with the replacement string before compilation of the source code is initiated. Additionally, 

names used in the "#define" statement are upper case characters only, all constants used in more than 

one function for the same purpose are defined in the global include source file, and local "#define" 

statement names are prefixed with the name of the function in upper-case characters plus an "_" 

character. Uses of this feature include dimensions for arrays, index values for arrays, switch case 

statement values, function return values, in-line macro definitions, and state or stage values. This 

standard has the advantages that errors caused by different values being used for the same purpose are 

greatly reduced or eliminated, the meaning of constants is more readily conveyed, and the source code 

becomes more self-documenting. Additionally, the symbolic name capability can also be used for in-line 

macros. The syntax of the symbolic macro statement is "#define"; followed by the macro name, "(",the 

macro parameter(s), and")": and followed by the replacement string. IGIDS allows both upper and lower 

case characters in the name for the symbolic macro statement. Example "#define" statements are in Table 

3.3. 

26 



Table 3.3 Example "#define" Statements 

#define ALTER_DESC_NC (size_t) 80 

#define AL TER_PROC_AL T (long) 1 

#define AL TER_PROC_LEG (long) 2 

#define AL TER_PROC_ TXT (long) 4 

#define AL TER_PROC_ALL (long) 7 

#define CONCENTRIC_RADIUS_MINIMUM 50.0 

#define FILE_NAME_NC (size_t) 127 

#define ID_NULL (long) ·1 

#define LANE_INB (long) 0 

#define LANE_ OUT (long) 1 

#define LANE_LENGTH_MINIMUM 10.0 

#define LANE_WIDTH_MINIMUM 8.0 

#define LANE_WIDTH_MAXIMUM 16.0 

#define LOCAL_FILE_NAM E_NC (size_t) 127 

#define RETURN_ SUCCESS (long) 0 

#define RETURN_NON_FATAL_ERROR (long) 1 

#define RETURN_FATAL_ERROR (long) 2 

#define rnax(a,b) (((a)>(b))?(a):(b)) 

The following statement order and syntax was chosen for all functions: 

(1) "#include" statement(s) starting in column 1 and followed by 1 blank line 

(2) "type function_name ( function_parameter(s) )"statement starting in column 1 

(3) "type function_parameter; /*comment *I" statement(s) starting in column 1 

(4) "{" in column 1 

(5) comment statement(s) starting in column 3 describing the purpose of the 

function and followed by 1 blank line 

(6) comment statement(s) starting in column 3 describing the global input 

requirements and followed by 1 blank line, if required 

(7) comment statement(s) starting in column 3 listing the function(s) which call the 

function and followed by 1 blank line 

(8) comment statement(s) starting in column 3 listing the function(s) called by the 

function and followed by 1 blank line, if required 

27 



(9) local"#define" statement(s) starting in column 3 and followed by 1 blank line, if 

required 

(1 0) local structure(s), union(s), and variable(s) in alphabetical order starting in column 

3 and followed by 1 blank line, if required 

(11) function code block(s) starting in column 3; a function code block includes (a) 

comment statement(s) starting in column 3 describing the purpose of the 

following code, (b) computer code starting in column 3, and (c) 1 blank line 

(12) "return;" or "return ( RETURN_SUCCESS );"statement starting in column 3 if not 

conditionally returned in the preceding code 

(13) 1 blank line, "return_fatal_error:" starting in column 3, 1 blank line, "igids_detmsg 

( " function_name " );" starting in column 3, and "return ( 

RETURN_FATAL_ERROR );"starting in column 3, if required 

(14) 1 blank line, "return_non_fatal_error:" starting in column 3, 1 blank line, 

"igids_detmsg ( " function_name " );" starting in column 3, and "return ( 

RETURN_NON_FATAL_ERROR );"starting in column 3, if required 

(15) 1 blank line, "return_returned_error:" starting in column 3, 1 blank line, 

"igids_trcmsg ( " function_name " );" starting in column 3, and "return ( 

lslv_retum_code );"starting in column 3, if required 

(16) "}" in column 1 

(17) 2 blank lines 

Within the function code, 2 spaces are used for indention. No tab characters are in the code. The 

standard maximum line length is 80 columns for functions and include source files. The comments for 

lines within include source files may be extended to 132 columns. The opening"{" and closing"}" for the 

"do", "for", "if", "switch", and "while" statements start in the same column directly below the first character 

of the "do", "for", "if", "switch", or "while" statement and all code between the opening"{" and the closing 

"}" is indented 2 spaces. The opening "{" and the closing "}" is used even when there is only one 

statement between them except an "if" statement without an "else" that does not exceed the standard 

maximum line length. The "else" for the "if" statement starts in the same column directly below the first 

character of the "if". An example of a nested "if" and "else" statement is presented in Table 3.4. 

The "switch" and "case" statement is preferred over the "if" and "else" statement when there are 

more than 2 choices. The "case" and "default" for the "switch" statement is indented 2 columns below the 

first character of the "switch" statement. The code and any "break;" statement(s) are indented 2 columns 

below the first character of the "case" or "default" statement. An example of a "switch" and "case" is 

shown in Table 3.5. 

28 



Table 3.4 Example of a Nested "if" and "else" Statement 

if(aaa=bbb) 

{ 

if(ccc=ddd) 

{ 

lNWW=XXX; 

else 

{ 

lNWW=yyy; 

Table 3.5 Example of a "switch" and "case" Statement 

switch { pslv _function ) 

case FUNCT _ADD_DBE: 

lslv_return_code = igids_altadddbe (); 

if ( lslv_return_code != RETURN_SUCCESS) goto return_returned_error; 

break; 

case FUNCT _CPY _OBE: 

lslv_return_code = igids_altcpydbe (); 

if ( lslv_return_code != RETURN_SUCCESS) goto return_returned_error; 

break; 

default: 

sprintf ( gcza_err_msg,"Undefined function= %1d",pslv_function ); 

igids_error ( gcza_err_msg ); 

goto return_fatal_error; 

29 



For statements within a block of code, the "="s, ";"s, and any comments at the end of a line are 

aligned if reasonable. There is no blank space before the ";" statement terminator unless needed for 

alignment. For a statement continued onto another line, the continued line(s) are indented a minimum of 

2 columns and preferably lined up with the first parameter following a"(", "=",or"+". Table 3.6 presents 

examples of these computer software coding standards. 

Table 3.6 Examples of Statement Alignment 

lslv_seg_id_num = gslv_seg_id_num ; 

lslv_id_num_blink = lslv_seg_id_num ; 

/* save global id num *I 

I* set .local blink *I 

sprintf ( gcza_err_msg,"Undefined function= %1d", 

pslv_function ); 

ldfv_dx = gstv_seg_ptr[lslv_seg_id_num].sdfv_beg_x -

ldfa_ref_ end_x[lsiv _end] 

There are no blank space(s) at the end of any line. For comma separated lists of arguments, there 

are no blank spaces before or after the comma unless needed for alignment purposes whereas for comma 

separated statements, there is 1 blank space before and after the comma. For the separating ";" within the 

"for" statement, there is 1 blank space before and after the";". Finally, there is 1 blank space before and 

after an opening "(" and the closing ")" while there are no blank space(s) before or after the opening "[" or 

the closing 'T' unless needed for alignment. Function references which do not have parameters have no 

space between the 11 
(" and the ") 11 as in "()". Table 3. 7 shows examples of these computer software coding 

standards. 

Table 3.7 Examples of Statement Spacing 

lslv_return_code = igids_intchk ( Ol,gslv_dim_inters-1 ); 

for ( lsiv_i=O, lsivj=O; lsiv_i<lsiv_n; lsiv_i++, lsivj--) 

lsla_ref_id_num[LOCAL_SEG_BEG] = gslv_seg_id_num; 

lslv _return_ code = igids_segsta (); 

30 



IGIDS keeps the entire IGIDS database in memory within the IGIDS software so that no disk 1/0 is 

involved in reading a data item thus making the software operate as fast as possible. Each structure 

contains an attribute which indicates whether the entry has been modified since the last time that the 

internal copy of the IGIDS database was written to the external copy. 

Many computer software languages, including C, support the concept of a structure. A structure 

is a collection of one or more variables, possibly of different types, grouped together under a single name 

for convenient handling. Structures are called "records" in some computer software languages. 

Structures help to organize complicated data because they permit a group of related variables to be 

treated as a unit instead of as separate entities. The variables named in a structure are called members. 

The liberal use of structures is strongly supported in the IGIDS development. 

Some higher-level computer software languages require the declaration of all variables at compile 

time and have a fixed maximum problem size whereas others, including C and MDL, allow the allocation 

and use of dynamic memory at execution time through the use of pointers and the maximum problem size 

is limited only by the virtual address space available from the operating system. This execution-time 

allocation and use of memory was established as one of the criteria for choosing a higher-level computer 

software language for IGIDS. The liberal use of execution-time allocation and use of memory is strongly 

supported to generate what might be called dimensionless programming. 

At compile time, IGIDS declares a pointer to a structure, a variable for the current allocation of 

instances of the structure, and a variable for the current use of instances of the structure. Since all 

references to the structure are through the pointer, IGIDS can change the value of the pointer at 

execution time to reference different areas of memory. During the initialization phase at execution time, 

IGIDS requests the operating system to allocate memory for an initial number of structure instances, say 

20, set the pointer to the address of this initial memory, set the current allocation to 20, and set the current 

use to 0. During normal execution, IGIDS uses these instances until there is a need for the 21st instance. 

IGIDS then requests the operating system to allocate memory for a new number of structure instances, say 

30, copy the data from the 20 instances into the first 20 instances of the 30 instances, set the pointer to 

the address of this new memory, return the memory occupied by the original 20 instances to the operating 

system for further allocation, set the current allocation to 30, and allow the program to continue. This 

process is repeated until the virtual address space available to IGIDS is exhausted. The amount of virtual 

address space available to a process can normally be set within the operating system and the maximum is 

generally 1 to 4 billion bytes. The advantage of this technique is having virtually no limits within the 

program. The disadvantages of this technique are the increased execution time because of pointer 

addressing as opposed to direct addressing, the increased execution time because of the need to check 

the allocation each time another instance is needed, the increased execution time because of allocation 

and reallocation of dynamic memory, the need to initialize the allocated memory at execution time, and the 

31 



increased risk of program failure by referencing memory outside the allocation range of the structures. 

The single advantage outweighs the disadvantages for IGIDS. 

To overcome the increased risk of program failure by referencing memory outside the allocation 

range of the structures, a function (named "igids_xxxchk" where "xxx" is the 3 character structure name 

and "chk" stands for "check") has been developed for each structure. It checks to ensure that an index 

number is in the range from zero through the current number of structure instances allocated minus one 

and in the range from a minimum value (normally zero) through a maximum value (normally the current 

number of structure instances in use minus one). Additionally, when an instance of a structure is no 

longer needed and can normally be deleted, that instance is added to a linked list of deleted instances for 

the structure (last added is first used and first added is last used) and the instance is marked as deleted. 

When a new instance of a structure is needed, first the deleted instances are used, then the allocated but 

unused instances are used, and finally additional instances are allocated from the operating system. 

If possible, IGIDS is limited only by the graphical engines. The graphical engines have a finite 

number of graphical levels or planes for separating graphics. The number of alternatives is limited by the 

minimum number of graphical levels or planes available on all graphics engines divided by the number of 

graphical levels or planes allocated per alternative. Currently, MicroStationr" has a limit of 63 graphical 

levels or planes and IGIDS has allocated 4 graphical levels or planes per alternative, therefore IGIDS is 

currently limited to 15 alternatives. 

COMPUTER HARDWARE 
Many workstations are available on today's market and the choice of a particular vendor's 

workstation is one of the least important considerations in influencing the IGIDS system design. The 

system design of IGIDS attempts to avoid anything that might exclude any vendor's workstation. 

Several criteria were established for assisting the user in choosing a workstation for IGIDS. The 

workstation should: 

(1) support the user's choice for a graphics engine, 

(2) support the operating system, 

(3) have a minimum performance of an Intel 486DX based computer system, 

(4) have a minimum of 1 screen with a preference for 2 screens, 

(5) have a minimum screen resolution of 72 dots-per-inch with a preference for 1 00 dots­

per-inch, 

(6) have a minimum screen size of 15 inches diagonal with a preference for 19 inches 

diagonal, 

(7) have a minimum of 32 colors for the largest screen with a preference for 256 colors for 

the largest screen, 

32 



(8) have a pointing device (either the absolute positioning cursor or the relative movement 

mouse), 

(9) have a minimum of 6 megabytes of physical memory with a preference for 8 megabytes 

of physical memory (the user should acquire as much physical memory as can be 

afforded and justified to keep the graphics engine database and the IGIDS database 

memory resident), 

(1 0) have a minimum of 40 megabytes of hard disk with a preference for 300+ megabytes of 

hard disk (this will depend upon the size and quantity of the user's files), 

(11) have a 1.44 megabyte floppy disk drive, 

(12) optionally have networking hardware and software, 

(13) be moderately priced, and 

(14) be used by many state DOTs and by many design professionals. 

ANALYSIS PROGRAMS 

Engineers sometimes use computer software packages in the analysis and design of single, at­

grade, vehicular-traffic intersections including diamond interchanges. Intersection geometry, location and 

type of traffic control devices, and traffic flow conditions must be defined in order to use these computer 

aids. These software packages are executed as external programs by the user selecting the software 

package. IGIDS checks the IGIDS database for the appropriate data and prompts the user for any missing 

data. IGIDS extracts the appropriate data from the IGIDS database and builds the input for the software 

package. IGIDS causes the software package to be executed by the operating system as an external or 

background process, and IGIDS allows graphics engine commands to be used by the user to review the 

output from the software package. When appropriate, the output from the software package may be 

displayed by IGIDS. It is the responsibility of the user to purchase/provide the external program software 

package. 

The intersection analysis and design software packages chosen as external programs should: 

(1) be supported by the operating system, 

(2) accept all necessary input from input file(s) without user interaction, 

(3) generate results into output file(s). 

(4) be moderately priced, 

(5) be readily available, and 

(6) be used by many state DOTs and by many design professionals. 

The external programs chosen for IGIDS are the Texas Department of Transportation Automated Plan 

Preparation System, Texas Model for Intersection Traffic, and the Signal Operations Analysis Program. 

The intersection analysis and design software packages chosen as internal programs should: 

(1) benefit from a closer relationship with IGIDS, 

33 



(2) be available in source code without copyright infringement, 

(3) be supported by the operating system, 

(4) be supported by the computer software language, and 

(5) be used by many state DOTs and by many design professionals. 

The internal programs chosen for IGIDS are the Texas Truck Off-tracking Model and the Highway Capacity 

Manual Chapter 9 procedures. 

IGIDS MAIN STRUCTURES 

IGIDS uses hierarchical, relational geometry and keeps the entire IGIDS database in memory. 

Additionally, a criteria established for the operating system is that it support virtual memory addressing with 

large real memory. A criteria established for the computer software language for IGIDS is that it allow the 

allocation and use of dynamic memory at execution time through the use of pointers. Finally, computer 

software coding standards require that each IGIDS database table contain an attribute which indicates 

whether the entry has been modified since the last time the internal copy of the IGIDS database was 

written to the external copy and that the liberal use of structures is strongly supported. 

The primary structures are intersection (inter or int), alternative (alter or alt), leg, Jane (lan), segment 

(Seg), and text (Txt). The ID is the number that is used to index the particular entry of the array of 

structures of the same type. The IDs start at 0 and are positive integers. The "#define" constant ID_NULL 

stands for an invalid ID and has a value of -1. The hierarchical relationships developed for these structures 

or IGIDS database tables are shown in Table 3.8. 

The intersection, alternative, leg, lane ,segment, and text structures each contain a flag to indicate 

whether the instance has been modified since the last time the internal copy of the IGIDS database was 

written to the external copy. Each list of instances has the ID of the beginning instance or ID_NULL if 

there are no instances on the list, the ID of the ending instance or ID_NULL if there are no instances on 

34 



Table 3.8 Hierarchical Relationships of IGIDS Objects 

Intersection: 

list of alternative IDs 

other intersection attributes 

Alternative: 

parent intersection ID 

list of leg IDs 

list of text IDs 

other alternative attributes 

Leg: 

parent alternative ID 

list of centerline segment IDs 

list of inner edge curb return segment IDs 

list of outer edge curb return segment IDs 

list of inbound lane IDs 

list of outbound lane IDs 

other leg attributes 

Lane: 

parent leg ID 

list of inner edge segment IDs 

list of outer edge segment IDs 

list of stop line segment IDs 

other lane attributes 

Segment: 

parent leg/lane ID 

list of text IDs 

other segment attributes 

Text: 

35 

parent alternative/segment ID 

other text attributes 



the list, and the number of instances on the list. This doubly linked list allows IGIOS to traverse a list from 

beginning to ending or from ending to beginning, allows a list to be traversed from any instance forward to 

the ending or backward to the beginning, and allows for easy insertion/deletion of an instance to/from a 

list. For each structure, a global variable is defined for a single temporary instance or entry of a structure 

and a single input instance or entry of a structure. Additionally, for each structure, a global pointer is 

defined for the array of structures (this pointer is only modified by the allocation and reallocation 

functions), for a single instance or entry of a structure (usually the instance or entry to work with), for a 

single temporary instance or entry of a structure (initialized to point to the single temporary instance or 

entry of a structure), and for a single input instance or entry of a structure (initialized to point to the single 

input instance or entry of a structure. The input instance or entry of a structure is used by IGIOS to store 

data until all necessary data is defined by the user and then the input instance or entry is added to the 

main group. Finally, a "#define" constant is defined for the size in bytes of a single instance or entry of a 

structure. 

The alternative, leg, lane, segment, and text structures each contain a flag to indicate whether the 

instance or entry is in·use or deleted, the 10 of the backward link (blink) (the previous entry on the same 

list) or IO_NULL if the instance or entry is first on the list, the 10 of the forward link (flink) (the next entry on 

the same list) or IO_NULL if the instance or entry is last on the list, and the 10 of the parent. 

There is only one instance of the intersection structure and its 10 is 0. In addition to the attributes 

listed above, the intersection structure contains many one-of-a-kind attributes such as: 

(1) the maximum gap between segments, 

(2) the selected alternative 10, 

(3) the global next 10 (available for use) for alternative, leg, lane, segment, and text, 

(4) the global maximum ID (memory allocated but unused) for alternative, leg, lane, 

segment, and text, 

(5) the global number of instances (currently in use) for alternative, leg, lane, segment, and 

text, 

(6) the graphics level or plane for the user and scratch, 

(7) the beginning level or plane for alternatives, 

(8) the number of levels or planes for alternatives, 

(9) the relative level or plane for centerlines, 

(1 0) the relative level or plane for lanes, 

{ 11) the relative level or plane for traffic control, 

(12) the relative level or plane for texts, and 

(13) the intersection description provided by the use, 

The intersection structure itself has no displayable graphics. 

36 



The number of alternatives is limited by the minimum number of graphical levels or planes available 

on all graphics engines divided by the number of graphical levels or planes allocated per alternative. 

Currently, MicroStationT" has a limit of 63 graphical levels or planes and IGIDS has allocated 4 graphical 

levels or planes per alternative, therefore IGIDS is currently limited to 15 alternatives. Therefore, there are 

zero to 15 instances of the alternative structure. In addition to the attributes listed above, the alternative 

structure contains many attributes such as: 

(1) the center X andy coordinate, 

(2) the alternative number (1->2 billion) provided by the user, 

(3) the beginning level or plane for the alternative, 

(4) the selected leg ID, 

(5) the selected lane ID, 

(6) the selected segment ID, 

(7) the selected text lD, 

(8) the alternative description provided by the user, and 

(9) the alternative application data. 

The alternative structure itself has no displayable graphics. IGIDS automatically sorts the list of Legs of an 

alternative using the centerline absolute angle of the Leg converted to an azimuth (north is zero degrees 

and clockwise is positive), starting at north, and traversing clockwise. 

There are zero to any number of instances of theLeg structure. In addition to the attributes listed 

above, the Leg structure contains many attributes such as: 

(1) the centerline absolute angle, 

(2) the distance and offset from the intersection center, 

(3) the station number at intersection center, 

(4) the direction for station numbers (increasing or decreasing), 

(5) the tie point x and y coordinate, 

(6) the leg number (1->2 billion) provided by the user, 

(7) a flag indicating whether the centerline segments are completed, 

(8) the selected centerline segment ID, 

(9) the selected lane ID, 

(1 0) the Leg description provided by the user, and 

( 11) the Leg application data. 

The Leg structure itself has no displayable graphics. The centerline is a connected list of segments. 

IGIDS automatically sorts the list of centerline segments of a Leg using the distance from the intersection 

center, starting at the segment end nearest the intersection center, and traversing away from the 

intersection center. IGIDS automatically sorts the list of inbound lanes and the list of outbound lanes of a 

Leg using the beginning offset from the centerline of the leg of the first segment of the inner edge of the 

37 



lane, starting at the lane nearest the median and farthest from the curb (lane 1), and traversing away from 

the median toward the curb (lane N) (left to right in the direction of travel). IGIDS also assigns the lane 

number (1·>N) to each lane after sorting the list of inbound lanes and the list of outbound lanes. 

There are zero to any number of instances of the lane structure. In addition to the attributes listed 

above, the lane structure contains many attributes such as: 

(1) the lane width at the intersection, 

(2) the lane length, 

(3) the centerline station for the intersection end of the lane, the beginning of the 

blockage, the ending of the blockage, and the end of the lane, 

(7) the relative distance and direction from the tie point, 

(8) the tie point x andy coordinate and absolute angle, 

(9) the lane number (1->N) calculated by IGIDS from median lane (lane 1) to the curb lane 

(lane N}, 

(1 0} a flag indicating whether the lane is inbound or outbound, 

(11) 3 flags indicating whether the inner edge, outer edge, and stop line edge are 

completed, 

(12) the selected segment 10, and 

(13) the lane application data. 

The lane structure itself has no displayable graphics. The inner edge, outer edge, and stop line are 

connected lists of segments. IGIDS automatically sorts the list of inner edge segments and the list of outer 

edge segments of a lane using the distance from the intersection center, starting at the segment end 

nearest the intersection center, and traversing away from the intersection center. IGIDS automatically 

sorts the list of stop line segments of a lane using the distance from the stop line segment end with the 

minimum offset from the centerline of the leg (the stop line segment end nearest the median and farthest 

from the curb), starting at the stop line segment end with the minimum offset from the centerline of the 

Leg (the stop line segment end nearest the median and farthest from the curb), and traversing away from 

the median toward the curb (the stop line segment end farthest from the median and nearest the curb) 

(left to right in the direction of travel}. 

There are zero to any number of instances of the segment structure. A segment is an arc or a line. 

In addition to the attributes listed above, the segment structure contains many attributes such as: 

(1) the relative distance and direction from the tie point, 

(2) for the beginning end of the segment, the relative angle, the centerline station and 

offset, the absolute angle, and the x andy coordinate, 

(3) for the ending end of the segment, the centerline station and offset, the absolute 

angle, and the x and y coordinate, 

(4) the 4 parameters defining the segment geometry, 

38 



(5) the segment number (1->N) calculated by IGIDS from the beginning end (1) to the 

ending end (N) depending on the type of segment list (lane inner edge, lane outer 

edge, lane stop line, centerline, curb return inner edge, and curb return outer edge), 

(6) a flag indicating whether the segment is an arc or a line, 

(7) a flag indicating whether the segment is an lane inner edge, lane outer edge, lane stop 

line, centerline, curb return inner edge, or curb return outer edge (which defines 

whether the segment parent is a leg or a lane), and 

(8) the selected text 10. 

For an arc segment, the 4 parameters are the radius, the sweep angle, the center x coordinate, and the 

center y coordinate. For a line, the first parameter is the length of the line and the remaining 3 parameters 

are not used. The segment structure itself has displayable graphics. 

