
Final Report

Automatic Crack Monitoring System

Richard Liu

Associate Professor, Principle Investigator

Xiemin Chen

Research Associate

Min Wu

Research Assistant

Project No.: TxDOT 7-3997

Conducted in Cooperation With The

Texas Department of Transportation

TxDOT Project Director: Dar-Hao Chen

TxDOT Project Coordinator: Ed Oshinsky

DISCLAIMERS

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of

the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas

Department of Transportation. This report does not constitute a standard, specification or regulation.

University of Houston

Houston, TX77004-4005

 ii

 Report No.
 TxDOT 7-3997

2. Government Accession No. 3. Recipient’s Catalog No.

5. Report Date
 October 2001

4. Title and Subtitle
Automatic Crack Monitoring System

6. Performing Organization Code

7. Author(s)
 Richard Liu, Xuemin Chen, and Min Wu

8. Performing Organization Report No.

10. Work Unit No. 9. Performing Organization Name and Address
 Department of Electrical and Computer Engineering,
 University of Houston
 Houston, TX 77004-4005

11. Contract or Grant No.

13. Type of Report and Period Covered
 Final Report

12. Sponsoring Agency Name and Address
 Texas Department of Transportation
 4203 Bull Creek, Bldg. #39
 Austin, TX 78731 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract:
This report discusses the design and implementation of a Highway Crack Monitoring System (HCMS) used in a Texas

multi-purpose load simulation (TxMLS) test site. The HCMS is a black-and-white CCD camera-based image-processing
device that processes the image of the cracked pavements, extracts crack information and characterizes the cracks in terms of
crack length and width. In this project, both hardware and software are developed. The hardware system is fully automatic
with computer controlled x-y motor motion devices and Hall-effect sensors. Many lab tests were conducted. Processed results
show that an accuracy of more than 90% is achieved for crack width and length classification. The crack-processing algorithm
developed in this project uses the method of feature extraction and object characterization. A user-friendly, Windows-based
user interface is developed, which allows user to control the camera motion, calibrate the system, acquire crack images,
process images, and store data. The accuracy of the object characterization largely depends on the reliability of the features
extracted from the original image data. The HCMS system implements recurring thresholding as the basic segmentation
algorithm, which adaptively determines the gray level threshold through an estimation-verification process. Distinct block
operation is applied to improve the performance on the non-uniform property of the road image. Connected-component object
recognition and other criteria are also implemented to distinguish the crack objects and remove the noise. The crack object in
the binary image is characterized by object boundary processing. The perimeter of the object can be obtained by accumulating
the moves of the pixels on the border contour. Border convolution is implemented to classify the border pixels and to
determine the corresponding move length. With the area of the object, the length and width information can be obtained. The
limitation of the algorithm is also discussed.
17. Key Words

Laser, micro texture, macro texture, laser
triangulation, position sensitive device, microwave
remote sensing, millimeter waves, inversion

18. Distribution Statement
No restrictions.

19. Security Classification (of this
report)
Unclassified

20. Security Classification (of this
page)
Unclassified

21. No. of Pages

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

This form was electrically by Elite Federal Forms Inc.

 iii

 TABLE OF CONTENTS

List of Figures vi

List of Tables vii

CHAPTER 1 Introduction 1

1.1 Background 1

1.2 The Highway Crack Monitoring System 2

1.3 Organization of This Report 6

CHAPTER 2 Recurring Image Segmentation 7

2.1 Introduction 7

2.2 The Crack Images 7

2.3 Recurring Thresholding 9

2.4 Connected Component Object Identification 18

2.5 Distinct Block Operation 21

CHAPTER 3 Crack Object Characterization Algorithm 23

3.1 Introduction 23

3.2 Basic Definition 23

3.3 Border of a Crack Object 25

3.4 Crack Length Calculation 28

3.5 Crack Width Classification 35

3.6 Crack Growth 38

3.7 Calibration 40

 iv

CHAPTER 4 Illustrative Examples 42

4.1 Example 1 42

4.2 Example 2 46

CHAPTER 5 System Software Application Design 49

5.1 Introduction 49

5.2 Windows Framework 49

5.3 MATLAB Interface 53

5.4 CCD Camera Control 54

5.5 Motion System Control 55

5.6 Database Management 56

CHAPTER 6 System Implementation and Applications 58

 6.1 System Implementation 58

6.2 Applications 64

CHAPTER 7 Conclusions 72

REFERENCES 74

APPENDICES 75

Appendix I Matlab Image Processing Source Code 75

Appendix II CCD Camera Control Class Declaration 82

Appendix III RS232 I/O Implementation Source Code 84

Appendix IV Pin Assignment of the Motion System Control Box 89

 v

List of Figures

Figure 1.1 The block diagram of the HCMS 3

Figure 1.2 System program layout 4

Figure 1.3 The motion system 5

Figure 1.4 The TxMLS 6

Figure 2.1 Examples of the crack images 8

Figure 2.2 Histograms of the crack images in figure 2.1 11

Figure 2.3 Threshold estimation 13

Figure 2.4 Object extraction using the segmentation result 14

Figure 2.5 Intensity transformation 16

Figure 2.6 Image intensity adjustment 17

Figure 2.7 Result binary image after segmentation 18

Figure 2.8 Binary image labeling 19

Figure 2.9 Segmentation result 21

Figure 3.1 Square lattice of the digital image 24

Figure 3.2 Neighborhoods on the square lattice 24

Figure 3.3 Borders of a binary image object 25

Figure 3.4 Border extraction 28

Figure 3.5 Discrete distance: (A) d4(P, Q) (B) d8(P, Q) 30

Figure 3.6 Turning pixels 31

Figure 3.7 Calculation of in the first octant 34 Dd

Figure 3.8 Processing result 37

Figure 3.9 Image Grids 38

 vi

Figure 3.10 Crack growth detection 39

Figure 4.1 Example I: Source image 42

Figure 4.2 Example I: Processing result 43

Figure 4.3 Example II 47

Figure 6.1 CCD camera used in this project 59

Figure 6.2 Control board and DC power supply 60

Figure 6.3 (a) Schematic of the controller-driver circuit 62

Figure 6.4 (b) Schematic of the controller-microprocessor and interface 63

Figure 6.5 Processed results of a horizontal crack. Processed area is shown by the

rectangular box. 65

Figure 6.6 The image processing software can not identify object from cracks. The

ruler image is being processed as a vertical crack in this example. 66

Figure 6.7 Asphalt cracks with fine branches 67

Figure 6.8 An example of alligator cracks and processed results 68

Figure 6.9 Processed results of a cluster of cracks on an old-pavement 69

Figure 6.10 Processed result of scattered cracks on an asphalt surface 70

Figure 6.11 Processed results of asphalt-sealed cracks 71

 vii

List of Tables

Table 4.1 Parameters of the Image Objects 43

Table 4.2 Calculation results 44

Table 4.3 Calculation results of the rotated image 44

Table 4.4 Crack coverage of example II 48

 viii

Chapter 1

Introduction

1.1 Background

In the last 10 years, the United States has witnessed a continuing rise in population

and the longest peacetime expansion of the economy in the nation's history. As a result,

travel and transportation rise proportionately. In terms of passenger travel, Americans

used the automobile for more than 90 percent of their travel (by mileage) in 1975.

Today, highway travel (in passenger miles) and automobiles have continued to

dominate--still accounting for 90 percent of travel--while air travel accounts for another

9 percent, and the other modes together account for the last one percent. In terms of

freight transportation, there has been a large increase in highway and truck

transportation--an increase of its modal share from 23 to 30 percent in just 10 years--

accounting for the major part of the increase of freight transportation over the past 10

years.

However, the nation’s highway system is aging, while the volume of the traffic that it

supports continues to increase dramatically. Road maintenance technology, however,

has remained virtually stagnant for many years. It typically involves small-scale,

dispersed activities performed under traffic conditions by relatively low-skilled laborers

with basic equipment. Conventional road maintenance methods will be seriously

strained to meet the increasing demands of the future.

1

Automation of the road maintenance operations has a tremendous potential to

improve this situation. Highway crack monitoring is especially well suited for this

purpose since it is such a widespread, costly, and labor-intensive operation. Accuracy

and efficiency are always the problems, and as traffic volumes increase, crack

monitoring operations become increasingly disruptive to the travelling public.

Automation of crack monitoring can significantly reduce labor costs, improve work

quality, provide better records, and reduce worker exposure to road hazards.

The Highway Crack Monitoring System (HCMS) presented in this report is capable

of automatic-image acquisition and processing. The cracks will be extracted from the

high-noise background and will be also classified based on its width. The overall

statistical information of the road will be obtained for analysis as well.

1.2 The Highway Crack Monitoring System

The main purpose of the HCMS system is to obtain the information about the crack

and its coverage of the road image. Based on the width of the crack, it is classified into

five categories. The major tasks of the HCMS system are the following:

I. Road image acquisition

II. Image processing

III. Crack object classification

IV. Statistical report

The HCMS consists of three major parts; the computer, the image acquisition device,

and the motion system. The block diagram of the HCMS system is shown in Figure 1.1.

2

Figure 1.1 the block diagram of the HCMS

The computer is the center for both system control and image processing. Because of

the huge amount of image processing and storage, the computer should have high speed,

large physical memory, massive storage space, and fast video processing power.

Currently we are using a Pentium III 550MHz workstation, which has a physical

memory of 256 MB and a 15GB hard disk drive. Faster computers are desired in the

future.

The HCMS application software is programmed with Microsoft Foundation Class

(MFC) on the 32-bit Windows NT operation system. Figure 1.2 shows the layout of this

application program. It integrates the functionality of the image acquisition, image

processing and motion-system control in one system. The double-view style enables the

user to view both the original image and processing result at the same time. The image

processing uses the tool of MATLAB Image Processing Toolbox version 5.3

Multithread programming is implemented for the CCD camera control. A component is

3

designed for the RS232 serial port communication using the Windows APIs. Multiple

database support is also used in the software design to store the statistical data and

improve the user interface. More detail will be introduced in Chapter 6.

Figure 1.2 System program layout

The CCD camera is used as the image acquisition device in the HCMS system. It can

acquire images at 256 gray-scale, with resolution of 640-by-480 pixel format. The

camera is placed on the frame of a motion system (Figure 1.3), about one meter above

the ground, which makes the image area of 1.2-by-1.2 meters with the 6-mm lens. The

acquired image is stored in the Windows bitmap format. The typical size of the image

file is about 320 KB. Examples of such images are shown in Figure 2.1 in Chapter 2.

4

Figure 1.3 The motion system

The motion system of the HCMS is shown in Figure 1.3. These two vertical rails are

fixed on both sides of the Texas Multipurpose Loading System (TxMLS), which is

shown in Figure 1.4. The TxMLS has a huge vehicle designed by the Texas Department

of Transportation, for the purpose of highway monitoring and maintenance. The motion

system is capable of 2-dimensional movements to let the camera work continuously in

either direction, so that full image coverage of the road is achieved. The control signal of

the motion system is sent and received through the RS232 serial port of the computer.

