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Chapter 1 

 

Introduction 

 

1.1 Background 

In the last 10 years, the United States has witnessed a continuing rise in population 

and the longest peacetime expansion of the economy in the nation's history. As a result, 

travel and transportation rise proportionately. In terms of passenger travel, Americans 

used the automobile for more than 90 percent of their travel (by mileage) in 1975. 

Today, highway travel (in passenger miles) and automobiles have continued to 

dominate--still accounting for 90 percent of travel--while air travel accounts for another 

9 percent, and the other modes together account for the last one percent. In terms of 

freight transportation, there has been a large increase in highway and truck 

transportation--an increase of its modal share from 23 to 30 percent in just 10 years--

accounting for the major part of the increase of freight transportation over the past 10 

years. 

However, the nation’s highway system is aging, while the volume of the traffic that it 

supports continues to increase dramatically. Road maintenance technology, however, 

has remained virtually stagnant for many years. It typically involves small-scale, 

dispersed activities performed under traffic conditions by relatively low-skilled laborers 

with basic equipment. Conventional road maintenance methods will be seriously 

strained to meet the increasing demands of the future. 
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Automation of the road maintenance operations has a tremendous potential to 

improve this situation. Highway crack monitoring is especially well suited for this 

purpose since it is such a widespread, costly, and labor-intensive operation. Accuracy 

and efficiency are always the problems, and as traffic volumes increase, crack 

monitoring operations become increasingly disruptive to the travelling public. 

Automation of crack monitoring can significantly reduce labor costs, improve work 

quality, provide better records, and reduce worker exposure to road hazards. 

The Highway Crack Monitoring System (HCMS) presented in this report is capable 

of automatic-image acquisition and processing. The cracks will be extracted from the 

high-noise background and will be also classified based on its width. The overall 

statistical information of the road will be obtained for analysis as well.  

 

1.2 The Highway Crack Monitoring System 

The main purpose of the HCMS system is to obtain the information about the crack 

and its coverage of the road image. Based on the width of the crack, it is classified into 

five categories. The major tasks of the HCMS system are the following: 

I.  Road image acquisition 

II.  Image processing 

III.  Crack object classification 

IV.  Statistical report 

 
The HCMS consists of three major parts; the computer, the image acquisition device, 

and the motion system. The block diagram of the HCMS system is shown in Figure 1.1. 
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Figure 1.1 the block diagram of the HCMS 

 

The computer is the center for both system control and image processing. Because of 

the huge amount of image processing and storage, the computer should have high speed, 

large physical memory, massive storage space, and fast video processing power. 

Currently we are using a Pentium III 550MHz workstation, which has a physical 

memory of 256 MB and a 15GB hard disk drive. Faster computers are desired in the 

future. 

The HCMS application software is programmed with Microsoft Foundation Class 

(MFC) on the 32-bit Windows NT operation system. Figure 1.2 shows the layout of this 

application program. It integrates the functionality of the image acquisition, image 

processing and motion-system control in one system. The double-view style enables the 

user to view both the original image and processing result at the same time. The image 

processing uses the tool of MATLAB Image Processing Toolbox version 5.3 

Multithread programming is implemented for the CCD camera control. A component is 
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designed for the RS232 serial port communication using the Windows APIs. Multiple 

database support is also used in the software design to store the statistical data and 

improve the user interface. More detail will be introduced in Chapter 6. 

 

 

Figure 1.2 System program layout 

 

The CCD camera is used as the image acquisition device in the HCMS system. It can 

acquire images at 256 gray-scale, with resolution of 640-by-480 pixel format. The 

camera is placed on the frame of a motion system (Figure 1.3), about one meter above 

the ground, which makes the image area of 1.2-by-1.2 meters with the 6-mm lens. The 

acquired image is stored in the Windows bitmap format. The typical size of the image 

file is about 320 KB. Examples of such images are shown in Figure 2.1 in Chapter 2.  
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Figure 1.3 The motion system 

 
The motion system of the HCMS is shown in Figure 1.3. These two vertical rails are 

fixed on both sides of the Texas Multipurpose Loading System (TxMLS), which is 

shown in Figure 1.4. The TxMLS has a huge vehicle designed by the Texas Department 

of Transportation, for the purpose of highway monitoring and maintenance. The motion 

system is capable of 2-dimensional movements to let the camera work continuously in 

either direction, so that full image coverage of the road is achieved. The control signal of 

the motion system is sent and received through the RS232 serial port of the computer. 

There are some magnetic markers set along the vertical and horizontal rail. The sensors 

are placed on both the removable frame and the roller hanger, so that they can move 

together with the motion system. Whenever the sensor moves close enough to the 

marker, the two wires attached to the sensor are short-circuited. Once the system detects 

this signal, the motion system stops and the camera takes an image. The markers are 
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precisely set so that the minimum overlapping between two adjacent images is achieved. 

Software debouncing should be considered to remove the spurious sensor signal.  

 

 

Figure 1.4 The TxMLS 

 

1.3 Organization of This Report 

The image segmentation algorithm will be presented in detail in Chapter 2. It is a 

very important step to extract cracks from the original road image. After the 

segmentation, a binary image is obtained for crack analysis. Chapter 3 will discuss the 

crack’s length and width calculation algorithm. As the width information is obtained for 

each individual crack, the cracks will be classified based on that information. Two 

examples of the field test will be listed and analyzed in Chapter 4. Chapter 5 will give a 

brief introduction to the system software. Chapter 6 illustrates some examples. The 

conclusion and future work will be given in the last chapter. 
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Chapter 2 

 

Recurring Image Segmentation 

 

2.1 Introduction 

Image segmentation is one of the most important steps leading to the analysis of 

processed image data—its main purpose is to divide an image into parts that have a 

strong correlation with objects or areas of the real world contained in the image. [1]  

Typically, digital images often come up with huge quantities of data with respect to 

the size and depth of color or gray scale. With image segmentation, substantial data 

volume reduction is immediately gained, and more importantly, the image objects of our 

interest are separated from the rest of the image. According to the complexity of the road 

images, the recurring thresholding method is implemented to improve the sensitivity and 

accuracy of the processing algorithm. Usually, entirely correct and complete 

segmentation of complex scenes cannot be achieved. Connected component-object 

identification is implemented to remove noise objects at a higher level of processing.  

 

2.2 The Crack Images 

2.2.1 Intensity Image Data  

For an intensity image, the image data can be stored in a single two-dimensional 

matrix, with each element of the matrix corresponding to one image pixel. For a 256 

gray scale image, the image data is within the range of [0,255]. The size of the matrix is 
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the size of the image by pixel. Therefore the acquired image in the HCMS system, 

which is in the format of 256 gray scale and the size of 640-by-480 pixel, can be defined 

as      

]255,0[),( ∈jif     (2.1) 

where 6400 ≤< i ,  4800 ≤< j .   

Be aware that the elements in the intensity matrix represent the gray level at this 

pixel, “0” represents black and “255” represents full intensity, or white. 

 2.2.2 Characteristics of the Crack Image  

 

 

(A) 

 

 

(B) 

Figure 2.1 Examples of the crack images 

Image data ambiguity is the major problem of segmentation, especially for crack 

images. The texture of the pavement always causes noises. The shadow and other 

surface objects can be other sources of the noise. Figure 2.1 shows two typical samples 

taken from the highway. In figure 2.1 (A), the region of the cracks is relatively easy to 

distinguish. The gray level of the crack objects is clearly distinct from the background. 
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There are several oil spots that need to be identified. The image in figure 2.1 (B) 

unfortunately represents a more complicated situation that is commonly found in general 

practice. The image background varies at different parts of the image due to the 

reflection and non-uniform lighting. There is a shadow region on the right, which is 

incurred by the camera frame. 

 

2.3 Recurring Thresholding  

Gray-level thresholding is one of the more commonly used methods of 

segmentation. The objects or image regions are characterized by reflectivity or light 

absorption of their surfaces. A brightness constant or threshold can be determined to 

segment objects and background. [1]  

The recurring thresholding method uses gray-level thresholding as the basic method. 

Therefore, correct threshold selection is crucial for successful segmentation. It is 

impossible to use a single threshold for all road images, since there are gray-level 

variations among different images and even objects and background in the same image. 

However, it can be adaptively estimated based on the average gray level of the specific 

image or image fraction. This estimated threshold is set high so that most of the crack 

objects and some noise objects are allowed as objects in the resulting binary image. 

With this result as a mask, we can obtain a new “crack” image by simply clearing all the 

pixels, which are marked as background in the binary result from the original road 

image. It is reasonable to see that most of the background is removed in this image, 

which results in an image with a more regular histogram with a local peak representing 
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the crack pixel distribution. More accurate segmentation can be achieved by analyzing 

this image and its histogram. 

2.3.1 Histogram and Threshold 

The crack objects can be characterized by light absorption of the highway surface, 

which appear at a different gray scale from the neighbors or background. From Figure 

2.1, it is noticeable that the cracks are slightly darker than the neighboring areas, which 

indicates that they usually have a lower gray value to distinguish themselves from the 

background.  