There are zero to any number of instances of the text structure. In addition to the attributes listed 

above, the text structure contains many attributes such as: 

(1) the text angle, 

(2) the text height, 

(3) the text width, 

(4) the lower left x andy coordinate, 

(5) the 4 parameters for the text, 

(6) a flag indicating whether the text parent is an alternative or a segment, 

(7) the number of characters, 

(8) the text font, and 

(9) the text string. 

For alternative text, the 4 parameters are the absolute angle for the lower left XIY coordinate, the distance 

for the lower left XIY coordinate, the absolute text angle, and parameter 4 is not used. For segment text, 

the 4 parameters are the relative angle for the lower left XN coordinate, the distance for the lower left XIY 

coordinate, the absolute/relative text angle, and a flag indicating whether the text is at an absolute angle or 

at an angle relative to the segment. The text structure itself has displayable graphics. 

OBJECT-ORIENTED PROGRAMMING TECHNIQUES 

Object-oriented programming techniques have been used throughout IGIDS development. 

Although C++ is available, it was not used because it is not defined by an international standard. 

IGIDS uses hierarchical, relational geometry. The primary structures or IGIDS database tables are 

intersection (lnt), alternative (Ait), leg (Leg), Jane (Lan), segment (Seg), and text (Txt). There is a global 

variable for each structure indicating the current instance. Each structure has a list of IDs of its children and 

each child structure has the ID of its parent. This feature allows traversal of the structure hierarchy. 

39 



IGIDS has a function (named "igids_xxxspr" where "xxx" is the 3 character structure name and 

"spr" stands for "set parent") which sets and checks the parent for the structure instance and which calls 

the appropriate "igids_xxxspr" function for the parent, automatically propagating up the hierarchy toward 

the intersection structure. Every structure except intersection has a parent. There is only one parent for a 

structure instance. In the case of a structure where there may be more than one parent structure, there is 

a flag indicating which is the parent. 

Also, IGIDS has a function (named "igids_xxxsch" where "xxx" is the 3 character structure name 

and "sch" stands for "set child") which sets and checks the child for the structure instance and which calls 

the appropriate "igids_xxxsch" function for the child if a child instance exists, automatically propagating 

down the hierarchy toward the text structure. Every structure except text has a child structure. There may 

be no children instances even though there is a child structure. There may be more than one child 

structure for a structure. The function checks each list of children until if finds a child instance. 

Finally, IGIDS has a function (named "igids_xxxsdb" where "xxx" is the 3 character structure name 

and "sdb" stands for "set database entry") which sets and checks the parent and the child for the structure 

instance by calling the appropriate "igids_xxxspr" and "igids_xxxsch" functions. This function is normally 

called after the user has selected an object by pointing at a segment or text. 

After calling the appropriate "igids_xxxspr" or "igids_xxxsdb" function, all the attributes of the 

parent structures can be easily accessed. The programmer must know the structure that contains the 

attribute that is needed. As an example, suppose that "gslv_seg_id_num" is set to the 10 of a segment 

and that the programmer calls the "igids_segspr" function, then the x coordinate of the center of the 

intersection for the segment's parent alternative is referenced by "gstv_alter_ent_ptr->sdfv_center_x". 

IGIDS has structures and operations that it wants to perform on those structures. The primary 

structures or IGIDS database tables are intersection, alternative, leg, lane , segment, and text. The primary 

operations to be performed on those structures are: 

(1) add a database entry (FUNCT_ADD_DBE), 

(2) copy a database entry (FUNCT _ CPY _DBE), 

(3) delete a database entry (FUNCT _DEL_DBE), 

(4) initialize the database (FUNCT _INI_DBE) (only valid for the intersection structure), 

(5) select a database entry (FUNCT_SEL_DBE), 

(6) calculate the graphics for a database entry (FUNCT _CAL_GRA), 

(7) draw the graphics for a database entry (FUNCT _DRW_GRA), 

(8) erase the graphics for a database entry (FUNCT _ERS_GRA), 

(9) hilite the graphics for a database entry (FUNCT _HIL_GRA), and 

(1 0) calculate the station and offset for a database entry (FUNCT _CAL_STA) (only valid for a 

leg, a lane, and a segment structure). 

The only operations that can be performed on the intersection structure are 

40 



(1) initialize the database (FUNCT _INI_DBE), 

(2) draw the graphics for a database entry (FUNCT _DRW_GRA), and 

(3) erase the graphics for a database entry (FUNCT _ERS_GRA). 

All operations can be used with all structures except as noted. Table 3.9 summarizes the 

relationship between the primary operation and the IG IDS objects. 

Table 3.9 Relationship Between Primary Operations and IGIDS Objects 

PrimaJY OB~ration int ID! ~ lan seg txt 

FUNCT _ADD_DBE no yes yes yes yes yes 

FUNCT_CPY _DBE no yes yes yes yes yes 

FUNCT _DEL_DBE no yes yes yes yes yes 

FUNCT _INI_DBE yes no no no no no 

FUNCT _SEL_DBE no yes yes yes yes yes 

FUNCT_CAL_GRA no yes yes yes yes yes 

FUNCT_DRW_GRA yes yes yes yes yes yes 

FUNCT _ERS_GRA yes yes yes yes yes yes 

FUNCT _HIL_GRA no yes yes yes yes yes 

FUNCT_CAL_STA no no yes yes yes no 

An object is a single instance of a structure and all its children (such as a leg or an inbound lane) or 

a list of children and all their children (such as the centerline segments of a leg). To allow the user to select 

an object by pointing at it: 

(1) the user chooses the appropriate command which defines the operation to perform and 

the object type (such as rotate leg), 

(2) the user points at some displayable graphics (arc, line, or text) for the object (such as 

the center line segments of the leg; the inner edge, outer edge, or stop line segments 

of an inbound or outbound lane for the leg; or text attached to a segment of the leg), 

(3) the graphics engine searches the graphics engine database and gives IGIDS the ID 

from the graphics engine element that the user selected, 

(4) based upon the ID and the type (arc, line, or text) of the graphics engine element, the 

appropriate "igids_xxxspr" function is called, 

41 



(5) IGIDS checks to confirm that the selected structure(s) refer to the requested opject 

(automatically rejecting the graphics engine element if it does not refer to the requested 

object and repeating the process starting at (3)), and 

(6) IGIDS hilites the selected object for acceptance or rejection by the user. 

Table 3.10 is a list of the IGIDS objects and the corresponding "#define" object type. 

In order to allow IGIDS to perform an operation on a structure or one or more selected children of 

the structure, a global processing mask (a bit mask; true= process, false= do not process) was created 

(gslv_proc_mask). Functions, like delete database entry for the leg, conditionally process the operation 

on each list of children for the specified structure instance or entry on the structure instance or entry itself 

based upon the value of a bit in the global processing mask . The first processing mask is for the structure 

instance or entry itself and uses bit 0 (value= 1). The "_ALL" processing mask is a bitwise "or" of all the 

possible values for a particular structure. Table 3.11 is a list of the IGIDS objects and the corresponding 

"#define" processing mask. 

The traditional programming approach is to write a function where the operation is primary and the 

object is secondary. Each function knows how to perform the operation on every object. When the 

programmer wants to add another object, each function that performs an operation is modified to perform 

the operation on the new object. When the programmer wants to add another operation, a new function is 

developed that knows how to perform the operation on all objects. 

The object-oriented programming approach is to write a function where the object is primary and 

the operation is secondary. Each function knows how to perform every operation on the object. When 

the programmer wants to add another object, a new function is developed that knows how to perform all 

operations on the object. When the programmer wants to add another operation, each function is 

modified to perform the new operation on the object. 

The approach adopted in IGIDS is to develop a function for each object that dispatches the 

operation to the appropriate function(s) and develops a function for each object-operation combination 

where there is actually something to be done other than perform the operation on all children. IGIDS has a 

function (named "igids_xxx" where "xxx" is the 3 character structure name) which takes as a parameter the 

"FUNCT _" operation to be performed and dispatches the specified operation to the appropriate 

function(s). Additionally, IGIDS has a function (named "igids_xxxyyy" where "xxx" is the 3 character 

structure name and "yyy" is "adb" for FUNCT_ADD_DBE, "cdb" for FUNCT_CPY_DBE, "cgr" for 

FUNCT_CAL_GRA, "ddb" for FUNCT_DEL_DBE, "dgr" for FUNCT_DRW_GRA, "egr" for 

FUNCT_ERS_GRA, "hil" for FUNCT_HIL_GRA, "sdb" for FUNCT_SEL_DBE, and "sta" for 

FUNCT_CAL_STA) which performs operation "yyy" on structure "xxx". Finally, IGIDS has a function 

(named "igids_xxxpgf" where "xxx" is the 3 character structure name and "pgf" stands for "process 

generic function") which performs the specified "FUNCT _" operation on the selected "_PROC_" 

structure instance or entry. These "igids_xxxpgf" functions are used to perform an operation on all 

42 



children. Currently, there is an "igids_x:xxpgf" function for the intersection, alternative, leg, Jane, and 

segment structures or IGIDS database tables. 

43 



Table 3.10 IGIDS Objects and Object Types 

one aft OBJECT _AL T _ALL 

all legs of an aft OBJECT _AL T _LEGS 

all texts of an aft OBJECT_ALT_TXTS 

one leg OBJECT _LEG_ALL 

all centerline segs of a leg OBJECT_LEG_CNTRLN_SEGS 

all inbound lanes of a leg OBJECT _LEG_I NBLAN_LANS 

all outbound lanes of a leg OBJECT_LEG_OUTLAN_LANS 

all in/out edge curb return segs of a leg OB~IECT _LEG_CR_SEGS 

all inner edge curb return segs of a leg OBJECT _LEG_INN_CR_SEGS 

all outer edge curb return segs of a leg OBJECT_LEG_OUT_CR_SEGS 

one lane OBJECT _LAN_ALL 

one inbound lane OBJECT _LAN_INBLAN_ALL 

one outbound lane OBJECT_LAN_OUTLAN_ALL 

all inner edge segs ofalane OBJECT _LAN_INNEDG_SEGS 

all outer edge segs ofalane OBJECT_LAN_OUTEDG_SEGS 

all stop line segs of a lane OBJECT_LAN_STOPLN_SEGS 

one seg OBJECT _SEG_ALL 

one inner edge seg OBJECT _SEG_INNEDG_ALL 

one outer edge seg OBJECT_SEG_OUTEDG_ALL 

one stop line seg OBJECT_SEG_STOPLN_ALL 

one centerline seg OBJECT_SEG_CNTRLN_ALL 

one inner edge curb return seg OBJECT _SEG_INN_CR_ALL 

one outer edge curb return seg OBJECT_SEG_OUT_CR_ALL 

all texts of a seg OBJECT_SEG_TXTS 

one text OBJECT_ TXT _ALL 

one aft text OBJECT_TXT_ALT_ALL 

one seg text OBJECT_TXT_SEG_ALL 

all traffic control OB~IECT _ TRAFFIC_CONTROL_ALL 

all traffic signs OBJECT_ TRAFFIC _SIGN 

all traffic signal faces OBJECT _SIGNAL_ FACE 

all traffic controllers OBJECT_ TRAFFIC_CONTROLLER 

all traffic channelization OBJECT _CHANNELIZE 

all traffic signal phasing OBJECT _SIGNAL_PHASING 

44 



Table 3.11 IGIDS Objects and Processing Masks 

process intersection only INT _PROC_INT 

process intersection a Its INT _PROC_AL T 

process intersection and all children INT _PROC_ALL 

process alternative only AL TER_PROC_AL T 

process alternative legs AL TER_PROC_LEG 

process alternative texts ALTER_PROC_ TXT 

process alternative and all children AL TER_PROC_ALL 

process leg only LEG_PROC_LEG 

process leg centerline segments LEG_PROC_CNTRLN 

process leg inbound lanes LEG_PROC_INBLAN 

process leg outbound lanes LEG_PROC_OUTLAN 

process leg inner edge curb return segments LEG_PROC _INN_ CR 

process leg outer edge curb return segments LEG_PROC_INN_CR 

process leg curb return segments LEG_PROC_CR 

process leg and all children LEG_PROC_ALL 

process lane only LANE_PROC_LANE 

process lane inner edge segments LANE_PROC_INNEDG 

process lane outer edge segments LANE_PROC_OUTEDG 

process lane stop line segments LANE_PROC_STOPLN 

process lane and all children LANE_PROC_ALL 

process segment only SEG_PROC_SEG 

process segment texts SEG_PROC_ TXT 

process segment and all children SEG_PROC_ALL 

process text only TEXT _PROC_ TXT 

process text and all children TEXT _PROC_ALL 

45 



46 



CHAPTER 4 IGIDS FUNCTIONAL DESIGN 

MULTIPLE INTERSECTION ALTERNATIVES 

IGIDS allows for the analysis and design of a minimum of 15 alternative concepts for each 

intersection. This capability is accomplished by ordering the hierarchical parent-child relationship as 

intersection-alternative-leg. Currently, MicroStation™ has a limit of 63 graphical levels or planes and IGIDS 

has allocated 4 graphical levels or planes per alternative. IGIDS is currently limited to 15 alternatives. 

Commands were developed to copy all or part of an alternative to another alternative and to modify all or 

part of an alternative. Additionally, commands were developed to display or not display an entire 

alternative. 

LEVEL ASSIGNMENTS 

Each alternative and the major graphical component groupings of the alternative are placed on 

separate graphical levels or planes so that they can be independently displayed or not displayed in a 

particular view by the graphics engine. IGIDS allocates a user graphical level or plane and a scratch 

graphical level or plane. IGIDS allows the user to display or not display graphics by alternative and items. 

These capabilities are accomplished by defining the following attributes in the intersection structure or 

IGIDS database table and by assigning them the values shown in Table 4.1. 

Table 4.1 IGIDS Level Assignments 

Variable Name Description Value 

sslv_lev_scratch Level for scratch graphics 2 

sslv _beg_ lev _alter Beginning level for alternatives 3 

sslv _num_lev _alter Number of levels for alternatives 4 

sslv _rel_lev _center Relative level for centerlines 0 

sslv _rel_lev _lanes Relative level for lanes 1 

sslv _rel_lev _tc Relative level for traffic control 2 

sslv _rel_lev _text Relative level for texts 3 

47 



Additionally, commands were developed which allow the user to display or not display an entire 

alternative and to individually display or not display the centerline, lanes, traffic control, and text for an 

alternative. 

USER INTERACTION WITH COMMANDS 

IGIDS uses an interactive event-driven user interface. The various generic inputs available from 

the graphics engine are: 

(1) command selection, 

(2) coordinate entry, 

(3) reset entry, and 

(4) keyboard entry. 

Command selection is made by: 

(1) user key in, 

(2) function key activation, 

(3) screen menu selection, or 

(4) digitizer menu selection. 

The net result of a command selection is that IGIDS can detect that a command has been selected, 

whether the command is a graphics engine command or an IGIDS command, and the command name or 

command number. The actual event causing the command selection is not important to IGIDS. 

Coordinate entry is made by: 

(1) user keyin, 

(2) function key activation, 

(3) mouse button activation, or 

(4) cursor button activation. 

The result of a coordinate entry is that IGIDS detects that a coordinate entry has been performed and 

obtains the coordinate value in real world coordinates. The actual event causing the coordinate entry is 

not important to IGIDS. 

Reset entry is made by: 

(1) user keyin, 

(2) function key activation, 

(3) screen menu selection, 

(4) digitizer menu selection 

(5) mouse button activation, or 

(6) cursor button activation. 

The result of a reset entry is that IGIDS detects that a reset entry has been performed. Keyboard entry is 

made by user keyin, command selection, or function key activation. The result of a keyboard entry is that 

48 



IGIDS detects that a keyboard entry has been performed and obtains the character string that was 

entered. The actual event causing the reset or keyboard entry is not important to IGIDS. 

Each command is processed by a single function. To accomplish this goal, the concept of a 

processing stage was developed. The processing of a command proceeds from stage to stage until the 

command is completed or the user selects another command. Table 4.2 lists the global variables defined 

to implement processing of commands by stages. Table 4.3 enumerates the stages defined for IGIDS. 

IGIDS knows the function to call (a large "switch" and "case" statement in function "igids_prccmd") 

and the stage number to set (STAGE_1) when the user performs a command selection and the command 

is an IGIDS command. IGIDS maintains a pointer to the function to call and the stage number to set when 

the user performs a coordinate entry, reset entry, or keyboard entry. The pointers to functions are paired 

with the previously discussed global stage variables. Table 4.4 lists the zone variables defined in the 

"ztdv _statedata" structure and the global variables defined to maintain a pointer to the function to call. 

Basically, I GlOSs in an event loop waiting for the user to perform a: 

(1) command selection, 

(2) coordinate entry, 

(3} reset entry, or 

(4) keyboard entry. 

When the graphics engine notifies IGIDS that the user has performed one of these events, IGIDS sets the 

global stage number to the appropriate value and calls the designated function. Upon return from the 

designated function, IGIDS waits for the user to perform another entry and the process begins again. 

MicroStationcM performs the event loop processing for IGIDS. 

Table 4.2 IGIDS Global Variables to Implement Stages 

Variabl~ Name Descrigtioo CQ!l)m~nt 

gsiv_stage current command stage 

gsiv _stage_datapt data button stage coordinate entry 

gsiv _stage_home high-level return stage 

gsiv _stage_keyin key in stage keyboard entry 

gsiv _stage_reenter re-enter last data stage 

gsiv _stage_reset reset button stage reset entry 

gsiv _stage_return low-level return stage 

49 



#define Name 

STAGE_O 

STAGE_2 

STAGE_3 

STAGE_4 

STAGE_S 

STAGE_6 

STAGE_? 

STAGE_8 

STAGE_9 

STAGE_10 

STAGE_11 

STAGE_12 

STAGE_13 

STAGE_14 

STAGE_15 

STAGE_16 

STAGE_17 

STAGE_18 

STAGE_19 

STAGE_20 

STAGE_END_COMMAND 

Variable 

(*sslv_datafunc_pfn) 0 
(*gslv _home_pfn) 0 
(*sslv _keyinfunc_pfn) 0 
(*gslv_reenter_pfn) 0 
(*sslv _resetfunc _pfn) 0 
(* gslv _ret u rn_pfn) 0 

Table 4.3 IGIDS Stages 

Description 

Command Processing Stage Number 0 (special) 

Command Processing Stage Number 2 

Command Processing Stage Number 3 

Command Processing Stage Number 4 

Command Processing Stage Number 5 

Command Processing Stage Number 6 

Command Processing Stage Number 7 

Command Processing Stage Number 8 

Command Processing Stage Number 9 

Command Processing Stage Number 1 0 

Command Processing Stage Number 11 

Command Processing Stage Number 12 

Command Processing Stage Number 13 

Command Processing Stage Number 14 

Command Processing Stage Number 15 

Command Processing Stage Number 16 

Command Processing Stage Number 17 

Command Processing Stage Number 18 

Command Processing Stage Number 19 

Command Processing Stage Number 20 

Command Processing Stage Number 99 

Table 4.4 IGIDS Function Pointers 

Desg[jption Comment 

data button funct coordinate entry 

high-level return funct 

keyin funct keyboard entry 

re-enter last data funct 

reset button funct reset entry 

low-level return funct 

50 



It is the responsibility of a command function to designate at each processing stage the 

appropriate function and stage for a coordinate entry, reset entry, and keyboard entry. Most of the time, in 

IGIDS, the reset entry is used to reject a selection. Normally, the coordinate entry and keyboard entry 

events are mutually exclusive at a given processing stage for a command so that a function and stage are 

designated to output a message to the user that invalid input has been received and dismissed. The 

general processing of a command is illustrated in Table 4.5. 

Table 4.5 IGIDS Generalized Command Processing 

long igids_command () 

{ 

top: 

igids_cmdmsg ( "command message" ); 

switch ( gsiv_stage) 

{ 

case STAGE_1: 

igids_askVaiSI (STAGE_1,"Keyin: Value",FALSE,OL, 

igids_command ,STAGE_END_COMMAND , 

NULL_FUNCTION_PFN,STAGE_O 

igids_command 

break; I* wait for user input- keyin */ 

case ST AGE_2: 

,STAGE_2 

if ( data_not_ok) I* check data for acceptability*/ 

} 

igids_wrnmsg ("data not ok" ); 

gsiv_stage = STAGE_1; 

goto top; 

I* save signed long data in static or global variable for later use */ 

case STAGE_3: 

igids_askPoint (STAGE_1,"DataPt: Point", 

igids_command ,STAG E_1 

igids_command ,STAGE_1 

igids_command ,STAGE_4 

break; I* wait for user input - datapoint *I 

51 

r reset *I 

r reentry*/ 

/" retask */ ); 

/*reset *I 

r reenter*/ 

/* retask */ ); 



Table 4.5 IGIDS Generalized Command Processing (continued} 

case STAGE_4: 

if ( data_not_ok) /*check data for acceptability */ 

igids_wrnmsg ("data not ok" ); 

gsiv_stage = STAGE_3; 

goto top; 

/* save datapoint data in static or global variable for later use*/ 

case STAGE_S: 

/*process command with saved input*/ 

igids_infmsg ( "command completed"); 

gsiv_stage = STAGE_3; /*to re-cycle on last input*/ 

goto top; 

case STAGE_END_COMMAND: 

igids_endMdiPCmd (); 

break; 

default: 

igids_errmsg ( "programming error in command" ); 

goto return_fatal_error; 

return ( RETURN_SUCCESS ); 

return_fatal_error: 

igids_detmsg ( "igids_command" ); 

return ( RETURN_FATAL_ERROR ); 

IGIDS implements both noun/verb and verb/noun command processing. In noun/verb command 

processing, the user first selects the object to be operated upon (uses the selected object or executes 

the command to select a new object), then selects the operation to be performed by initiating the 

command, and finally accepts or rejects the hilited object. An example of noun/verb command processing 

is "leg rotate". In verb/noun command processing, the user first selects the operation to be performed by 

52 



initiating the command, then selects the object to be operated upon by pointing at the object, and finally 

accepts or rejects the hilited object. IGIDS provides a toggle between noun/verb and verb/noun 

command processing. Since the noun/verb command processing uses the selected object, more 

methods of choosing the object are available with noun/verb command processing. The generalized 

code to implement both noun/verb and verb/noun command processing is illustrated in Table 4.6. 

IGIDS allows the user to back up to previous input entry. This is accomplished by defining the 

following global variables (as previously discussed) and by developing a command to set the global stage 

to the re-enter stage and executing the re-enter function: 

gsiv _stage_reenter 

(*gslv_reenter_pfn) 0 
re-enter last data stage 

re-enter last data funct 

It is the responsibility of a command function to designate at each processing stage the appropriate 

function and stage for an input re-entry operation. 

IGIDS allows the user to cancel an IGIDS command at any point and to choose another IGIDS 

command at any point. These features were accomplished by making all commands collect input and 

store the data in global or static variables until all necessary input is received before performing the 

operation. Additionally, upon receiving a request for a graphics engine immediate command or an IGIDS 

immediate command, IGIDS can save the state of IGIDS command processing, execute the immediate 

command, restore the state of IGIDS, and continue processing the interrupted IGIDS command. An 

immediate command is one that may interrupt another command. The state of IGIDS command processing 

is the current values for the stage and function variables as discussed earlier. 

IGIDS allows the user to switch between IGIDS commands and graphics engine commands. This 

was accomplished by IG IDS filtering all event loop data and sending the graphics engine data to the 

graphics engine for final processing. 