There are some magnetic markers set along the vertical and horizontal rail. The sensors

are placed on both the removable frame and the roller hanger, so that they can move

together with the motion system. Whenever the sensor moves close enough to the

marker, the two wires attached to the sensor are short-circuited. Once the system detects

this signal, the motion system stops and the camera takes an image. The markers are

5

precisely set so that the minimum overlapping between two adjacent images is achieved.

Software debouncing should be considered to remove the spurious sensor signal.

Figure 1.4 The TxMLS

1.3 Organization of This Report

The image segmentation algorithm will be presented in detail in Chapter 2. It is a

very important step to extract cracks from the original road image. After the

segmentation, a binary image is obtained for crack analysis. Chapter 3 will discuss the

crack’s length and width calculation algorithm. As the width information is obtained for

each individual crack, the cracks will be classified based on that information. Two

examples of the field test will be listed and analyzed in Chapter 4. Chapter 5 will give a

brief introduction to the system software. Chapter 6 illustrates some examples. The

conclusion and future work will be given in the last chapter.

6

Chapter 2

Recurring Image Segmentation

2.1 Introduction

Image segmentation is one of the most important steps leading to the analysis of

processed image data—its main purpose is to divide an image into parts that have a

strong correlation with objects or areas of the real world contained in the image. [1]

Typically, digital images often come up with huge quantities of data with respect to

the size and depth of color or gray scale. With image segmentation, substantial data

volume reduction is immediately gained, and more importantly, the image objects of our

interest are separated from the rest of the image. According to the complexity of the road

images, the recurring thresholding method is implemented to improve the sensitivity and

accuracy of the processing algorithm. Usually, entirely correct and complete

segmentation of complex scenes cannot be achieved. Connected component-object

identification is implemented to remove noise objects at a higher level of processing.

2.2 The Crack Images

2.2.1 Intensity Image Data

For an intensity image, the image data can be stored in a single two-dimensional

matrix, with each element of the matrix corresponding to one image pixel. For a 256

gray scale image, the image data is within the range of [0,255]. The size of the matrix is

7

the size of the image by pixel. Therefore the acquired image in the HCMS system,

which is in the format of 256 gray scale and the size of 640-by-480 pixel, can be defined

as

]255,0[),(∈jif (2.1)

where 6400 ≤< i , 4800 ≤< j .

Be aware that the elements in the intensity matrix represent the gray level at this

pixel, “0” represents black and “255” represents full intensity, or white.

 2.2.2 Characteristics of the Crack Image

(A)

(B)

Figure 2.1 Examples of the crack images

Image data ambiguity is the major problem of segmentation, especially for crack

images. The texture of the pavement always causes noises. The shadow and other

surface objects can be other sources of the noise. Figure 2.1 shows two typical samples

taken from the highway. In figure 2.1 (A), the region of the cracks is relatively easy to

distinguish. The gray level of the crack objects is clearly distinct from the background.

8

There are several oil spots that need to be identified. The image in figure 2.1 (B)

unfortunately represents a more complicated situation that is commonly found in general

practice. The image background varies at different parts of the image due to the

reflection and non-uniform lighting. There is a shadow region on the right, which is

incurred by the camera frame.

2.3 Recurring Thresholding

Gray-level thresholding is one of the more commonly used methods of

segmentation. The objects or image regions are characterized by reflectivity or light

absorption of their surfaces. A brightness constant or threshold can be determined to

segment objects and background. [1]

The recurring thresholding method uses gray-level thresholding as the basic method.

Therefore, correct threshold selection is crucial for successful segmentation. It is

impossible to use a single threshold for all road images, since there are gray-level

variations among different images and even objects and background in the same image.

However, it can be adaptively estimated based on the average gray level of the specific

image or image fraction. This estimated threshold is set high so that most of the crack

objects and some noise objects are allowed as objects in the resulting binary image.

With this result as a mask, we can obtain a new “crack” image by simply clearing all the

pixels, which are marked as background in the binary result from the original road

image. It is reasonable to see that most of the background is removed in this image,

which results in an image with a more regular histogram with a local peak representing

9

the crack pixel distribution. More accurate segmentation can be achieved by analyzing

this image and its histogram.

2.3.1 Histogram and Threshold

The crack objects can be characterized by light absorption of the highway surface,

which appear at a different gray scale from the neighbors or background. From Figure

2.1, it is noticeable that the cracks are slightly darker than the neighboring areas, which

indicates that they usually have a lower gray value to distinguish themselves from the

background.

Gray-level thresholding is the transformation of an input image to an output

image as follows:

),(jif

),(jig

⎩
⎨
⎧

=
0
1

),(jig (2.2)
for
for

Tjif
Tjif

<
≥

),(
),(

where T is the threshold constant, =1 for image pixels of the image objects,

and =0 for background pixels (or vice versa). With thresholding, the original

intensity image is converted to a binary image. Only the pixels of particular interest are

left as image objects.

),(jig

),(jig

Correct threshold T selection is crucial for successful threshold segmentation. The

direct method of gray-level thresholding is based on the histogram-shape analysis. The

histogram is the chart that shows the distribution of intensities in an intensity image.

Figure 2.2 shows the histograms of the two corresponding images in Figure 2.1. In both

histograms, there is a local peak near the intensity 200, which indicates most of the

crack pixels, as well as some of the noise background. The sharp rise near gray level 255

10

in both images is caused by the large quantity of the white pixels on the image

background. The lower range ([0,250]) of the histogram reflects the distribution of

cracks.

(A)

(B)

Figure 2.2 Histograms of the images in Figure 2.1

The different shape of the histogram reflects the difference in the property of the

images. The left peak in Figure 2.2 (B) is incurred not because of crack objects, but the

shadow area on the right part of the image instead. The far distance between the two

peaks indicating the gray level of the shadow differs greatly from that of the crack

objects.

The typical image consisting of objects with approximately the same gray -level

differs from the gray -level of the background, which results in the bi-modal of the

histogram. The image has two local peaks in its histogram. The objects form one of

them while the background forms the other. In this case, it is easy to find the threshold

that includes all the object gray distribution, but all of the background pixels fall outside.

11

[1] Unfortunately, this situation is not common for crack images. The crack pixels only

occupy a small percentage of the total pixels. The background has different gray levels.

Some of these background pixels may have very close gray levels to the crack objects.

Considering the non-uniform lighting conditions, there may be fake peaks in the

histogram. From Figure 2.2, we can see that the histogram of the crack image does not

appear as the bi-modal. It depends not only on the image objects, but also many other

physical conditions. It is almost impossible to determine the correct threshold value

directly from the histogram. In addition, the threshold must be determined based on the

local image content, which varies at different parts of the image. Therefore, we cannot

set a global threshold for the entire image.

2.3.2 Threshold Estimation

As discussed in the previous sections, it is very difficult to precisely determine the

threshold. However, it is possible for the threshold to be estimated to detect the crack

objects. Obviously, this threshold should follow these facts below:

(1) For 256 gray-level image, the value of threshold constant is within the range

[0,255];

(2) When the image grows darker, the average gray level of the image pixels

becomes lower. The value of the threshold constant also becomes lower. And

vice versa. It is a monotonic relationship

12

Figure 2.3 Threshold estimation

The average gray level of the image can be a suitable parameter for the threshold

estimation. It is obtained by averaging all the elements of the image data matrix.

Because there is a monotonic relationship between the threshold and the darkness, we

can assume it is simply a linear function, so that:

Δ+•=)(ImeankT (2.3)

where T is the estimated threshold and I is the image data matrix. The parameter k

and Δ can be estimated by real samples. This is shown in Figure 2.3. The dots in the

figure are obtained by averaging a large quantity of samples. The red line is the

estimated threshold function with k=1, Δ=-32. When this function is applied to

segmentation, the result is very good. Figure 2.4 shows the segmentation results of the

13

image in Figure 2.1(A). The resulting binary image of this segmentation process is not

the final result. Instead, it leads to a more specific crack image shown in Figure 2.4(D).

(A) Original image (B) First segmentation result

(C) Dilated segmentation result (D) Crack image

Figure 2.4 Object extraction using the segmentation result

2.3.3 Recurring Threshold Determination

As a result of threshold estimation, a binary image [Figure 2.4 (B)] is obtained by

applying the function (2.2) to the original crack image. However, some noise is also

included in the result because the threshold is set high, and any pixel whose gray level is

below the threshold will be recognized as an object pixel. From this result, it is very

difficult to distinguish crack objects from noise. However, we can go back to remove all

14

the background pixels from the original image, where the segmentation result works as a

mask. As the result, a new crack image can be obtained with most of the background

being removed.

To avoid the loss of the crack edge, a dilation operation is applied to the

segmentation result in Figure 2.4 (B). For binary images, the dilation adds pixels to the

boundaries of the objects in which the pixels have the value of “1.” Therefore, only the

objects can be enlarged. The dilation operation uses a specified neighborhood, which is

a two- dimensional binary matrix. The neighborhood for a dilation operation can be of

an arbitrary shape and size. It is represented by a structure element, which is a matrix

consisting of only 0’s and 1’s. The center pixel of the structure element represents the

pixel of interest, while the elements in the matrix that are “1” define the neighborhood.

The state of any pixel in the output image is determined by applying a rule to the

neighborhood of the corresponding pixel in the input image. The rule is defined as

follows:

If any pixel in the input pixel’s neighborhood is “1,” the output pixels is “1.”

Otherwise, the output pixels is “0”. [5]

Figure 2.4 (C) shows the dilated result of the image in Figure 2.4 (B), and Figure 2.4

(D) shows the result masked from the original image with Figure 2.4 (C). As we can see,

most of the background in the original image has been removed. The corresponding

histogram will have a major peak for the crack object pixels, which is shown in figure

2.5 (A). There is also a high peak at gray level 255 for the white background, which has

been removed in the figure.

15

When we look back at the original image in Figure 2.4 (A), we can see that not all

the pixels of the crack objects are at exactly the same gray level. This is caused by the

boundary effect which shows that the border pixels of the crack have a higher gray level

than the center pixels of the crack. This makes them look a little brighter and closer to

the background. Therefore, the pixels of the crack objects exist in a narrow range of the

gray-level histogram. We are not able to determine the threshold simply at the gray level

of the maximum point of the histogram. The band thresholding method is implemented

instead. In order to do that, further image transformation is needed to get the object

pixels in the correct intensity range. The goal of the image intensity transformation is to

map an image’s intensity value from one range to another. We can increase the contrast

of the image and eliminate the noise at different gray levels by expanding a small range

of intensity data to the entire intensity range. [5]

(A) Histogram of the masked image

(B) Histogram of the image after

intensity transformation

Figure 2.5 Intensity transformation

16

The source intensity range, which is the bandwidth of the band -thresholding, is

chosen so that most crack boundary pixels are included and that the least noise is

existing in the result. Figure 2.5 (A) shows how to determine the bandwidth. T is a

parameter which varies with the content of the image. Generally, it is defined as:

T = α • max(I) (α<1) (2.4)

where I is the histogramand α is the bandwidth coefficient. When α is large, T

becomes high. The selected range of intensity transformation becomes narrow, so that

some of the boundary pixels will be lost. When α is small, T becomes low. The selected

range of intensity transformation becomes wide, so that some of the background pixels

will also be included in the result. Therefore, it is very efficient to compensate the

boundary effect by adjusting the bandwidth coefficient α.