Gray-level thresholding is the transformation of an input image  to an output 

image as follows: 

),( jif

),( jig

⎩
⎨
⎧

=
0
1

),( jig           (2.2) 
for
for

Tjif
Tjif

<
≥

),(
),(

where T is the threshold constant, =1 for image pixels of the image objects, 

and  =0 for background pixels (or vice versa). With thresholding, the original 

intensity image is converted to a binary image. Only the pixels of particular interest are 

left as image objects.  

),( jig

),( jig

Correct threshold T selection is crucial for successful threshold segmentation. The 

direct method of gray-level thresholding is based on the histogram-shape analysis. The 

histogram is the chart that shows the distribution of intensities in an intensity image. 

Figure 2.2 shows the histograms of the two corresponding images in Figure 2.1. In both 

histograms, there is a local peak near the intensity 200, which indicates most of the 

crack pixels, as well as some of the noise background. The sharp rise near gray level 255 
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in both images is caused by the large quantity of the white pixels on the image 

background. The lower range ([0,250]) of the histogram reflects the distribution of 

cracks.  

 

 

(A) 

 

(B) 

Figure 2.2 Histograms of the images in Figure 2.1 

 

The different shape of the histogram reflects the difference in the property of the 

images. The left peak in Figure 2.2 (B) is incurred not because of crack objects, but the 

shadow area on the right part of the image instead. The far distance between the two 

peaks indicating the gray level of the shadow differs greatly from that of the crack 

objects.  

The typical image consisting of objects with approximately the same gray -level 

differs from the gray -level of the background, which results in the bi-modal of the 

histogram. The image has two local peaks in its histogram. The objects form one of 

them while the background forms the other. In this case, it is easy to find the threshold 

that includes all the object gray distribution, but all of the background pixels fall outside. 
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[1] Unfortunately, this situation is not common for crack images. The crack pixels only 

occupy a small percentage of the total pixels. The background has different gray levels. 

Some of these background pixels may have very close gray levels to the crack objects. 

Considering the non-uniform lighting conditions, there may be fake peaks in the 

histogram. From Figure 2.2, we can see that the histogram of the crack image does not 

appear as the bi-modal. It depends not only on the image objects, but also many other 

physical conditions. It is almost impossible to determine the correct threshold value 

directly from the histogram. In addition, the threshold must be determined based on the 

local image content, which varies at different parts of the image. Therefore, we cannot 

set a global threshold for the entire image.  

2.3.2 Threshold Estimation  

As discussed in the previous sections, it is very difficult to precisely determine the 

threshold. However, it is possible for the threshold to be estimated to detect the crack 

objects. Obviously, this threshold should follow these facts below: 

(1) For 256 gray-level image, the value of threshold constant is within the range 

[0,255]; 

(2) When the image grows darker, the average gray level of the image pixels 

becomes lower. The value of the threshold constant also becomes lower. And 

vice versa. It is a monotonic relationship 
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Figure 2.3 Threshold estimation 

 

The average gray level of the image can be a suitable parameter for the threshold 

estimation. It is obtained by averaging all the elements of the image data matrix. 

Because there is a monotonic relationship between the threshold and the darkness, we 

can assume it is simply a linear function, so that: 

Δ+•= )(ImeankT     (2.3) 

where T is the estimated threshold and I is the image data matrix. The parameter k 

and Δ can be estimated by real samples.  This is shown in Figure 2.3. The dots in the 

figure are obtained by averaging a large quantity of samples. The red line is the 

estimated threshold function with k=1, Δ=-32. When this function is applied to 

segmentation, the result is very good. Figure 2.4 shows the segmentation results of the 
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image in Figure 2.1(A). The resulting binary image of this segmentation process is not 

the final result. Instead, it leads to a more specific crack image shown in Figure 2.4(D). 

(A) Original image (B) First segmentation result 

(C) Dilated segmentation result (D) Crack image 

Figure 2.4 Object extraction using the segmentation result 

2.3.3 Recurring Threshold Determination 

As a result of threshold estimation, a binary image [Figure 2.4 (B)] is obtained by 

applying the function (2.2) to the original crack image. However, some noise is also 

included in the result because the threshold is set high, and any pixel whose gray level is 

below the threshold will be recognized as an object pixel. From this result, it is very 

difficult to distinguish crack objects from noise. However, we can go back to remove all 
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the background pixels from the original image, where the segmentation result works as a 

mask. As the result, a new crack image can be obtained with most of the background 

being removed. 

To avoid the loss of the crack edge, a dilation operation is applied to the 

segmentation result in Figure 2.4 (B). For binary images, the dilation adds pixels to the 

boundaries of the objects in which the pixels have the value of “1.” Therefore, only the 

objects can be enlarged. The dilation operation uses a specified neighborhood, which is 

a two- dimensional binary matrix. The neighborhood for a dilation operation can be of 

an arbitrary shape and size. It is represented by a structure element, which is a matrix 

consisting of only 0’s and 1’s. The center pixel of the structure element represents the 

pixel of interest, while the elements in the matrix that are “1” define the neighborhood. 

The state of any pixel in the output image is determined by applying a rule to the 

neighborhood of the corresponding pixel in the input image. The rule is defined as 

follows: 

If any pixel in the input pixel’s neighborhood is “1,” the output pixels is “1.” 

Otherwise, the output pixels is “0”. [5] 

Figure 2.4 (C) shows the dilated result of the image in Figure 2.4 (B), and Figure 2.4 

(D) shows the result masked from the original image with Figure 2.4 (C). As we can see, 

most of the background in the original image has been removed. The corresponding 

histogram will have a major peak for the crack object pixels, which is shown in figure 

2.5 (A). There is also a high peak at gray level 255 for the white background, which has 

been removed in the figure. 
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When we look back at the original image in Figure 2.4 (A), we can see that not all 

the pixels of the crack objects are at exactly the same gray level. This is caused by the 

boundary effect which shows that the border pixels of the crack have a higher gray level 

than the center pixels of the crack. This makes them look a little brighter and closer to 

the background. Therefore, the pixels of the crack objects exist in a narrow range of the 

gray-level histogram. We are not able to determine the threshold simply at the gray level 

of the maximum point of the histogram. The band thresholding method is implemented 

instead. In order to do that, further image transformation is needed to get the object 

pixels in the correct intensity range. The goal of the image intensity transformation is to 

map an image’s intensity value from one range to another. We can increase the contrast 

of the image and eliminate the noise at different gray levels by expanding a small range 

of intensity data to the entire intensity range. [5]  

 

 

(A) Histogram of the masked image 

 

(B) Histogram of the image after 

intensity transformation 

Figure 2.5 Intensity transformation 
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The source intensity range, which is the bandwidth of the band -thresholding, is 

chosen so that most crack boundary pixels are included and that the least noise is 

existing in the result. Figure 2.5 (A) shows how to determine the bandwidth. T is a 

parameter which varies with the content of the image. Generally, it is defined as:  

T = α • max(I)  (α<1)    (2.4) 

where I is the histogramand α is the bandwidth coefficient. When α is large, T 

becomes high. The selected range of intensity transformation becomes narrow, so that 

some of the boundary pixels will be lost. When α is small, T becomes low. The selected 

range of intensity transformation becomes wide, so that some of the background pixels 

will also be included in the result. Therefore, it is very efficient to compensate the 

boundary effect by adjusting the bandwidth coefficient α. 

(A) T=80%*max(I) (B) T=50%*max(I) 

Figure 2.6 Image intensity adjustment 

 

Once α is set, the boundary points of the intensity range L1 and L2 are 

straightforward. Figure 2.5(B) shows the histogram of the image after the intensity 

17   
 



transformation. It is the expansion of the selected portion [L1, L2] of the histogram in 

Figure 2.5(A). Different image transformation results with the given bandwidth 

coefficient α are shown in Figure 2.6. α=50% is applied to the algorithm according to 

the actual result. After the image transformation, the resulting image is still a 256 gray-

level intensity image. Since it is assumed that most of the image objects remaining are 

crack objects, we can set a high threshold to convert it to the binary image as the final 

segmentation result. Figure 2.7 shows this binary image. 

 

Figure 2.7 Result binary image after segmentation 

 

2.4 Connected-Component Object Identification 
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As mentioned before, entirely correct and complete segmentation of complex scenes 

cannot be achieved. It is inevitable to have some noise pixels included in the 

segmentation result shown in Figure 2.8. These noise pixels cannot be removed during 

the segmentation because these pixels have gray levels very close to the crack objects. 

To distinguish these pixels, additional methods must be implemented according to the 

characteristics of the cracks.  

 

2.4.1 Binary Image Labeling 

 

0   0   0   0   0   0   0   0 

0   1   1   0   0   0   0   0 

0   1   1   0   1   1   1   0 

0   0   0   0   1   1   1   0 

0   0   0   0   0   0   0   0 

(A) Original image data 

0   0   0   0   0   0   0   0 

0   1   1   0   0   0   0   0 

0   1   1   0   2   2   2   0 

0   0   0   0   2   2   2   0 

0   0   0   0   0   0   0   0 

(B) Image data after labeling 

Figure 2.8 Binary image labeling 

 
In order to distinguish each object in the binary image, it must be isolated from the 

rest of the image for further analysis. With the binary image-labeling method, the pixels 

in different connected objects of a binary image are labeled with different integer values. 