53 



Table 4.6 Generalized NounNerb and Verb/Noun Command Processing 

long igids_command 0 

if ( gsiv_noun_verb && ( gsiv_stage == STAGE_1)) 

{ 

gsiv _stage = STAG E_2; 

top: 

igids_cmdmsg ( "command message" ); 

switch ( gsiv_stage) 

case STAGE_1: 

/*select object .. / 

case STAGE_2: 

r hilite and accept selected object*/ 

if ( selected_object_not_accepted ) 

gsiv_stage = STAGE_1; 

goto top; 

case STAGE_3: 

I* process remainder of command*/ 

break; 

default: 

igids_errmsg ( "programming error in command"); 

goto return_fatal_error; 

return ( RETURN_SUCCESS ); 

return_fatal_ error: 

igids_detmsg ( "igids_command" ); 

return ( RETURN_FATAL_ERROR ); 

54 



DATABASE "SAVE" OPERATIONS 

Each structure and IGIDS database table contains an attribute which indicates whether the entry 

has been modified since the last time that the internal copy of the IGIDS database was written to the 

external copy. Upon initial startup of IGIDS, after the user executes the IGIDS LOADFROM DATABASE 

command, and after the user executes the IGIDS SA VETO DATABASE command, IGIDS sets aiiiGIDS 

objects as nonmodified. Every addition or modification of an IGIDS object sets that object's attribute as 

modified. Upon ending IGIDS or ending MicroStation"', IGIDS determines whether any data has been 

modified since the last SA VETO DATABASE command and presents to the user an Alert Box. Pressing 

the "OK" push button will allow IGIDS to perform a SAVETO DATABASE command. Pressing the 

"Cancel" push button will cause IGIDS to exit without saving any data. 

55 



56 



CHAPTER 5 GETTING STARTED 

To become comfortable with IGIDS, stepping through a simple example will be useful. This 

example is for an lntergraph workstation running the Clix operating system. The user will be lead through 

an example which performs the following actions: 

(1) login to the workstation, 

(2) start MicroStation, 

(3) start IGIDS, 

(4) place an intersection that is typical of those found in many areas, 

(5} adjust the angle of one leg by 3.25 degrees, 

(6) place a standard Vehicle Turning Template, 

(7) save the intersection to a database file for later use, 

(8) end IGIDS, 

(9) end MicroStationT", and 

(1 0} logoff the workstation. 

IGIDS has been installed for your use in the directory /usrligids. If IGIDS has not been installed on your 

workstation, please refer to the Appendix entitled Installation Procedures. 

Step 1 is to login to the workstation in the usual manner as indicated in Figure 5.1. 

login: binman 
Password: 
CL1X System V Release 3.1 IA3260 
ia3260d 
Copyrigh~ (c) 1984 AT&T 
Copyright (c) 1992 
Intergraph Corporation; All Rights Reserved 
Including Application Programs, File Formats, and Visual Cisplays 
****************************************~***~*******~************************** 

* * 
* 
* Nasser I. Al-Rashid Transportation Engineering Laboratory * 
* * 
* Department of Civil Engineering * 
* * 
* The University of Texas at Austin * 
* * 
* * 
******************************************************************************* 
$ ustation_igids tusr/igids/demo.dgn 
Interactive Graphics Intersection Design System 
COPYRIGHT 1993 The University of Texas at Austin 
t:.sing de:a:~lt IGIDS path "/:~sr/igids". 

Figure 5.1 Starting MicroStation~ for use with IGIDS 

57 



Step 2 is to start MicroStation™. IGIDS operation requires the support of a graphics engine 

(MicroStation ™). This graphics engine must be up and running before starting IG IDS. To start 

MicroStation™ in a mode to work with IGIDS, the Unix command ustation_igids has been installed on 

your computer. A graphics file named /usr/igids/demo.dgn has been included in the IGIDS delivery 

for your use. To start MicroStation™ and use the above named file, at the UNIX prompt, type in 

"ustation_igids /usr/igids/demo.dgn" on one line. Once the MicroStation™ startup is complete, 

the MicroStation TM Command Window will appear (see Figure 5.2). The MicroStation ™ field names 

(status, command, key-in, inform, prompt, and error/warning) have been added to this figure for your 

future reference. IGIDS places the command name chosen by the user in the command field, places 

informative messages in the inform field, places user prompts for data entry in the prompt field, and places 

error and warning messages in the error/warning field. The user enters keyboard input and MicroStation ™ 

key-in commands in the key-in field. The user should set the MicroStation™working units (master units, 

sub units, and positional units) and set the global origin before starting IGIDS. IGIDS prohibits the user 

from changing the active level, the level lock, the level for an element, and the global origin. Changing 

the working units after IGIDS has started would cause disastrous results. 

Figure 5.2 MicroStation"" Command Window 

Step 3 is to start IGIDS by keying in the MicroStation"' command "mdl load igids" in the key-in 

field of the MicroStationTM Command Window (see Figure 5.3). 

Figure 5.3 Starting IGIDS in the MicroStation,.,. Command Window 

58 



IGIDS takes control of the active graphics file and deletes everything except what is recognized as scratch 

graphics (all graphics on levels 3 through 62 are controlled by IGIDS, while level 2 is the scratch level). 

IGIDS presents to the user an Alert Box (see Figure 5.4). Press the "OK" push button to allow IGIDS to 

continue. 

Figure 5.4 IGIDS Beginning Alert Box 

When ready, IGIDS will report "IGIDS: Ready" in the command field of the MicroStationn.. Command 

Window (see Figure 5.5). 

Figure 5.5 MicroStationTM Command Window after Starting IGIDS 

59 



The IGIDS startup sequence will display the IGIDS menu at the upper left of the screen (see Figure 5.6). 

......... II 
LOADFRO!Vl 
SELECT 
l.t1EW 

HlUTE 
ADO 
MOVE 
DELETE 
ROTATE 
COPY 
MODIFY 
SHOWlNFO 
SAVE TO 
ENOIGIOS 
TOOLS •·· 

1m 
m 

[default] 
Reenter Data 
Sta/Offset 

Noun-Verb 

Figure 5.6 IGIDS menu 

You may now execute the IGIDS commands of your choice. IGIDS commands are initiated by choosing 

one or a sequence of IGIDS menu items. These choices are made by placing the cursor on the desired 

menu item, then pressing and releasing the data button on the mouse. This sequence of moving the 

cursor, pressing, and then releasing the data button is called a click. If you are not sure which mouse 

button is designated as the data button, please consult your system administrator. The data button is 

usually the leftmost button on a 2-button or 3-button mouse. 

Step 4 is to place an intersection that is typical of those found in many areas by clicking on the 

LOADFROM menu item at the top left of the IGIDS menu (see Figure 5.7-a). The colors of the text and 

background of the LOADFROM menu item will be swapped and three new menu items will appear in the 

right column of the IGIDS menu. Next, click on the STANDARD menu item (see Figure 5.7-b). An 

additional set of menu items will appear in the right column of the menu below the currently displayed 

menu items. From these, click the 4x4 menu item (see Figure 5.7-c). This will start an IGIDS command to 

load the chosen standard Alternative. 

60 



= I....__. 
Ul• • t FR' l •JM ITX Mdl file 

SElECT DATABASE 
VIEW STMDABQ__ 

HlliTE 
ADO 

lll'!m- - 111111::::::-

OELETL====-
ROTATE 

COPY 

·MODIFY 

. SHO\.Y_I:\.FO 

. SAVETO 

fNOIGlOS 

TOOLS 

Yes 

No 
[defaultJIIIIIiillllllil·· 
Reenter Data 

Sta/Offs====et 

Noun Verb 

(a) (b) (c) 

Figure 5.7 Starting the IGIDS command LOADFROM STANDARD 4x4 

The name of the active IGIDS command will be shown in the Command fteld of the MicroStation Commarx:l 

Wirx:low (see Figure 5.8). The Prompt field is used to inform the user of the next user action for IGIDS. 

Figure 5.8 MicroStation Command Window with first prompt from the 
command LOADFROM STANDARD 4x4 

The command LOADFROM - STANDARD - 4x4 requires some further user input to 

complete the operation. The actions that are acceptable to IGIDS are indicated in the Prompt field. At this 

stage of the command, "DataPt/Reset: Alternative center/end command" is shown in the 

Prompt field (see Figure 5.8). This prompt has two major divisions separated by a colon (: ). Each major 

61 



division has some number of minor divisions which are separated by a slash (I). The major division to the 

left of the colon indicates the acceptable user input types ("DataPt", "Keyin", and/or "Reset"). The minor 

divisions to the right of the colon have a one-to-one relationship to those to the left and offer a brief 

description of the input or indicate the way that IGIDS will respond to each input. 

In this case, either a DataPt or a Reset is an acceptable user input. A DataPt is a specialized type 

of click that requires the cursor to be positioned on some portion of a graphical window and not on a menu 

item. A DataPt defines the X andY coordinates of a point to IGIDS. A DataPt may also be input by entering 

any of the MicroStation"" precision input key-in commands. These commands are listed in the 

MicroStation7
" Reference Guide in the Appendix and discussed under the topic Precision Input. The 

most commonly used entry is "XY=x,y". A Reset is the press and release of the mouse button that is 

designated as the reset button or other mechanism to generate a reset. The reset button is usually the 

rightmost button on a 2-button and 3-button mouse. A Keyln is keyboard entry of alphanumeric 

characters terminated with a carriage return. The displayed prompt indicates that IGIDS will interpret a 

DataPt to indicate the coordinates of the center point for the Alternative that is being added. A Reset will 

indicate that the user wishes to end processing of the current IGIDS command. 

Place a DataPt near the center of a window. IGIDS will process this input and report the actual 

coordinates in the Inform field. IGIDS has also put "Keyin: Alternative number [1]" into the Prompt 

field. This indicates that a Keyin is the only acceptable user input and that the keyin will be the number 

that the user wishes to assign to this Alternative. The "1" in square brackets is the default number to be 

used if the user input consists only of pressing the return key or the user clicks on the "[default]" 

command in the IGIDS menu. Press the return key. IGIDS will read an external file that describes the 

standard of interest and draw the graphics to represent this Alternative. Completion of the loading 

process will be reported in the Inform field. To properly view the graphics, it may be necessary to use a 

MicroStation™zoom or fit command to adjust the scale of the window. (Figure 5.9 depicts the alternative at 

this stage of this example (the text "Standard 4x4" has been moved in the plot). 

Step 5 is to adjust the angle of one leg by 3.25 degrees by clicking the ROTATE command 

from the left column of the IGIDS menu and then the LEG command from the right column. This will start 

the ROTATE - LEG command. In response to the prompt "Keyin: Rotation angle [1.0]", enter 

"3.25" plus a carriage return through the keyboard in the key-in field. IGIDS will hilite the leg nearest the 

top of the screen and issue the prompt "DataPt/Reset: accept & define dir. & 

rotate/reidentify". Enter a Reset and the leg nearest the top of the screen will return to its normal 

62 



Standard 4X4 

Standard 4X4 

I I 

II 
II 
II 
ll 
II 
II 

II 
II 
II 
II 
'II 
II 
Ill 

Figure 5.9 Standard 4x4 Intersection 

color. In response to the prompt "DataPt: identify a Leg", place a DataPt on the leg nearest the 

bottom of the screen. In response to the prompt "DataPt/Reset: accept & define dir. & 

rotate/reidentify", place a DataPt to the right of the hilited Leg in a location that the perpendicular 

projection of the point falls on the hilited centerline of the Leg. IGIDS will understand this DataPt to mean: 

(1) the hilited leg has been accepted as the leg to rotate, (2) since the point was located in the 

counterclockwise direction from the leg, rotation is to be counterclockwise, and (3) the user is ready to 

rotate the leg. Note that IGIDS has rotated the leg through the 3.25 degrees and reported statistics in the 

Inform field. You have probably noticed that to start an IGIDS command, first click a menu item from the left 

column of the IGIDS menu then click one or a sequence of menu items from the right column. 

Step 6 is to place a standard Vehicle Turning Template by clicking TOOLS, then 

TurnTemplate, and then WB-60 to start the command that places Vehicle Turning Templates. The 

templates depict the area traversed by a vehicle turning through an angle defined by the directions of an 

Inbound and Outbound Leg. The outside, front bumper and the inside, rear tire locations are tracked 

while keeping the outside, front tire on the arc of a circle of radius defined by the user for the selected 

AASHTO vehicle. 

The prompt "DataPt: identify inbound leg" will be displayed. In response, place a DataPt on 

any graphic element that is part of the Leg toward the bottom of the screen. IGIDS will hilite this leg and 

63 



prompt "DataPt/Reset: accept/reidentify". Place a DataPt anywhere to confirm that this is the 

Inbound Leg of choice. IGIDS will prompt "DataPt/Reset: identify outbound leg/reidentify 

inbound leg". Place a DataPt on any graphic element that is part of the Leg to the right of the screen. 

IGIDS will hilite this Leg and prompt "DataPt/Reset: accept/reidentify". Place a DataPt anywhere to 

accept this as the desired Outbound Leg. 

IGIDS will prompt "Keyin/Reset: turn radius[45]/reidentify Outbound Leg". Press the 

return key to use the default 45 feet turn radius. IGIDS will draw the requested template. MicroStation's 

window area or zoom in command may be used to better view the tum template while the move element 

command may be used to position the turn template as desired by (1) keying in "move element" in the 

MicroStationTM keyin field or clicking on the move element command in the MicroStationTM menu, (2) placing 

a DataPt on any of the graphics of the Vehicle Turning Template, (3) moving the cursor to dynamically 

move the Vehicle Turning Template to the desired position, (4) placing a DataPt at the desired position, 

and (5) entering a Reset to terminate the MicroStationTM move element command. The final intersection 

example graphics are shown in Figure 5.10 and 5.11. 

, Standard 4X4 I I 

II 

I : 
II 
II 
II 

I 
l I 
I I 
'II 

l I 
tl 

Standard 4X4 I I 

Figure 5.10 Example Intersection 

64 



I 
i 

I 
I 
I 
I 

/ 
,--~ ......... 

I . 

I 
I 
I 
\ 
" -r-----------------

R ' -------+-------

p" 
. 
I ~ . 
I 

62~ 
-------. 

\ I 
I . 

J 1 r ---~' I 
~ I 

I IS!\ 
I wl 
I rol 
I 

3 I 
I f-1 
l l 
I 

l 

Figure 5.11 Enlarged Example Intersection 

Step 7 is to save the intersection to a database file for later use by clicking on the SAVE TO 

command from the left column of the IGIDS menu and then the DataBase command from the right 

column. This will start the save alternative to database command. In response to the prompt "Keyin: 

IGIDS database file name", enter "demo.dbs" through the keyboard into the keyin field. IGIDS will 

save the intersection and all alternative data to the file "demo.dbs" and report "Saved database file 

name: demo.dbs" in the inform field. You may later load this intersection and all alternatives by issuing 

the LOAD FROM ~ DATABASE command at another time. 

Step 8 is to end IGIDS by clicking on the "END IGIDS" command from the left column of the 

!GIDS menu. Upon ending IGIDS or ending MicroStation™, IGIDS determines whether any data has been 

modified since the last SAVETO DATABASE command, if any, and presents to the user an Alert Box. 

Pressing the "OK" push button will allow IGIDS to perform a SA VETO DATABASE command whereas 

pressing the "Cancel" push button will cause IGIDS to exit without saving any data. Since a SA VETO 

65 



DATABASE command was just completed, the Alert Box will not be presented to the user. When 

finished, IGIDS will report "End IGIDS" in the command field. 

Step 9 is to end MicroStation'M by choosing the MicroStationn.o File then Exit command from the 

MicroStationTM pull down menu or keying in "exit" in the keyin field. 

Step 10 is to logoff the workstation by entering "lo" at the Unix prompt. (not applicable on DOS 

machines) 

Now that you have become a novice IGJDS user, proceed to become an expert user. To do this, 

the following steps are suggested: 

1) perform the scripted example of entering traffic signal data in the next chapter, 

2) scan the menu tree in the Appendix entitled IGIDS Command Menus to become familiar 

with the location of commands on the IGIDS menu, 

2) study the command descriptions and their processing diagrams in the Appendix 

IGIDS Command Descriptions, and 

3) develop command sequences for the jobs that you are to do. 

66 



CHAPTER 6 TRAFFIC SIGNAL DATA EXAMPLE 

Adding signalization to a 4 leg intersection with left turn bays on the north and south legs will 

serve as an advanced example of using IGIDS. The user should have already completed the scripted 

beginning example in the Chapter entitled Getting Started. This advanced example is for an lntergraph 

workstation running the Clix operating system. If using a DOS microcomputer steps 1 and 14 may not be 

necessary. The user will be lead through an example which performs the following actions: 

(1) login to the workstation, 

(2) start MicroStationT•, 

(3) start IGIDS, 

(4) place a 4 leg intersection with left turn bays on the north and south legs, 

(5) place a pretimed controller, 

(6) place signal faces, 

(7) specify signal phasing, 

(8) specify signal timing, 

(9) specify traffic volumes, 

(1 0) save the intersection to Texas Model for Intersection Traffic files for later use, 

(11) save the intersection to a database file for later use, 

(12) end IGIDS, 

(13) end MicroStationT•, and 

(14) logoff the workstation. 

IGIDS has been installed for your use in the directory /usrligids. If IGIDS has not been installed on your 

workstation, please refer to the Appendix entitled Installation Procedures. 

Step 1 is to login to the workstation in the usual manner. 

Step 2 is to start MicroStationT• by entering "ustation_igids /usr/igids/demo.dgn" on one 

line at the Unix prompt. 

Step 3 is to start IGIDS by keying in the MicroStationTM command "mdlload igids" in the key-in 

field of the MicroStationT• Command Window. 

Step 4 is to place a 4 leg intersection with left turn bays on the north and south legs by executing 

the LOADFROM - STANDARD - 5x4 menu item. Place a DataPt near the center of a window in 

response to the prompt "DataPt/Reset: Alternative center/end command". Press the return key 

in response to the prompt "Keyin: Alternative number [1]". Figure 6.1 and 6.2 depicts the 

ahemative at this stage of this example (the text "Standard 5x4" has been moved in the plot). 

Step 5 is to place a pretimed controller. Start the TOOLS - TRAFFIC - CONTROLLER -

PRETIMED command. In response to the prompt "DataPt: locate and place Pretimed 

67 



Standard 5X4 I I 

I : 
ll 
I I 
I 

I. I 
II 
II 
II 
II 
II 

Standard 5X4 I I 

Figure 6.1 Standard 5x4 Intersection 

I I I I I 
I I I I I 
I I I ': I I 
) I I I I 

I \ I 
. 
I '-

----~ 
/ . -....-----I . 

I . 
-------~~-~---------

! 
. 

____ j_ I . 
I .,....-'------. 

" I I \ . 
I I 

I I 
I \ I 
I I 
I J 

Figure 6.2 Enlarged Standard 5x4 Intersection 

68 



controller", use a DataPt to locate and place controller graphic in the north east quadrant near the 

intersection where the two stop lines would intersect. In response to the prompt "Keyin: number of 

Pretimed controller phases", key in the value "3" and a carriage return. The rectangle with the words 

"PRETIMED" should be drawn at the entered datapoint. 

Step 6 is to place signal faces. Start the command Tools - Traffic - Signal Face - 3 Lens. 

In response to the prompt "DataPt: identify Inbound Lane", place a DataPt on the outside Lane of 

the Southbound Leg (the stop line for a lane is the best object to use to identify a lane), then in response 

to the prompt "DataPt/Reset: accept and place 3 Lens Face/reidentify", place a DataPt on the 

outside Lane of each of the Northbound, Eastbound, and Westbound legs, and a final acceptance DataPt 

anywhere not on any IGIDS object. Next, start the command Tools- Traffic -Signal Face- 3 Lens 

PL. In response to the prompt "DataPt: identify Inbound Lane", place a DataPt on the inside Lane 

of the Southbound Leg , then in response to the prompt "DataPt/Reset: accept and place 3 Lens 

Prot Left Face/reidentify 11
, place a DataPt on the inside Lane of the Northbound Leg, and a final 

acceptance DataPt anywhere not on any IGIDS object. The final intersection example graphics is shown in 

Figure 6.3. 

I I 
I I 
I \ I 
I I jMETIMt~ 
J I 

I 

/ ~ ~i 
\ 

' i-----~/ ·-r-----
I I . looo 
I I . 

-------~r-~---------. 
I 

j_~ . 
---- I 

~ 
,------

' 1~ / \ I 
I I 
I ' I 
I I 

Figure 6.3 Enlarged Example Intersection 

69 



Step 7 is to specify signal phasing. Start the Tools - Traffic - Controller - PHASING 

command. In response to the prompt "Keyin: phase number[1]", key in "1". In response to the 

prompt "DataPt/Reset: id. sig.hd. or chan.sym. to add,remove/new phase", place a DataPt 

on the Protected Left Signal Face on the Southbound Leg. The signal face will be hilited. Place a DataPt 

on the Protected Left Signal Face on the Northbound Leg. This signal face will be hilited and the 

Southbound Protected Left Signal Face will be shown in green. Place an acceptance DataPt anywhere 

not on any Signal Face. The Northbound Protected Left Signal Face will be shown in green. The Signal 

Faces shown in green will be given green indications during phase 1. Press the reset button. In 

response to the prompt "Keyin: phase number[1]", key in "2". In response to the prompt 

"DataPt/Reset: id. sig.hd. or chan.sym. to add,remove/new phase", place a DataPt on the 

other Signal Face on the Southbound Leg. The signal face will be hilited. Place a DataPt on the other 

Signal Face on the Northbound Leg. The signal face will be hilited and the Southbound Signal Face will 

be shown in green. Place an acceptance DataPt anywhere not on any Signal Face. The Northbound 

Signal Face will be shown in green. The Signal Faces shown in green will be given green indications 

during phase 2. Press the reset button. In a similar manner, include the East and West leg in phase 3. 

To check phasing, in response to the prompt "Keyin: phase number[1]", key in "1". The 

north and south Protected Left Signal Faces will be shown in green. Press the reset button and the north 

and south Protected Left Signal Faces will be shown in their normal color. Key in "2" and the other north 

and south Signal Faces will be shown in green. Press the reset button and the other north and south 

Signal Faces will be shown in normal color. Key in "3" and the east and west Signal Faces will be shown in 

green. Press the reset button and the east and west Signal Faces will be shown in their normal color. 

Press the reset button. 

Step 8 is to specify signal timing. Start the command Tools -Traffic- Controller- TIMING. 

In response to the prompt "Keyin/Reset: Ph 1 Green [30.0]/next phase", key in "11". In 

response to the prompt "Keyin/Reset: Ph 1 Yellow Change [3.0]/next phase", use the Default 

Command to choose the default value (3.0). In response to the prompt "Keyin/Reset: Ph 1 All-Red 

Clearance [1.0]/next phase", key in "0". The current values are reported in the inform field of the 

MicroStationTM Command Menu ("Ph 1 green,yellow,red= 11.00,3.00,0.00"). Press the reset button. In a 

similar manner, enter timing data for phase 2 using 20,3, and 0, and for phase 3 using 30, 3, and 0. To 

check timing, review the current timing data for each phase in the inform field. Press the reset button to 

see data for the next phase. 

Step 9 is to specify traffic volumes. Start the command TOOLS - TRAFFIC - VOLUME -

Percent+VOL For East Bound Leg 3, enter a tab in the U-Turn field, "6" plus a tab in the Left Turn 

field, "84" plus a tab in the Straight field (notice that the column labeled Total Percent now contains 90), 

"10" plus a tab in the Right Turn field, and "475" plus a tab in the Total Volume field. In a similar manner, 

70 



enter the remaining data as shown in Figure 6.4. Notice that after the "950" plus a tab is entered into the 

South Bound Leg 1 Total Volume field, the OK button is enabled. Now press the OK button. 

Figure 6.4 Traffic Turn Movement Count 

Step 10 is to save the intersection toT exas Model for Intersection Traffic files for later use. Start 

the command SAVE TO - TX Mdl file. In response to the "Keyin/Reset: TEXAS Model GDV 

file [GDVDAT A)/skip" prompt, enter a carriage return to use the default and in response to the 

"Keyin: TEXAS Model SIM file name [SIMDATA]" prompt, enter a carriage return to use the 

default. 

Step 11 is to save the intersection to a database file by starting the SAVE TO - Data Base 

command. In response to the prompt "Keyin: IGIDS database file name", enter "signal.dbs". 

Step 12 is to end IGIDS by clicking on the "END IGIDS" command. 

Step 13 is to end MicroStationTMby choosing the MicroStation™ File then Exit command from 

the MicroStationTM pull down menu or keying in "exit" in the keyin field. 