(A) T=80%*max(I) (B) T=50%*max(I)

Figure 2.6 Image intensity adjustment

Once α is set, the boundary points of the intensity range L1 and L2 are

straightforward. Figure 2.5(B) shows the histogram of the image after the intensity

17

transformation. It is the expansion of the selected portion [L1, L2] of the histogram in

Figure 2.5(A). Different image transformation results with the given bandwidth

coefficient α are shown in Figure 2.6. α=50% is applied to the algorithm according to

the actual result. After the image transformation, the resulting image is still a 256 gray-

level intensity image. Since it is assumed that most of the image objects remaining are

crack objects, we can set a high threshold to convert it to the binary image as the final

segmentation result. Figure 2.7 shows this binary image.

Figure 2.7 Result binary image after segmentation

2.4 Connected-Component Object Identification

18

As mentioned before, entirely correct and complete segmentation of complex scenes

cannot be achieved. It is inevitable to have some noise pixels included in the

segmentation result shown in Figure 2.8. These noise pixels cannot be removed during

the segmentation because these pixels have gray levels very close to the crack objects.

To distinguish these pixels, additional methods must be implemented according to the

characteristics of the cracks.

2.4.1 Binary Image Labeling

0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 1 1 1 0

0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0

(A) Original image data

0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 0 2 2 2 0

0 0 0 0 2 2 2 0

0 0 0 0 0 0 0 0

(B) Image data after labeling

Figure 2.8 Binary image labeling

In order to distinguish each object in the binary image, it must be isolated from the

rest of the image for further analysis. With the binary image-labeling method, the pixels

in different connected objects of a binary image are labeled with different integer values.

The binary image data is labeled according to different neighborhood relationships that

will be discussed in the next chapter. Individual objects can be extracted from the image

by selecting the pixels with specific values. Figure 2.8 shows an example of the binary

19

image labeling. In Figure 2.8 (A), there is a 5X8 binary image data fragment. The pixels

with a value of “1” are the object and others are the background. The two separate

objects are labeled with “1” and “2” after the binary image-labeling operation, which is

shown in Figure 2.8 (B). After this, the first object can be extracted by selecting the

pixels with the value of “1,” and the other one by selecting the pixels with “2,”

2.4.2 Connected-Component Object Identification

Segmentation cannot remove the noise pixels with gray levels close to the crack

objects. Higher level-image processing is necessary to distinguish the crack objects

based on the characteristics of cracks. However the definition of “crack” has much

ambiguity, which adds difficulty to this process of discrimination. Two preliminary

criteria are set here to distinguish the crack.

(1) The object is not a crack if the number of the object pixels is less than a certain

limit NL.

(2) The object is not a crack if the number of the object pixels is higher than a

certain limit NH.

The first one can be applied to remove the small objects incurred by sand, pebbles,

or the texture of the background. The other one can be applied to remove large objects

caused by shadow or paint. In my program, NL = 25, and NH is set as one third of the

total number of pixels of the whole image. The final binary crack image is obtained after

this step. It is shown in Figure 2.9.

20

Figure 2.9 Segmentation result

2.5 Distinct Block Operation

To solve the problem of non-uniform property of the road image, the distinct block

operation is applied. The original image is divided into distinct blocks. Within the same

block, the lighting condition can be regarded as uniform. The processing is performed

on each block individually to get the results in the corresponding block of the output

image.

The optimal block size can be determined with the image size and the maximum

block dimension. Given the image size m-by-n, the maximum row and column

21

dimensions for the block as k, the optimal block dimension can be determined with the

following algorithm. [5]

(1) If m is no greater than k, k = m.

(2) If m is greater than k, consider all values between min(m/10, k/2) and k. The

optimal column size is the value that minimizes the padding required.

(3) Similar steps for block row size.

For an image of 640-by-480, the optimal block size is 80-by-96.

22

Chapter 3

Crack Object Characterization Algorithm

3.1 Introduction

After the image segmentation in the previous chapter, a binary image is obtained

from the original 256 gray-level image. The image data becomes a discrete set of “1”

and “0” (black and white), which represents the crack object (foreground) and

background respectively. The crack object can be characterized on the basis of pixel

neighborhood relationships to the definition of the discrete set.

3.2 Basic Definitions

In order to define further algorithms to characterize the image object, such as the

calculation of length and area, several robust basic definitions are needed. Connectivity

and neighborhood of digital images are discussed in this section.

3.2.1 Square Lattice

In the mathematical model of a digital image, the image can be mapped to a set of

discrete pixels on a two-dimensional square lattice. The pixel area is defined with the

center pixel, leading to the representation of pixels as discrete points in the plane. As

shown in Figure 3.1, a square lattice is built with black dots (•) and continuous lines.

The dots represents center pixels in the lattice, and the line implies that the two pixels

23

are connected with each other in the lattice. With this definition, the image pixels

become the points on the square lattice.

Figure 3.1 Square lattice of the digital image

3.2.2 Neighborhood

The neighborhood is defined by referring to the considered square lattice. With the

structure of a square lattice, the 4-connected neighborhood (N4(O)) and 8-connected

neighborhood (N8(O)) are derived, which is shown in Figure 3.2. The 4-connected

neighborhood includes the four direct neighbors of the point O in question. The 8-

connected neighborhood is completed using the four direct neighbors and other four

corner points for a given point O.

Figure 3.2 Neighborhoods on the square lattice

The definition of the neighborhood sets the foundation for a digital image processing

algorithm in this chapter.

24

3.3 Border of a Crack Object

In the binary image of the cracks, an important subset of pixels in the crack object is

the set of the boundary pixels, which separates the crack objects from the background.

The border describes the shape, perimeter, area, etc. about the crack object. Further

calculation of the crack can be obtained by analyzing these border pixels.

3.3.1 Definition: Border of image object

Given a set of points P, the complement of P denoted as PC. The 8-connected border

of P is the set of points Γ that have at least one 4-connected neighbor in PC. The 4-

connected border of P is the set of points Γ that have at least one 8-connected neighbor

in PC. [2]

The border of the object is defined with a neighborhood relationship. Figure 3.3

illustrates an example of the 4-connected border (B) and 8-connected border (C) for the

object in (A).

Figure 3.3 Borders of a binary image object

3.3.2 Border Determination

25

A pixel in a binary image can be determined as a border pixel if it satisfies both of

the following criteria [2]:

(1) It is a foreground pixel.

(2) One (or more) of the pixels in its given neighborhood (4- or 8-connected) is a

background pixel.

3.3.3 Border Smoothing

Correct border extraction is very important for further calculation. The purpose of

the smoothing is to remove the irregularities of the crack objects that will significantly

affect the accuracy of the length calculation. The approach is based on the operators

from mathematical morphology, which is given by Minkowski algebra. These operators

have been proven efficient in noise removal on binary images. There are two basic

morphological operations, dilation and erosion, which are defined as follows: [2]

Given a set of pixels F and its border Γ with respect to a neighborhood relationship.

For any pixel p∈F, ND(p) denotes the neighborhood of p.

(i) The dilation operator dilation(.) applied to F results in the set

UU
Fp

D pNFFdilation
∈

=)()((3.1)

(ii) The erosion operator erosion(.) applied to F results in the set

Γ= \)(FFerosion (3.2)

Advanced morphological operators closing and opening can be obtained by

combining these basic operators:

The closing(.) and opening(.) operators are defined by [2]:

closing(F)=erosion(dilation(F)) (3.3)

26

opening(F)=dilation(erosion(F)) (3.4)

Both closing and opening operators can be used for binary object smoothing. The

closing operator can fill spurious holes, whereas the opening operator smoothes the

irregularities by removing spurious components. They can only remove the one-pixel

size spurious smoothing. However, different levels of object smoothing can be obtained

by using different combinations of dilation and erosion operators. [2] For example, two-

pixel sized holes can be filled using the operator erosion[erosion(dilation[dilation(.)])].

Similarly, two-pixel sized spurious components can be removed using

dilation[dilation(erosion[erosion(.)])]. According to the binary result of segmentation, a

three-pixel level of smoothing is applied to the processing here. To avoid the possible

image loss caused by the erosion on the image border (three-pixel depth), the object

pixels within the three-pixel range of the image border have been preserved before the

border smoothing operation and restored after the smoothing process.

3.3.3 Crack Object Dilation

Since most of the cracks are very long and slim, direct border extraction will break

the close arc of the crack object border. A dilation operation, discussed in the previous

chapter, is applied prior to the border extraction. Furthermore, the dilation operation can

also remove some of the spurious noise pixels of the crack objects.

The error incurred by this dilation for the further calculation is limited because the

dilation can only slightly increase the perimeter of the crack. The matrix used in the

dilation is a 2-by-2 matrix with all “1” element, for the smallest dilation operation;

27

however, it is enough to preserve the close border arc. Figure 3.4 shows the border

extraction with dilation.

(A) Original crack object (B) Crack border

Figure 3.4 Border extraction

3.4 Crack Length Calculation

When the crack’s border is extracted, it appears as a close arc in the partition. The

length of the crack can be computed from its perimeter. Most cracks have very large

length-to-width ratios. Half of the perimeter can be a good approximation to its length.

3.4.1 Move and Move Length

A move on the lattice is the displacement from a point to one of its neighbors. A

move length is the value of the local distance between a point and its neighbors.

According to the definition above, we can see that there is only one type of move in

a 4-connected neighborhood, defined as Δ for a unit length. For the 8-connected

28

neighborhood, the moves are 1Δ and 2Δ , which represent the distance from the center

point to the direct 4 neighbors and to the 4 corner points.

3.4.2 Euclidean Distance

Euclidean distance is the basic precise definition of distance between two points in a

two-dimensional plane. It is defined as follows: [2]

Given two points P(xp, yp) and Q(xq, yq), the Euclidean distance of PQ is defined by

22)()(),(pqpqE yyxxQPd −+−= (3.5)

Other discrete distances are nothing but approximations of the Euclidean distance.

3.4.3 Arc Length and Discrete Distance

The length of a digital arc is the sum of the length of all the moves that compose it.

The discrete distance between two points P and Q is the length of the shortest digital arc

from P to Q. [2]

The definition above leads to the 4-connected discrete distance denoted as d4(P, Q)

and 8-connected discrete distance denoted as d8(P, Q). d4(P, Q) is the length of the

shortest 4-connected arc, and d8(P, Q) is the length of the shortest 8-connected arc.

Figure 3.5 shows the difference of d4(P, Q) and d8(P, Q) between P and Q. Obviously,

d8(P, Q) is a better approximation of the actual length than d4(P, Q). The approximation

error will be discussed later.

29

Figure 3.5 Discrete distance: (A) d4(P, Q) (B) d8(P, Q)

3.4.4 Crack Length Calculation Algorithm

The 8-connected neighborhood is used in the length calculation. Based on the

discussion in the previous section, the length is computed by summing up all the move

lengths of the close arc of the crack border. In most cases, there are dozens of crack

objects in one image and each crack may be a collection of thousands of pixels. A fast

algorithm is desired even for the fastest computer.