The binary image data is labeled according to different neighborhood relationships that 

will be discussed in the next chapter. Individual objects can be extracted from the image 

by selecting the pixels with specific values. Figure 2.8 shows an example of the binary 
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image labeling. In Figure 2.8 (A), there is a 5X8 binary image data fragment. The pixels 

with a value of “1” are the object and others are the background. The two separate 

objects are labeled with “1” and “2” after the binary image-labeling operation, which is 

shown in Figure 2.8 (B). After this, the first object can be extracted by selecting the 

pixels with the value of “1,” and the other one by selecting the pixels with “2,” 

 

2.4.2 Connected-Component Object Identification 

Segmentation cannot remove the noise pixels with gray levels close to the crack 

objects. Higher level-image processing is necessary to distinguish the crack objects 

based on the characteristics of cracks. However the definition of “crack” has much 

ambiguity, which adds difficulty to this process of discrimination. Two preliminary 

criteria are set here to distinguish the crack. 

(1) The object is not a crack if the number of the object pixels is less than a certain 

limit NL. 

(2) The object is not a crack if the number of the object pixels is higher than a 

certain limit NH. 

The first one can be applied to remove the small objects incurred by sand, pebbles, 

or the texture of the background. The other one can be applied to remove large objects 

caused by shadow or paint.  In my program, NL = 25, and NH is set as one third of the 

total number of pixels of the whole image. The final binary crack image is obtained after 

this step. It is shown in Figure 2.9. 
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Figure 2.9 Segmentation result 

 

2.5 Distinct Block Operation 

To solve the problem of non-uniform property of the road image, the distinct block 

operation is applied. The original image is divided into distinct blocks. Within the same 

block, the lighting condition can be regarded as uniform. The processing is performed 

on each block individually to get the results in the corresponding block of the output 

image.  

The optimal block size can be determined with the image size and the maximum 

block dimension. Given the image size m-by-n, the maximum row and column 
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dimensions for the block as k, the optimal block dimension can be determined with the 

following algorithm. [5] 

(1) If m is no greater than k, k = m. 

(2) If m is greater than k, consider all values between min(m/10, k/2) and k. The 

optimal column size is the value that minimizes the padding required. 

(3) Similar steps for block row size. 

For an image of 640-by-480, the optimal block size is 80-by-96. 
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Chapter 3 

 

Crack Object Characterization Algorithm 

 

3.1 Introduction 

After the image segmentation in the previous chapter, a binary image is obtained 

from the original 256 gray-level image. The image data becomes a discrete set of “1” 

and “0” (black and white), which represents the crack object (foreground) and 

background respectively. The crack object can be characterized on the basis of pixel 

neighborhood relationships to the definition of the discrete set.  

 

3.2 Basic Definitions 

In order to define further algorithms to characterize the image object, such as the 

calculation of length and area, several robust basic definitions are needed. Connectivity 

and neighborhood of digital images are discussed in this section. 

 

3.2.1 Square Lattice 

In the mathematical model of a digital image, the image can be mapped to a set of 

discrete pixels on a two-dimensional square lattice. The pixel area is defined with the 

center pixel, leading to the representation of pixels as discrete points in the plane.  As 

shown in Figure 3.1, a square lattice is built with black dots (•) and continuous lines. 

The dots represents center pixels in the lattice, and the line implies that the two pixels 
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are connected with each other in the lattice. With this definition, the image pixels 

become the points on the square lattice.  

Figure 3.1 Square lattice of the digital image 

3.2.2 Neighborhood 

The neighborhood is defined by referring to the considered square lattice. With the 

structure of a square lattice, the 4-connected neighborhood (N4(O)) and 8-connected 

neighborhood (N8(O)) are derived, which is shown in Figure 3.2. The 4-connected 

neighborhood includes the four direct neighbors of the point O in question. The 8-

connected neighborhood is completed using the four direct neighbors and other four 

corner points for a given point O. 

Figure 3.2 Neighborhoods on the square lattice 

The definition of the neighborhood sets the foundation for a digital image processing 

algorithm in this chapter. 
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3.3 Border of a Crack Object 

In the binary image of the cracks, an important subset of pixels in the crack object is 

the set of the boundary pixels, which separates the crack objects from the background. 

The border describes the shape, perimeter, area, etc. about the crack object. Further 

calculation of the crack can be obtained by analyzing these border pixels.  

3.3.1 Definition: Border of image object 

Given a set of points P, the complement of P denoted as PC. The 8-connected border 

of P is the set of points Γ that have at least one 4-connected neighbor in PC. The 4-

connected border of P is the set of points Γ that have at least one 8-connected neighbor 

in PC. [2] 

The border of the object is defined with a neighborhood relationship. Figure 3.3 

illustrates an example of the 4-connected border (B) and 8-connected border (C) for the 

object in (A).  

Figure 3.3 Borders of a binary image object 

 

3.3.2 Border Determination 
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A pixel in a binary image can be determined as a border pixel if it satisfies both of 

the following criteria [2]: 

(1) It is a foreground pixel. 

(2) One (or more) of the pixels in its given neighborhood (4- or 8-connected) is a 

background pixel. 

3.3.3 Border Smoothing 

Correct border extraction is very important for further calculation. The purpose of 

the smoothing is to remove the irregularities of the crack objects that will significantly 

affect the accuracy of the length calculation. The approach is based on the operators 

from mathematical morphology, which is given by Minkowski algebra. These operators 

have been proven efficient in noise removal on binary images. There are two basic 

morphological operations, dilation and erosion, which are defined as follows: [2] 

Given a set of pixels F and its border Γ with respect to a neighborhood relationship. 

For any pixel p∈F, ND(p) denotes the neighborhood of p. 

(i) The dilation operator dilation(.) applied to F results in the set 

UU
Fp

D pNFFdilation
∈

= )()(    (3.1) 

(ii) The erosion operator erosion(.) applied to F results in the set 

Γ= \)( FFerosion     (3.2) 

Advanced morphological operators closing and opening can be obtained by 

combining these basic operators: 

The closing(.) and opening(.) operators are defined by [2]: 

closing(F)=erosion(dilation(F))   (3.3) 
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opening(F)=dilation(erosion(F))   (3.4) 

Both closing and opening operators can be used for binary object smoothing. The 

closing operator can fill spurious holes, whereas the opening operator smoothes the 

irregularities by removing spurious components. They can only remove the one-pixel 

size spurious smoothing. However, different levels of object smoothing can be obtained 

by using different combinations of dilation and erosion operators. [2] For example, two-

pixel sized holes can be filled using the operator erosion[erosion(dilation[dilation(.)])]. 

Similarly, two-pixel sized spurious components can be removed using 

dilation[dilation(erosion[erosion(.)])]. According to the binary result of segmentation, a 

three-pixel level of smoothing is applied to the processing here. To avoid the possible 

image loss caused by the erosion on the image border (three-pixel depth), the object 

pixels within the three-pixel range of the image border have been preserved before the 

border smoothing operation and restored after the smoothing process. 

3.3.3 Crack Object Dilation 

Since most of the cracks are very long and slim, direct border extraction will break 

the close arc of the crack object border. A dilation operation, discussed in the previous 

chapter, is applied prior to the border extraction. Furthermore, the dilation operation can 

also remove some of the spurious noise pixels of the crack objects. 

The error incurred by this dilation for the further calculation is limited because the 

dilation can only slightly increase the perimeter of the crack. The matrix used in the 

dilation is a 2-by-2 matrix with all “1” element, for the smallest dilation operation; 
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however, it is enough to preserve the close border arc. Figure 3.4 shows the border 

extraction with dilation. 

 

(A) Original crack object (B) Crack border 

Figure 3.4 Border extraction 

 

3.4 Crack Length Calculation 

When the crack’s border is extracted, it appears as a close arc in the partition. The 

length of the crack can be computed from its perimeter. Most cracks have very large 

length-to-width ratios. Half of the perimeter can be a good approximation to its length. 

3.4.1 Move and Move Length 

A move on the lattice is the displacement from a point to one of its neighbors. A 

move length is the value of the local distance between a point and its neighbors. 

According to the definition above, we can see that there is only one type of move in 

a 4-connected neighborhood, defined as Δ  for a unit length. For the 8-connected 
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neighborhood, the moves are 1Δ  and 2Δ , which represent the distance from the center 

point to the direct 4 neighbors and to the 4 corner points.  

3.4.2 Euclidean Distance 

Euclidean distance is the basic precise definition of distance between two points in a 

two-dimensional plane. It is defined as follows: [2] 

Given two points P(xp, yp) and Q(xq, yq), the Euclidean distance of PQ is defined by 

22 )()(),( pqpqE yyxxQPd −+−=      (3.5) 

Other discrete distances are nothing but approximations of the Euclidean distance.  