Step 14 is to logoff the workstation by entering "lo" at the Unix prompt. 

71 



72 



REFERENCES 

1 . A Policy on Geometric Design of Highways and Streets. 1990, American Association of 
State Highway and Transportation Officials, Suite 225, 444 North Capitol Street, N.W., 
Washington, D.C., 20001. 

2. Highway Capacity Manual, Special Report 209, Transportation Research Board, National 
Research Council, Washington, D.C., 1985. 

3. Lee, Clyde E., Machemehl, Randy B., Rioux, Thomas W., and Inman, Robert F. "The 
TEXAS Model for Intersection Traffic, Version 3.2," 1993, Center for Transportation 
Research, The University of Texas at Austin, Austin, Texas, 78705-2650. 

4. Courage, K.G., "Signal Operations Analysis Package, Version 84," University of Florida 
Transportation Research Center, prepared for FHWA Implementation Package, 1985, with 
McTrans Supplement for SOAP, Version 4.1, June 1991. 

5. Texas Truck Off-Tracking Model. Texas Department of Transportation, Austin, Texas. 

73 



74 



APPENDIX A 

IGIDS Installation Instructions 

This appendix contains the IGIDS Installation Instructions for the Unix Operating System for 

workstations and for the MS-DOS Operating System for PCs. 

75 



76 



Unix Installation Instructions 

Interactive Graphics Intersection Design System (IGIDS) 
COPYRIGHT© 1994 by The University of Texas at Austin, Austin, Texas 

1. Login to the system as superuser by entering "root" and the root password. 

2. Insert the 3.5" floppy disk labeled IGIDS in the computer. 

3. If you want IGIDS to be located somewhere other than "/usr/igids", then create the alternate 

directory and soft link the directory to "/usr/igids". An example is 

/usr2/igids; In-s /usr21igids /usr/igids; chmod 755 /usr/igids /usr2/igids". 

4. Enter "fr_flop I compress -d I cpio -ivmud". 

5. Copy or move "igids.ma" to the MicroStation mdlapps directory. An example is 

"cp /usr/igids/igids.ma /usr/ip32/mstation/mdlappsligids.ma". 

6. Copy or move "ustation_igids" to the "/usr/bin" directory. An example is 

"cp /usr/igidslustation_igids /usr/bin/ustation_igids". 

7. Logoff the system as superuser by entering "exit". 

8. Login to the system as yourself by entering your username and password. 

9. Execute MicroStation by entering "ustation_igids" or "ustation_igids <file>". 

1 0. In the "MicroStation Command Window", select the "User" pull-down menu and then select 

"Environment Variables". 

77 

"mkdir 



11. Search the environment variable list for the entry "IGIDS_PATH". If the "IGIDS_PATH" 

environment variable does not exist, then create the "IGIDS_PATH" environment variable by (a) 

entering "IGIDS_PATH" in the text key-in field above and to the left of the "New" button, (b) 

entering "/usr/igids" in the text key-in field above the "Delete" button, (c) pressing the 'New" 

button, (d) and finally pressing the "Save" button. If the "IGIDS_PATH" environment variable 

does exist and is not "/usr/igids", then set the "IGIDS_PATH" environment variable by (a) 

selecting the "IGIDS_PATH" environment variable from the list by pressing on it, (b) entering 

"/usr/igids" in the text key-in field above the "Delete" button, (c) and finally pressing the "Save" 

button. 

12. Search the environment variable list for the entry "MS_FNTLB". If the "MS_FNTLB" environment 

variable is not "/usr/igids/sys_data/igidsfnt.lib", then set the "MS_FNTLB" environment variable by 

(a) selecting the "MS_FNTLB" environment variable from the list by pressing on it, (b) entering 

"/usr/igids/sys_data/igidsfnt.fib" in the text key-in field above the "Delete" button, (c) and finally 

pressing the "Save" button. 

13. Search the environment variable list for the entry "MS_FONTRSC". If the "MS_FONTRSC" 

environment variable is not "/usr/igids/sys_data", then set the "MS_FONTRSC" environment 

variable by (a) selecting the "MS_FONTRSC" environment variable from the list by pressing on it, 

(b) entering "/usr/igidslsys_data" in the text key-in field above the "Delete" button, (c) and finally 

pressing the "Save" button. 

14. Exit the "Environment Variables" menu by double-clicking the"-" icon in the top left corner of the 

menu. 

15. If you set or changed the "MS_FNTLB" or the "MS_FONTRSC" environment variable, enter "exit" 

in the "MicroStation Command Window" and then execute MicroStation again by entering 

"ustation_igids" or "ustation_igids <file>". 

16. In the "MicroStation Command Window", enter "mdlload igids". 

78 



MS-DOS Installation Instructions 

Interactive Graphics Intersection Design System (IGIDS) 
COPYRIGHT© 1994 by The University of Texas at Austin, Austin, Texas 

1. Insert the 3.5" floppy disk labeled IGIDS in the computer. 

2. Enter "<disk_fr>install <disk_fr> <disk_to>" where "<disk_fr>" is "a:" or "b:" and "<disk_to>" is "c:" 

or "d:" or "e:" or "f:" or "g:". An example is "a:install a: c:". 

3. Copy or move "igids.ma" to the MicroStation mdlapps directory. An example is 

"copy c:\igids\igids.ma c:\ustation\mdlapps\igids.ma". 

4. Execute MicroStation by entering "ustation" or "ustation <file>". 

5. In the "MicroStation Command Window", select the "User" pull-down menu and then select 

"Environment Variables". 

6. Search the environment variable list for the entry "IGIDS_PATH". If the "IGIDS_PATH" 

environment variable does not exist, then create the "IGIDS_PATH" environment variable by (a) 

entering "IGIDS_PATH" in the text key-in field above and to the left of the "New" button, (b) 

entering "C:\IGIDS" in the text key-in field above the "Delete" button, (c) pressing the 'New" 

button, (d) and finally pressing the "Save" button. If the "IGIDS_PATH" environment variable 

does exist and is not "C:\IGIDS", then set the "IGIDS_PATH" environment variable by (a) 

selecting the "IGIDS_PATH" environment variable from the list by pressing on it, (b) entering 

"C:\IGIDS" in the text key-in field above the "Delete" button, (c) and finally pressing the "Save" 

button. 

7. Search the environment variable list for the entry "MS_FNTLB". If the "MS_FNTLB" environment 

variable is not "C:\IGIDS\SYS_DATA\IGIDSFNT.LIB", then set the "MS_FNTLB" environment 

variable by (a) selecting the "MS_FNTLB" environment variable from the list by pressing on it, (b) 

entering "C:\IGIDS\SYS_DATA\IGIDSFNT.LIB" in the text key-in field above the "Delete" button, 

(c) and finally pressing the "Save" button. 

79 



8. Exit the "Environment Variables" menu by double-clicking the"-" icon in the top left corner of the 

menu. 

9. If you set or changed the "MS_FNTLB" environment variable, enter "exit" in the "MicroStation 

Command Window" and then execute MicroStation again by entering "ustation" or "ustation 

<file>". 

10. In the "MicroStation Command Window", enter "mdlload igids". 

80 



APPENDIXB 

IGIDS Command Menus 

This appendix contains the IGIDS Command Menus. The IGIDS Command Menus are in 

command menu order from top to bottom for the commands in the left column and are depicted the same 

as they appear to the user of IGIDS. All available sub-command options are shown. 

81 



82 



83 



84 



85 



86 



87 



88 



89 



90 



IQI)I '1Qibe 

llia.Ecr 
. ~ ,; . IWi.W 

llalfl! ·-;c .. ; .. , . iiii:ii'E 
ArlO ALTEMA11YE · ArlO M.1BIHA11YE 

.. '1'""""""' ....... I 1-/- -.- 1 ................. ''I MCM·-·'- -- LEGCN'I'AIJI MOllE LIDCN'I'AIJI ' '-- .. ,. •~~:n~au,...·" · ,..,.,.,..,_._ -·· IIIEDIAHCft DBE11 ·.·.- IIEOIAHCft DBEII IIEIUHCft I 
-- - - -- ROTA1E · · aRCft AOTATI CURBCft 

ctl'¥. • . I.NEN1MJ CXlP¥ LAM:...., 
MOOFY LAtE OIIJBIIIJ- · MOOFt LAHE-
III«M NU . · ·· TEXT · IIOOWNU 'EX! -

"'""...-- .: · ·-· • •-- ·: -.. - ·_·-_-··" Ef1Dml8: ·•·:·•·.: · 8YKE¥ff.-~<--::·,, EHDIGil8 ,-_. •· BYMIY_.. ·· .·- · INJml8-·. '. · - IYIEY_.. 

1
_ ....... _ 

1
. __ -- . 

1 1
_"' . ., > 

1 
__ ___ 

1
1AIIETO SAVE TO 

ll'C)()Ul• -l;::')t "'' :<IJOCll.! ,,::S• SCRAmfL'JL ~~()(U .:· ~TCHL\'L : TOOL&- . SCRATafl.\'1.. ~ )l00l.8 ' ' 
IYtil 

ill.r ... •• 
" ~· ·~ .· INnlerDite 

CD .... 

Figure A.S IGIDS Command Menu.- ADD commands 



92 



~ 

Figure B.6 IGIDS Command Menus- MOVE commands 



94 



:; 10106 . 
t.OADFAOM 
SI.'1ECt'. 
VIEW 
ltllll'fl ... 
ADO' 
MOVE .. 
DELETE . ... 

AOTA'IW · 
()(9( : .·' 

MOOFY IN'I'ERIItctiON 
llftOWN'O .. ALTEJINATM; 
8AVETO w 
UI'JtGIOG I.ANii 
TOOL$ I.ANii B>Oft 

TEXTONALT 
v .. TEXTOH&EG 
No •.· .. 
llcleflui1J. · 
R•m•ro.tt 
SltfOII .. I 

,· 
Houi\-Verb ·--

.... ;. 10106 .: 

LOADFflt?M _::_ J 
SI.'1ECt'. ,' :· .. J 

~ 
YEW l 
JIIJ1'E 
ADD 
MOVE 
DELETE 
ROTATE 
()(9( 
MODIFY . 
IIHOWH'O ..1.. 
SAVE TO ntMdlm• 
£NI)IQI)9 Om 8ft• 
TOOlS Autol'l.ml'r$ . 

OOAP 
v .. 
No 
default · 

RHntH Data 
8111/0ff .. t 

·.· . 

·~--r-.-:---
-

Noun• Verb Noult-Vetb Noun·Varb 

Figure 8.7 IGIDS Command Menus- DELETE through END IGIDS commands 



96 



co ..... 

Noun·V••b 

.. •' . .IQI08 
LOAD FROM TumTtfi'IPIJitt 
ISB.!'t:J' Sight Diet 
YEW TEXAS llodtl 
IlLITE HklhCNJMen 
ADO Tralflo 

-~ 

MOVE .. 
DB.£TE Chlll«ttt 
OOTATE 0.101'~ 
COPY· 
MOOI'Y 
SHOW INFO 
SAVETO · 
EH>IOI>S 
TOOLS 

•·· 
v .. 
No 
lldefauiiJ · · 
RNnltr Dati 
BtiiiOIII•t 

• 
~,\'ltb. lfOUn·V•Jb 

floun.Vetb 

Figure 8.8 IGIDS Command Menus- TOOLS commands 



98 



(0 
(0 

.. ~QM··. 

LOADAIOM · 
6E1J!'CT 

~ 
AOO 
MOYI! -oo.£11! 
ROTATE 
t::1JIV 
MOOIFY 
SHOW&O 
$AVE TO 
U.OQOS 
TOOl$ 

v .. 
No 
d•fault1 

RHntarDIII .-.· 

StlfOff .. t 

.. 

Noiii'I-V.,b 

Figure B.9 IGIDS Command Menus- YES through Noun-Verb commands 



100 



APPENDIX C 

IGIDS Command Descriptions 

This appendix contains the IGIDS Diagram Notes, the IGIDS Command Overview, and the IGIDS 

Command Descriptions. The IGIDS Command Descriptions are in alphabetical order. 

101 



102 



IGIDS Diagram Notes 

Square cornered boxes enclose a prompt to be presented to the user. Each prompt requires a 

user input for processing to continue. 

Round cornered boxes are for reporting actions that are taken by JGIDS. 

Diamond shaped boxes enclose a question. Some of the corners are labeled with possible 

answers to the question. The answer determines the path to be taken from this box. Most of these 

questions have a "yes" or "no' answer. 

There are 4 types of user input: 

(1) Reset - Executed by pressing the mouse reset button. Represented py this 

symbol: 

(2) Keyln -A sequence of key presses that are ended by a pressing the return key. 

Represented by this symbol: 

QQQQQQQ 
QQC)QQQ 
QQQQQQ 

(3) DataPt - Executed by using the mouse to position the cursor at the desired 

coordinates and then pressing the mouse data button. Represented by this 

symbol: 

(4) Reenter - An IGJDS command to request that IGIDS re-prompt for the most 

recently keyed-in data. Represented by this symbol: 

(REENTER) 

Each line leaving a square cornered box is labeled with the authorizing event. These labels are 

placed upon the Jines. 

103 



Each line entering an Identify Object box is labeled to indicate the point of entry into the Identify 

Object operation. These labels are adjacent to the lines. 

Diagrams that are for more than one command have underscores ( ) substituted for words 

that are specific to a command. An example is the MOVE - TEXT diagram. This is used for both 

Primitive Command: MOVE- TEXT ON SEG and Primitive Command: MOVE- TEXT ON ALT. In the 

Identify Object block for this diagram, the underscore may be replaced by either the word Alternative or 

the word Seg, as appropriate. 

identify Text on 

DataPt/Reset: identify Text on I end command 

DataPt/Reset: accept/reidentify 

Underscores are also used to replace parts of prompts that may vary, such as the Leg number 

when prompting for the volume on a Leg. 

104 



IGIDS Command Overview 

IGIDS Commands 

An IGIDS command is a request from the user for IGIDS to take some action. IGIDS commands 

are initiated by a Click on an IGIDS menu item. There are three types of IGIDS commands as 

documented in this Appendix: 

(1) PrimHive Command: an IGIDS or Microstation™ command that initiates an action that 

requires user interaction. When issued during the execution of another IGIDS or MicrostationTM 

command, it cancels any active IGIDS or Microstation™ command. 

(2) Temporary Command: an IGIDS or Microstation™ command that initiates an action that 

requires user interaction. When issued during the execution of another IGIDS or Microstation™ 

command, it temporarily suspends the command in progress. When the temporary command is 

ended, the suspended command continues from the point where it was suspended. 

(3) Transient Command: an IGIDS or Microstation™ command that initiates an action that 

requires no user interaction. When issued during the execution of another IGIDS or Microstation™ 

command, it does not end the command in progress. 

Identify Object subcommand 

An operation that is common to many commands is the identification of an existing IGIDS object 

for processing. When in the Verb-Noun mode, the user is prompted to identify the Object of choice by 

placing a data point (DataPt) near the Object. An Object near the DataPt is then hilited. When in the 

Noun-Verb mode, the selected Object of the appropriate type is hilited automatically. Next, in either 

mode, the user is prompted to confirm with a DataPt or deny with a Reset that the hilited Object is the 

correct one. If the hilited Object is not the Object of choice, the user will be prompted to identify another 

Object with a new DataPt. 

If there is only one object of the specified type, it will be assumed to be the object of choice and 

will automatically become the identified object. The diagram of this operation is shown below in Figure 

1(a). When a part of the diagram for an lGlDS command, it will be represented in the simplified form as 

shown in Figure 1 (b). 

As Figure 1 (b) shows, there are 3 points of entry into and 3 points of exit from the identification 

diagram. All of these points may not be appropriate for some commands. Only the entry and exit points 

that are needed will be used in diagrams for specific commands. 

The identify Object block in Figure 1(c) is used in Primitive Command: ROTATE- LEG. The 

exit by Reset and entry by DataPt are not needed for this command so are not shown in the diagram. As 

is typical, the placement of the entry and exit points has been adjusted to suit the particular diagram. 

105 



REENTER 

..-----Noun-Verb --<3> 
Verb-Noun 

1 
~ 

this is the identify prompt 

no 

yes 

no 

yes 

this is the accept prompt 

Identify Object 

Figure 1 (a) Identify object. 

106 

fiil 
lQJ 

reidentify 



.4 .4~ 

~ (REENTER] 
.., R 

I 

Identify Object 
reidentify 

prompt to identify Object is here 
....._ 
..... 

prompt to accept Object is here 

I .. 
~ Objeldentmed D 

Figure 1 (b) Identify object as shown in diagrams. 

,, 
identify Leg 

DataPt: identify Leg to rotate KREENTER 

DataPVReset: accept, define dir. & rotate/reidentify 

Leg idJ"tified 
j 

reidentify 

Figure 1 (c) Identify object as in the ROTATE-LEG diagram. 

107 



IGIDS Command Descriptions 

The IGIDS Command Descriptions are in alphabetical order. The major groupings are: 

(1) ADD, 

(2) COPY, 

(3) DELETE, 

(4) END IGIDS, 

(5) HILITE, 

(6) LOAD FROM, 

(7) MODIFY, 

(8) MOVE, 

(9) No, 

(10) Noun-Verb, 

(11) Reenter Data, 

(12) ROTATE, 

(13) SAVE TO 

(14} SELECT, 

(15) SHOW INFO, 

(16) STAIOFFSET, 

(17) TOOLS, 

(18) VIEW, 

(19) Yes, and 

(20) [Default]. 

108 



Primitive Command: ADD - ALTERNATIVE 

start here 

DataPVReset: Alternative center/end command 

0000000 
000000 
000000 

Keyin/Reset: Alternative number/end command 

no 

without graphics 

Alternative center coordinates, name and 10 number are specified. There is no graphical evidence that 
the Alternative was added. 

109 



Primitive Command: ADD - CURB CR - BY KEVIN 

start here 

Identify Leg 

DataPVReset: identify Leg for adding Curb Returns/end command End Command 

DataPVReset: accepVreidentify 

Leg identified reidentify 

report current curb return status 

Keyin/Reset: curb return radius (min=_)/reidentify Leg 

change Curb Return radius 

Add or revise the Curb Return. A keyed in radius is used for the Curb Return radius. This is the Curb 
Return between the Inbound Lanes of the identified Leg and the Outbound Lanes of the adjacent Leg. 

110 



Primitive Command: ADD· CURB CR- SCRATCH LVL 

START HERE 

Identify Leg 

DataPtiReset: identify Leg for adding Curb Returns/end command end command 

DataPt/Reset: accept/reidentify 

Leg identified 

Report current curb return status .,. ____ __, 

Datapt: identify Leg Curb Return arc 

Search for arc near point 

1-------no 

yes 

DataPt/Reset: accept and add Curb Return/reidentify 

Change Curb Return radius 

Add or revise the Curb Return. The radius of an identified arc will be used for the Curb Return radius. 
The arc may not be an IGIDS arc, but must be on the scratch level or in an attached reference file. This is 
the Curb Return between the Inbound Lanes of the identified Leg and the Outbound Lanes of the 
adjacent Leg. 

111 



Primitive Command: ADD - LANE INBND - SCRATCH LVL 

start here 

Datapt: identify line or arc to add to __ 

search for line or arc near point 

1-------no 

DataPVReset: add to __ /reidentify 

add line or arc to of selected lane 

Use this diagram for the three commands that follow: 

Primitive Command: ADD· LANE INBND- SCRATCH LVL -INNER EDGE 
Add a duplicate of an existing line or arc to the inner edge of the selected Lane. The existing line or arc 
cannot be an IGIDS Object, but must be on the scratch level or in an attached reference file. 

Primitive Command: ADD - LANE INBND - SCRATCH LVL - OUTER EDGE 
Add a duplicate of an existing line or arc to the outer edge of the selected Lane. The existing line or arc 
cannot be an IGIDS Object, but must be on the scratch level or in an attached reference file. 

Primitive Command: ADD- LANE INBND- SCRATCH LVL- STOPL EDGE 
Add a duplicate of an existing line or arc to the stoptine of the selected Lane. The existing tine or arc 
cannot be an IGIDS Opject, but must be on the scratch level or in an attached reference file. 

112 



Primitive Command: ADD- LANE INBND- SCRATCH LVL- START LANE 

start here 

~ 

identify Leg 

DataPt/Reset: identify Leg for starting new Lane 

DataPt/Reset: add new lane/reidentify Leg 

I 
Leg identified 

Add a new Inbound Lane to the selected Leg. The new Lane is made the selected Lane. There is no 
graphical evidence that the Lane has been added. 

113 



Primitive Command: ADD - LANE OUTBND - SCRATCH LVL 

start here 

Datapt: identify line or arc to add to __ 

search for line or arc near point 

1------no 

DataPt!Reset: add to __ /reidentify 

add line or arc to __ of selected lane 

Use this diagram for the three commands that follow: 

Primitive Command: ADD - LANE OUTBND - SCRATCH L VL - INNER EDGE 
Add a duplicate of an existing line or arc to the inner edge of the selected Lane. The existing line or arc 
cannot be an IGIDS Object, but must be on the scratch level or in an attached reference file. 

Primitive Command: ADD - LANE OUTBND - SCRATCH LVL- OUTER EDGE 
Add a duplicate of an existing line or arc to the outer edge of the selected Lane. The existing line or arc 
cannot be an IGIDS Object, but must be on the scratch level or in an attached reference file. 

Primitive Command: ADD - LANE OUTBND - SCRATCH L VL - STOPL EDGE 
Add a duplicate of an existing line or arc to the stopline of the selected Lane. The existing line or arc 
cannot be an IGIDS Object, but must be on the scratch level or in an attached reference file. 

114 



Primitive Command: ADD- LANE OUTBND- SCRATCH LVL- START LANE 

start here 

identify Leg 

DataPVReset: identify Leg for starting new Lane 

DataPVReset: add new lane/reidentify Leg 

I 
Leg identified 

Add a new Outbound Lane to the selected Leg. The new Lane is made the selected Lane. There is no 
graphical evidence that the Lane has been added. 

115 



Primitive Command: ADD- LEG CNTRLN- BY KEY-IN 

start here 

Add a new Leg to the selected Alternative. Leg 10 number, centerline length, centerline angle, station 
number at center of intersection and direction of stationing and Leg description must be specified. The 
centerline will be one straight Seg and will start at the center of the Alternative. 

116 



Primitive Command: ADD- LEG CNTRLN- SCRATCH LVL 

start here 

end command 

Keyin: Leg description 

DataPt: identify line or arc to add to Centerline ~------' 

search for line or arc near point 

DataPtiReset: accept and add to Centerline/reidentify 

'---...( add line or arc to Centerline ,..._ _____ ....~ 

For the selected Alternative, add a new Leg and/or Centerline Segs. Leg ID number is specified. If the 
leg doesn't exist, add a new Leg. For the new Leg, station number at center of intersection and direction 
of stationing and Leg description must be specified. Duplicates of existing lines or arcs may be added to 
the new or an existing Leg Centerline. The existing lines or arcs cannot be IGIDS Objects, but must be 
on the scratch level or in an attached reference file. 

117 



Primitive Command: ADO - MEDIAN CR - BY KEVIN 

start here 

Identify Leg 

DataPt!Reset: identify Leg for adding Curb Returns/end command 

DataPt!Reset: accept/reidentify 

Leg identified 

add Curb Return with radius 
to match median width 

reidentify 

end command 

Add the median Curb Return. The Curb Return radius is automatically set to span the median. This is the 
Curb Return that closes the median between the Inbound Lanes and Outbound Lanes of the identified 
Leg. 

Primitive Command: ADO- MEDIAN CR- SCRATCH LVL 
Add the median Curb Return. Not programmed yet. 

118 



Primitive Command: ADD- TEXT- TO AL T- BY KEY-IN 

start here 

REENTER 

use angle = 0.0 

Attach user specified Text to the selected Alternative. The location and absolute angle must be specified 
by the user. The Graphics Engine's current text size will be used. 