Since there are only two types of moves for the 8-connected neighborhood, all we

need to do is to find out how many pixels on the border have the move of and the

other will have the move of

1Δ

2Δ . It is easy to count the total number of border pixels.

Given the total number of border pixels N8, K pixels has the move of , the length of

the curve L is

1Δ

281)(Δ•−+Δ•= KNKL (3.6)

To simplify the calculation, we can also start with the 4-connected borders. There is

only one type of move Δ in a 4-connected neighborhood, with Δ equal to the Δ1 of the 8-

connected border. For any move on the 8-connected border, it is associated with two 2Δ

30

turning pixels on the 4-connected border. The turning point can be determined by the

fact that the two closest neighbors are not on a straight line. Figure 3.6 shows these

turning pixels. From the figure, for the arc from pixel A to B, the 4-connected arc length

is 4Δ(4Δ1), and the 8-connected arc length is 2Δ1 +Δ2. Therefore, for each turning point

on the 4-connected arc, the length adjustment will be
2

2 21 Δ−Δ . Therefore, the equation

(3.2) becomes:

2
2 21

14
Δ−Δ

•−Δ•= KNL (3.7)

where N4 is the total number of pixels and K is the number of turning pixels on the 4-

connected border.

Figure 3.6 Turning pixels

The remaining issue is to find out these turning points in a fast way. Sorting pixel by

pixel is not a good idea, because it will be too tedious with so many pixels existing in a

crack object.

The Border Convolution method is introduced to solve this problem. This method is

based on matrix processing. With modern computer technologies, matrix computation

31

becomes easier and faster. New mathematical software tools are also designed to apply

to this trend, such as MATLAB and MATHCAD.

The two-dimensional convolution is a neighborhood operation. The value of an

output pixel is computed by multiplying elements of two matrices and summing for the

results. One of the matrices represents the image data, and the other matrix is known as a

convolution kernel. Let I be the binary image data matrix. The convolution is:

SEII ⊗=' (3.8)

where SE is the convolution kernel. To find out the turning pixels, two convolution

kernels are defined as:

 (3.9)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
111
000

1SE
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010
010
010

2SE

In the resulting image data matrix and , the element has the value of 3 for all

non-turning pixels. Counting on the data in matrix and , it is easy to get the exact

number of the turning pixels on a 4-connected border. The length of the border is then

straightforward with equation (3.4).

1
'I 2

'I

1
'I 2

'I

Integer values 3 and 4 are assigned to move length 1Δ and 2Δ for better computer

preservation and higher processing speed. In this case, the length of the diagonal move

2 is approximated by
3
4 .

3.4.5 Approximation Errors

Based on the model set up in the proceeding discussions, the continuous concepts

such as continuity and distance have been mapped onto discrete space as the concepts of

32

connectivity and discrete length. It is important to find out the approximation error made

during this process.

The relative error is defined with the given discrete length and the Euclidean

distance between two points P and Q as [2]

DE Dd

Ed

1)
),(
),((1

),(
),(),()/1(),(−=

−
=

QPd
QPd

QPd
QPdQPdQPE

E

D

E

ED
D ε

ε
 (3.10)

The parameterε (0>ε) is the scale factor used to maintain consistency between

radii of discrete length and Euclidean distance. In the 8-connected neighborhood,

let 1Δ=ε .

Let = and point P be the origin. Considering the first octant in Figure 3.7,

we see that

Dd
21 ,ΔΔd

21,)(
21

Δ+Δ−=ΔΔ QQQ yyxd (3.11)

The error is measured along the line (x=L) with (L>0). Therefore, for all Q that

 and , the relative error at point Q is given by [2]

DE

LxQ = LyQ ≤≤0

1
)(

),(
22

21 −
+

Δ+Δ−
=

Q

QQ
D

yL

yyL
QPE

ε
 (3.12)

33

Figure 3.7 Calculation of in the first octant Dd

Since is a convex function in DE []L,0 , its local extreme can be obtained so that

.0),(
=

∂
∂

y
QPED

0.
))((

)(1),(
22

21
1222

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

Δ+Δ−
−Δ−Δ

+
=

∂
∂

Q

QQQ

Q

D

yL
yyyL

yLy
QPE

ε
 (3.13)

In this case, 1
)(

),(
2

12
2
1 −

Δ−Δ+Δ
=

ε
QPED , where LyQ

1

12

Δ
Δ−Δ

= . The two

bound points at P(0,0) and Q(0,L) should also be considered as the possible peak point.

Therefore, the maximum relative error is defined as the point that

=max{| |, , }.),(QPE MAX
D),(QPED

P
DE Q

DE

Recall (3.13), ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

Δ
−

Δ−Δ+Δ
−

Δ
= 1

2
,1

)(
,1max),(2

2
12

2
11

εεε
QPE MAX

D . As

=3 and =4, the maximal relative error is 1Δ 2Δ

%73.51
23

4
4,3 ≈−=MAXE (3.14)

34

3.5 Crack Width Classification

3.5.1 Area Calculation

A good estimation for the area of the crack object in binary images is found by

summing the areas of each pixel. Let’s define the on pixel in the binary image, which

represents the pixel with the value of 1. The area of an individual pixel is determined by

looking at its four 2-by-2 neighborhoods. There are six different distinguishable patterns

for a 2-by-2 neighborhood, each representing a different area: [6]

• Zero on pixels (area=0)

• One on pixel (area=1/4)

• Two adjacent on pixels (area=1/2)

• Two diagonals on pixels (area=3/4)

• Three on pixels (area=7/8)

• All four on pixels (area=1)

Because each pixel is part of four different 2-by-2 neighborhoods, a single “1” pixel

surrounded by “0” pixels has a total area of 1.

3.5.2 Width Calculation

As the area and the length of the crack object are both obtained, its average width is

computed by dividing the area by its length. There is an important step necessary to

isolate each crack object and do the calculation individually. The connected-component

labeling and selection methods are used, which have been discussed in the previous

chapter.

35

So far, we suppose that all the existing objects in the resulting binary image are

cracks we are interested in. In fact, since we have used gray-level segmentation, which

distinguishes the crack objects based on their gray value difference from the

background, additional higher-level processing methods are needed to distinguish the

crack objects. Certain criteria are necessary to remove noise at this final step. Three

additional criteria are set for the crack discrimination:

(1) Width limit: No object is a crack object when its width is larger than this limit.

(2) Length limit: No object is a crack object when its length is smaller than this

limit.

(3) Length-to-width ratio limit: No object is a crack object when its length-to-width-

ratio is smaller than this limit.

The actual parameter is obtained from a large quantity of real examples. The width

limit is set as 20 pixels, the length limit as 10 pixels, and the length-to-width ratio limit

as 3. Figure 3.8 shows the final result image of the cracks.

36

Figure 3.8 Processing result

3.5.4 Grid Classification

 In the crack characterization, we are not only interested in the properties of an

individual crack but, more importantly, in the overall percentage of the crack coverage

on the road. A grid format image is created for this purpose. The whole image is divided

into small identical grids. The grid size can be user-defined. According to the width, all

the cracks are classified into five categories. The range of the crack width increases from

category one to five. The grids are classified by the widest crack inside, and filled with a

specific color. With the grid classification, we can get the visualized information of the

crack coverage, which is very important to determine the quality of the pavement.

37

Figure 3.8 shows two examples of the grid image on a same result crack image. It is

easily seen that the result is more accurate with smaller grid size.

(A) Grid Size: 40 Pixel

(B) Grid size: 20 Pixel

Figure 3.8 Image Grids

3.6 Crack Growth

Crack growth is a very important issue of automatic crack monitoring. It can be

determined by comparing different processed result images of the same location. Since

the images are binary images, the difference can be easily obtained by an XOR (⊕)

operation. However, in most of the cases, the two images cannot be perfectly

overlapped. There is shifting or even rotation between the two images. To solve this

problem, the theory of correlation is applied. The correlation coefficient r of image A

and B is defined as

∑∑∑∑

∑∑
−−

−−
=

m n
mn

m n
mn

m n
mnmn

BBAA

BBAA
r

))()()((

)()(

22
 (3.15)

The equation above can be simplified as (3.16) if A and B are binary images.

38

∑∑ ⊕=
m n

BAr (3.16)

(A) Before (B) After

(C) Crack Growth

Figure 3.9 Crack growth detection

39

Considering the arbitrary 2-dimensional displacement between A and B, the

correlation coefficient is calculated in a loop. The most overlapping occurs when the

coefficient r reaches the maximum. When the laser pointer is used for the positioning

system, the precision can be under 10 mm. Compared with an image size of 1.2-by-1.2

meters, the image rotation can be neglected. Figure 3.9 shows an example of crack-

growth detection. The horizontal displacement between (A) and (B) is 14 pixel/26mm,

and the vertical displacement is 11pixel/21 mm.

3.7 Calibration

So far, all the calculations are achieved with the unit of pixel. However, the physical

length and width is required in practice. It could be computed based on the parameters

such as the height and the angle of the image-acquisition devices. However, the most

direct method is the system calibration. The basic idea is that we get the calibration

parameter based on the processing result of an object whose parameters are already

known. This calibration parameter is the ratio of the processing result to the physical

size of the object.

A special calibration board is designed for this purpose. On this board, there are

several equally-spaced lines with the same length. These line objects are long and dark

so that they are very easy to distinguish. They have the same length for the object

identification. When we obtain more than two objects in the processing result that have

very close values, they are recognized as the calibration objects and the average value is

used to calculate the calibration parameter. Or, they will be neglected as noise objects to

40

avoid error. Each time the calibration parameter is reserved in the system so that it can

be reused after the current session. The user can do the calibration any time to obtain the

most recent parameter for measurement.

41

Chapter 4

Illustrative Examples

4.1 Example I

This example is designed to test the sensitivity of the crack-detection algorithm and

the accuracy of the crack-calculation algorithm. The target is a board with several lines

that have different lengths and widths. Figure 4.1 shows the acquired image of this

board.

Figure 4.1 Example I : Source image

42

This image is taken inside the lab, with a general light source. Compared with

natural sunlight, it is relatively weak and non-uniform. The camera is placed at the

height of about a meter, which is able to cover the area of about 1.2 meters by 1.2 meters

on the ground. From figure 4.1, we can see that the light extraction is considerable,

especially for small and slim objects like (D) and (E). The parameters of the objects

from (A) to (E) are given in Table 4.1.

 (A) (B) (C) (D) (E)

Width (mm) 12.1 7.5 6.2 3.5 1.7

Length (mm) 295 293 293 293 292

Table 4.1 Parameters of the Image Objects

Figure 4.2 shows the processing result of the binary crack image and Table 4.2 gives

the calculation result for width and length of the objects.

(B) Binary output

(B) Overlapped output

Figure 4.2 Example I: Processing result

43

 (A) (B) (C) (D) (E)

Actual (mm) 12.1 7.5 6.2 3.5 1.7

Result (mm) 11.9 7.4 7.0 5.2 3.2

Width

Error (%) 1.65% 1.33% 12.9% 48.6% 88.2%

Actual (mm) 295 293 293 293 292

Result (mm) 291 288 284 268 264

Length

Error (%) 1.36% 1.71% 3.1% 8.87% 9.90%

Table 4.2 Calculation results

To further verify the accuracy of the algorithm, the source image is rotated by a 45°

angle. Table 4.3 shows the calculation results for this image.