3.4.3 Arc Length and Discrete Distance 

The length of a digital arc is the sum of the length of all the moves that compose it. 

The discrete distance between two points P and Q is the length of the shortest digital arc 

from P to Q. [2] 

The definition above leads to the 4-connected discrete distance denoted as d4(P, Q) 

and  8-connected discrete distance denoted as d8(P, Q). d4(P, Q) is the length of the 

shortest 4-connected arc, and d8(P, Q) is the length of the shortest 8-connected arc. 

Figure 3.5 shows the difference of d4(P, Q) and d8(P, Q) between P and Q. Obviously, 

d8(P, Q) is a better approximation of the actual length than d4(P, Q). The approximation 

error will be discussed later. 
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Figure 3.5 Discrete distance: (A) d4(P, Q)  (B) d8(P, Q) 

 

3.4.4 Crack Length Calculation Algorithm 

The 8-connected neighborhood is used in the length calculation. Based on the 

discussion in the previous section, the length is computed by summing up all the move 

lengths of the close arc of the crack border. In most cases, there are dozens of crack 

objects in one image and each crack may be a collection of thousands of pixels. A fast 

algorithm is desired even for the fastest computer.  

Since there are only two types of moves for the 8-connected neighborhood, all we 

need to do is to find out how many pixels on the border have the move of  and the 

other will have the move of 

1Δ

2Δ . It is easy to count the total number of border pixels. 

Given the total number of border pixels N8, K pixels has the move of , the length of 

the curve L is  

1Δ

281 )( Δ•−+Δ•= KNKL    (3.6) 

To simplify the calculation, we can also start with the 4-connected borders. There is 

only one type of move Δ in a 4-connected neighborhood, with Δ equal to the Δ1 of the 8-

connected border. For any  move on the 8-connected border, it is associated with two 2Δ
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turning pixels on the 4-connected border. The turning point can be determined by the 

fact that the two closest neighbors are not on a straight line. Figure 3.6 shows these 

turning pixels. From the figure, for the arc from pixel A to B, the 4-connected arc length 

is 4Δ(4Δ1), and the 8-connected arc length is 2Δ1 +Δ2. Therefore, for each turning point 

on the 4-connected arc, the length adjustment will be 
2

2 21 Δ−Δ . Therefore, the equation 

(3.2) becomes: 

2
2 21

14
Δ−Δ

•−Δ•= KNL     (3.7) 

where N4 is the total number of pixels and K is the number of turning pixels on the 4-

connected border.  

 

Figure 3.6 Turning pixels 

The remaining issue is to find out these turning points in a fast way. Sorting pixel by 

pixel is not a good idea, because it will be too tedious with so many pixels existing in a 

crack object.  

The Border Convolution method is introduced to solve this problem. This method is 

based on matrix processing. With modern computer technologies, matrix computation 
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becomes easier and faster. New mathematical software tools are also designed to apply 

to this trend, such as MATLAB and MATHCAD.  

The two-dimensional convolution is a neighborhood operation. The value of an 

output pixel is computed by multiplying elements of two matrices and summing for the 

results. One of the matrices represents the image data, and the other matrix is known as a 

convolution kernel. Let I be the binary image data matrix. The convolution is: 

SEII ⊗='     (3.8) 

where SE is the convolution kernel. To find out the turning pixels, two convolution 

kernels are defined as: 

                 (3.9)  
⎥
⎥
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In the resulting image data matrix  and , the element has the value of 3 for all 

non-turning pixels. Counting on the data in matrix  and , it is easy to get the exact 

number of the turning pixels on a 4-connected border. The length of the border is then 

straightforward with equation (3.4). 

1
'I 2

'I

1
'I 2

'I

Integer values 3 and 4 are assigned to move length 1Δ  and 2Δ  for better computer 

preservation and higher processing speed. In this case, the length of the diagonal move 

2  is approximated by 
3
4 .  

3.4.5 Approximation Errors 

Based on the model set up in the proceeding discussions, the continuous concepts 

such as continuity and distance have been mapped onto discrete space as the concepts of 
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connectivity and discrete length. It is important to find out the approximation error made 

during this process.  

The relative error  is defined with the given discrete length  and the Euclidean 

distance  between two points P and Q as [2] 

DE Dd

Ed

1)
),(
),((1

),(
),(),()/1(),( −=

−
=

QPd
QPd

QPd
QPdQPdQPE

E

D

E

ED
D ε

ε
  (3.10) 

The parameterε  ( 0>ε ) is the scale factor used to maintain consistency between 

radii of discrete length and Euclidean distance. In the 8-connected neighborhood, 

let 1Δ=ε .  

Let = and point P be the origin. Considering the first octant in Figure 3.7, 

we see that 

Dd
21 ,ΔΔd

21, )(
21

Δ+Δ−=ΔΔ QQQ yyxd     (3.11) 

The error  is measured along the line (x=L) with (L>0). Therefore, for all Q that 

 and , the relative error at point Q is given by [2] 

DE

LxQ = LyQ ≤≤0
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22
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yyL
QPE

ε
   (3.12) 
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Figure 3.7 Calculation of  in the first octant Dd

Since  is a convex function in DE [ ]L,0 , its local extreme can be obtained so that 
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In this case, 1
)(

),(
2

12
2
1 −

Δ−Δ+Δ
=

ε
QPED , where LyQ

1

12

Δ
Δ−Δ

= . The two 

bound points at P(0,0) and Q(0,L) should also be considered as the possible peak point. 

Therefore, the maximum relative error is defined as the point that 
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3.5 Crack Width Classification 

3.5.1 Area Calculation  

A good estimation for the area of the crack object in binary images is found by 

summing the areas of each pixel. Let’s define the on pixel in the binary image, which 

represents the pixel with the value of 1. The area of an individual pixel is determined by 

looking at its four 2-by-2 neighborhoods. There are six different distinguishable patterns 

for a 2-by-2 neighborhood, each representing a different area: [6] 

• Zero on pixels   (area=0) 

• One on pixel    (area=1/4) 

• Two adjacent on pixels  (area=1/2) 

• Two diagonals on pixels  (area=3/4) 

• Three on pixels   (area=7/8) 

• All four on pixels  (area=1) 

Because each pixel is part of four different 2-by-2 neighborhoods, a single “1” pixel 

surrounded by “0” pixels has a total area of 1.  

3.5.2 Width Calculation 

As the area and the length of the crack object are both obtained, its average width is 

computed by dividing the area by its length. There is an important step necessary to 

isolate each crack object and do the calculation individually. The connected-component 

labeling and selection methods are used, which have been discussed in the previous 

chapter.  
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So far, we suppose that all the existing objects in the resulting binary image are 

cracks we are interested in. In fact, since we have used gray-level segmentation, which 

distinguishes the crack objects based on their gray value difference from the 

background, additional higher-level processing methods are needed to distinguish the 

crack objects. Certain criteria are necessary to remove noise at this final step. Three 

additional criteria are set for the crack discrimination: 

(1) Width limit: No object is a crack object when its width is larger than this limit. 

(2) Length limit: No object is a crack object when its length is smaller than this 

limit. 

(3) Length-to-width ratio limit: No object is a crack object when its length-to-width-

ratio is smaller than this limit. 

The actual parameter is obtained from a large quantity of real examples. The width 

limit is set as 20 pixels, the length limit as 10 pixels, and the length-to-width ratio limit 

as 3.  Figure 3.8 shows the final result image of the cracks. 
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Figure 3.8 Processing result 

 

3.5.4 Grid Classification 

    In the crack characterization, we are not only interested in the properties of an 

individual crack but, more importantly, in the overall percentage of the crack coverage 

on the road. A grid format image is created for this purpose. The whole image is divided 

into small identical grids. The grid size can be user-defined. According to the width, all 

the cracks are classified into five categories. The range of the crack width increases from 

category one to five. The grids are classified by the widest crack inside, and filled with a 

specific color. With the grid classification, we can get the visualized information of the 

crack coverage, which is very important to determine the quality of the pavement. 
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Figure 3.8 shows two examples of the grid image on a same result crack image. It is 

easily seen that the result is more accurate with smaller grid size.   

(A) Grid Size: 40 Pixel 

 

(B) Grid size: 20 Pixel 

Figure 3.8 Image Grids 

 

3.6 Crack Growth 

Crack growth is a very important issue of automatic crack monitoring. It can be 

determined by comparing different processed result images of the same location. Since 

the images are binary images, the difference can be easily obtained by an XOR (⊕ ) 

operation. However, in most of the cases, the two images cannot be perfectly 

overlapped. There is shifting or even rotation between the two images. To solve this 

problem, the theory of correlation is applied. The correlation coefficient r of image A 

and B is defined as  

∑∑∑∑

∑∑
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  (3.15)    

 

The equation above can be simplified as (3.16) if A and B are binary images. 
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∑∑ ⊕=
m n

BAr     (3.16)  

 

(A) Before (B) After 

 

(C) Crack Growth 

Figure 3.9 Crack growth detection 

 

39   
 



Considering the arbitrary 2-dimensional displacement between A and B, the 

correlation coefficient is calculated in a loop. The most overlapping occurs when the 

coefficient r reaches the maximum. When the laser pointer is used for the positioning 

system, the precision can be under 10 mm. Compared with an image size of 1.2-by-1.2 

meters, the image rotation can be neglected. Figure 3.9 shows an example of crack-

growth detection. The horizontal displacement between (A) and (B) is 14 pixel/26mm, 

and the vertical displacement is 11pixel/21 mm.   