119 



Primitive Command: ADD- TEXT- TO ALT- SCRATCH LVL 

start here 

Datapt: identify existing text 

search for text near point 

1------no 

yes 

DataPVReset: add to Alternative/reidentify 

add text to selected Alternative 

Attach a copy of existing text to the selected Alternative. The existing text cannot be IGIDS Text, but 
must be on the scratch level or in an attached reference file. The characteristics of the existing text will 
be used. 

120 



Primitive Command: ADD- TEXT- TO SEG- BY KEY-IN 

start here 

Keyin: text angle relative or absolute (r/a) ? REENTER 

Attach user specified Text to the selected Seg. The location and rotation angle must be specified. The 
angle may be either absolute or relative. The Graphics Engine's current text size will be used. 

121 



Primitive Command: ADD -TEXT - TO SEG - SCRATCH LVL 

start here 

Keyin: text angle relative or absolute (r/a) ? 

Datapt: identify existing text 

search for text near point 

1-----no 

DataPt/Reset: add to Sag/reidentify 

add text to selected Seg 

Attach a copy of existing text to the selected Seg. The existing text cannot be IGIDS Text, but must be on 
the scratch level or in an attached reference file. The location and rotation angle must be specified. The 
angle may be either absolute or relative. 

122 



Primitive Command: COPY· ALTERNATIVE 

start here 

Identify Alternative 

DataPt/Reset: identify Alternative to copy/end command 

DataPt/Reset: accept/reidentify 

Alternative identified 

copy Alternative to new coordinates 1---------' 
use new name and number 

Make a copy of an existing Alternative. New center point coordinates, name and ID number may be 
assigned to the new Alternative. 

123 



Primitive Command: COPY- LEG 

start here 

Identify Leg 

DataPt/Reset: identify Leg to copy/end command 

DataPt/Reset: accept/reidentify 

Make a copy of an existing Leg. The Leg may be copied to any Alternative. A new 10 number, 
description, centerline angle, station number at center of intersection and direction of stationing may be 
assigned to the new Leg. 

124 



Primitive Command: COPY - TEXT ON AL T 

start here 

identify Text on Alternative 

DataPVReset: identify Text on Alternative/end command 

DataPVReset: accepVreidentify 

Text identified 

REENTER 

calculate text angle from two points 

copy text to selected Alternative 
use the new attributes 

Make a copy of an existing Text on an Alternative and attach it to the selected Alternative. The new Text 
may have a new location and angle. 

125 



Primitive Command: COPY - TEXT ON SEG 

start here 

identify Text on Segment 

DataPt!Reset: identify Text on Segment/end command 

DataPt!Reset: accept/reidentify 

Text identified 

REENTER 

DataPt: NEW Text angle, 2nd point 

calculate text angle from two points 

copy text to selected Seg 
use the new attributes 

Make a copy of an existing Text on a Seg and attach it to the selected Seg. The new Text may have a 
new location and angle. 

126 



Primitive Command: DELETE-ALTERNATIVE 

start here 

Identify Alternative 

DataPt: identify Alternative to delete 

DataPt/Reset: accept/reidentify 

Alternative identified reidentify 

Keyin: delete this entire Alternative? (yes/[no]) 

no------------------~ 

select next Alternative 

Delete an existing Alternative. Before each deletion, the user must confirm that the Alternative is to be 
deleted. 

127 



Primitive Command: DELETE - Curb Return 

start here 

Identify Leg 

1-----------------------------------------------~~R·I---~ .. ~M~endcommand DataPt!Reset: identify Leg for deleting Curb Returns !l.BJ 
DataPt!Reset: accept/reidentify 

Leg identified reidentify J .. 

( delete the Curb Return 

Use this diagram for the 2 DELETE -Curb Return commands that follow. 

Primitive Command: DELETE - CURB CR 
Delete an existing curb Lane Curb Return. This is the Curb Return between the Inbound Lanes of the 
identified Leg and the Outbound Lanes of the adjacent Leg. 

Primitive Command: DELETE - MEDIAN CR 
Delete an existing median Lane Curb Return. This is the Curb Return that closes the median between the 
Inbound Lanes and Outbound Lanes of the identified Leg. 

128 



Primitive Command: DELETE - LANE 

start here 

identify Lane 

DataPt: identify _bound Lane to delete 

DataPt/Reset: accept/reidentify 

Lane identified reidentify 

Keyin: delete this _bound Lane? (yes/[ no]) 

no------------~ 

Use this diagram for the 2 DELETE - LANE commands that follow. 

Primitive Command: DELETE - LANE INBND 
Delete an existing Inbound Lane. Before each deletion, the user must confirm that the Lane is to be 
deleted. 

Primitive Command: DELETE- LANE OUTBND 
Delete an existing Outbound Lane. Before each deletion, the user must confirm that the Lane is to be 
deleted. 

129 



Primitive Command: DELETE - LEG 

start here 

identify Leg 

DataPt: identify Leg to delete 

DataPVReset: accepVreidentify 

Leg identified reidentify 

Keyin: delete this entire Leg ? (yes![ no]) 

no--------------------~ 

Delete an existing Leg. Before each deletion, the user must confirm that the Leg is to be deleted. 

130 



Primitive Command: DELETE - SEG 

start here 

., 
Identify Seg 

DataPt: identify Seg to delete 

Data Pt!Reset: delete/reidentify 

I [!] ,, 
Seg identified 

. 

D 
,lr 

( delete the Seg ) 

,lr 

( use delete point to identify next Seg 

Use this diagram for the 4 DELETE - SEG commands that follow. Identify Object will only find Objects of 
the specific type that the command is designed to delete. For example, it is impossible to identify an Inner 
Edge Seg when trying to delete a Stopline Seg. 

Primitive Command: DELETE- SEG CNTRLINE 
Not programmed yet. 

Primitive Command: DELETE- SEG INN EDGE 
Delete an existing Inner Edge Seg. 

Primitive Command: DELETE - SEG OUT EDGE 
Delete an existing Outer Edge Seg. 

Primitive Command: DELETE - SEG STOPLINE 
Delete an existing Stopline Seg. 

131 



Primitive Command: DELETE -TEXT ON AL T 

start here 

Identify Text on Alternative 

DataPVReset: identify Text to delete/end command 

DataPVReset: accepVreidentify 

Text identified reidentify 

Keyin: delete this Text? (yesl[no]) 

delete the Text 

Delete an existing Text on an Alternative. Before each deletion, the user must confirm that the Text is to 
be deleted. 

132 



Primitive Command: DELETE - TEXT ON SEG 

start here 

Identify Text on Seg 

DataPVReset: identify Text to delete/end command 

DataPVReset: accepVreidentify 

Text identified 

Keyin: delete this Text? (yes/[no]) 

0000000 
000000 
000000 

reidentify 

no------------~ 

yes 

delete the Text 

Delete an existing Text on a Seg. Before each deletion, the user must confirm that the Text is to be 
deleted. 

133 



Primitive Command: DELETE - TRAF CONTRL 

start here 

Identify a Traffic Control Device 

DataPt: identify a Traffic Control Device 

DataPVReset: delete/reidentify a Traffic Control Device 

Device identified reidentify 

Keyin: delete the Traffic Control Device? (yes![ no]) 

no----------------~ 

yes 

delete the Device 

Delete an existing traffic control device. Before each deletion, the user must confirm that the device is to 
be deleted. 

134 



Primitive Command: END IGIDS 
Stop IGIDS. IGIDS graphics will remain in the Graphics Engine's database, but the IGIDS data cannot be 
recreated from this. If IGIDS data has not been saved in some form, it will be lost. 

Transient Command: HI LITE - CURRENT AL T 
Hilite all of the Legs and Text on an Alternative of the selected Alternative. 

Transient Command: HILITE - CURRENT LANE- ALL 
Hilite the Inner Edge Segs, Outer Edge Segs and Stopline Segs of the selected Lane. 

Transient Command: HILITE - CURRENT LANE- INNER EDGE 
Hilite the Inner Edge Segs of the selected Lane. 

Transient Command: HILITE - CURRENT LANE- OUTER EDGE 
Hilite the Outer Edge Segs of the selected Lane. 

Transient Command: HILITE - CURRENT LANE- STOP LINE 
Hilite the Stopline Segs of the selected Lane. 

Transient Command: HILITE - CURRENT LEG- ALL 
Hilite the Inbound Lanes, Outbound Lanes, Centerline Segs, Median Lane Curb Return Segs, and Curb 
Lane Curb Return Segs of the selected Leg. 

Transient Command: HILITE - CURRENT LEG - CENTERLINE 
Hilite the Centerline Segs of the selected Leg. 

Transient Command: HILITE - CURRENT LEG- CURB CR 
Hi lite the Curb Lane Curb Return Segs of the selected Leg. 

Transient Command: HILITE - CURRENT LEG -CURB RETURNS 
Hilite the Median Lane Curb Return Segs and Curb Lane Curb Return Segs of the selected Leg. 

Transient Command: HILITE - CURRENT LEG -INBND LANES 
Hilite the Inbound Lanes of the selected Leg. 

Transient Command: HILITE - CURRENT LEG- MEDIAN CR 
Hilite the Median Lane Curb Return Segs of the selected Leg. 

Transient Command: HILITE - CURRENT LEG - OUTBND LANES 
Hilite the Outbound Lanes of the selected Leg. 

Transient Command: HILITE - CURRENT SEG 
Hilite the selected Seg. 

Transient Command: HILITE - CURRENT TEXT 
Hilite the selected Text. 

135 



Primitive Command: LOAD FROM- DATABASE 

message 

no 

start here 

Keyin: Intersection database filename: 

Cl Cl Cl Cl CICI Cl 
Cl Cl CICI CICI 

Cl Cl C1 Cl CICI 

load Intersection 

end command 

end 
command 

Load Intersection data from a file that was written by Primitive Command: SAVE TO- Data Base. All 
data from the current IGIDS session will be lost. 

136 



Primitive Command: LOAD FROM· STANDARD 

start here 

DataPt: Alternative center 

report center coordinates 

Keying: Alternative number[ ] 

load Alternative 

Use this diagram for the 17 LOAD FROM· STANDARD commands that follow. 

Primitive Command: LOAD FROM· STANDARD· 3x2 

end 
command 

Load a standard 4 leg Alternative that has 1 through Inbound Lane, 1 exclusive left turn Inbound Lane, 
and 1 Outbound Lane on the north-south street and 1 through Inbound Lane and 1 Outbound Lane on the 
east-west street. Coordinates of the center point and the 10 number must be specified. 

Primitive Command: LOAD FROM· STANDARD· 3x3 
Load a standard 4 leg Alternative that has 1 through Inbound Lane, 1 exclusive left turn Inbound Lane, 
and 1 Outbound Lane in each direction. Coordinates of the center point and the 10 number must be 
specified. 

Primitive Command: LOAD FROM · STANDARD - 4t2 

137 



Load a standard 3 leg "T" Alternative. The northbound approach T's into the east-west street. The 
northbound approach has 1 Inbound Lane and 1 Outbound Lane. The east-west street has 2 through 
Inbound Lanes and 2 Outbound Lanes. Coordinates of the center point and the ID number must be 
specified. 

Primitive Command: LOAD FROM- STANDARD- 4t3 
Load a standard 3 leg "T" Alternative. The northbound approach T's into the east-west street. The 
northbound approach has 2 Inbound Lanes and 1 Outbound Lane. The east-west street has 2 Inbound 
Lanes and 2 Outbound Lanes. Coordinates of the center point and the ID number must be specified. 

Primitive Command: LOAD FROM- STANDARD- 4t4 
Load a standard 3 leg 'T" Alternative. The northbound approach T's into the east-west street. Each leg 
has 2 Inbound Lanes and 2 Outbound Lanes. Coordinates of the center point and the 10 number must be 
specified. 

Primitive Command: LOAD FROM- STANDARD- 4x2 
Load a standard 4 leg Alternative that has 2 through Inbound Lanes and 2 Outbound Lanes on the north­
south street and 1 through Inbound Lane and 1 Outbound Lane on the east-west street. Coordinates of 
the center point and the ID number must be specified. 

Primitive Command: LOAD FROM- STANDARD- 4x3 
Load a standard 4 leg Alternative that has 2 through Inbound Lanes and 2 Outbound Lanes on the north­
south street and 1 through Inbound Lane, 1 exclusive left turn Inbound Lane, and 1 Outbound Lane on 
the east-west street. Coordinates of the center point and the ID number must be specified. 

Primitive Command: LOAD FROM- STANDARD- 4x4 
Load a standard 4 leg Alternative that has 2 through Inbound Lanes and 2 Outbound Lanes in each 
direction. Coordinates of the center point and the ID number must be specified. 

Primitive Command: LOAD FROM - STANDARD - 5x4 
Load a standard 4 leg Alternative that has 2 through Inbound Lanes, 1 exclusive left turn Inbound Lane, 
and 2 Outbound Lanes on the north-south street and 2 through Inbound Lanes and 2 Outbound Lanes on 
the east-west street. Coordinates of the center point and the ID number must be specified. 

Primitive Command: LOAD FROM - STANDARD - 5x5 
Load a standard 4 leg Alternative that has 2 through Inbound Lanes, 1 exclusive left turn Inbound Lane, 
and 2 Outbound Lanes in each direction. Coordinates of the center point and the ID number must be 
specified. 

Primitive Command: LOAD FROM- STANDARD- 6x4 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes and 3 Outbound Lanes on the north­
south street and 2 through Inbound Lanes and 2 Outbound Lanes on the east-west street. Coordinates of 
the center point and the ID number must be specified. 

Primitive Command: LOAD FROM- STANDARD- 6x5 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes and 3 Outbound Lanes on the north­
south street and 2 through Inbound Lanes, 1 exclusive left turn Inbound Lane, and 3 Outbound Lanes on 
the east-west street. Coordinates of the center point and the ID number must be specified. 

Primitive Command: LOAD FROM - STANDARD - 6x6 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes and 3 Outbound Lanes in each 
direction. Coordinates of the center point and the ID number must be specified. 

Primitive Command: LOAD FROM- STANDARD -7x4 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes, 1 exclusive left turn Inbound Lane, 
and 3 Outbound Lanes on the north-south street and 2 through Inbound Lanes and 2 Outbound Lanes on 
the east-west street. Coordinates of the center point and the ID number must be specified. 

138 



Primitive Command: LOAD FROM- STANDARD -7x5 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes, 1 exclusive left turn Inbound Lane, 
and 3 Outbound Lanes on the north-south street and 2 through Inbound Lanes, 1 exclusive left turn 
Inbound Lane, and 2 Outbound Lanes on the east-west street. Coordinates of the center point and the 10 
number must be specified. 

Primitive Command: LOAD FROM - STANDARD - 7x6 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes, 1 exclusive left turn Inbound Lane, 
and 3 Outbound Lanes on the north-south street and 3 through Inbound Lanes and 3 Outbound Lanes on 
the east-west street. Coordinates of the center point and the 10 number must be specified. 

Primitive Command: LOAD FROM- STANDARD -7x7 
Load a standard 4 leg Alternative that has 3 through Inbound Lanes, 1 exclusive left turn Inbound Lane, 
and 3 Outbound Lanes in each direction. Coordinates of the center point and the 10 number must be 
specified. 

139 



Primitive Command: LOAD FROM - TX Mdl file 

start here 

REENTER 

Alternative number[ ] 

Load data for an Alternative from a file that was written by the TEXAS Model processor called GDVDA TA. 
Specify the coordinates of the center point, data file name and ID number. 

140 



Primitive Command: MODIFY -ALTERNATIVE 
Not programmed yet. 

Primitive Command: MODIFY - INTERSECTION 
Not programmed yet. 

141 



Primitive Command: MODIFY - LANE - LATERAL SHIFT 

START HERE 

identify Lane 

DataPt: identify a Lane 

DataPt/Reset: accept & define dir. & move/reidentify 
reidentify 

Lane identified 

DataPt/Reset: define direction and move/reidentify 

move Lane 
report total movement 

Shift a Lane laterally by a specified distance. The direction of movement is determined by the location of 
the move DataPt with respect to the Leg centerline. The radii of any arcs on the Lane edges will be 
adjusted by the amount of the shift. This is the same as Primitive Command: MOVE - LANE -
LATERAL. 

Primitive Command: MODIFY - LANE - LENGTHEN 
Not programmed yet. 

Primitive Command: MODIFY - LANE - NARROWER 
Not programmed yet. 

142 



Primitive Command: MODIFY - LANE - SHORTEN 

start here 

identify Lane 

DataPVReset: identify Lane to shorten/end command 

DataPVReset: accept/reidentify 

Lane identified reidentify 

REENTER 

DataPVReset: shorten Lane/reidentify 

Shorten the end of a Lane that is nearest the intersection center. 

Primitive Command: MODIFY - LANE - WIDEN 
Not programmed yet. 

Primitive Command: MODIFY - LANE EDGE - LENGTHEN 
Not programmed yet. 

Primitive Command: MODIFY - LANE EDGE - SHORTEN 
Not programmed yet. 

Primitive Command: MODIFY - LANE EDGE -TAPER 
Not programmed yet. 

143 

end command 



Primitive Command: MODIFY- LEG 

start here 

identify Leg 

DataPVReset: identify Leg to modify/end command 

DataPVReset: accepVreidentify 

Leg identified 

QQQC)QQQ 
QQQQQQ 
QQQQQQ 

REENTER 

reidentify 

REENTER 

Keyin: NEW CL station number at Intersection center 

QQQQQQQ 
QQQQC)Q 
QQQQQQ 

REENTER 

NEW Station direction 
Keyin: increasing or decreasing (i/d)[ ] ? 

use old stationing direction 

Change the Leg description, centerline angle, station number at center of intersection and direction of 
stationing. 

144 



Primitive Command: MODIFY - TEXT ON AL T 

start here 

Identify Text 

DataPt: identify Text on Alternative 

DataPt/Reset: accept/reidentify 

Text identified 

Keyin: NEW Text string 

modify text with new characteristics 

Change the text, location and angle of an existing Text on an Alternative. 

145 

reidentify 



Primitive Command: MODIFY • TEXT ON SEG 

start here 

Identify Text 

DataPt: identify Text on Segment 
reidentify 

~----------------------------------------------~ 
DataPt/Reset: accept/reidentify 

Text identified 

Keyin: NEW Text string REENTERI-----1 

DataPt: New Text placement point 

New Text angle, 1st point 

New Text angle, 2nd point 

modify text with new characteristics 

Change the text, location and angle of an existing Text on a Seg. 

146 



Primitive Command: MOVE -ALTERNATIVE 

start here 

Identify Alternative 

DataPt/Reset: identify Alternative to move 

DataPt/Reset: accept & define new center/reidentify 

Alternative identified reidentify 

report current center coordinates 

report pending NEW center coordinates 

DataPt/Reset: move Alt/different NEW point 

Move an Alternative by specifying a new center point. 

Primitive Command: MOVE - CONTROLLER 
Not programmed yet. 

147 



Primitive Command: MOVE- LANE- LATERAL 

START HERE 

identify Lane 

DataPt: identify a Lane 
1----------------------t reidentify 

DataPt/Reset: accept & define dir. & move/reidentify 

Lane identified 

move Lane 
report total movement 

DataPt/Reset: define direction and move/reidentify 

Shift a Lane laterally by a specified distance. The direction of movement is determined by the location of 
the move DataPt with respect to the Leg centerline. The radii of any arcs on the Lane edges will be 
adjusted by the amount of the shift. This is the same as Primitive Command: MODIFY - LANE -
LATERAL SHIFT. 

148 



Primitive Command: MOVE- LANE -LONGITUDINAL 

start here 

identify Lane 

DataPt!Reset: identify Lane to shorten/end command end command 

DataPt!Reset: accept/reidentify 

Lane identified reidentify 

REENTER 

Shorten the end of a Lane that is nearest the intersection center. This is the same as Primitive 
Command: MODIFY - LANE - SHORTEN 

149 



Primitive Command: MOVE - LEG - LATERAL 

start here 

Identify Leg 

DataPVReset: identify Leg to move/end command 

DataPVReset: accepVreidentify 

Leg identified 

Keyin: distance to move/reidentify 

CCCCCCQ 
CQQQQQ 
QCCQQC 

reidentify 

end command 

Move a Leg laterally by a specified distance. The direction of movement is determined by the arithmetic 
sign of the distance. Plus will move to the right when facing in the direction of inbound traffic. 

Primitive Command: MOVE - SIGN 
Not programmed yet. 

Primitive Command: MOVE- SIGNAL FACE 
Not programmed yet. 

150 



Primitive Command: MOVE -TEXT 

start here 

Identify Text on __ _ 

end command DataPVReset: identify Text on --~/end command 

DataPVReset: accepVreidentify 

Text identified 

DataPt: new Text angle, 2nd point 

calculate text angle from two points 

Use this diagram for the 2 MOVE- TEXT oommands that follow. 

Primitive Command: MOVE - TEXT ON AL T 
Move an existing Text on an Alternative. The rotation angle may also be changed. 

Primitive Command: MOVE - TEXT ON SEG 
Move an existing Text on a Seg. The rotation angle may also be changed. 

151 

reidentify 



Transient Command: No 
In reply to a prompt requesting a "yes" or "no" response, send "no" to IGIDS. This is the same as 
entering "no" through the keyboard. 

Transient Command: Noun-Verb or Verb-Noun 
This command toggles between the two methods of command processing. The Noun-Verb method 
always uses the selected IGIDS Object as the default choice when identifying an Object for processing. 
The Verb-Noun method always prompts the user to identify an Object for processing. 

Transient Command: Reenter Data 
In an IGIDS command, move backward in the processing sequence to where IGIDS most recently 
prompted for a Keyin of data and reprompt for the data. 

152 



Primitive Command: ROTATE -ALTERNATIVE 
Not programmed yet. 

Primitive Command: ROTATE - LEG 

start here 

Keyin: rotation angle[] ~-------------

identify Leg 

DataPt: identify Leg to rotate REENTER ....... ~ 

DataPt!Reset: accept, define dir. & rotate/reidentify 

Leg identified reidentify 

no 

message 

DataPt!Reset: define dir. & REENTER 

Rotate a Leg through a specified angle. The direction of rotation is determined by the direction of the 
rotate DataPt with respect to the Leg centerline. 

153 



Primitive Command: ROTATE- TEXT ON ALT 
Not programmed yet. 

Primitive Command: ROTATE -TEXT ON SEG 
Not programmed yet. 

154 



Primitive Command: SAVE TO - AutoPianPrep 

start here 

Identify AHernative 

DataPt: identify Alternative to save to APP 

DataPt/Reset: accept/reidentify 

Alternative identified reidentify 

Keyin: Alternative-APP filename 

write data to file 

end command 

Save data from one Alternative into a file that can be read by TX-DOT's Automatic Plan Preparation 
software. 

155 



Primitive Command: SAVE TO - Data Base 

start here 

Keyin: IGIDS database filename 

write data to file 

end command 

Save data from all Alternatives into a file that can be read by IGIDS. This will save all IGIDS data from 
the current session. Data saved by this command can be read by Primitive Command: LOAD FROM -
DATABASE. 

156 



Primitive Command: SAVE TO - SOAP 

start here 

Identify Alternative 

DataPt: identify an Alternative for SOAP84 analysis 

DataPVReset: accept/reidentify 

reidentify Alternative identified 

message no 

yes 

message no 

yes 

Keyin/Reset: SOAP84 filename/reidentify Alternative 

Keyin/Reset: Total all-red time, seconds [)/reidentify AHemative 

~no 

yes 
write data to file 

Save data from one Alternative into a file that can be read by the Signal Operations Analysis Package 
software. 

157 



Primitive Command: SAVE TO - TX Mdl file 

start here 

Keyin/Reset: TEXAS Model GDV file [GODATA)Iskip 

REENTER 

Keyin: TEXAS Model SIM file name [SIMDATA] 

Save data from the currently selected Alternative into files that can be read by the TEXAS Model for 
Intersection Traffic. The first file will be readable by the TEXAS Model processor called GDVDATA. The 
second file will be readable by the TEXAS Model processor called SIMDAT A. 