 (A) (B) (C) (D) (E)

Actual (mm) 12.1 7.5 6.2 3.5 1.7

Result (mm) 11.5 7.0 7.0 4.8 3.0

Width

Error (%) 4.96% 6.67% 12.9% 37.1% 76.5%

Actual(mm) 295 293 293 293 292

Result (mm) 288 289 286 280 284

Length

Error (%) 2.37% 1.37% 2.39% 4.44% 2.74%

Table 4.2 Calculation results of the rotated image

44

From the results, we can see that the algorithm is very efficient in detecting the crack

objects, even when the light condition is poor and the objects are very slim. The length-

calculation algorithm is also proven to match with the object very well. The maximum

error is less than 10%, which is a special case caused by the distinct block operation in

Chapter 2. When we look at the overlapped result in Figure 4.2 (C), we can see that the

start and end of the lines (D) and (E) are cut off, because that’s exactly the border of the

sub-image divided from the whole image when the distinct block operation is applied. In

such sub-images, the object is so small that it is removed as noise. This problem can be

corrected by overlapping with the distinct block operation.

The width calculation is also effective when the object width is above 5mm under

the current testing environment. When the width is below 5mm, the calculation is

limited by the light conditions and the resolution of the camera. The light has the major

impact on the image segmentation. The boundary effect of the image object is great

because of the flat reflection of the light and the sensitivity of the CCD camera. In the

source image, the gray value varies greatly from the border to the center of the line

objects.

The two results from the images with different angles are well matched with each

other, which proves the effectiveness of the whole algorithm of calculation.

To improve the lighting situation, an artificial lighting system is in design to provide

the optimal lighting condition. The camera flashlight can be a solution. It can provide

strong light, and avoid heavy equipment of the regular light system at the same time.

There are a couple of pins on the flashlight circuit. It is triggered once these pins are

45

short-circuited. The flashlight control signal can be sent through the RS232 port of the

computer. However, the timing is an important issue for control. Additional driving

circuit is needed.

Considering the camera resolution of 640-by-480 pixel, and the fact that it covers the

area of 1.2-by-1.2 meters, it is easy to estimate the calibration factor by dividing the

image size with the camera resolution. Therefore, each pixel in the processing result is

compared to the actual length of about 1.87mm. In this experiment, the factor is

calculated as 1.74mm by calibration, which is also the highest resolution of the

algorithm.

4.2 Example II

Experiment II demonstrates the performance of image processing in the real

environment. Figure 4.4 (A) shows the source image acquired on the real highway

pavement. The binary output, overlapped output and grid output images are shown in

(B), (C) and (D) respectively.

46

(A) Source image (B) Binary output

(C) Overlapped output (D) Grid output

Figure 4.3 Example II

With the grid output image in Figure 4.4 (D), the information about the crack

distribution is obtained, which is shown in Table 4.3. In the result, most of the crack

objects are successfully detected with different light conditions. Some of the noise

objects, such as the paint and shadow, are removed. The calculation results match the

real objects. Table 4.3 shows the statistical result of the crack coverage of Example II.

47

 Class I

(0~3mm)

Class II

(3~5mm)

Class III

(5~7mm)

Class IV

(7~10mm)

Class V

(>10mm)

Road coverage

(%)

0 0.2 2 3.6 5.4

Total length

(mm)

0 89 304 545 832

Table 4.3 Crack coverage of example II

48

Chapter 5

Software Design

5.1 Introduction

The system application software is programmed with Microsoft Fundamental Class

(MFC) on the operation system of Windows NT 4.0. To control the external hardware

and process the acquired image in one system, the system software design is very

complicated. There are five major components:

(1) Windows framework of views and documents,

(2) MATLAB image processing,

(3) CCD camera driver,

(4) Motion system control ,

(5) System database management.

Several advanced Windows programming techniques, such as multiple view and

multithread are implemented in the software design.

5.2 Windows Framework

The system application has a user-friendly interface. Figure 1.4 in Chapter 1 shows

the frame of the program. It implements the splitter windows and double-view-single-

document architecture. The left pane shows the original image and the right pane shows

49

the result image after processing. Drawing and erasing functions enable users to modify

the processing result and re-process the crack image.

5.2.1 The Splitter Windows

The splitter window appears as a special type of frame that holds multiple views in

panes. The user can move the splitter bar to adjust the relative size of the panes.

Programming with Microsoft Foundation Class (MFC), the framework of the splitter

window application project can be created using the Visual C++ Application Wizard. An

object of the MFC class CSplitterWnd represents the splitter window. It is a data

member of the CChildFrame class. The CChildFrame class also has to override the

virtual member function of OnCreateClient to create the splitter window, and the splitter

window creates the views. The function of OnCreateClient is shown below.

BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT lpcs,

CCreateContext* pContext)

{

 // Create static splitter

 if (!m_wndSplitter.CreateStatic(this,1,2,WS_CHILD))

 {

 return FALSE;

 }

 if (!m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CCrackView),

 CSize(0, 0), pContext))

 {

50

 return FALSE;

 }

 if (!m_wndSplitter.CreateView(0, 1, RUNTIME_CLASS(CCrackView),

 CSize(0, 0), pContext))

 {

 return FALSE;

 }

 m_bSplitter = TRUE;

 m_wndSplitter.ShowWindow(SW_SHOWNORMAL);

 m_wndSplitter.UpdateWindow();

 return TRUE;

}

5.2.2 The CCrackObj Class

The HCMS software application enables the user to modify the image processing

result and recalculate the crack information. Any drawing or erasing that the user makes

is an object of the class CCrackObj. This class is derived from the MFC base class

CObject. It has the member variables to describe the properties of the object of the user

modification, such as crack width, crack color, the position of the object located, as well

as the view and document object pointer that the object belongs to.

Whether the user draws or erases, a line object is created to store such information.

Another class CCrackStroke is derived from the CCrackObj, which includes most of the

lower level operations on such line objects. It has a CArray member variable that stores

51

coordinates of all the points on the line trail. The member function AddPoints() adds

new points to the array whenever the line object extends. Together with the properties in

its CCrackObj base class, the user is able to modify the image of the processing result

under precise control.

5.2.3 The Document and View

By using the splitter window, there are more than one view objects existing in the

frame. The HCMS software application implements the double-view-single-document

architecture for the document and view relation. Two MFC functions are helpful for the

object of the document class to iterate through the multiple views: CDocument::

GetFirstViewPosition() and CDocument::GetNextView(). The first function returns a

POSITION value for the first view in the system. The GetNextView() function takes this

value to retrieve the view object pointer. The following piece of code is an example of

how to iterate through the views and repaint.

//To get the first view in the list of views:

POSITION pos = GetFirstViewPosition();

CView* pFirstView = GetNextView(pos);

// This example uses CDocument::GetFirstViewPosition

// and GetNextView to repaint each view.

void CMyDoc::OnRepaintAllViews()

{

 POSITION pos = GetFirstViewPosition();

 while (pos != NULL)

 {

52

 CView* pView = GetNextView(pos);

 pView->UpdateWindow();

 }

}

There are also some graphic functions that enable the user to modify the processing

result image. The modification is under perfect control by drawing, erasing and line

width definition. The system is able to update the processing result in a Windows bitmap

image, reprocess the image and update the crack statistical information of this image.

5.3 MATLAB Interface

All the image-processing code is written with the MATLAB Image Processing

toolbox. It processes the 256 gray-level intensity images acquired by the CCD camera.

A binary crack image, an overlapped image, and a color-grid image are created as the

outputs. Since we use the latest version 5.3 of MATLAB, which is not accompanied

with a C++ compiler, a special piece of MATLAB interface code is designed to

implement the MATLAB source code in the C++ program. The detailed procedure is

listed below.

• Start a MATLAB engine session: Engine *engOpen(const char *startcmd).

“stmartcmd” must be NULL for Windows. A pointer to the engine handle is

returned.

• Execute a MATLAB program piece: int engEvalString(Engine *ep, const char

*string). The “string” should be a valid MATLAB command to be executed.

Zero is returned if MATLAB runs successfully.

53

• Quit a MATLAB engine session: int engClose(Engine *ep). It returns “0” on

success and “1” otherwise.

 In addition, the MATLAB C++ interface header file “engine.h”, which can be

found in the MATLAB system directory, must be included in the C++ project. The user

also needs to generate an external library file to control the MATLAB engine import and

export. For details, please refer to the MATLAB reference book. The MATLAB image

processing code is listed in Appendix I.

5.4 CCD Camera Control

The CCD camera has its own API functions for implementation. All the camera

operations are encapsulated into a camera class. In the camera initialization, about

600KB memory is allocated to store two frames of the 640-by-480 image data, so that

the animated motion pictures can be acquired by refreshing the content of the two

frames consecutively. The memory will be released when the camera event ends.

Since the camera requires the system to allocate a large block of memory and it

works at a relatively lower speed, multithread programming is suitable for the camera

operation. The camera thread is started by initializing this pointer, and the MFC function

afxBeginThread() is called. The camera is suspended by calling the MFC function

afxSuspendThread(). The thread can only be terminated by calling the afxEndThread()

inside the thread. To do so, generally we can set an EndThread event, which will trigger

the function to destroy the thread itself. The header file of this camera thread is listed in

Appendix II.

54

5.5 Motion System Control

The motion system is controlled through the ADR101 RS232 interface board that is

connected to the COM1 port of the computer. The ADR101 board converts the 8-bit

serial data through the serial port to the 8-bit parallel data and latches it. Direct access to

the hardware is not allowed under Windows NT. Interaction with the serial port is

achieved through a file handle and various WIN32 communication API's.

The first step in accessing the serial port is setting up a file handle.

m_hCom = CreateFile("Com1",

 GENERIC_READ | GENERIC_WRITE,

 0, // exclusive access

 NULL, // no security

 OPEN_EXISTING,

 0, // no overlapped I/O

 NULL); // null template

Check the returned handle for INVALID_HANDLE_VALUE and then set the buffer

sizes.

m_bPortReady = SetupComm(m_hCom, 128, 128); // set buffer sizes

Port settings are specified in a Data Communication Block (DCB). The easiest way

to initialize a DCB is to call GetCommState to fill in its default values, override the

values that you want to change and then call SetCommState to set the values.

m_bPortReady = GetCommState(m_hCom, &m_dcb);

m_dcb.BaudRate = 9600;

m_dcb.ByteSize = 8;

m_dcb.Parity = NOPARITY;

m_dcb.StopBits = ONESTOPBIT;

55

m_dcb.fAbortOnError = TRUE;

m_bPortReady = SetCommState(m_hCom, &m_dcb);

Communication timeouts are optional but can be set similarly to DCB values:

m_bPortReady = GetCommTimeouts (m_hCom, &m_CommTimeouts);

m_CommTimeouts.ReadIntervalTimeout = 50;

m_CommTimeouts.ReadTotalTimeoutConstant = 50;

m_CommTimeouts.ReadTotalTimeoutMultiplier = 10;

m_CommTimeouts.WriteTotalTimeoutConstant = 50;

m_CommTimeouts.WriteTotalTimeoutMultiplier = 10;

m_bPortReady = SetCommTimeouts (m_hCom, &m_CommTimeouts);

If all of these API's are successful then the port is ready for use. Signal I/O through

the ADR101 is achieved by writing the specific ADR101 command. A C++ serial port

control class is generated. The detail code segment is listed in Appendix III.