 

3.7 Calibration 

So far, all the calculations are achieved with the unit of pixel. However, the physical 

length and width is required in practice. It could be computed based on the parameters 

such as the height and the angle of the image-acquisition devices. However, the most 

direct method is the system calibration. The basic idea is that we get the calibration 

parameter based on the processing result of an object whose parameters are already 

known. This calibration parameter is the ratio of the processing result to the physical 

size of the object. 

A special calibration board is designed for this purpose. On this board, there are 

several equally-spaced lines with the same length. These line objects are long and dark 

so that they are very easy to distinguish. They have the same length for the object 

identification. When we obtain more than two objects in the processing result that have 

very close values, they are recognized as the calibration objects and the average value is 

used to calculate the calibration parameter. Or, they will be neglected as noise objects to 
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avoid error. Each time the calibration parameter is reserved in the system so that it can 

be reused after the current session. The user can do the calibration any time to obtain the 

most recent parameter for measurement.  
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Chapter 4 

 

Illustrative Examples 

 

4.1 Example I 

This example is designed to test the sensitivity of the crack-detection algorithm and 

the accuracy of the crack-calculation algorithm. The target is a board with several lines 

that have different lengths and widths. Figure 4.1 shows the acquired image of this 

board. 

Figure 4.1 Example I : Source image 
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This image is taken inside the lab, with a general light source. Compared with 

natural sunlight, it is relatively weak and non-uniform. The camera is placed at the 

height of about a meter, which is able to cover the area of about 1.2 meters by 1.2 meters 

on the ground. From figure 4.1, we can see that the light extraction is considerable, 

especially for small and slim objects like (D) and (E). The parameters of the objects 

from (A) to (E) are given in Table 4.1. 

 (A) (B) (C) (D) (E) 

Width (mm) 12.1 7.5 6.2 3.5 1.7 

Length (mm) 295 293 293 293 292 

 
Table 4.1 Parameters of the Image Objects  

Figure 4.2 shows the processing result of the binary crack image and Table 4.2 gives 

the calculation result for width and length of the objects. 

(B) Binary output 

 

(B) Overlapped output 

 
Figure 4.2 Example I:  Processing result  
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 (A) (B) (C) (D) (E) 

Actual (mm) 12.1 7.5 6.2 3.5 1.7 

Result (mm) 11.9 7.4 7.0 5.2 3.2 

 

Width  

Error (%) 1.65% 1.33% 12.9% 48.6% 88.2% 

Actual (mm) 295 293 293 293 292 

Result (mm) 291 288 284 268 264 

 

Length  

Error (%) 1.36% 1.71% 3.1% 8.87% 9.90% 

 
Table 4.2 Calculation results  

 

To further verify the accuracy of the algorithm, the source image is rotated by a 45° 

angle. Table 4.3 shows the calculation results for this image. 

 (A) (B) (C) (D) (E) 

Actual (mm) 12.1 7.5 6.2 3.5 1.7 

Result (mm) 11.5 7.0 7.0 4.8 3.0 

 

Width  

Error (%) 4.96% 6.67% 12.9% 37.1% 76.5% 

Actual(mm) 295 293 293 293 292 

Result (mm) 288 289 286 280 284 

 

Length  

Error (%) 2.37% 1.37% 2.39% 4.44% 2.74% 

 
Table 4.2 Calculation results of the rotated image 
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From the results, we can see that the algorithm is very efficient in detecting the crack 

objects, even when the light condition is poor and the objects are very slim. The length-

calculation algorithm is also proven to match with the object very well. The maximum 

error is less than 10%, which is a special case caused by the distinct block operation in 

Chapter 2. When we look at the overlapped result in Figure 4.2 (C), we can see that the 

start and end of the lines (D) and (E) are cut off, because that’s exactly the border of the 

sub-image divided from the whole image when the distinct block operation is applied. In 

such sub-images, the object is so small that it is removed as noise. This problem can be 

corrected by overlapping with the distinct block operation.  

The width calculation is also effective when the object width is above 5mm under 

the current testing environment. When the width is below 5mm, the calculation is 

limited by the light conditions and the resolution of the camera. The light has the major 

impact on the image segmentation. The boundary effect of the image object is great 

because of the flat reflection of the light and the sensitivity of the CCD camera. In the 

source image, the gray value varies greatly from the border to the center of the line 

objects.  

The two results from the images with different angles are well matched with each 

other, which proves the effectiveness of the whole algorithm of calculation.  

To improve the lighting situation, an artificial lighting system is in design to provide 

the optimal lighting condition. The camera flashlight can be a solution. It can provide 

strong light, and avoid heavy equipment of the regular light system at the same time. 

There are a couple of pins on the flashlight circuit. It is triggered once these pins are 
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short-circuited. The flashlight control signal can be sent through the RS232 port of the 

computer. However, the timing is an important issue for control. Additional driving 

circuit is needed.  

Considering the camera resolution of 640-by-480 pixel, and the fact that it covers the 

area of 1.2-by-1.2 meters, it is easy to estimate the calibration factor by dividing the 

image size with the camera resolution. Therefore, each pixel in the processing result is 

compared to the actual length of about 1.87mm. In this experiment, the factor is 

calculated as 1.74mm by calibration, which is also the highest resolution of the 

algorithm.  

 

4.2 Example II 

Experiment II demonstrates the performance of image processing in the real 

environment. Figure 4.4 (A) shows the source image acquired on the real highway 

pavement. The binary output, overlapped output and grid output images are shown in 

(B), (C) and (D) respectively. 
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(A) Source image (B) Binary output 

(C) Overlapped output (D) Grid output 

Figure 4.3 Example II 

 

With the grid output image in Figure 4.4 (D), the information about the crack 

distribution is obtained, which is shown in Table 4.3. In the result, most of the crack 

objects are successfully detected with different light conditions. Some of the noise 

objects, such as the paint and shadow, are removed. The calculation results match the 

real objects. Table 4.3 shows the statistical result of the crack coverage of Example II. 
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 Class I 

(0~3mm) 

Class II 

(3~5mm) 

Class III 

(5~7mm) 

Class IV 

(7~10mm) 

Class V 

(>10mm) 

Road coverage 

(%) 

0 0.2 2 3.6 5.4 

Total length 

(mm) 

0 89 304 545 832 

 

Table 4.3 Crack coverage of example II
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Chapter 5 

 

Software Design 

 

5.1 Introduction 

The system application software is programmed with Microsoft Fundamental Class 

(MFC) on the operation system of Windows NT 4.0. To control the external hardware 

and process the acquired image in one system, the system software design is very 

complicated. There are five major components:  

(1) Windows framework of views and documents,  

(2) MATLAB image processing,  

(3) CCD camera driver,  

(4) Motion system control , 

(5) System database management.  

Several advanced Windows programming techniques, such as multiple view and 

multithread are implemented in the software design.   

 

5.2 Windows Framework 

The system application has a user-friendly interface. Figure 1.4 in Chapter 1 shows 

the frame of the program. It implements the splitter windows and double-view-single-

document architecture. The left pane shows the original image and the right pane shows 
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the result image after processing. Drawing and erasing functions enable users to modify 

the processing result and re-process the crack image.  

5.2.1 The Splitter Windows 

The splitter window appears as a special type of frame that holds multiple views in 

panes. The user can move the splitter bar to adjust the relative size of the panes.  

Programming with Microsoft Foundation Class (MFC), the framework of the splitter 

window application project can be created using the Visual C++ Application Wizard. An 

object of the MFC class CSplitterWnd represents the splitter window. It is a data 

member of the CChildFrame class. The CChildFrame class also has to override the 

virtual member function of OnCreateClient to create the splitter window, and the splitter 

window creates the views. The function of OnCreateClient is shown below. 

BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT lpcs,  

CCreateContext* pContext)  

{ 

 // Create static splitter 

 if (!m_wndSplitter.CreateStatic(this,1,2,WS_CHILD)) 

 { 

   return FALSE; 

 } 

 if (!m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CCrackView), 

    CSize(0, 0), pContext)) 

 { 

50   
 



  return FALSE; 

 } 

 if (!m_wndSplitter.CreateView(0, 1, RUNTIME_CLASS(CCrackView), 

   CSize(0, 0), pContext)) 

 { 

  return FALSE; 

 } 

 m_bSplitter = TRUE; 

 m_wndSplitter.ShowWindow(SW_SHOWNORMAL); 

 m_wndSplitter.UpdateWindow(); 

 return TRUE; 

} 

5.2.2 The CCrackObj Class 

The HCMS software application enables the user to modify the image processing 

result and recalculate the crack information. Any drawing or erasing that the user makes 

is an object of the class CCrackObj. This class is derived from the MFC base class 

CObject. It has the member variables to describe the properties of the object of the user 

modification, such as crack width, crack color, the position of the object located, as well 

as the view and document object pointer that the object belongs to.  