158 



Transient Command: SELECT -ALTERNATIVE - NEXT 
Make the next Alternative in the selection list the selected Seg 

Transient Command: SELECT- ALTERNATIVE- PREVIOUS 
Make the previous Alternative in the selection list the selected Seg 

Temporary Command: SELECT- LANE - BY DATA PT 

start here 

,, 
identify Lane 

DataPVReset: identify Lane/end command 

DataPVReset: accept Lane/reidentify 

I 
Lane identified 

make this Lane the selected Lane 

continue the interrupted 
IGIDS command 

Identify a Lane to be the selected Lane. 

159 



Temporary Command: SELECT· LANE· (BY DATA PT) INBOUND 

start here 

,,. 
identify Lane 

DataPtiReset: identify Inbound Lane/end command 

DataPtiReset: accept Inbound Lane/reidentify 

I 
Inbound Lane identified 

make this Lane the selected Lane 

continue the interrupted IGIDS command 

Identify an Inbound Lane to be the selected Lane. 

160 



Temporary Command: SELECT - LANE - (BY OAT A PT) OUTBOUND 

start here 

~ 

identify Lane 

DataPtiReset: identify Outbound Lane/end command 

DataPtiReset: accept Outbound Lane/reidentify 

I 
Outbound Lane identified 

make this Lane the selected Lane 

continue the interrupted 
IGIDS command 

Identify an Outbound Lane to be the selected Lane. 

Transient Command: SELECT- LANE - CURRENT 
Hilite the selected Lane. 

161 



Temporary Command: SELECT ~ LANE • INBOUND ID 

start here 

Keyin/Reset: Inbound Lane number/continue 

make this Lane the selected Lane 

message 

continue the interrupted 
IGIDS command 

Specify the ID number of an Inbound Lane on the selected Leg to be the selected Lane. 

Transient Command: SELECT· LANE~ NEXT 
Make the Lane with the next higher ID number the selected Lane. If the currently selected lane has the 
highest ID number, make the opposite direction Lane with the ID number 1 the selected Lane. 

Transient Command: SELECT· LANE- (NEXT) INBOUND 
Make the Inbound Lane with the next higher ID number the selected Lane 

Transient Command: SELECT· LANE· (NEXT) OUTBOUND 
Make the Outbound Lane with the next higher ID number the selected Lane 

162 



Temporary Command: SELECT-LANE-OUTBOUNDID 

start here 

Keyin/Reset: Outbound Lane number/continue 

Cl Cl Cl Cl CICI Q 
Cl Q CICI CCI 
QOCIQQQ 

message 

make this Lane the selected Lane 
continue the interrupted 

IG I OS command 

Specify the ID number of an Outbound Lane on the selected Leg to be the selected Lane. 

Transient Command: SELECT- LANE - PREVIOUS 
Make the Lane with the next lower ID number the selected Lane. If the currently selected lane has ID 
number 1, make the opposite direction Lane with the highest ID number the selected Lane. 

Transient Command: SELECT- LANE- (PREVIOUS) INBOUND 
Make the Inbound Lane with the next lower ID number the selected Lane 

Transient Command: SELECT- LANE- (PREVIOUS) OUTBOUND 
Make the Outbound Lane with the next lower ID number the selected Lane 

163 



Temporary Command: SELECT - LEG - BY DATA PT 

start here 

,, 
identify Leg 

DataPVReset: identify Leg/end command 

DataPVReset: accept Leg/reidentify 

I 
Leg identified 

make this Leg the selected Leg 

continue the interrupted 
IGIDS command 

Identify a Leg to be the selected Leg. 

164 



Temporary Command: SELECT- LEG - BY ID 

start here 

Keyin/Reset: Leg number/continue 

make this Leg the selected Leg 

message 

continue the interrupted 
IGIDS command 

Specify the ID number of a Leg in the selected Alternative to be the selected Leg. 

Transient Command: SELECT- LEG- CURRENT 
Hilite the selected Leg. 

Transient Command: SELECT- LEG - NEXT 
Make the Leg that is nearest to the selected Leg in a clockwise direction the selected Leg. 

Transient Command: SELECT- LEG - PREVIOUS 
Make the Leg that is nearest to the selected Leg in a counterclockwise direction the selected Leg. 

165 



Temporary Command: SELECT- SEG- BY DATA PT 

start here 

identify Seg 

DataPt/Reset: identify Seg/end command 

DataPt/Reset: accept Sag/reidentify 

I 

Seg identified 

make this Seg the selected Seg 

continue the interrupted 
IGIDS command 

Identify the Seg to become the selected Seg 

Temporary Command: SELECT- SEG- BY ID 
Specify the 10 number of the Seg to become the selected Seg 

Transient Command: SELECT- SEG -CURRENT 
Hilite the selected Seg 

Transient Command: SELECT- SEG- NEXT 
Make the next Seg in the selection list the selected Seg 

Transient Command: SELECT - SEG - PREVIOUS 
Make the previous Seg in the selection list the selected Seg 

166 



Temporary Command: SELECT- TEXT- BY DATA PT 

start here 

, 
identify Text 

DataPt/Reset: identify Text/end command 

DataPt/Reset: accept Text/reidentify 

I 
Text identified 

make this Text the selected Text 

continue the interrupted 
IGIDS command 

Identify the Text to become the selected Text 

Temporary Command: SELECT- TEXT- BY 10 
Specify the ID number of the Text to become the selected Text 

Transient Command: SELECT- TEXT- CURRENT 
Hilite the selected Text 

Transient Command: SELECT- TEXT- NEXT 
Make the next Text in the selection list the selected Text 

Transient Command: SELECT- TEXT - PREVIOUS 
Make the previous Text in the selection list the selected Text 

167 



Transient Command: SHOW INFO· FULL 
Show a more complete description of the currently selected objects in a window. 

Transient Command: SHOW INFO· SHORT 
Provide a single line of information about the currently selected Objects. This line will list the current 10 
number of the selected Alternative, Leg and Lane. 

168 



Temporary Command: Sta/Offset 

start here 

identify LegCenterline 

DataPVReset: identify a Leg centerline/end command 

DataPVReset: centerline for station and offset/reidentify 

Identified 

Continue the interrupted 
IGIDS command 

DataPVReset: station and offset/reidentify 

~------------yes 

no 

message 

Report the station and offset of a point, based on the stationing of an identified Leg centerline. 

169 



Primitive Command: TOOLS - HighCapMan - Chapter 9 

start here 

~ 

Identify Alternative 

DataPt: identify Alternative 

Data Pt!Reset: accept/reidentify 

I 

Alternative identified 

message 

no 

end command 

DataPt: view v/c bar charts 

DataPt: view delay bar charts 

A partial implementation of the procedures described in Chapter 9 of the Highway Capacity Manual. 
Determination of the critical lane groups for the intersection is not implemented 

170 



Transient Command: TOOLS - HighCapMan - Del Graphics 
Delete all of the Highway Capacity Manual v/c and delay bar charts. 

Transient Command: TOOLS - Sight Dist - Del Graphics 
Delete all of the Sight Distance graphics. 

171 



Primitive Command: TOOLS - Sight Dist - No Control 

start here 

~ 
Identify Inbound Lane 

DataPt: identify first Inbound Lane 

DataPt/Reset: accept/reidentify 

I reidentify ..4 
first Lanlidentified 

... 
Keyin/Reset: first Leg speed [ ] /reidentify first Lane )lJJ-.... 

I ... ~ R 
e:t Cl Cl c::t CICI Cl 

CICICIQCI§b 
Cl Cl CICI Cl ['3 

(REENTER) R 
~ T 

I 
Identify Lane 

Data Pt/Reset: identify second Inbound Lane/reidentify first Lane 

DataPt/Reset: accept/reidentify 

I reidentify A 
second Lale identffied 

(REENTER 

r Keyin/Reset: second Leg speed [ ¥reidentify first Leg )-{I]--
( Cl Cl Cl C CICI Cl 
===="i:,==~= 

.~ 
( draw sight lines 

Draw sight line graphics for two approaches of an uncontrolled intersection. 

172 



Primitive Command: TOOLS ~ Sight Dist ~ Stopped 

start here 

Identify Inbound Lane 

DataPt: identify stopped Inbound Lane 

DataPt!Reset: accept/reidentify 

stopped Lane identified reidentify 

Identify Leg 

DataPt!Reset: identify conflicting Leg/reidentify stopped Lane 

DataPt!Reset: accept/reidentify 

conflicting Le identified reidentify 

Keyin/Reset: conflicting Leg speed [ ¥reidentify conflicting Leg 

Keyin,DataPt/Reset: stopped bumper pos. [¥reidentify conflicting Leg 

Draw sight line graphics for the intersection of a stop sign controlled approach and an uncontrolled 
approach. 

173 



Primitive Command: TOOLS - Sight Dist - Yield 

start here 

.,, 
Identify Inbound Lane 

DataPt: identify yielding Inbound Lane 

DataPt!Reset: accept/reidentify 

I 
reidentify .4 ~ yielding Lane identified 

.,, 
_. 

Keyin!Aeset: yielding Leg speed [ ¥reidentify yielding Leg )-{1]---
I .4 .. (OOOOOOOJ 000000 

000000 

r~ ll3 
(REENTER) ~ ,, 

Identify Leg 

Data Pt!Reset: identify conflicting Leg/reidentify yielding Lane 

DataPt!Reset: accept/reidentify ... 

I reidentify 
conflicting Leg identified 

(REENTER) .,, 
Keyin//Reset: conflicting Leg speed [ ]/reidentify conflicting Leg ){I!-R 

(0000000) 000000 
000000 

.,, 
draw sight lines 

Draw sight line graphics for the intersection of a yield sign controlled approach and an uncontrolled 
approach. 

174 



Primitive Command: TOOLS- TEXAS Model -Animation 
Not programmed yet. 

Transient Command: TOOLS - TEXAS Model - Del Graphics 
Delete all of the TEXAS Model statistics bar charts. 

Primitive Command: TOOLS - TEXAS Model - Graph 

draw bar 
charts 

yes 

start here 

end command 

no 

Use this diagram for the 14 TOOLS- TEXAS Model- Graph commands that follow. 

Primitive Command: TOOLS- TEXAS Model- Graph ADMPH 

message 

Draw bar charts showing the Average Delay Below 1 0 MPH statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS - TEXAS Model - Graph AQD 
Draw bar charts showing the Average Queue Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS -TEXAS Model - Graph ASD 
Draw bar charts showing the Average Stopped Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS -TEXAS Model - Graph A TO 
Draw bar charts showing the Average Total Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS - TEXAS Model - Graph DMPH 
Draw bar charts showing the Delay Below XX MPH statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS- TEXAS Model - Graph OADMPH 
Draw bar charts showing the Overall Average Delay Below 1 0 MPH statistics from a TEXAS Model 
analysis. 

Primitive Command: TOOLS - TEXAS Model - Graph OAQD 
Draw bar charts showing the Overall Average Queue Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS- TEXAS Model- Graph OASD 
Draw bar charts showing the Overall Average Stopped Delay statistics from a TEXAS Model analysis. 

175 



Primitive Command: TOOLS- TEXAS Model- Graph OATO 
Draw bar charts showing the Overall Average Total Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS- TEXAS Model- Graph Probs 
Draw bar chart showing the 95 percent confidence interval statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS - TEXAS Model - Graph QO 
Draw bar charts showing the Queue Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS- TEXAS Model- Graph Queues 
Draw bar charts showing the Maximum and Average Queue Length statistics from a TEXAS Model 
analysis. 

Primitive Command: TOOLS- TEXAS Model - Graph SO 
Draw bar charts showing the Stopped Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS - TEXAS Model - Graph TO 
Draw bar charts showing the Total Delay statistics from a TEXAS Model analysis. 

Primitive Command: TOOLS - TEXAS Model - Graph Turn % 
Draw bar charts showing the Percent of Vehicles Making Turning Movements statistics from a TEXAS 
Model analysis. 

Primitive Command: TOOLS -TEXAS Model - Graph Volume 
Draw bar charts showing the Volume Processed statistics from a TEXAS Model analysis. 

176 



Primitive Command: TOOLS- TEXAS Model- Load SIMSTA 

start here 

Keyin: SIMSTA spreadsheet [SPRDSHT.DAT] 

message no yes--, 

end command 

Load statistical data from file created by the TEXAS Model. This load must be done before displaying 
statistical data from the TEXAS Model. It is the responsibility of the user to be sure that the statistics file 
matches the selected Alternative. 

177 



Primitive Command: TOOLS - Traffic - Channelize 

start here 

., 
Identify Lane 

DataPt: identify a Lane 

Left 
DataPt Reset: accept & place Straight channelization/identify 

Right 
U-Tum 

Lane id
1
entified 

[!] ,, . 

D 

., 
/ "'' Left 

Place Straight channelization symbol 
Right 
U-Tum 

' ..1 

Use this diagram for the 4 TOOLS -Traffic -Channelize commands that follow. 

Primitive Command: TOOLS- Traffic- Channelize- Left 
Add a left turn channelization symbol to a Lane. 

Primitive Command: TOOLS - Traffic - Channelize - Right 
Add a right turn channelization symbol to a Lane. 

Primitive Command: TOOLS - Traffic - Channelize- Straight 
Add a straight through channelization symbol to a Lane. 

Primitive Command: TOOLS- Traffic- Channelize- U-Turn 
Add au-turn channelization symbol to a Lane. 

178 



Primitive Command: TOOLS - Traffic - Channelize- DELETE 

start here 

, 
Identify channelization symbol 

DataPt: identify a channelization symbol 

Data Pt/Reset: delete/reidentify the channelization symbol 

h lr · fm 
J!L 

c anne 1zat1on D 
symbol defined 

, 
r 

delete the 
channelization symbol 

' _,) 

,,. 
r " use delete point to identify next 

channelization symbol 

' _,) 

Delete an existing channelization symbol. 

179 



Primitive Command: TOOLS - Traffic - Controller- DELETE 

start here 

~,. 

Identify Signal Controller 

DataPt: identify a Signal Controller 

DataPt/Reset: delete/reidentify the Signal Controller 

I 
Signal Controller identified 

Keyin: delete the Signal Controller? (yes![ no]) 

end command 

Delete an existing traffic signal controller. 

Primitive Command: TOOLS - Traffic - Controller- MOVE 
Not programmed yet. 

180 

delete controller 

end comand 



Primitive Command: TOOLS - Traffic - Controller - NEMA 

start here 

~ 

Identify Alternative 

DataPt: identify Alternative 

DataPVReset: accept, locate & place NEMA controller/reidentify 

I 
Alternative identified 

DataPt: locate & place NEMA controller 

Keyin: is this a dual ring controller? (yes/no) 

yes 

end command 

place dual ring 
controller 

end command 

Add a standard NEMA traffic signal controller to an Alternative. The user is asked if the controller is to be 
a dual ring controller. It the response is "NO", a 6 phase single ring controller is added. 

181 



Primitive Command: TOOLS - Traffic - Controller - PHASING 

start here 

Identify Alternative 

DataPt: identify Altemative 

DataPt/Reset: accept, locate & place Pretimed controller/reidentify 

change green 
items to 

normal color 

reidentify Altemative identified 

show items on this phase's list in green 

reidentify 

change green 
items to 

normal color 

hi lite signal head or channelization symbol yes 

DataPt/Reset: accept & id. item to add, remove/reidentify 

if hilited item is on list, remove it, 
otherwise add it to list 
change color to suit 

use accept point & try to identify another item 

no 

Specify the traffic phases to be associated with each controller phase. The user is prompted for a 
controller phase. The user is then prompted to identify signal faces and/or channelization symbols to be 
added or removed from the list for the controller phase. A circular green will permit all movements, except 
an exclusive left that does not move in another phase, to move. A protected left will permit exclusive lefts 
to move. Identifying selected channelization symbols in addition to signal faces will modify the above. 
Items on the list are shown in green. 

182 



Primitive Command: TOOLS -Traffic - Controller - Pretimed 

start here 

~-------------yes no 

Identify Alternative 

DataPt: identify Alternative 

DataPt/Reset: accept, locate & place Pretimed controller/reidentify 

Alternative identified 

DataPt/Reset: locate & place Pretimed controller 

Keyin: number of Pretimed controller phases 

message 

yes 

place Pretimed controller 

end command 

Add a pretimed traffic signal controller to an Alternative. The user is prompted for the number of controller 
phases. Must be 2 through 8. 

183 



Primitive Command: TOOLS - Traffic - Controller - TIMING 

start here 

Identify Alternative 

DataPt: identify an Alternative for setting signal liming 

DataPt/Reset: accept/different Alternative 

reidentify 

Keyin/Reset: Ph_ Green []!next phase 

report data for 
this phase yes 

REENTER Keyin!Reset: Ph_ Yellow Change []!next phase 

process All-Red 
Clearance in a 
similar manner 

14-----yes no-----' 

next phase 

Specify the phase timing for a pretimed controller. The user is prompted (one interval at a time) for the 
green interval, yellow change interval and all-red clearance interval for a phase. Use Reset to go the next 
phase. This command is not yet programmed for a NEMA controller. 

184 



Primitive Command: TOOLS- Traffic- Sign 

start here 

Identify Inbound Lane 

DataPt: identify Inbound Lane 

DataPt/Reset: accept & place __ Sign/reidentify 

Inbound Lane identified reidentify 

Use this diagram for the 2 TOOLS - Traffic - Sign commands that follow. 

Primitive Command: TOOLS- Traffic- Sign- Stop 
Add a stop sign to an inbound Lane. The location of the acceptance data point with respect to the center 
of the lane will determine if the sign is located to the left or right of the lane. 

Primitive Command: TOOLS - Traffic - Sign - Yield 
Add a yield sign to an inbound Lane. The location of the acceptance data point with respect to the center 
of the lane will determine if the sign is located to the left or right of the lane. 

185 



Primitive Command: TOOLS - Traffic- Sign - DELETE 

start here 

.,,. 
ldentifyTraffic Sign 

DataPt: identify a Traffic Sign 

DataPt/Reset: delete/reidentify a Traffic Sign 

I 
Traffic Si n identified 

,, 
( delete Traffic Sign 

Delete an existing stop or yield sign 

Primitive Command: TOOLS - Traffic - Sign - MOVE 
Not programmed yet. 

186 

[!]' ' 

D 



Primitive Command: TOOLS- Traffic- Signal Face 

start here 

reidentify ., ,. 

Identify Inbound Lane 

DataPt: identify Inbound Lane 

DataPt/Reset: accept & place_ Face/reidentify 

inbound Lan
1
e identified ··~ ..• .,. .. 

l D 

( place Signal Face 

Use this diagram for the 3 TOOLS -Traffic - Signal Face commands that follow. 

Primitive Command: TOOLS- Traffic- Signal Face- 3 Lens 
Add a 3 lens signal face to a lane. This face presents a circular green to the appropriate movements on 
the Leg. 

Primitive Command: TOOLS - Traffic- Signal Face - 3 Lens PL 
Add a 3 lens signal face to a lane. This face presents a left green arrow green to the appropriate 
movements on the Leg. 

Primitive Command: TOOLS - Traffic - Signal Face - 4 Lens 
Add a 4 lens signal face to a lane. Don't use this command. Place a 3 lens signal face, instead. 

187 



Primitive Command: TOOLS - Traffic - Signal Face - DELETE 

start here 

, 
Identify Signal Face 

OataPt: identify a Signal Face 

OataPVReset: delete/reidentify a Signal Face 

Signal Fac~ identified 

~~ 

( delete Signal Face 

Delete an existing signal face. 

Primitive Command: TOOLS - Traffic - Signal Face • MOVE 
Not programmed yet. 

188 

[!] ·~ . 

D 



Primitive Command: TOOLS - Traffic - Volume 

A different dialog box is presented based upon the number of legs (3, 4, 5, or 6) for the 
Alternative. All Traffic Volume dialog boxes have the same general layout and functionality. The dialog 
boxes for the 4 leg Alternative is somewhat different from the others. The input mode of each dialog box 
may be changed between Percent+VOL (Percentages of Traffic Volume) and TMC Volume (Traffic 
Volumes: Vehicles per Hour) when the data will allow the transfer using the option button labeled "INPUT 
MODE" in the top center of the dialog box. In all dialog boxes, each inbound leg has a row of input data 
boxes. To the left of the input data boxes is the leg number and a small diagram of the Alternative with 
the leg hilited. The input data boxes may be traversed from left to right by using the tab key on the 
keyboard. A tab will move the cursor from the rightmost input data box on one row to the leftmost input 
data box on the next row. Standard MicroStation dialog box editing functions may be used to traverse 
and edit the data. The push button labeled "Cancel" may be pressed at anytime and the input will be 
discarded and the dialog box closed. When all input data has been entered and is correct, a push button 
labeled "OK" will appear in the lower left of the dialog box. Pressing the push button labeled "OK" will 
save the input data to the Alternative and close the dialog box. When the input mode is Percent+VOL, 
there is a column labeled "Total Percent" which is the sum of the percentages on the row and there is a 
column labeled "Total Volume" which is an input data box. When the input mode is TMC Volume, there 
is a column labeled "Total Volume" which is the sum of the volumes on the row. 

In the 3, 5, and 6leg dialog boxes, each outbound leg has a column of input data boxes. To the 
top of the input data boxes is the leg number and a small diagram of the Alternative with the leg hilited. 
The inbound legs are sorted clockwise with the north leg at the top. The outbound legs are sorted 
clockwise with the north leg at the left. Each input data box in the matrix applies to traffic traveling from 
the inbound leg to the outbound leg. Additionally, there is an option button with the values "U" (u-tum), 
"L" (left), "S" (straight), or "R" (right) to the right of each input data box for the leg data. This option button 
indicates the designation of the traffic movement when a vehicle travels from the inbound leg to the 
outbound leg. Designations considered impossible are disabled. This designation may be changed by 
the user causing each designation on a row to be re-evaluated. 

In the 4 leg dialog box, the rows are labeled "EB" (east bound), "WB" (west bound), "NB" (north 
bound). and "SB" (south bound) while the columns are labeled "U-Turn", "Left Turn", "Straight", and 
"Right". 

These dialog boxes are used for the 8 TOOLS -Traffic - Volume commands that follow. 

Primitive Command: TOOLS - Traffic - Volume - Percent+VOL (3 legs) 

Primitive Command: TOOLS- Traffic- Volume- Percent+ VOL (4 legs) 

Primitive Command: TOOLS- Traffic- Volume- Percent+ VOL (5 legs) 

Primitive Command: TOOLS- Traffic- Volume- Percent+ VOL (6 legs) 

Primitive Command: TOOLS - Traffic - Volume - TMC Volume (3 legs) 

Primitive Command: TOOLS- Traffic- Volume- TMC Volume (4 legs) 

Primitive Command: TOOLS- Traffic- Volume- TMC Volume (5 legs) 

Primitive Command: TOOLS- Traffic- Volume- TMC Volume (6 legs) 

189 



Primitive Command: TOOLS ·Traffic· Volume -Percent+ VOL (3 legs) 

Specify percentages of traffic volumes plus the traffic volumes for a 3 leg Alternative. See the description 
of dialog box usage under Primitive Command: TOOLS- Traffic- Volume. 

190 



Primitive Command: TOOLS· Traffic- Volume- Percent+ VOL (4legs) 

Specify percentages of traffic volumes plus the traffic volumes for a 4 leg Alternative. See the description 
of dialog box usage under Primitive Command: TOOLS -Traffic ·Volume. 

191 



Primitive Command: TOOLS- Traffic- Volume -Percent+ VOL (5 legs) 

Specify percentages of traffic volumes plus the traffic volumes for a 5 leg Alternative. See the description 
of dialog box usage under Primitive Command: TOOLS -Traffic- Volume. 

192 



Primitive Command: TOOLS -Traffic- Volume- Percent+ VOL (6 legs) 

Specify percentages of traffic volumes plus the traffic volumes for a 6 leg Alternative. See the description 
of dialog box usage under Primitive Command: TOOLS -Traffic- Volume. 