5.6 Database Management

Since a very large amount of images are acquired and processed, a database is

suitable for the result storage and processing. The Microsoft Database Access Object

(DAO) data access system is implemented in the program. The processing results are

stored in a Microsoft Access database file. There are two tables in this file, which store

the results for individual images and the total statistical information respectively. When

a new image is processed, a new record is created for this image in the first table and the

record of the total statistics in the second table is renewed by a recursive function based

on the total number of records. There are many useful SQL functions encapsulated in the

C++ DAO database access class, which enable the users to navigate among the records.

56

To use the Microsoft DAO database access, the header file afxdao.h must be

included in the MFC project header file StdAfx.h.

57

Chapter 6

System Implementation and Applications

6.1 System Implementation

 Figure 6.1 shows a detailed block diagram of the HCMS. The digital camera is a

black and white CCD camera made by Hitachi (KP-160U) as shown in Figure 6.1. The

main specs of the CCD camera are as follows:

Model: KP-160U, black and white CCD camera

Power: DC 12V, 300mA

Resolution: 640X480

Connection: BNC connecter coaxial cable.

 An auto-focus lens is attached to the camera. The lens is electrically controlled

by the camera circuit. Information on the lens is listed below:

Model: H612E (C60625)

Manufacturer: Asahi Precision Co., Ltd.

Power: 8V~12V DC, less than 45mA

Focal length: 6mm

Iris range: 1.2~360

Mount: C

 The image is acquired by an image acquisition board (Model: H612E by Asahi

Precision Co., Ltd) inserted in the PCI slot inside a Pentium II, 400 MHz computer. The

specifications of the frame grabber are listed as follows:

Model: PX510

Bus: PCI Bus

Manufactory: Imagenation Co.

58

Power: 5VDC, 650mA

Resolution: 640X480 pixels

Input composite video format: Monochrome, RS-170 (NTSC) or CCIR (PAL),

auto detect

Input video: 1 V peak to peak, 75 Ohm

Capture time: Real time video capture; RS-170 (NTSC), 1/30 second per frame;

CCIR (PAL), 1/25 second per frame

Supported operating systems: Win 98, 98-SE, 2000, ME, NT4

Supported languages: Visual C/C++

Figure 6.1 CCD camera used in this project

 The computer is installed with a serial port expansion board so that more than 4

RS-232 serial ports are available. The control board to the camera motion and sensor

system is designed and manufactured by Subsurface Sensing Lab at the University of

Houston. Figure 6.2 shows power supply for the control, sensor, and motor and the

59

control board. A microprocessor (Microchip PIC16C71) is used for the system control.

Communication with the computer is via RS-232 serial port. The electrical

characteristics of the control board, power supply and motors are summarized as

follows:

Control board:

Manufacturer: Subsurface Sensing Lab, University of Houston

Power: 5VDC, 100mA; 12VDC, 200mA

Microprocessor: Microchip PIC16C71

Communication port: RS232

 Software: Assembly language

Figure 6.2 Control board and DC power supply

DC Power supply:

Model: PRK70U-1212

60

Manufactory: Volgen

Input: AC 100/120V, 1.8A, 50/60Hz

Output: 67W

 CH1: +5V, 1.5~5A

 CH2: +12V, 2.5A

 CH3: -12V, 1A

DC Motor

Model: 4Z839

Manufactory: Dayton Electric Mfg. Co.

Power: 12VDC, 1.25A

F/L Torque: 15ln. –Lbs.

Input Motor H.P.: 1/160

Ratio: 95.7:1

 In order to achieve smooth motion, three motors are used: two synchronous

motors for x motion and one motor for y motion. The synchronization between the two

motors are achieved by using the microcontroller. Synchronization algorithm is

developed. At the point where an image is to be taken, a magnet is installed. Hall-effect

sensors are used for sensing the position of the camera. Figure 6.3 shows the schematic

of the controller board. Detailed connection information is listed in Appendix IV.

Software used for motor control and position sensing can be found in Appendix V.

Figure 6.4 is an overview of the control system.

61

{D
oc}

1.0A

C
ontrol

A

1
2

W
ednesday, January 24, 2001

Title

Size
D

ocum
ent N

um
ber

R
ev

D
ate:

Sheet
of

+5V

+5V+5V

Motor DC

+5V

5 VDC

+5V

5 VDC

+5V

+12V

C1

0.1uF

L0
L1

M1

PA5

F1

M0

PA6

PA2

F0

M2

PA3

PA7

K2
RELAY SPDT

K5
RELAY SPDT

U5
LM7805C/TOIN

1

R1

470
GND2

O
U

T
3

K4
RELAY SPDT

C3

220uF

+

U1
4N28

12

654

R15

10K

R2

470

R9
68

R6
5K

R5
5K

R4
5K

C2

0.1uF

R14

10K

R10

10K

U2
4N28

1
6

2

54

Q2
NPN

Q3
NPN

R12
68

R8
68

R18
1K R11

10K

R3

470K

Q4
NPN

R19

560

Q1
NPN

R13
68

Q6
NPN

K3
RELAY SPDT

Q5
NPN

R16
1K

R17

560

U3
4N28

12

K6
RELAY SPDT

4 5 6

K1
RELAY SPDT

Figure 6.3 (a) Schematic of the controller-driver circuit

62

{D
oc}

1.0A

{Title}

A

2
2

Thursday, January 25, 2001

Title

Size
D

ocum
ent N

um
ber

R
ev

D
ate:

Sheet
of

5 VDC

5 VDC

12 VDC

5 VDC

5 VDC

12 VDC

Motor DC+12V

5 VDC

C8

0.1UF

R20

15K

C16

0.1UF
C13

22PF

PA0PA1PA2PA3PA4PA5PA6PA7

PA0PA1PA2PA3PA4PA5PA6PA7AN0AN1

M0M1M2F0F1L0L1

AN0AN1

S0S1

PA0PA1

PIC1
PIC16C71

R
B0

/IN
T

6
R

B1
7

R
B2

8
R

B3
9

R
B4

10
R

B5
11

R
B6

12
R

B7
13

R
A0

/A
N

0
17

R
A1

/A
N

1
18

R
A2

/A
N

2
1

R
A3

/A
N

3/
R

EF
2

R
A4

/T
O

C
LK

3

O
SC

2/
C

LK
ou

t
15

O
SC

1/
C

LK
16

M
C

LR
/V

pp
4

VD
D

14

GND5

P1
CONNECTOR DB9

594837261

Y1
CRYSTAL

C17

0.1UF

C15

220UF

+

C14

22PF

C4

33pF
C5

33pF

C12

0.1UF

C10

0.1UF

C9

0.1UF

C6
0.1UF

C7
0.1UF

R21
1K

C11

0.1UF

D1

LM4040

3 2

J2
CON12

123456789101112

J3
CON12

123456789101112

J1
CON3

123

R22

10K

R7

10K

R23

800

U7
LM7805C/TO

IN
1

GND
2

O
U

T
3

D2

LED

U6
MAX232A

C
1+

1

V+
2

C
1-

3

C
2+

4
C

2-
5

V-
6

T2
O

U
T

7

R
2I

N
8

R
2O

U
T

9
T2

IN
10

T1
IN

11

R
1O

U
T

12
GND

15
VCC

16
R

1I
N

13
T1

O
U

T
14

Figure 6.3 (b) Schematic of the controller-microprocessor and interface

63

Figure 6.4 Overview of the motion system developed in this project.

6.2 Applications

 This system has been ready for field installation for more than 6 months now.

Due to the unavailability of the TxMLS, we are unable to do field tests to the developed

crack-monitoring system. However, many lab tests were done and many images taken

from the field using a portable digital camera which were processed using the software

developed in this project. In this section, some of the processed results are presented.

 Figure 6.5 is the processed results of a horizontal crack. Statistical information is

directly displayed in the widow next to the processed image.

64

 Figure 6.5. Processed results of a horizontal crack. Processed area is shown by Figure 6.5. Processed results of a horizontal crack. Processed area is shown by
the rectangular box.

65

65

Imoc . ,, _ "

~ _.' ",
':"" l
r r ".

r:-;:- ,; ~
~

;'"r , r

..!!..I ..!.l!.l

..!..I:..I ...!!..I

 Figure 6.6 shows an asphalt crack with a ruler giving actual dimensions with the
processed results. It is seen that the image processing software thinks of the ruler as a
vertical crack.

 Figure 6.6 The image processing software can not identify object from cracks.

The ruler image is being processed as a vertical crack in this example.

66

 Figure 6.7 is a picture of asphalt cracks on a relatively new pavement. Cracks are
mostly unconnected with fine branches. After processing the image, the software system
is able to categorize cracks satisfactorily.

Figure 6.7 Asphalt cracks with fine branches

67

Crack StatlstKs

Im a ge Sou rce

1C:\Demo\sam ple l

, Length Pe rce nt
(mm)

rc- ~%

~ ~%

'" rm- V %
iV [i"3"5'6 Ii8"""4 %

V ~ V %
Uncra cke d 16""6"2 %

LI~ ..!..I ~

 Figure 6.8 is an example of an alligator crack. Even with the dark image, the
software is able to identify most of the cracks.

Figure 6.8 An example of alligator cracks and processed results.

68

 Figure 6.9 shows a cluster of cracks forming a “hole” on an old pavement. The
picture below is the processed image and statistic results.

 Figure 6.9 Processed results of a cluster of cracks on an old-pavement

69

Crack StatistICs

r"""""m,,,,,
I Proj8ct Itest

St"llstlcs'-----

Image Source

1C:\Demo\samplel

, Length Percent
(mm)

rc- ~%
pc- P %

'" pc- V %
iY~ ru- %

Y ~ [i4T %

Uncr" cked [7""9"T %

-'.J -'.J -'.J
-'.J -'.J -'.J

 Figure 6.10 is the image and processed result of a scattered crack on an asphalt
pavement. It shows that the image processing software is able to acquire most of the
cracks even with fine width.

Figure 6.10 Processed result of scattered cracks on an asphalt surface

70

 Figure 6.11 shows that the software is unable to identify the difference between
an asphalt-sealed crack and a crack without sealant.

Figure 6.11 Processed results of asphalt-sealed cracks

Figure 6.11 Processed results of asphalt-sealed cracks

71

Chapter 7

Conclusions

The Highway Crack Monitoring System provides a complete platform for automatic

highway crack detection and analysis. It is still under development.

The crack image-processing algorithm is proven to be highly accurate and efficient.

The recurring thresholding method demonstrates very high sensitivity on the crack

object detection. The gray-level threshold is adaptively determined from an estimation-

verification process, which is based on the local image content. The band thresholding is

implemented to compensate for the boundary effect. The bandwidth is adjustable to

achieve the best processing precision.

Multiple noise removal methods are implemented during the image processing. The

connected-component-object identification is implemented to remove the background

noise and small fake objects. A large fake object is distinguished by setting certain

thresholds according to the properties of the crack object.