Whether the user draws or erases, a line object is created to store such information. 

Another class CCrackStroke is derived from the CCrackObj, which includes most of the 

lower level operations on such line objects. It has a CArray member variable that stores 
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coordinates of all the points on the line trail. The member function AddPoints() adds 

new points to the array whenever the line object extends. Together with the properties in 

its CCrackObj base class, the user is able to modify the image of the processing result 

under precise control. 

 

5.2.3 The Document and View 

By using the splitter window, there are more than one view objects existing in the 

frame. The HCMS software application implements the double-view-single-document 

architecture for the document and view relation. Two MFC functions are helpful for the 

object of the document class to iterate through the multiple views: CDocument:: 

GetFirstViewPosition() and CDocument::GetNextView(). The first function returns a 

POSITION value for the first view in the system. The GetNextView() function takes this 

value to retrieve the view object pointer. The following piece of code is an example of 

how to iterate through the views and repaint. 

//To get the first view in the list of views: 

POSITION pos = GetFirstViewPosition(); 

CView* pFirstView = GetNextView(pos ); 

// This example uses CDocument::GetFirstViewPosition 

// and GetNextView to repaint each view. 

void CMyDoc::OnRepaintAllViews() 

{ 

   POSITION pos = GetFirstViewPosition(); 

   while (pos != NULL) 

   { 
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      CView* pView = GetNextView(pos); 

      pView->UpdateWindow(); 

   }    

} 

There are also some graphic functions that enable the user to modify the processing 

result image. The modification is under perfect control by drawing, erasing and line 

width definition. The system is able to update the processing result in a Windows bitmap 

image, reprocess the image and update the crack statistical information of this image.  

 

5.3 MATLAB Interface  

All the image-processing code is written with the MATLAB Image Processing 

toolbox. It processes the 256 gray-level intensity images acquired by the CCD camera. 

A binary crack image, an overlapped image, and a color-grid image are created as the 

outputs.  Since we use the latest version 5.3 of MATLAB, which is not accompanied 

with a C++ compiler, a special piece of MATLAB interface code is designed to 

implement the MATLAB source code in the C++ program. The detailed procedure is 

listed below. 

• Start a MATLAB engine session: Engine *engOpen(const char *startcmd). 

“stmartcmd” must be NULL for Windows. A pointer to the engine handle is 

returned. 

• Execute a MATLAB program piece: int engEvalString(Engine *ep, const char 

*string). The “string” should be a valid MATLAB command to be executed. 

Zero is returned if MATLAB runs successfully.  

53   
 



• Quit a MATLAB engine session: int engClose(Engine *ep). It returns “0” on 

success and “1” otherwise. 

 In addition, the MATLAB C++ interface header file “engine.h”, which can be 

found in the MATLAB system directory, must be included in the C++ project. The user 

also needs to generate an external library file to control the MATLAB engine import and 

export. For details, please refer to the MATLAB reference book. The MATLAB image 

processing code is listed in Appendix I.  

 

5.4 CCD Camera Control 

The CCD camera has its own API functions for implementation. All the camera 

operations are encapsulated into a camera class. In the camera initialization, about 

600KB memory is allocated to store two frames of the 640-by-480 image data, so that 

the animated motion pictures can be acquired by refreshing the content of the two 

frames consecutively. The memory will be released when the camera event ends. 

Since the camera requires the system to allocate a large block of memory and it 

works at a relatively lower speed, multithread programming is suitable for the camera 

operation. The camera thread is started by initializing this pointer, and the MFC function 

afxBeginThread() is called. The camera is suspended by calling the MFC function 

afxSuspendThread(). The thread can only be terminated by calling the afxEndThread() 

inside the thread. To do so, generally we can set an EndThread event, which will trigger 

the function to destroy the thread itself. The header file of this camera thread is listed in 

Appendix II.  
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5.5 Motion System Control 

The motion system is controlled through the ADR101 RS232 interface board that is 

connected to the COM1 port of the computer. The ADR101 board converts the 8-bit 

serial data through the serial port to the 8-bit parallel data and latches it. Direct access to 

the hardware is not allowed under Windows NT. Interaction with the serial port is 

achieved through a file handle and various WIN32 communication API's.  

The first step in accessing the serial port is setting up a file handle. 

m_hCom = CreateFile("Com1",  

  GENERIC_READ | GENERIC_WRITE, 

  0, // exclusive access 

  NULL, // no security 

  OPEN_EXISTING, 

  0, // no overlapped I/O 

  NULL); // null template  

Check the returned handle for INVALID_HANDLE_VALUE and then set the buffer 

sizes. 

m_bPortReady = SetupComm(m_hCom, 128, 128); // set buffer sizes 

Port settings are specified in a Data Communication Block (DCB). The easiest way 

to initialize a DCB is to call GetCommState to fill in its default values, override the 

values that you want to change and then call SetCommState to set the values. 

m_bPortReady = GetCommState(m_hCom, &m_dcb); 

m_dcb.BaudRate = 9600; 

m_dcb.ByteSize = 8; 

m_dcb.Parity = NOPARITY; 

m_dcb.StopBits = ONESTOPBIT; 
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m_dcb.fAbortOnError = TRUE; 

m_bPortReady = SetCommState(m_hCom, &m_dcb); 

Communication timeouts are optional but can be set similarly to DCB values: 

m_bPortReady = GetCommTimeouts (m_hCom, &m_CommTimeouts); 

m_CommTimeouts.ReadIntervalTimeout = 50; 

m_CommTimeouts.ReadTotalTimeoutConstant = 50; 

m_CommTimeouts.ReadTotalTimeoutMultiplier = 10; 

m_CommTimeouts.WriteTotalTimeoutConstant = 50; 

m_CommTimeouts.WriteTotalTimeoutMultiplier = 10; 

m_bPortReady = SetCommTimeouts (m_hCom, &m_CommTimeouts); 

If all of these API's are successful then the port is ready for use. Signal I/O through 

the ADR101 is achieved by writing the specific ADR101 command. A C++ serial port 

control class is generated. The detail code segment is listed in Appendix III. 

 

5.6 Database Management 

Since a very large amount of images are acquired and processed, a database is 

suitable for the result storage and processing. The Microsoft Database Access Object 

(DAO) data access system is implemented in the program. The processing results are 

stored in a Microsoft Access database file. There are two tables in this file, which store 

the results for individual images and the total statistical information respectively. When 

a new image is processed, a new record is created for this image in the first table and the 

record of the total statistics in the second table is renewed by a recursive function based 

on the total number of records. There are many useful SQL functions encapsulated in the 

C++ DAO database access class, which enable the users to navigate among the records.  
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To use the Microsoft DAO database access, the header file afxdao.h must be 

included in the MFC project header file StdAfx.h.  
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Chapter 6 

 

System Implementation and Applications 

 

6.1 System Implementation 

            Figure 6.1 shows a detailed block diagram of the HCMS.  The digital camera is a 

black and white CCD camera made by Hitachi (KP-160U) as shown in Figure 6.1. The 

main specs of the CCD camera are as follows: 

Model: KP-160U, black and white CCD camera  

Power: DC 12V, 300mA 

Resolution: 640X480 

Connection: BNC connecter coaxial cable. 

            An auto-focus lens is attached to the camera. The lens is electrically controlled 

by the camera circuit. Information on the lens is listed below: 

Model: H612E (C60625) 

Manufacturer: Asahi Precision Co., Ltd. 

Power: 8V~12V DC, less than 45mA 

Focal length: 6mm 

Iris range: 1.2~360 

Mount: C 

            The image is acquired by an image acquisition board (Model: H612E by Asahi 

Precision Co., Ltd) inserted in the PCI slot inside a Pentium II, 400 MHz computer. The 

specifications of the frame grabber are listed as follows: 

Model: PX510 

Bus: PCI Bus 

Manufactory: Imagenation Co. 
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Power: 5VDC, 650mA 

Resolution: 640X480 pixels 

Input composite video format: Monochrome, RS-170 (NTSC) or CCIR (PAL), 

auto detect 

Input video: 1 V peak to peak, 75 Ohm 

Capture time: Real time video capture; RS-170 (NTSC), 1/30 second per frame; 

CCIR (PAL), 1/25 second per frame 

Supported operating systems: Win 98, 98-SE, 2000, ME, NT4  

Supported languages: Visual C/C++  

 

 
Figure 6.1 CCD camera used in this project 

            The computer is installed with a serial port expansion board so that more than 4 

RS-232 serial ports are available. The control board to the camera motion and sensor 

system is designed and manufactured by Subsurface Sensing Lab at the University of 

Houston. Figure 6.2 shows power supply for the control, sensor, and motor and the 
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control board. A microprocessor (Microchip PIC16C71) is used for the system control. 