193 



Primitive Command: TOOLS- Traffic- Volume- TMC Volume (3legs) 

Specify tum movement count volumes for a 3 leg Alternative. See the description of dialog box usage 
under Primitive Command: TOOLS- Traffic- Volume. 

194 



Primitive Command: TOOLS- Traffic- Volume- TMC Volume (4legs) 

Specify tum movement count volumes for a 4 leg Alternative. See the description of dialog box usage 
under Primitive Command: TOOLS - Traffic - Volume. 

195 



Primitive Command: TOOLS- Traffic- Volume- TMC Volume (Slegs) 

Specify tum movement count volumes for a 5 leg Alternative. See the description of dialog box usage 
under Primitive Command: TOOLS - Traffic - Volume. 

196 



Primitive Command: TOOLS· Traffic- Volume- TMC Volume (6legs) 

Specify tum movement count volumes for a 6 leg Alternative. See the description of dialog box usage 
under Primitive Command: TOOLS -Traffic -Volume. 

197 



Primitive Command: TOOLS- Turn Template 

start here 

Identify Inbound Lane 

DataPt: identify Inbound Leg 

OataPt/Reset: accept/reidentify 

Leg identified reidentify 

Identify Leg 

OataPt/Reset: identify conflicting Leg/reidentify yielding Lane 

DataPt/Reset: accept/reidentify 

Leg identified 
reidentify 

Keyin/Reset: turn radius ( ] /reidentify Outbound Leg 

end command 

Use this diagram for the 14 TOOLS- Turn Template commands that follow. 

198 



Primitive Command: TOOLS- Turn Template- A-Bus 
Draw a turning vehicle template for an articulated bus. 

Primitive Command: TOOLS - Turn Template - Bus 
Draw a turning vehicle template for a bus. 

Primitive Command: TOOLS - Turn Template - MH 
Draw a turning vehicle template for a motor home. 

Primitive Command: TOOLS - Turn Template - P 
Draw a turning vehicle template for a passenger vehicle. 

Primitive Command: TOOLS- Turn Template- PB 
Draw a turning vehicle template for a passenger vehicle pulling a boat. 

Primitive Command: TOOLS - Turn Template - PT 
Draw a turning vehicle template for a passenger vehicle pulling a trailer. 

Primitive Command: TOOLS- Turn Template· RMD 
Draw a turning vehicle template for a rocky mountain double truck. 

Primitive Command: TOOLS - Turn Template- SU 
Draw a turning vehicle template for a single unit truck. 

Primitive Command: TOOLS - Turn Template- WB-40 
Draw a turning vehicle template for a medium tractor-semitrailer. 

Primitive Command: TOOLS - Turn Template - WB-50 
Draw a turning vehicle template for a larger tractor-semitrailer combination. 

Primitive Command: TOOLS - Turn Template - WB-60 
Draw a turning vehicle template for tractor-semitrailer-full trailer combinations. 

Primitive Command: TOOLS- Turn Template- WB-62 
Draw a turning vehicle template for tractor-semitrailer combinations. 

Primitive Command: TOOLS - Turn Template - WB-96 
Draw a turning vehicle template for tractor-semitrailer-full trailer combinations. 

Primitive Command: TOOLS- Turn Template- WB-114 
Draw a turning vehicle template for tractor-semitrailer-full trailer-full trailer combinations. 

Transient Command: TOOLS - Turn Template- Del Graphics 
Delete all of the turning vehicle template graphics. 

199 



Transient Command: Verb-Noun or Noun-Verb 
This command toggles between the two methods of command processing. The Verb-Noun method 
always prompts the user to identify an Object for processing. The Noun-Verb method always uses the 
selected IGIDS Object as the default choice when identifying an Object for processing. 

Transient Command: VIEW - ALTERNATIVES - ALL OFF 
For all Alternatives, make all graphics invisible. 

Transient Command: VIEW- ALTERNATIVES- ALL ON 
For all Alternatives, make all graphics visible. 

Transient Command: VIEW- AL TERNATJVES- CURRENT OFF 
For the selected Alternative, make all graphics invisible. 

Transient Command: VIEW- ALTERNATIVES - CURRENT ON 
For the selected Alternative, make all graphics visible. 

Transient Command: VIEW- LANE- CURRENT OFF 
For the selected Alternative, make all Inbound Lanes and Outbound Lanes invisible. 

Transient Command: VIEW- LANE- CURRENT ON 
For the selected Alternative, make all Inbound Lanes and Outbound Lanes visible. 

Transient Command: VIEW- LEG CNTRLINE- CURRENT OFF 
For the selected Alternative, make all Centerline Segs invisible. 

Transient Command: VIEW- LEG CNTRLINE- CURRENT ON 
For the selected Alternative, make all Centerline Segs visible. 

Transient Command: VIEW- TEXT- CURRENT OFF 
For the selected Alternative, make all Text invisible. 

Transient Command: VIEW- TEXT- CURRENT ON 
For the selected Alternative, make all Text visible. 

Transient Command: VIEW- TRAF CONTROL- CURRENT OFF 
For the selected Alternative, make all of the traffic control device graphics invisible. 

Transient Command: VIEW- TRAF CONTROL- CURRENT ON 
For the selected Alternative, make all of the traffic control device graphics visible. 

Transient Command: Yes 
In reply to a prompt requesting a "yes" or "no" response, send "yes" to IGIDS. This is the same as 
entering "yes" through the keyboard. 

Transient Command: [default] 
In response to a prompt, send the default value to IGIDS. When a default value is acceptable, it will be 
shown in the prompt, enclosed by square brackets. The default value may also be sent through the 
keyboard by pressing only the return key. For example, the prompt "Keyln: Lane width[12]" indicates that · 
IGIDS will use 12 as the default value for lane width. 

200 



APPENDIX 0 
IGIDS Vehicle Turn Template Parameters 

This appendix contains tables of the parameters used for the AASHTO vehicles in the Vehicle 

Turn Template commands within IGIDS.Command Menus. The parameters are for the Texas Truck Off­

Tracking program TxTom. The tables are in alphabetical order of the AASHTO vehicle designation as 

follows: 

(1) A-Bus, 

(2) Bus, 

(3) MH, 

(4) P, 

(5) PB, 

(6) PT, 

(7) RMD, 

(8) SU, 

(9) WB-40, 

(10) WB-50, 

(11) WB-60, 

(12) WB-62, 

(13) WB-96, and 

(14) WB-114. 

201 



202 



Table D.l AASHTO DESIGN VEHICLE A-Bus 

NO. OF UNITS BEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 

2 4 150 4.25 8.5 8 5 4.25 
~-····-

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 

18.00 24.00 0.00 0.00 0.00 0.00 (wheelbase) 
FT02 C3F2 

0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 
FT02 C3F3 

26.50 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 
FT04 C4F2 

-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 
centerline) 
FT04 C4F3 

1 2 0 0 0 0 (AVR unit number) 

- - --·-·~·-~ -'---- - FT04 C4F1 

1\) 

8 Table D.2 AASHTO DESIGN VEHICLE Bus 

NO. OF UNITS BEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG I 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 

,1 3 100 4.25 8.5 7 4.25 - - i --·-·--···--·······--··-

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE I 

25.00 0.00 0.00 0.00 0.00 0.00 (wheelbase) 
FT02 C3F2 

0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 
FT02 C3F3 

32.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 
FT04 C4F2 

-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 
centerline) 
FT04 C4F3 

1 1 0 0 0 0 (AVR unit number) 
-·-·····--

_f'!'_O .1_ Q_4 !"l 

*NOTE: example FT02 C2F1 defined as TXTOM Input //DATA.FT02F001 DD *, Card 2 Field 1 



204 



Table D.3 AASHTO DESIGN VEHICLE MH 

NO. OF UNITS BEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
1 3 100 4 8 4 4 

~ ..... -

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
20.00 0.00 o.oo 0.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
24.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-4.00 4.00 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 1 0 0 0 0 (AVR unit number) 
FT04 C4F1 

1\:l 

~ Table D.4 AASHTO DESIGN VEHICLE P 

NO. OF UNITS BEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
1 3 50 3.5 7 3 3.5 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
11.00 0.00 0.00 0.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

I FT02 C3F3 
14.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-3.50 3.50 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 1 0 0 0 0 (AVR unit number) 
FT04 C4F1 

*NOTE: example FT02 C2F1 defined as TXTOM Input //DATA.FT02F001 DD *, Card 2 Field 1 



206 



1\.) 
0 
....... 

Table D.S AASHTO DES:IGN VEH:ICLE PB 

NO. OF UNITS :SEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
2 4 100 3.5 7 3 3.5 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
11.00 15.00 0.00 0.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
-5.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
14.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-3.50 4.00 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 2 0 0 0 0 (AVR unit number) 
FT04 C4Fl 

Table D.6 AASHTO DES:IGN VEH:ICLE PT 

NO. OF UNITS :SEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG ! 

FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
2 4 100 3.5 7 3 3.5 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
11.00 18.00 0.00 0.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
-5.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
14.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) I 

FT04 C4F2 i 

-3.50 4.00 0.00 0.00 0.00 0.00 (AVR dist from vehicle i 

centerline) 
FT04 C4F3 

1 2 0 0 0 0 (AVR unit number) 
FT04 C4F1 

---·········---

*NOTE: example FT02 C2F1 defined as TXTOM Input //DATA.FT02F001 DD *, Card 2 Field 1 



208 



1\) 
0 
<0 

Table D. 7 AASHTO DES:IGN VEH:ICLE RMD 

NO. OF UNITS 'BEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
4 6 200 4.25 8.5 2 4 25 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
15.50 37.30 6.30 22.30 0.00 0.00 (wheelbase) 

FT02 C3F2 
0.00 6.60 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
17.70 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 4 0 0 0 0 (AVR unit number) 
L__ 

FT04 C4Fl 

Table D.8 AASH'l'O DES:IGN VEH:ICLE SU 

NO. OF UNITS !:lEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4Fl FT03 C2F3 FT02 C2F2 FT02 C4Fl FT02 C4F2 
1 3 100 4.25 8.5 4 4.25 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
20.00 0.00 0.00 0.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 ! 

24.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) I 

FT04 C4F2 
-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

' 

1 1 0 0 0 0 (AVR unit number) 
FT04 C4Fl --

*NOTE: example FT02 C2Fl defined as TXTOM Input //DATA.FT02F001 DD *, Card 2 Field 1 



210 



!\) ...... 
...... 

Table D. 9 AASHTO DESIGN VEHICLE WB-40 

NO. OF UNITS SEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
2 4 100 4.25 8.5 4 4.25 
UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
13.00 25.00 0.00 0.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
17.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 2 0 0 0 0 (AVR unit number) 
FT04 C4Fl 

~- -- -- -- --

Table D.lO AASHTO DESIGN VEHICLE WB-50 

NO. OF UNITS SEGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
2 4 150 4.25 8.5 3 4.25 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 

18.00 30.00 0.00 0.00 0.00 0.00 (wheelbase) ' 

FT02 C3F2 
0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
21.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 2 0 0 0 0 (AVR unit number) 
L__ 

FT04 C4F1 
---········----·-·······~ 

*NOTE: example FT02 C2F1 defined as TXTOM Input //DATA.FT02F001 DD *, Card 2 Field 1 



212 



Table D.ll AASHTO DESIGN VEHICLE WB-60 

NO. OF UNITS !3EGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
4 

--
6 

--·······--·······-- L_1.50 - - - 4.25 8.5 2 4.25 
--·······~-·······--······ --

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE ! 

9.70 20.00 5.40 20.90 0.00 0.00 (wheelbase) 
FT02 C3F2 

1.00 -4.00 0.80 0.00 0.00 0.00 (5th wheel or hitch) 
FT02 C3F3 

11.70 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 
FT04 C4F2 

-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 
centerline) 
FT04 C4F3 

1 4 0 0 0 0 (AVR unit number) 
FT04 C4F1 

1\) ...... 
w Table D.12 AASHTO DESIGN VEHICLE WB-62 

NO. OF UNITS !3EGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 

2 
--······-- ~-- 150 4.25 8.5 3 4.25 

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 

18.00 42.00 0.00 0.00 0.00 0.00 (wheelbase) 
FT02 C3F2 

0.00 0.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 
FT02 C3F3 

21.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 
FT04 C4F2 

-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 
centerline) 
FT04 C4F3 

1 2 0 0 0 0 (AVR unit number) 
FT04 C4F1 

*NOTE: example FT02 C2F1 defined as TXTOM Input //DATA.FT02F001 DD * Card 2 Field 1 



214 



Table D.13 AASHTO DESIGN VEHICLE WB-96 

NO. OF UNITS ~EGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
6 8 200 4.25 8.5 2.5 4.25 

--······--······--

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
13.50 20.70 6.10 21.60 6.10 21.60 (wheelbase) 

FT02 C3F2 
2.00 -3.30 0.00 -3.30 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
16.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

centerline) 
FT04 C4F3 

1 6 0 0 0 0 (AVR unit number) 
FT04 C4Fl 

1\) ..... 
(]I Table D. 14 AASH'l'O DESIGN VEHICLE WB-114 

NO. OF UNITS ~EGIN PATH NO. RUNOFF DIST OFFSET DIST VEHICLE WIDTH FRONT OVERHANG OFFSET TO FRONT OVERHANG 
FT02 C2F1 FT04 C5F1 FT01 C4F1 FT03 C2F3 FT02 C2F2 FT02 C4F1 FT02 C4F2 
4 6 250 _4.25 - t!_. ~ - -

2 
-

4.25 
----····· --·····--······--······ --

UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 UNIT 6 VARIABLE 
20.00 40.00 8.00 40.00 0.00 0.00 (wheelbase) 

FT02 C3F2 
0.00 -4.00 0.00 0.00 0.00 0.00 (5th wheel or hitch) 

FT02 C3F3 
22.00 0.00 0.00 0.00 0.00 0.00 (AVR dist from rear axle) 

FT04 C4F2 
-4.25 4.25 0.00 0.00 0.00 0.00 (AVR dist from vehicle 

I 
centerline) 
FT04 C4F3 

1 4 0 0 0 0 (AVR unit number) 
FT04 C4F1 

*NOTE: example FT02 C2Fl defined as TXTOM Input //DATA.FT02F001 DD *, Card 2 Field 1 



216 



APPENDIX E 

IGIDS Abbreviations 

217 



218 



Several abbreviations are used throughout this document. The following list is included here for the 

convenience of the reader: 

(1) AASHTO 

(2) alt 

(3) AT&T 

(4) CAD 

(5) CPU 

(6) DEC 

(7} DOT 

(8) ID 

(9) ID_NULL 

(10) IGIDS 

(11) IGrds 

(12) inter 

(13) MS-DOS 

(14) NULL 

(15) OSF 

(16) OS1 

(17) seg 

American Association of State Highway and Transportation Officials 

alternative 

American Telephone and Telegraph 

Computer Aided Design 

Central Processor Unit 

Digital Equipment Corporation 

Department of Transportation 

identification; the ID is a unique number defined by IGIDS and is the 

entry number or instance number in the appropriate structure 

a "#define" constant which stands for an invalid ID and has a value of -1 

Interactive Graphics Intersection Design System 

AASHTO's Interactive Graphics Roadway Design System 

intersection 

Microsoft's Disk Operating System 

a pointer to void with a value of zero which is an invalid address 

Open Software Foundation 

Operating System 1 

segment 

219 



220 



APPENDIX F 

IGIDS Terminology 

221 



222 



Several terms have been adopted and are used throughout this document and are defined below: 

absolute text angle 

Alternative 

channelization symbol 

click 

command 

DataPt 

Text angle remains constant, independent of the parent Seg rotation. 

An IGIDS Object that contains a set of Legs and, optionally, descriptive Text. 

An Alternative specifies one particular configuration of the Intersection being 

designed. The parent of an alternative is the intersection. 

A graphical symbol used to indicate non-standard traffic channelization for a 

Lane. Channelization symbols are available to represent u-turns, lefts, 

straight through and rights. They may be used alone or in any suitable 

combination. Standard channelization is: (a) lefts and straights from a 

median Lane, (b) straights and rights from a curb Lane, and (c) straights from 

all other Lanes. 

A user input to IGIDS. The sequence of moving the cursor to the desired 

position on the screen, pressing and then releasing the data button. 

A request from the user for IGIDS to take some action. Commands are 

initiated by a Click on an IGIDS menu item. 

A user input of coordinate data to IGIDS . Executed by using the mouse to 

position the cursor at the desired coordinates in a graphics window, then 

pressing and releasing the mouse data button. This sends the X and Y 

coordinates of the geometric point to IGIDS. A DataPt may also be 

accomplished by entering any of the MicroStation precision keyin commands. 

A DataPt is represented in the process diagrams by this symbol: 

223 



Graphics Engine 

ID number 

Intersection 

Keyln 

Lane 

Leg 

The software that is used by IGIDS to draw graphics and provide the user 

interface. A commercial product which performs all interactive graphics 

operations and maintains the graphics database. Micro Station is the 

graphics engine for IGIDS. 

An integer number assigned to each IGIDS Object. These numbers must be 

unique for any of the logical groupings of Objects. The logical groupings are: 

(1} all Alternatives, (2) all Legs on an Alternative, (3} all Inbound Lanes on a 

Leg, (4) all Outbound Lanes on a Leg, (5} all Centerline Segs on a Leg, (6) all 

Curb Return Segs on a Leg, (7) all Inner Edge Segs on a Lane, (8) all Outer 

Edge Segs on a Lane, (9} all Stopline Segs on a Lane, (10} all Texts on an 

Alternative, and (11} all Texts on a Seg. Numbers are assigned to 

Alternatives and Legs by the user at the time of creation. ID numbers are 

assigned automatically to Lanes and Segs. For Lanes, ID number 1 is 

assigned to the median Lane. The assigned ID numbers then increase by 1 

for the next adjacent Lane, in the direction toward the curb Lane. This 

numbering process is applied independently to the set of Inbound Lanes and 

to the set of Outbound Lanes. Segs are numbered in increasing order within 

each logical group, with the Seg nearest the intersection being ID number 1. 

Text numbers are used only internally by IGIDS and are of no user interest. 

An IGIDS Object that is composed of all currently defined Alternatives. 

A user input to IGIDS of alpha numeric data. A sequence of key presses that 

are ended by pressing the return key. A keyin may also be accomplished by 

clicking the "Yes," "No," or "[default]" command on the IGIDS menu. A Keyin 

is represented in the process diagrams by this symbol: 

QQQQQQQ 
QCCOQO 
QQQQQQ 

An IGIDS Object that contains Inner Edge Segs, Outer Edge Segs, and 

Stopline Segs. Lanes are classified as either Inbound or Outbound. 

An IGIDS Object that contains Centerline Segs, Inbound Lanes, Outbound 

Lanes, Inner Edge Curb Return Segs, and Outer Edge Curb Return Segs. 

224 



Object 

primitive command 

Reenter 

relative text angle 

A set of graphic elements or other IGIDS data that are grouped together by 

IGIDS. All information needed to describe an Object is contained in the 

IGIDS database. Objects can be identified and manipulated only through 

IGIDS commands. The Objects are Intersection, Alternative, Leg, Lane, Seg 

and Text. 

An IGIDS command that initiates an action that requires user interaction. 

When issued during the execution of another IGIDS Command or a 

MicroStation Command, it cancels any active IGIDS or MicroStation 

command. 

A transient command requesting that IGIDS re-prompt for the most recently 

keyed-in data. A Reenter is represented in the process diagrams by this 

symbol: 

(REENTER) 

Text angle as measured from the parent Seg. It remains constant. Text 

rotates with the parent Seg. 

225 



Reset 

scratch graphics 

Seg 

selected Object 

signal face 

temporary command 

Text 

A user input to IGIDS. Executed by pressing the mouse reset button. A 

Reset is represented in the process diagrams by this symbol: 

The portion of the drawing space that is available for use by the user. This 

space may also be used by IGIDS to draw graphics that are not a part of the 

IGIDS database. 

An IGIDS Object that is either a straight line segment or an arc of a circle. 

Segs are classified according to their use and may be Inner Edge Segs, 

Outer Edge Segs, Stopline Segs, Centerline Segs, Inner Edge Curb Return 

Segs, or Outer Edge Curb Return Segs. Seg is an abbreviated form of the 

word segment. The parent of a seg is a leg or a lane. The parent of a leg is 

an alternative. 

an Object that has been identified to be used as the default Object for 

purposes of command processing. 

A graphical symbol used to indicate a signal indication to be shown to a leg 

during the green interval of a controller phase. 

An IGIDS command that initiates an action that requires user interaction. 

When issued during the execution of another IGIDS Command, ittemporarily 

suspends the command in progress. When the temporary command is 

ended, the suspended command continues from the point where it was 

suspended. 

An IGIDS Object that is defined in one of the fonts that is currently known to 

the Graphics Engine. Text is classified at the time that it is placed and will be 

either Text on an Alternative or Text on a Seg. The parent of text in an 

Alternative or a Seg. Text may be oriented with a fixed rotation angle or, if it 

is a Text on a Seg, may be oriented with respect to the current rotation angle 

of the associated Seg. 

226 



traffic control device 

traffic signal controller 

transient command 

A traffic signal controller, channelization symbol, signal face, stop sign, or 

yield sign. 

A graphical symbol used to indicate the type of controller to be used with the 

Alternative. 

An IGIDS command that initiates an action that requires no user interaction. 

When issued during the execution of another IGIDS Command, it does not 

end the command in progress. 

turning vehicle template Scratch graphics that show the paths followed by the outside front bumper 

and the inside rearmost wheel of a specified type of vehicle that is turning 

from an Inbound Leg to an Outbound Leg and is using a specified turning 

radius. 