The crack object in the binary image is characterized by the object boundary

processing. Morphological operations, such as dilation and erosion, are applied to

remove the border irregularity, thus improving the accuracy of the calculation. Border

convolution is a much more effective alternative of border tracing to determine and

classify the border pixels. Two convolution-kernel matrices are designed to find out the

turning pixels on the border contour. The perimeter of the object is obtained by

accumulating the corresponding move lengths of the border pixels. The length and width

of the object are therefore straightforward.

72

The HCMS hardware system demonstrates great reliability and efficiency. The CCD

camera is under precise control. The motion system works with great flexibility. It has

multiple working modes to provide great freedom.

Much work remains to improve the performance of the system. Higher image quality

is desired for image acquisition in future systems. A camera with higher resolution and

sensitivity is under consideration. Further improvement is also needed on the recurring

segmentation algorithm. Now the algorithm is restricted to detect the crack objects that

have the similar gray level within the same local image, which results in a single peak

appearing in the histogram. Although with distinct block processing, the local image is

restricted to a small part of the whole image, there might be cracks existing in the same

image with a different gray level. Multiple layer segmentation can be the solution for it.

When TxMLS is in operational condition, we can install this system on to the

TxMLS and do more field tests and improve the performance according to the results in

the field.

73

References

[1] Milan Sonka, Vaclav Hlavac and Roger Boyle. Image Processing, Analysis, and

Machine Vision. PWS Publishing, CA, 1998.

[2] S. Marchand-Maillet and Y.M.Sharaiha. Binary Digital Image Processing.

Academic Press, San Diego, 2000.

[3] Kenneth R. CastleMan. Digital Image Processing. Prentice-Hall, New Jersey,

1979.

[4] John C. Russ. The Image Processing Handbook. IEEE Press, 1995.

[5] MATLAB Image Processing ToolBox, the Math Works, 1997.

[6] Gerhard X. Ritter and Joseph N. Wilson. Handbook of Algorithms in Image

Algebra, 2nd Edition. CRC Press, 2000.

[7] David J. Kruglinski, George Shepherd and Scot Wingo. Programming Visual

C++. Microsoft Press, 1998.

74

APPENDIXES

APPENDIX I Matlab Image Processing Sources Code

%%
Module Name : IP()
%Designed by Min WU, SSL Lab, University of Houston, May 31, 2000
%This program is designed to extract the crack information from the
%real images taken from the highway. It filters off the background
%noise and gets the output BMP file. It also characterizes the
%cracks in the image, such as the length and width.
%The input file is 256 or lower gray level. The output file is in
%mono format.
%%%

function IP(SrcFile, grid, factor, DestFile, OvlpFile, GridFile,
 Cal1, Cal2, Cal3, Cal4)
%function IP()

%Preset variables for testing
%SrcFile='d:\demo\sample1.bmp';
%DestFile='d:\demo\sample1R.bmp';
%GridFile='d:\demo\sample1G.bmp';
%grid=20; %%grid size
%factor=168; %%calibration parameter
%Cal1=300; %%3mm
%Cal2=500; %%5mm
%Cal3=700; %%7mm
%Cal4=1000; %%10mm
%Preset variables for testing

%Pre-defined parameters
Len_thd =10;
Len_width_ratio=5/factor;
Width_thd=2000; %%20mm
Size_len=640; %%image column size
Size_height=480; %%image row size
%Pre-defined parameters

[BW, map] = imread(SrcFile, 'bmp'); %%read source image
BW=erase_border(BW); %%erase border caused by the camera

%%distinct block operation
BW1(1:Size_height,1:Size_len)=1;
for i=1:5
 for j=1:8
 r1=96*(i-1)+1;
 c1=80*(j-1)+1;
 sel=imcrop(BW, [c1 r1 79 95]);
 sel1=core(sel);
 BW1(r1:(r1+95), c1:(c1+79))=sel1;
 end

75

end
BW1=bwmorph(BW1, 'close'); %%border smoothing

length=[0 0 0 0 0]; %%length vector
PCT=[0 0 0 0 0]; %%percentage vector

%%connected component labeling for object identifying
[crack, n]=bwlabel(BW1, 8);
BW=crack;
if (n>0)
 delta=(2-sqrt(2))/2;
 for i=1:n
 [col,row] = find(crack==i);
 %%select the object in smaller image
 sel = bwselect(BW1, row, col, 8);
 r1=min(row);
 if (r1>3)
 r1=r1-5;
 end
 r2=max(row);
 if (r2<475)
 r2=r2+5;
 end
 h=r2-r1;
 c1=min(col);
 if (c1>3)
 c1=c1-5;
 end
 c2=max(col);
 if (c2<635)
 c2=c2+5;
 end
 w=c2-c1;
 sel1=imcrop(sel, [r1 c1 h w]);

 ar=bwarea(sel1); %%calculate the area of the object
 %%object border smoothing at 3-pixel level
 sel1=bwmorph(sel1, 'dilate', 3);
 sel1=bwmorph(sel1, 'erode', 3);
 %%object dilation for border extraction
 SE=ones(2);
 sel1=dilate(sel1, SE);
 sel1=bwperim(sel1, 8);
 [col,row] = find(sel1>0);
 [a,b]=size(col);
 %%length calculation
 x=adjust(sel1);
 pix=a-(a-x)*delta;
 len=pix/2-4;
 %%width calculation
 Wid=factor*(ar/len);

 %%object identification using length-width criterion

if ((len<Len_thd) | (len/Wid<Len_width_ratio) |

76

 Wid>Width_thd)
 BW1=BW1&(~sel);
 else
 if (Wid<Cal1) %%This program segment is to
 BW=FillCrack(BW, i, 150); %%categorize the cracks
 length(1)=length(1)+len;
 elseif(Wid<Cal2) %%based on their width,
 BW=FillCrack(BW, i, 160); %%and refill the cracks
 length(2)=length(2)+len;
 elseif(Wid<Cal3) %%with a new value
 BW=FillCrack(BW, i, 170); %% representing different
 length(3)=length(3)+len; %%categories.
 elseif(Wid<Cal4)
 BW=FillCrack(BW, i, 180);
 length(4)=length(4)+len;
 else
 BW=FillCrack(BW, i, 190);
 length(5)=length(5)+len;
 end
 end
 end
end

%%create the color map for output image
map =[0 0 0; jet(2)];
imwrite(~BW1,map,DestFile,'bmp'); %%write the output bitmap file

%%set backgound of the grid image
[BW, PCT]=SetGrid(BW, grid);
fid = fopen('C:\crack\report.dat','w');
for i=1:5
 fprintf(fid,'%d\t%d\t',fix(length(i)),fix(PCT(i)))
end
fclose(fid);

%%this segment is to re-draw the cracks
[BW1,n]=bwlabel(BW1, 8);
[col,row] = find(BW1>0);

[m,k]=size(col);
if (m>0)
 for i=1:m
 BW(col(i),row(i)) = 0;
 end
end
imwrite(BW,mapR,GridFile,'bmp'); %%write the output bitmap file

%%erase_border(): erase the fixed
%%noise incurred by the CCD camera on the image border
function [X]=erase_border(BW)

BW(1,:)=255;
BW(:, 640)=255;

77

X=BW;

%%adjust(): turning pixel adjustment for the length
%%calculation for binary image object
function [count]=adjust(BW)

SE1=[0 0 0; 1 1 1; 0 0 0]; %%convolution kernal
SE2=[0 1 0; 0 1 0; 0 1 0]; %%convolution kernal

BW1=fix(filter2(SE1,BW)/3); %%convolution to determine
BW2=fix(filter2(SE2,BW)/3); %%the turning pixels

count=0;
v=sum(BW1);
count=count+sum(v); %%count the total number of
v=sum(BW2); %%the turning pixel
count=count+sum(v);

%%core(): core function for image segmention
function [BW1]=core(BW)

sum1=sum(BW); %%calculate the average
avg=sum(sum1)/(96*80); %%gray value of the pixels

x=avg-33; %%threshold estimation
BW1=BW<x; %%first segmentation

[crack, n] = bwlabel(BW1, 8);
for i = 1 : n
 [col,row] = find(crack==i);
 [m, k]=size(col);
 if (m < 35) %%object idetification
 BW1(col,row) = 0; %%lower limit
 end
 if (m > 2500) %%object idetification
 BW1(col,row) = 0; %%upper limit
 end
end

BW1=double(BW1);
BW2=double(BW);
BW2=uint8(BW1.*BW2); %%masking original image

%%histogram analysis
[hstgrm, x]=imhist(BW2); %%get the histogram
hstgrm(1:5)=0; %%clear white pixel distribution
[posL, posH]=get_pos(hstgrm, 0.3); %%get the crack pixel range
BW1=imadjust(BW, [posL/255 posH/255+0.005], [0 1]);
 %%intensity transformation
BW1=BW1<208; %%segmentation

[crack, n] = bwlabel(BW1, 8);

78

for i = 1 : n
 [col,row] = find(crack==i);
 [m, k]=size(col);
 if (m < 25) %%object identification
 BW1(col,row) = 0;
 end
 if (m > 2800) %%object identification
 BW2 = bwselect(BW1, row, col, 8);
 BW1 = BW1 & (~BW2);
 end %%
end

MK(1:96, 1:80)=1;
MK(2:95,2:79)=0; %%preserve object pixels near
MK=MK&BW1; %%the border for recovery

BW1=bwmorph(BW1, 'close');
BW1=BW1 | MK; %%recover the border pixels

%%get_pos(): determine the gray value range for transformation
function [pL, pH]=get_pos(hstgrm, pct)

hstd=pct*max(hstgrm);
m_hst=find(hstgrm>hstd);
[sm1, sm2]=size(m_hst);
if (sm1>0)
 pL=m_hst(1);
 pH=m_hst(sm1);
else
 pL=0;
 pH=0;
end

%%FillCrack(): assign an individual gray value to the crack
%%object based on the crack width category
function [xImage]=FillCrack(crack, label, CAT)

[col,row] = find(crack==label);
[k1,k2]=size(col);
m=k1;
for k=1:k1
 crack(col(k), row(k))=CAT;
end
xImage=crack;

%%SetGrid(): set the grid background of grid output
%%and calculate the crack occupancy
function [Block, GRP]=SetGrid(BW, grid)

xSize=640;
ySize=480;