Communication with the computer is via RS-232 serial port. The electrical 

characteristics of the control board, power supply and motors are summarized as 

follows: 

Control board: 

Manufacturer: Subsurface Sensing Lab, University of Houston 

Power: 5VDC, 100mA; 12VDC, 200mA 

Microprocessor: Microchip PIC16C71 

Communication port: RS232 

 Software: Assembly language 
 
 

 
Figure 6.2 Control board and DC power supply 

 
DC Power supply: 

 

Model: PRK70U-1212 
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Manufactory: Volgen 

Input: AC 100/120V, 1.8A, 50/60Hz 

Output: 67W 

 CH1: +5V, 1.5~5A 

 CH2: +12V, 2.5A 

 CH3: -12V, 1A 
 
DC Motor 

 

Model: 4Z839 

Manufactory: Dayton Electric Mfg. Co. 

Power: 12VDC, 1.25A 

F/L Torque: 15ln. –Lbs. 

Input Motor H.P.: 1/160 

Ratio: 95.7:1 
 
            In order to achieve smooth motion, three motors are used: two synchronous 

motors for x motion and one motor for y motion. The synchronization between the two 

motors are achieved by using the microcontroller.  Synchronization algorithm is 

developed.  At the point where an image is to be taken, a magnet is installed.  Hall-effect 

sensors are used for sensing the position of the camera.  Figure 6.3 shows the schematic 

of the controller board. Detailed connection information is listed in Appendix IV. 

Software used for motor control and position sensing can be found in Appendix V. 

Figure 6.4 is an overview of the control system.  
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Figure 6.3 (b) Schematic of the controller-microprocessor and interface 
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Figure 6.4 Overview of the motion system developed in this project. 

6.2 Applications 

            This system has been ready for field installation for more than 6 months now. 

Due to the unavailability of the TxMLS, we are unable to do field tests to the developed 

crack-monitoring system. However, many lab tests were done and many images taken 

from the field using a portable digital camera which were processed using the software 

developed in this project. In this section, some of the processed results are presented.  

            Figure 6.5 is the processed results of a horizontal crack. Statistical information is 

directly displayed in the widow next to the processed image. 

64   
 



    

            Figure 6.5. Processed results of a horizontal crack. Processed area is shown by             Figure 6.5. Processed results of a horizontal crack. Processed area is shown by 
the rectangular box. 
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            Figure 6.6 shows an asphalt crack with a ruler giving actual dimensions with the 
processed results. It is seen that the image processing software thinks of the ruler as a 
vertical crack.  
 

 
 

 
            Figure 6.6 The image processing software can not identify object from cracks. 

The ruler image is being processed as a vertical crack in this example. 
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            Figure 6.7 is a picture of asphalt cracks on a relatively new pavement. Cracks are 
mostly unconnected with fine branches. After processing the image, the software system 
is able to categorize cracks satisfactorily.  

  

 
 

Figure 6.7 Asphalt cracks with fine branches 
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            Figure 6.8 is an example of an alligator crack. Even with the dark image, the 
software is able to identify most of the cracks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 6.8 An example of alligator cracks and processed results. 
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            Figure 6.9 shows a cluster of cracks forming a “hole” on an old pavement. The 
picture below is the processed image and statistic results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6.9 Processed  results of a cluster of cracks on an old-pavement 
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            Figure 6.10 is the image and processed result of a scattered crack on an asphalt 
pavement. It shows that the image processing software is able to acquire most of the 
cracks even with fine width. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6.10 Processed result of scattered cracks on an asphalt surface 
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           Figure 6.11 shows that the software is unable to identify the difference between 
an asphalt-sealed crack and a crack without sealant.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11 Processed results of asphalt-sealed cracks 
 
 

Figure 6.11 Processed results of asphalt-sealed cracks 
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Chapter 7 
 

Conclusions 

The Highway Crack Monitoring System provides a complete platform for automatic 

highway crack detection and analysis. It is still under development.  

The crack image-processing algorithm is proven to be highly accurate and efficient. 

The recurring thresholding method demonstrates very high sensitivity on the crack 

object detection. The gray-level threshold is adaptively determined from an estimation-

verification process, which is based on the local image content. The band thresholding is 

implemented to compensate for the boundary effect. The bandwidth is adjustable to 

achieve the best processing precision. 

Multiple noise removal methods are implemented during the image processing. The 

connected-component-object identification is implemented to remove the background 

noise and small fake objects. A large fake object is distinguished by setting certain 

thresholds according to the properties of the crack object.  

The crack object in the binary image is characterized by the object boundary 

processing. Morphological operations, such as dilation and erosion, are applied to 

remove the border irregularity, thus improving the accuracy of the calculation. Border 

convolution is a much more effective alternative of border tracing to determine and 

classify the border pixels. Two convolution-kernel matrices are designed to find out the 

turning pixels on the border contour. The perimeter of the object is obtained by 

accumulating the corresponding move lengths of the border pixels. The length and width 

of the object are therefore straightforward.  
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The HCMS hardware system demonstrates great reliability and efficiency. The CCD 

camera is under precise control. The motion system works with great flexibility. It has 

multiple working modes to provide great freedom. 

Much work remains to improve the performance of the system. Higher image quality 

is desired for image acquisition in future systems. A camera with higher resolution and 

sensitivity is under consideration. Further improvement is also needed on the recurring 

segmentation algorithm. Now the algorithm is restricted to detect the crack objects that 

have the similar gray level within the same local image, which results in a single peak 

appearing in the histogram. Although with distinct block processing, the local image is 

restricted to a small part of the whole image, there might be cracks existing in the same 

image with a different gray level. Multiple layer segmentation can be the solution for it. 

When TxMLS is in operational condition, we can install this system on to the 

TxMLS and do more field tests and improve the performance according to the results in 

the field. 
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APPENDIXES 

APPENDIX I Matlab Image Processing Sources Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Module Name : IP()       
%Designed by Min WU, SSL Lab, University of Houston, May 31, 2000 
%This program is designed to extract the crack information from the 
%real images taken from the highway. It filters off the background 
%noise and gets the output BMP file. It also characterizes the  
%cracks in the image, such as the length and width. 
%The input file is 256 or lower gray level. The output file is in   
%mono format. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function IP(SrcFile, grid, factor, DestFile, OvlpFile, GridFile,  
    Cal1, Cal2, Cal3, Cal4) 
%function IP() 
 
%Preset variables for testing 
%SrcFile='d:\demo\sample1.bmp'; 
%DestFile='d:\demo\sample1R.bmp'; 
%GridFile='d:\demo\sample1G.bmp'; 
%grid=20;    %%grid size 
%factor=168;   %%calibration parameter 
%Cal1=300;    %%3mm 
%Cal2=500;    %%5mm 
%Cal3=700;    %%7mm 
%Cal4=1000;    %%10mm 
%Preset variables for testing 
 
%Pre-defined parameters 
Len_thd =10; 
Len_width_ratio=5/factor; 
Width_thd=2000;  %%20mm 
Size_len=640;   %%image column size 
Size_height=480;  %%image row size 
%Pre-defined parameters 
 
[BW, map] = imread(SrcFile, 'bmp'); %%read source image 
BW=erase_border(BW);   %%erase border caused by the camera 
 
%%distinct block operation 
BW1(1:Size_height,1:Size_len)=1; 
for i=1:5 
   for j=1:8 
      r1=96*(i-1)+1; 
      c1=80*(j-1)+1; 
      sel=imcrop(BW, [c1 r1 79 95]); 
      sel1=core(sel); 
      BW1(r1:(r1+95), c1:(c1+79))=sel1; 
   end 
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end 
BW1=bwmorph(BW1, 'close'); %%border smoothing  
 
length=[0 0 0 0 0];  %%length vector 
PCT=[0 0 0 0 0];   %%percentage vector 
 
%%connected component labeling for object identifying 
[crack, n]=bwlabel(BW1, 8);  
BW=crack; 
if (n>0) 
   delta=(2-sqrt(2))/2; 
   for i=1:n 
    [col,row] = find(crack==i); 
  %%select the object in smaller image 
      sel = bwselect(BW1, row, col, 8 ); 
       r1=min(row); 
      if (r1>3)    
         r1=r1-5; 
      end 
     r2=max(row); 
      if (r2<475) 
         r2=r2+5; 
      end 
      h=r2-r1; 
      c1=min(col); 
      if (c1>3) 
         c1=c1-5; 
      end 
     c2=max(col); 
      if (c2<635) 
         c2=c2+5; 
      end 
    w=c2-c1; 
      sel1=imcrop(sel, [r1 c1 h w]); 
 
      ar=bwarea(sel1); %%calculate the area of the object 
  %%object border smoothing at 3-pixel level 
      sel1=bwmorph(sel1, 'dilate', 3); 
  sel1=bwmorph(sel1, 'erode', 3); 
  %%object dilation for border extraction 
      SE=ones(2); 
  sel1=dilate(sel1, SE); 
      sel1=bwperim(sel1, 8); 
    [col,row] = find(sel1>0); 
    [a,b]=size(col); 
  %%length calculation 
    x=adjust(sel1);   
    pix=a-(a-x)*delta; 
      len=pix/2-4; 
  %%width calculation 
      Wid=factor*(ar/len); 
 