227 



228 



APPENDIX G 

Index to Commands 

229 



230 



Command Page 

ADD - ALTERNATIVE .. . .. . .. .. .. .. .. .. .. .. .. .. .. .. . . . . . .. . ... .. . . .. .. .. .. .. .. .. . . . . .. .. ....... .... .. .. .... . .... . .. .. . .... .. .. .. . 1 06 

ADD - CURB CR - BY KEVIN.................................................................................................... 107 

ADD- CURB CR- SCRATCH LVL ........................................................................................... 108 

ADD- LANE INBND- SCRATCH LVL commands..................................................................... 109 

ADD - LANE INBI\ID - SCRATCH LVL- INNER EDGE................................................................ 1 09 

ADD - LANE INBND - SCRATCH LVL - OUTER EDGE . . ... .. ............ .... .. .. .... . . .... . .. . . .. . ...... . .. .. .. . .. . 1 09 

ADD- LANE INBND- SCRATCH LVL- START LANE............................................................... 110 

ADD- LANE INBND -SCRATCH LVL- STOPL EDGE............................................................... 109 

ADD- LANE OUTBND- SCRATCH LVLcommands ................................................................. 111 

ADD- LANE OUTBND- SCRATCH LVL -INNER EDGE............................................................ 111 

ADD- LANE OUTBND- SCRATCH LVL- OUTER EDGE.......................................................... 111 

ADD - LANE OUTBND - SCRATCH LVL- START LANE........................................................... 112 

ADD- LANE OUTBND- SCRATCH LVL- STOPL EDGE........................................................... 111 

ADD - LEG CNTRLN - BY KEY-IN............................................................................................. 113 

ADD- LEG CNTRLN- SCRATCH LVL ..................................................................................... 114 

ADD - MEDIAN CR - BY KEY IN .. . . .. .. . . .. . .. .. .. .. . .. . . .. . . .. . . .. . . . .. .. .. . . . .. . .. . . .. .. . . . . .. . . .. . .. .. .. . . .. .. .. .. .. .. .. .. .. 11 5 

ADD- MEDIAN CR- SCRATCH LVL........................................................................................ 115 

ADD- TEXT- TO ALT- BY KEY-IN........................................................................................... 116 

ADD- TEXT- TO ALT- SCRATCH LVL.................................................................................... 117 

ADD- TEXT- TO SEG- BY KEY-IN.......................................................................................... 118 

ADD - TEXT - TO SEG - SCRATCH L VL................ .... ... . .. .. . .. .. .. .. . .. .. .. .. . .. . . .. .. .. . .. .. .. . . . .. . . . .. .. .. . . . . . 11 9 

COPY- ALTERNATIVE.......................................................................................................... 120 

COPY- LEG.......................................................................................................................... 121 

COPY - TEXT ON ALT............................................................................................................ 12 2 

COPY -TEXT ON SEG . ... . .. .. . ... .. .............. .. .. . . . .. .. . .. .. .. . .. . . . . .. .. .. .. .. . .. .. .. . . . . .. . . .... . . . . .. . ... ... .. .. .. . .... 123 

DELETE· ALTERNATIVE...................................................................................................... 124 

DELETE - CURB CR .. . . . .. . .. .. . . . . . . .. .. .. .. ................... ........ .... . ... .. .. . .. .. .. .. .. .. .. . ... .. .. . . .. ..... .. .. .. .. . . .. . 125 

DELETE - Curb Return commands.......................................................................................... 125 

DELETE - MEDIAN CR........................................................................................................... 1 25 

DELETE- LANE commands................................................................................................... 126 

DELETE - LANE INBND . . . .. .. . . . . . . . . . ... .. .... .. . . .. . .. . . . .. . . .. ... .. . ... . . .... .. .. .. . . . .. .. . . . . .. . . .. . .. . .... .. .... . .. .. .. . . . 126 

DELETE- LANE OUTBND ..................................................................................................... 126 

DELETE- LEG .. .. .. ..... ............ ....... .... . .. .... .. ... . .. .. .. .. .. .... .... .. ... .. ........ .. .. ................. .......... ....... 127 

DELETE- SEG commands..................................................................................................... 128 

DELETE- SEG CNTRLINE ............................................ ......................................................... 128 

231 



DELETE- SEG INN EDGE...................................................................................................... 128 

DELETE- SEG OUT EDGE.................................................................................................... 128 

DELETE - SEG STOPLINE..................................................................................................... 128 

DELETE - TEXT ON ALT........................................................................................................ 129 

DELETE -TEXT ON SEG .. ... .. .. .. .. .. .. . .. . .. .. .. .. .. . .... .. .. .. .. . ..... .. .. .. .. ..... .. . ..... .. .. .. .. .. .. .. .. .. .. .. . .. . . .. .. . 130 

DELETE • TRAF CONTRL. ... .. .. .. .. .... .. .. .. .. .. . ...... .. .. .... .. .. .. .. .. .. .... .. .. .. . .. .. .. .. . . .. .. .. .. ... . .. .. .. ... . . .. .. . 131 

END IGIDS............................................................................................................................. 132 

HI LITE- CURRENT ALT......................................................................................................... 132 

HI LITE- CURRENT LANE- ALL.............................................................................................. 132 

HI LITE - CURRENT LANE· INNER EDGE . ......................... ..... . .. . .. ... . .. ........... ... . .. . .. . ... ..... .. .. . ... 132 

HILITE - CURRENT LANE - OUTER EDGE............................................................................... 132 

HI LITE- CURRENT LANE- STOP LINE................................................................................... 132 

HI LITE- CURRENT LEG- ALL................................................................................................ 132 

HILITE - CURRENT LEG - CENTERLINE.................................................................................. 132 

HI LITE- CURRENT LEG -CURB CR........................................................................................ 132 

HILITE- CURRENT LEG- CURB RETURNS............................................................................. 132 

HILITE - CURRENT LEG - INBND LANES................................................................................. 132 

HILITE- CURRENT LEG- MEDIAN CR..................................................................................... 132 

HILITE - CURRENT LEG - OUTBND LANES............................................................................. 132 

HILITE - CURRENT SEG......................................................................................................... 132 

HILITE -CURRENT TEXT . .. .. .. .. .. .. .. .. ... .. ... .. .. .. .. . .. .. .. .. .. .. .. .. . . .. . .. . . . .. ... .. .. .. .. .. .. . . .. .... . ... .. .. . . . . . .. .. . 132 

LOAD FROM - DATABASE .. .. .. .. .. .. .. .... .. .... .. .. .. . .. .. . .. ... .. .. .. . . .. .. .. .. .. .. . .. .. .. .. .. .. .. .. ..... . .. .. ..... .. ..... 133 

LOAD FROM - STANDARD commands................................................................................... 134 

LOAD FROM - STANDARD - 3x2 .. .. .. .... .. .. .. . ...... ... .. .. ..... .. .. .. .. .. .. .. ... .. . .. .. . .. .. .. . . .. .... .. ... . .. .. .. . .. .. . 134 

LOAD FROM- STANDARD- 3x3 ............................................................................................ 134 

LOAD FROM - STANDARD - 4t2... .. .. ... . .. ... .. . .. ... .. . ... .. .. .. ... ... .. .. ... . .. ... . . .. .. ... ... .. ... ... .. .......... ... .. . 135 

LOAD FROM- STANDARD- 413............................................................................................. 135 

LOAD FROM - STANDARD - 4t4..... .. .. . . .. .. .. ... ... ... . ... .. .. .. .. .. ... ............. .. . ... .. . .. .. .. .. ... . . ......... .. . .. . 135 

LOAD FROM - STANDARD - 4x2 . . .. .. ........ .. .. .. .... .. .. .. ... .. .. .. .. . .. ..... ... ... .. .. . .. . . .. .. .. . ... .. .. .. .. .. .. .. .... 135 

LOAD FROM - STANDARD - 4x3.. ............ ... .. .. .... . .. . .. ... .. ... .. . . . ... .. .. . ............ ... .. . .... .... .. .... . .. . .. . . 135 

LOAD FROM - STANDARD - 4x4 .. .. .. .. .... .. .. ... . .. .. ... .. . .. . .. ... . .. .. .... .. .. .. .. . ... . . .. ... .. ... ... . .. ... .. .. .. . . . .. . 135 

LOAD FROM- STANDARD - 5x4 ............................ ........... ......................... ............................ 135 

LOAD FROM- STANDARD - 5x5.. .... .......... ............ ........... ............ ....................... ............... ... 135 

LOAD FROM- STANDARD - 6x4.. .... .... .................. ... .. ........ .......... ...... .. ......... ................ .... .... 135 

LOAD FROM - STANDARD - 6x5 . ..... .. ... . .. .. .. . .. ... .. .. ... . .. .. ..... .. .. .. .. .. .. . .. . .... . . ... .. .. . .. .. ... .. . .. . .. .. . .. . 135 

LOAD FROM - STANDARD - 6x6.. .. .......... ... . ... .... .. ... . .... .. .. .. .. .. .. .. .. .. . ... .... .. ..... .. . .. .. .. . .... . . . .. .. .. . 135 

232 



LOAD FROM -STANDARD - 7x4 .... .......... ................. ...... .... .. .... .. .......... ... .. .. .. .... .. .... .. .. .... ...... 136 

LOAD FROM -STANDARD- 7x5 .......... .... .. .... .. .... ...... ..... .. .. ..... ....... .... ... .. .. .. ........ .................. 136 

LOAD FROM· STANDARD· 7x6 .......... ........................... ...... ................. ................................ 136 

LOAD FROM· STANDARD· 7x7 ............................................................ .... ............................ 136 

LOAD FROM - TX Mdl file........................................................................................................ 137 

MODIFY- ALTERNATIVE....................................................................................................... 138 

MODIFY - INTERSECTION...................................................................................................... 138 

MODIFY- LANE- LATERAL SHIFT......................................................................................... 139 

MODIFY - LANE - LENGTHEN................................................................................................. 139 

MODIFY- LAND - NARROWER............................................................................................... 139 

MODIFY- LANE- SHORTEN ........ ...... ...... .. .... ....... .... .. .... .. .. .. .. ...... ......... ...... ..................... ..... 140 

MODIFY- LANE- WIDEN........................................................................................................ 140 

MODIFY - LANE EDGE - LENGTHEN....................................................................................... 140 

MODIFY- LANE EDGE - SHORTEN .. ... .. .. .. .. ...... . .. .. .. ... .. . ...... .. .. .. .. ... .. .. . .. .. .. .. .. .. .. .... .. .. .. .. .. .... .. 140 

MODIFY- LANE EDGE- TAPER............................................................................................. 140 

MODIFY - LEG .. .. . .. .. .. .. . .. . .. .. .. . . .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. . .. . .. .. .. . .. .. . . .. . .. .. .. .. .. . .. .. .. .. . . .. .. . .. .. .. .. .. .. .. . 141 

MODIFY- TEXT ON ALT......................................................................................................... 142 

MODIFY- TEXT ON SEG .. .. . .. .. .. .. . .. .. .. .. .. .. . .. . .. .. . .. .. . .. .. .. .. .. . .. .. .. .. .. . .. .. .. .. . .. .. .. .. .. . .. . .. .. .. .. .. . . . .. .... 1 43 

MOVE- ALTERNATIVE......................................................................................................... 144 

MOVE - CONTROLLER . .. . . .. .. .. .. ...... .... .. .. .. .. . .. .... .. .. .. .. .. .. .. .. .. . ... .. .. ... . . .. ... . ... . .. .. .. .. . ... .. .. ... .. .. .. . 144 

MOVE - LANE - LATERAL...................................................................................................... 145 

MOVE- LANE- LONGITUDINAL............................................................................................. 146 

MOVE-LEG-LATERAL ........................................................................................................ 147 

MOVE- SIGN......................................................................................................................... 147 

MOVE - SIGNAL FACE........................................................................................................... 147 

MOVE - TEXT commands....................................................................................................... 14 8 

MOVE- TEXT ON ALT........................................................................................................... 148 

MOVE - TEXT ON SEG.......... ............... ... ... ... ....................................... .......... ...... .................. 148 

No........................................................................................................................................ 149 

NOUN -VERB....................................................................................................................... 149 

REENTER DATA................................................................................................................... 149 

ROTATE- ALTERNATIVE...................................................................................................... 150 

ROTATE- LEG...................................................................................................................... 150 

ROTATE -TEXT ON ALT........................................................................................................ 151 

ROTATE- TEXT ON SEG ....................................................................................................... 151 

SAVE TO- AutoPianPrep ...................................................................................................... 152 

233 



SAVE TO - Data Base............................................................................................................. 153 

SAVE TO- SOAP.................................................................................................................. 154 

SAVE TO - TX Mdl file............................................................................................................. 155 

SELECT -ALTERNATIVE - NEXT........................................................................................... 156 

SELECT-ALTERNATIVE - PREVIOUS.................................................................................. 156 

SELECT - LANE - BY OAT A PT............................................................................................... 156 

SELECT - LANE - (BY DATA PT) INBOUND............................................................................. 15 7 

SELECT- LANE- (BY DATA PT) OUTBOUND......................................................................... 158 

SELECT • LANE - CURRENT.................................................................................................. 158 

SELECT- LANE· INBOUND ID ........... ........ ...... ....... ...... .... .. .... .. .... ......... .... .. ............ ...... ........ 159 

SELECT- LANE- NEXT......................................................................................................... 159 

SELECT- LANE- (NEXT) INBOUND . ............ .... .... .. .. ..... .. .................... ............. .... .. ............ .. .. 159 

SELECT- LANE- (NEXT) OUTBOUND................................................................................... 159 

SELECT- LANE- OUTBOUND 10........................................................................................... 160 

SELECT- LANE- PREVIOUS .... ...... .. .... .. .... .. .... ... .... .. ...... .... .. ...... ....... .......................... ... .. ... 160 

SELECT- LANE· (PREVIOUS) INBOUND............................................................................... 160 

SELECT- LANE· (PREVIOUS) OUTBOUND........................................................................... 160 

SELECT- LEG - BY DATA PT................................................................................................. 161 

SELECT - LEG • BY 10 .. .. . . .. .. . .. . . .. .. . .. . . .. .. .. .. .. . .. .. . . . .. . . .. .. . . . . .. . . . .. .. .. .. . .. . .. .. . .. .. .. .. . .. . .. . .. . . .. . .. . . .. .. . . 162 

SELECT- LEG ·CURRENT.................................................................................................... 162 

SELECT- LEG - NEXT . .. .. ... . .. .. .. .. .. .. .. . . .. .. .. ... . . .. .. .. .. . . .. .... .. . . .. . . . . . . . . . .. .. .. .. .. . . .. .. .. .. .. .. .. ... .. .. .. .. ... 162 

SELECT - LEG - PREVIOUS................................................................................................... 162 

SELECT - SEG - BY DATA PT................................................................................................. 163 

SELECT - SEG • BY 10..... ................................ .............. ............ ............................................. 163 

SELECT • SEG - CURRENT.................................................................................................... 163 

SELECT· SEG • NEXT........................................................................................................... 163 

SELECT· SEG • PREVIOUS . . .. .. . . .. .. .............. .... . .... .... .. .. .. . . .. ... . .. . . ... .. ..... ... .. .. . .... . . ... .. .. .. . .. .. .. . 163 

SELECT· TEXT· BY DATA PT............................................................................................... 164 

SELECT • TEXT • BY ID .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. . .. .. .. . .. .. . .. . .. .. . .. .. .. .. . .. .. .. .. .. .. . . .. .. .. .. .. .. . . . .. .. .. . .. . . . 164 

SELECT- TEXT- CURRENT.................................................................................................. 164 

SELECT - TEXT • NEXT.......................................................................................................... 164 

SELECT - TEXT - PREVIOUS................................................................................................. 164 

SHOW INFO • FULL . .. .. .. .. .. .. . . .... . ... .. .. .. .. . . . .. .. .. .. .. .. .. .. . . .. . . .. .. .. .. . .. .. .. .... .. .. .. .. .. .... ... . .. .. . .. .. .. .. .. .. . 165 

SHOW INFO - SHORT............................................................................................................ 165 

Sta/Offset . . .... .... . . .. . .. .. .. .. .. .... .. ..... .. .. .. .. ..... . .. .. .. .. ... . .. .. .. .. .... ...... ... .. .. . ... .. .. .. .. .. .. .. . .. .. ... .... . .. . ... . 166 

TOOLS - HighCapMan - Chapter 9. .... . .. .. .. .. . . . . . .. ... .. . .. .. .. .. .. .. . . .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. . ... 167 

234 



TOOLS - HighCapMan - Del Graphics .. . . . . .. . . .. .. . . . . . ... . . .. . . . . . . . .. .. . . .. . . .. .. . . . . . . . . .. . . . . . . . . . .. . . .. . . .. . . .. .. .. . . 168 

TOOLS - Sight Dist - Del Graphics .. . . .. .. ... .. . .. .... .. .. .. .... .. .. .. . .. .. .. . .. .. .. ... . .. ... . . .. .. .. . ... .. . ..... . . .. .. . .. .. . 168 

TOOLS - Sight Dist - No Control.............................................................................................. 169 

TOOLS - Sight Dist - Stopped................................................................................................. 1 70 

TOOLS - Sight Dist - Yield....................................................................................................... 171 

TOOLS - TEXAS Model -Animation . . .. . ... . .... . .. ... . .. .. .. . . . .... .. . .......... ...... ... .. ...... .. . . . ..... . . . . . .... .... . . 1 72 

TOOLS - TEXAS Model - Del Graphics..................................................................................... 172 

TOOLS - TEXAS Model - Graph commands .. . .. . . . .. .. . . . .. . .. . . . .. . . .. . .. .. . . . . .. . .. . .. .. . . . . . .. .. . .. .. . . . .. . . .. .. .. .. 1 72 

TOOLS - TEXAS Model - Graph ADMPH................. .......................................... ................ ....... 172 

TOOLS - TEXAS Model - Graph AQD . .. . . .. . .. . . .. .. . . .. .. .. .. . . . .. .. ........ .. .. .. . . .. . . .. .. . .. . . .. . . .. . . . . .. .. .. . . ..... . 172 

TOOLS - TEXAS Model - Graph ASD.................................................. ................. .................... 172 

TOOLS - TEXAS Model - Grapn A TO....................................................................................... 1 72 

TOOLS- TEXAS Model- Graph DMPH. ... .................. .... ... ......... ..... .... .... ........... ...... .. .. .... .... .... 172 

TOOLS - TEXAS Model - Graph OADMPH........ ... .. .. ..... . .. . .... . ... .. .. . .. . .. ....... ... .. . ... . .. ...... .. .. .. ... . .. 172 

TOOLS - TEXAS Model - Graph OAQD............................ ........................................................ 172 

TOOLS - TEXAS Model- Graph OASD..... ... ... . . . . . . . .. . . . . . . .. . .. .. .. .. .... ..... . .. . . .. .. . .... . . . . . . . ... .. . . . . . ... . . .. 173 

TOOLS- TEXAS Model- Graph OATD .................................................................................... 173 

TOOLS • TEXAS Model - Graph Probs..................................................................................... 173 

TOOLS - TEXAS Model -Graph 00......................................................................................... 173 

TOOLS - TEXAS Model - Graph Queues................................................................................. 173 

TOOLS- TEXAS Model- Graph SO......................................................................................... 173 

TOOLS - TEXAS Model - Graph TO .. ... .. .. .. .. .. .. ... ... . .. .. .. ............ .. .. .... .. .. .. .. .. .. ... .. .. ... . .. .. ..... ... .. .. 173 

TOOLS - TEXAS Model - Graph Tum % ... . ... .. .. .. .. .. .. .. . .. ... . . . .. .. . . .. .. . . . . .. ... ... . .. .. .. .. . . .. .... .. .. . . .. .. ... . 173 

TOOLS - TEXAS Model • Graph Volume.................................................................................. 173 

TOOLS- TEXAS Model- Load SIMSTA................................................................................... 174 

TOOLS -Traffic -Channelize commands................................................................................. 175 

TOOLS - Traffic • Channelize - DELETE................................................................................... 1 76 

TOOLS- Traffic- Channelize- Left.......................................................................................... 175 

TOOLS- Traffic- Channelize- Right........................................................................................ 175 

TOOLS- Traffic- Channelize- Straight.................................................................................... 175 

TOOLS - Traffic- Channelize- U-Turn...................................................................................... 175 

TOOLS - Traffic - Controller- DELETE..................................................................................... 177 

TOOLS - Traffic - Controller - MOVE .. ..... ..... . .. . . ...... . .. .. . .. . . .................. .. . ... ... .. .. . . .. . . .. .. . ..... .. .. . .. . 177 

TOOLS - Traffic- Controller- NEMA......................................................................................... 178 

TOOLS - Traffic - Controller - PHASING.................................................................................... 179 

TOOLS - Traffic - Controller - Pretimed.............................................................. ....................... 180 

235 



TOOLS - Traffic - Controller- TIMING........................................................................................ 181 

TOOLS -Traffic - Sign commands . .. .. .. . . .. .. .. . . .. .. . . . . .. . . . . . .. . . .. .. .. ... . . . .. .. .. .. . . . . . .. .. . . .. . ... .. .. . . .. .... .. . . .. 182 

TOOLS - Traffic - Sign - DELETE............................................................................................. 183 

TOOLS - Traffic - Sign - Move.................................................................................................. 183 

TOOLS - Traffic - Sign - Stop................................................................................................... 182 

TOOLS - Traffic - Sign - Yield................................................................................................... 182 

TOOLS- Traffic- Signal Face commands................................................................................. 184 

TOOLS- Traffic- Signal Face- 3 Lens..................................................................................... 184 

TOOLS- Traffic- Signal Face- 3 Lens PL................................................................................ 184 

TOOLS- Traffic - Signal Face - 4 Lens ... .. . . .. . . . . .. . .. . ... . . . .. . . . . . ...... .. .. . ... .. . . . .. . . . . .. . ... . . .. . . .. .... .. .. .. . . . . 184 

TOOLS- Traffic- Signal Face- DELETE.................................................................................. 185 

TOOLS - Traffic - Signal Face - MOVE...................................................................................... 185 

TOOLS - Traffic - Volume commands....................................................................................... 186 

TOOLS - Traffic - Volume - Percent+VOL (3 legs)..................................................................... 187 

TOOLS - Traffic - Volume - Percent+VOL (4 legs)..................................................................... 188 

TOOLS - Traffic - Volume - Percent+VOL (5 legs)..................................................................... 189 

TOOLS - Traffic - Volume - Percent+ VOL (6 legs)..................................................................... 190 

TOOLS- Traffic- Volume- TMC Volume (3legs) ...................................................................... 191 

TOOLS- Traffic- Volume- TMC Volume (41egs) ...... .. .... ............... .... .......... .... .... ......... .......... .. 192 

TOOLS -Traffic- Volume· TMC Volume (5 legs) .. ...... .............. .. ... .. ...... ............ ..... .. .... .. ...... .... 193 

TOOLS · Traffic - Volume · TMC Volume (6 legs) .. .. . . . . . . . . .. . . . . . . . . .. . .. .. . . .. .. .. .. .. ... . .. . . . .. .......... .. .. .. . . 194 

TOOLS- Turn Template commands........................................................................................ 195 

TOOLS- Turn Template- A-Bus............................................................................................. 196 

TOOLS - Turn Template - Bus................................................................................................. 196 

TOOLS- Turn Template- Del Graphics.................................................................................... 196 

TOOLS- Turn Template- MH.................................................................................................. 196 

TOOLS- Turn Template- P ............................................................. ....................................... 196 

TOOLS- Tum Template- PB.................................................................................................. 196 

TOOLS- Turn Template-PT.................................................................................................. 196 

TOOLS- Turn Template- RMD ..................... ....................... .......... ......................................... 196 

TOOLS- Turn Template· SU ......................................................... ......................................... 196 

TOOLS- Tum Template- WB-40 ............................................................................................ 196 

TOOLS· Tum Template- WB-50. ......................... ............. ..................................................... 196 

TOOLS- Turn Template- WB-60 ................................... ...................................................... ... 196 

TOOLS- Tum Template· WB-62 ............................ .. . .... ......................................................... 196 

TOOLS· Tum Template- WB-96 ............................................................................................ 196 

236 



TOOLS- Turn Template- WB-114 ............................ .............................................................. 196 

Verb - Noun........................................................................................................................... 197 

VIEW- ALTERNATIVES- ALL OFF........................................................................................ 197 

VIEW- ALTERNATIVES- ALL ON.......................................................................................... 197 

VIEW- ALTERNATIVES- CURRENT OFF.............................................................................. 197 

VIEW - ALTERNATIVES - CURRENT ON .. .. . . . .. .. .. .. . . .. . .. . . . . .. . . .. . .. . . . . .. . . . . . . . . .. . . . . . .. .. . . . . . . . . . . . . .. . . . . . . 1 9 7 

VIEW- LANE- CURRENT OFF............................................................................................... 197 

VIEW- LANE- CURRENT ON................................................................................................ 197 

VIEW- LEG CNTRLINE - CURRENT OFF................................................................................ 19 7 

VIEW- LEG CNTRLINE- CURRENT ON.................................................................................. 197 

VIEW- TEXT- CURRENT OFF............................................................................................... 197 

VIEW- TEXT- CURRENT ON................................................................................................. 197 

VIEW- TRAF CONTROL- CURRENT OFF.............................................................................. 197 

VIEW - TRAF CONTROL - CURRENT ON................................................................................ 197 

Yes....................................................................................................................................... 197 

[default]................................................................................................................................ 197 

237 


	Technical Report Documentation Page
	TITLE PAGE
	IMPLEMENTATION
	DISCLAIMERS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	SUMMARY
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 IGIDS SYSTEM DEVELOPMENT
	CHAPTER 3 IGIDS SOFTWARE DEVELOPMENT
	CHAPTER 4 IGIDS FUNCTIONAL DESIGN
	CHAPTER 5 GETTING STARTED
	CHAPTER 6 TRAFFIC SIGNAL DATA EXAMPLE
	REFERENCES
	APPENDIX A IGIDS Installation Instructions
	APPENDIX B IGIDS Command Menus
	APPENDIX C IGIDS Command Descriptions
	APPENDIX D IGIDS Vehicle Turn Template Parameters
	APPENDIX E IGIDS Abbreviations
	APPENDIX F IGIDS Terminology
	APPENDIX G Index to Commands