79

PCT=[0 0 0 0 0];

xBlock=ceil(xSize/grid);
yBlock=ceil(ySize/grid);
blocks=xBlock*yBlock; %%count the total grids

for m=0:(yBlock-1)
 for n=0:(xBlock-1)
 xStart=fix(grid*n)+1;
 yStart=fix(grid*m)+1;

 xStop=fix(grid*n+grid);
 yStop=fix(grid*m+grid);

 lengthX=fix(grid);
 lengthY=lengthX;

 if ((xStart+grid)>xSize)
 lengthX=xSize-xStart;
 xStop=xSize;
 end

 if ((yStart+grid)>ySize)
 lengthY=ySize-yStart;
 yStop=ySize;
 end

 col=xStart+1:xStop; %%get the grid column parameter
 row=yStart+1:yStop; %%get the grid row parameter

 square = imcrop(BW, [xStart yStart lengthX lengthY]);

 c=max(square); %%determind the maximum element, which
 v=max(c); %%is the widest crack label value
 if (v==150)
 BW(row, col)=15; %%assign “red” color to the class I
 PCT(1)=PCT(1)+1;
 elseif (v==160)
 BW(row, col)=32; %%assign “orange” color to the class II
 PCT(2)=PCT(2)+1;
 elseif (v==170)
 BW(row, col)=63; %%assign “yellow” color to the class III
 PCT(3)=PCT(3)+1;
 elseif (v==180)
 BW(row, col)=49; %%assign “green” color to the class IV
 PCT(4)=PCT(4)+1;
 elseif (v==190)
 BW(row, col)=5; %%assign “blue” color to the class V
 PCT(5)=PCT(5)+1;
 else
 BW(row, col)=256; %%others for black.
 end
 end
end

80

GRP=1000*PCT/blocks;

Block=BW;

81

APPENDIX II CCD Camera Control Class Declaration Code

//
// CameraThread.h : header file
//

#ifndef __CAMERATHREAD_H__
#define __CAMERATHREAD_H__

#include "wpx5_NT.h" //CCD camera API

typedef struct
{
 BITMAPINFOHEADER head;
 RGBQUAD colors[256];
} MAPHEAD;

//
// CCameraThread thread

class CCameraThread : public CWinThread
{
public:
 DECLARE_DYNCREATE(CCameraThread)
 CCameraThread(CWnd* pWnd);

// Attributes
public:
 CRect m_rectBorder;
 HANDLE m_hEventKill;
 HANDLE m_hEventDead;
 static HANDLE m_hAnotherDead;

 static CRITICAL_SECTION m_csCameraLock;

// Operations
public:
 void OnScrollBy(CSize sizeScroll, BOOL bScroll = TRUE);
 int ImageMaxY;
 int ImageMaxX;
 void KillThread();
 virtual void SingleFrame();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CCameraThread)
 //}}AFX_VIRTUAL

// Implementation
 virtual ~CCameraThread();
 virtual void Delete();
 BOOL pxWriteCurrentFile(LPSTR fileName);

82

protected:

 BOOL AllocBuffer();
 void SetBitMapHead();
 void CreateGrayPalette();
 MAPHEAD m_mapHead;
 BYTE * gpBits;
 void GetImage(FRAMEHANDLE frh);
 void Paint(HDC hDC);
 HPALETTE hpalette;
 FRAMEHANDLE frh[2];
 int frhIdx;
 int tagQ[2];
 HANDLE hBuf;
 FGHANDLE fgh;
 BOOL CameraInit();
 void CameraExit();
 virtual BOOL InitInstance();

 // Generated message map functions
 //{{AFX_MSG(CCameraThread)
 // NOTE - the ClassWizard will add and remove member
functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

//
#endif

83

APPENDIX III RS232 I/O Implementation Source Code

/////////////////////////////////
// initialize the com port
/////////////////////////////////
BOOL CComPort::Initialize()
{
 DWORD dwRC;
 DWORD dwError;
 char sMsg[512];

 m_bPortReady = TRUE; // everything is OK so far

 m_hCom = CreateFile(m_sComPort,
 GENERIC_READ | GENERIC_WRITE,
 0, // exclusive access
 NULL, // no security
 OPEN_EXISTING,
 0, // no overlapped I/O
 NULL); // null template

 if (m_hCom == INVALID_HANDLE_VALUE)
 {
 m_bPortReady = FALSE;
 dwError = GetLastError();

 // example error code expansion follows
 LPVOID lpMsgBuf;
 lpMsgBuf = NULL;
 dwRC = FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 dwError, // from GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 (LPTSTR) &lpMsgBuf,
 0,
 NULL);

 if (dwRC && lpMsgBuf)
 {
 sprintf(sMsg, "COM open failed: Port=%s Error=%d

- %s", m_sComPort, dwError, lpMsgBuf);
 AfxMessageBox(sMsg);
 }
 else
 {
 sprintf(sMsg,"COM open failed: Port=%s Error=%d",
 m_sComPort, dwError);
 AfxMessageBox(sMsg);
 } // end if

84

 if (dwRC && lpMsgBuf)
 {
 LocalFree(lpMsgBuf);
 } // end if

 } // end if

 if (m_bPortReady)
 {
 m_bPortReady = SetupComm(m_hCom,
 128, 128); // set buffer sizes
 if (!m_bPortReady)
 {
 dwError = GetLastError();
 sprintf(sMsg, "SetupComm failed: Port=%s

Error=%d", m_sComPort, dwError);
 AfxMessageBox(sMsg);
 } // end if
 } // end if

 if (m_bPortReady)
 {
 m_bPortReady = GetCommState(m_hCom, &m_dcb);
 if (!m_bPortReady)
 {
 dwError = GetLastError();
 sprintf(sMsg, "GetCommState failed: Port=%s

Error=%d", m_sComPort, dwError);
 AfxMessageBox(sMsg);
 } // end if
 } // end if

 if (m_bPortReady)
 {
 m_dcb.BaudRate = 9600;
 m_dcb.ByteSize = 8;
 m_dcb.Parity = NOPARITY;
 m_dcb.StopBits = ONESTOPBIT;
 m_dcb.fAbortOnError = TRUE;

 m_bPortReady = SetCommState(m_hCom, &m_dcb);
 if (!m_bPortReady)
 {
 dwError = GetLastError();
 sprintf(sMsg, "SetCommState failed: Port=%s Error

= %d", m_sComPort, dwError);
 AfxMessageBox(sMsg);
 }
 } // end if

 if (m_bPortReady)
 {
 m_bPortReady = GetCommTimeouts (m_hCom,

&m_CommTimeouts);

85

 if (!m_bPortReady)
 {
 dwError = GetLastError();
 sprintf(sMsg, "GetCommTimeouts failed: Port=%s

Error = %d", m_sComPort, dwError);
 AfxMessageBox(sMsg);
 } // end if
 } // end if

 if (m_bPortReady)
 {
 m_CommTimeouts.ReadIntervalTimeout = 50;
 m_CommTimeouts.ReadTotalTimeoutConstant = 50;
 m_CommTimeouts.ReadTotalTimeoutMultiplier = 10;
 m_CommTimeouts.WriteTotalTimeoutConstant = 50;
 m_CommTimeouts.WriteTotalTimeoutMultiplier = 10;
 m_bPortReady = SetCommTimeouts (m_hCom,

&m_CommTimeouts);
 if (!m_bPortReady)
 {
 dwError = GetLastError();
 sprintf(sMsg, "SetCommTimeouts failed: Port=%s

Error = %d", m_sComPort, dwError);
 AfxMessageBox(sMsg);
 } // end if
 } // end if

 if (m_bPortReady)
 {
 BOOL bWriteRC;
 DWORD iBytesWritten;

 //Configure port A: Bit A0 is the pin for signal input
 //Bit A7 is the output pin for motor control

 iBytesWritten = 0;

 bWriteRC = WriteFile(m_hCom, "CPA00000001\r",

12, &iBytesWritten, NULL);
 if (!bWriteRC || iBytesWritten == 0)
 {
 AfxMessageBox("Fail to initialize the port!");

 }
 }

 return m_bPortReady;
} // end CComPort::Initialize

/////////////////////////////////
// terminate the com port
/////////////////////////////////
void CComPort::Terminate()

86

{
 CloseHandle(m_hCom);
} // end CComPort::Terminate

/////////////////////////////////
// read data from the com port
/////////////////////////////////
BOOL CComPort::Read(CString& sResult)
{
 BOOL bWriteRC;
 BOOL bReadRC;
 DWORD iBytesWritten;
 DWORD iBytesRead;
 char sBuffer[32];

 iBytesWritten = 0;
 bWriteRC = WriteFile(m_hCom, "RPA\r",4,&iBytesWritten,NULL);
 if (!bWriteRC || iBytesWritten == 0)
 {
 return FALSE;
 } // end if
 memset(sBuffer,0,sizeof(sBuffer));
 bReadRC = ReadFile(m_hCom, &sBuffer, 15, &iBytesRead, NULL);

 if (bReadRC && iBytesRead > 0)
 {
 sResult = sBuffer;
 }
 else
 {
 return FALSE;
 } // end if
 return TRUE;
} // end CComPort::Read

/////////////////////////////////
// write command to the com port
/////////////////////////////////
void CComPort::Write(const int& m_iCommand)
{
 BOOL bWriteRC;
 DWORD iBytesWritten;
 DWORD dwError;
 char sMsg[128];

 iBytesWritten = 0;
 switch (m_iCommand){
 case 1:
 bWriteRC = WriteFile(m_hCom, "SPA11100011\r",

15, &iBytesWritten,NULL);
 break;
 case 2:
 bWriteRC = WriteFile(m_hCom, "SPA10000011\r",

87

15, &iBytesWritten,NULL);
 break;
 default:
 bWriteRC = WriteFile(m_hCom, "SPA00000011\r",

15, &iBytesWritten,NULL);
 break;
 }

 if (!bWriteRC || iBytesWritten == 0)
 {
 dwError = GetLastError();

 sprintf(sMsg, "Write of length query failed: RC=%d, "
 "Bytes Written=%d, Error=%d",
 bWriteRC, iBytesWritten, dwError);
 AfxMessageBox(sMsg);
 } // end if
}

88

APPENDIX IV Pin Configuration of the Motion System Control

Box

1. Interior

PIN # DIP5 DIP8

1 PA6 (ADR101) PA7 (ADR101)

2 F0 (FLASH) PA5 (ADR101)

3 PA2 (ADR101) GND (Vcc)

4 F1 (FLASH) PA1 (ADR101)

5 PA0 (ADR101) Vcc (+5V)

6 -- VDD (+12V)

7 -- GND (VDD, VEE)

8 -- VEE (-12V)

2. Exterior

PIN # Assignment PIN # Assignment

1 DIP8 (6) 7 Motor B

2 DIP8 (7) 8 Motor C

3 DIP8 (8) 9 Sensor A(0)

4 DIP5 (2) 10 Sensor A(1)

5 DIP5 (4) 11 Sensor B(0)

6 Motor A 12 Sensor B(1)

89

	Final Report
	Automatic Crack Monitoring System
	

	Automatic Crack Monitoring System
	 TABLE OF CONTENTS
	CHAPTER 6 System Implementation and Applications 58
	Appendix IV Pin Assignment of the Motion System Control Box 89

	Final_Report.pdf
	I. Road image acquisition
	II. Image processing
	III. Crack object classification
	IV. Statistical report
	Figure 1.3 The motion system
	Figure 1.4 The TxMLS
	Power: DC 12V, 300mA
	Power: 5VDC, 650mA

	Figure 6.1 CCD camera used in this project
	Communication port: RS232
	 Software: Assembly language
	Manufactory: Volgen
	 CH3: -12V, 1A
	DC Motor
	Figure 6.7 Asphalt cracks with fine branches
	Figure 6.10 Processed result of scattered cracks on an asphalt surface

	Figure 6.11 Processed results of asphalt-sealed cracks
	Figure 6.11 Processed results of asphalt-sealed cracks

	Untitled