  %%object identification using length-width criterion 

if ((len<Len_thd) | (len/Wid<Len_width_ratio) |  
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  Wid>Width_thd)     
         BW1=BW1&(~sel); 
      else 
         if (Wid<Cal1)       %%This program segment is to 
        BW=FillCrack(BW, i, 150); %%categorize the cracks  
        length(1)=length(1)+len; 
     elseif(Wid<Cal2)     %%based on their width, 
        BW=FillCrack(BW, i, 160); %%and refill the cracks 
        length(2)=length(2)+len; 
     elseif(Wid<Cal3)     %%with a new value  
        BW=FillCrack(BW, i, 170); %% representing different  
        length(3)=length(3)+len;  %%categories. 
     elseif(Wid<Cal4) 
        BW=FillCrack(BW, i, 180); 
        length(4)=length(4)+len; 
     else 
        BW=FillCrack(BW, i, 190); 
        length(5)=length(5)+len; 
       end 
      end 
   end 
end 
 
%%create the color map for output image  
map =[0 0 0; jet(2)];    
imwrite(~BW1,map,DestFile,'bmp'); %%write the output bitmap file 
 
%%set backgound of the grid image 
[BW, PCT]=SetGrid(BW, grid);    
fid = fopen('C:\crack\report.dat','w'); 
for i=1:5 
   fprintf(fid,'%d\t%d\t',fix(length(i)),fix(PCT(i))) 
end 
fclose(fid); 
 
%%this segment is to re-draw the cracks 
[BW1,n]=bwlabel(BW1, 8);   
[col,row] = find(BW1>0); 
 
[m,k]=size(col); 
if (m>0) 
 for i=1:m 
    BW(col(i),row(i)) = 0; 
   end 
end 
imwrite(BW,mapR,GridFile,'bmp'); %%write the output bitmap file 
 
 
%%erase_border():  erase the fixed 
%%noise incurred by the CCD camera on the image border 
function [X]=erase_border(BW)  
 
BW(1,:)=255; 
BW(:, 640)=255; 
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X=BW; 
 
 
%%adjust(): turning pixel adjustment for the length 
%%calculation for binary image object 
function [count]=adjust(BW) 
 
SE1=[0 0 0; 1 1 1; 0 0 0];  %%convolution kernal 
SE2=[0 1 0; 0 1 0; 0 1 0];  %%convolution kernal 
 
BW1=fix(filter2(SE1,BW)/3); %%convolution to determine 
BW2=fix(filter2(SE2,BW)/3); %%the turning pixels  
 
count=0; 
v=sum(BW1); 
count=count+sum(v);    %%count the total number of  
v=sum(BW2);       %%the turning pixel 
count=count+sum(v);    
 
 
%%core(): core function for image segmention 
function [BW1]=core(BW) 
 
sum1=sum(BW);      %%calculate the average  
avg=sum(sum1)/(96*80);   %%gray value of the pixels 
 
x=avg-33;       %%threshold estimation 
BW1=BW<x;       %%first segmentation 
 
[crack, n] = bwlabel(BW1, 8);    
for i = 1 : n        
   [col,row] = find(crack==i);   
   [m, k]=size(col); 
   if (m < 35)      %%object idetification 
      BW1(col,row) = 0;   %%lower limit   
   end 
   if (m > 2500)     %%object idetification 
      BW1(col,row) = 0;   %%upper limit 
   end 
end 
 
BW1=double(BW1); 
BW2=double(BW); 
BW2=uint8(BW1.*BW2);    %%masking original image 
 
%%histogram analysis 
[hstgrm, x]=imhist(BW2);  %%get the histogram 
hstgrm(1:5)=0;      %%clear white pixel distribution 
[posL, posH]=get_pos(hstgrm, 0.3); %%get the crack pixel range 
BW1=imadjust(BW, [posL/255 posH/255+0.005], [0 1]); 
          %%intensity transformation 
BW1=BW1<208;      %%segmentation 
 
[crack, n] = bwlabel(BW1, 8);    
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for i = 1 : n        
   [col,row] = find(crack==i);  
   [m, k]=size(col); 
   if (m < 25)       %%object identification 
      BW1(col,row) = 0;     
   end 
   if (m > 2800)      %%object identification 
   BW2 = bwselect(BW1, row, col, 8); 
     BW1 = BW1 & (~BW2); 
   end         %% 
end 
 
MK(1:96, 1:80)=1; 
MK(2:95,2:79)=0;    %%preserve object pixels near  
MK=MK&BW1;      %%the border for recovery 
 
BW1=bwmorph(BW1, 'close'); 
BW1=BW1 | MK;     %%recover the border pixels 
 
 
%%get_pos(): determine the gray value range for transformation 
function [pL, pH]=get_pos(hstgrm, pct)  
 
hstd=pct*max(hstgrm); 
m_hst=find(hstgrm>hstd); 
[sm1, sm2]=size(m_hst); 
if (sm1>0) 
   pL=m_hst(1); 
   pH=m_hst(sm1); 
else 
 pL=0; 
   pH=0; 
end 
 
 
%%FillCrack(): assign an individual gray value to the crack 
%%object based on the crack width category 
function [xImage]=FillCrack(crack, label, CAT) 
 
[col,row] = find(crack==label); 
[k1,k2]=size(col); 
m=k1; 
for k=1:k1 
   crack(col(k), row(k))=CAT; 
end 
xImage=crack; 
 
%%SetGrid(): set the grid background of grid output 
%%and calculate the crack occupancy 
function [Block, GRP]=SetGrid(BW, grid) 
 
xSize=640; 
ySize=480; 
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PCT=[0 0 0 0 0]; 
 
xBlock=ceil(xSize/grid); 
yBlock=ceil(ySize/grid); 
blocks=xBlock*yBlock;  %%count the total grids 
 
for m=0:(yBlock-1) 
   for n=0:(xBlock-1) 
      xStart=fix(grid*n)+1; 
      yStart=fix(grid*m)+1; 
       
      xStop=fix(grid*n+grid); 
      yStop=fix(grid*m+grid); 
       
      lengthX=fix(grid); 
      lengthY=lengthX;       
       
      if ((xStart+grid)>xSize) 
         lengthX=xSize-xStart; 
         xStop=xSize; 
      end 
       
      if ((yStart+grid)>ySize) 
         lengthY=ySize-yStart; 
         yStop=ySize; 
      end 
       
      col=xStart+1:xStop; %%get the grid column parameter 
      row=yStart+1:yStop; %%get the grid row parameter 
             
      square = imcrop(BW, [xStart yStart lengthX lengthY]); 
            
      c=max(square);   %%determind the maximum element, which 
      v=max(c);    %%is the widest crack label value 
      if (v==150) 
         BW(row, col)=15; %%assign “red” color to the class I 
         PCT(1)=PCT(1)+1; 
      elseif (v==160) 
         BW(row, col)=32; %%assign “orange” color to the class II 
         PCT(2)=PCT(2)+1; 
      elseif (v==170) 
         BW(row, col)=63; %%assign “yellow” color to the class III 
         PCT(3)=PCT(3)+1; 
      elseif (v==180)   
         BW(row, col)=49; %%assign “green” color to the class IV 
         PCT(4)=PCT(4)+1; 
      elseif (v==190) 
         BW(row, col)=5; %%assign “blue” color to the class V 
         PCT(5)=PCT(5)+1; 
      else 
         BW(row, col)=256; %%others for black. 
      end    
   end 
end 
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GRP=1000*PCT/blocks; 

Block=BW; 
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APPENDIX II CCD Camera Control Class Declaration Code 

////////////////////////////////////////////////////////////////// 
// CameraThread.h : header file 
// 
 
#ifndef __CAMERATHREAD_H__ 
#define __CAMERATHREAD_H__ 
 
#include "wpx5_NT.h" //CCD camera API 
 
typedef struct 
{ 
 BITMAPINFOHEADER head; 
 RGBQUAD colors[256]; 
} MAPHEAD; 
 
////////////////////////////////////////////////////////////////// 
// CCameraThread thread 
 
class CCameraThread : public CWinThread 
{ 
public: 
 DECLARE_DYNCREATE(CCameraThread) 
 CCameraThread(CWnd* pWnd); 
 
// Attributes 
public: 
 CRect m_rectBorder; 
 HANDLE m_hEventKill; 
 HANDLE m_hEventDead; 
 static HANDLE m_hAnotherDead; 
 
 static CRITICAL_SECTION m_csCameraLock; 
 
 
// Operations 
public: 
 void OnScrollBy(CSize sizeScroll, BOOL bScroll = TRUE); 
 int ImageMaxY; 
 int ImageMaxX; 
 void KillThread(); 
 virtual void SingleFrame(); 
  
// Overrides 
 // ClassWizard generated virtual function overrides 
 //{{AFX_VIRTUAL(CCameraThread) 
 //}}AFX_VIRTUAL 
 
// Implementation 
 virtual ~CCameraThread(); 
 virtual void Delete(); 
 BOOL pxWriteCurrentFile(LPSTR fileName); 
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protected: 
 
 BOOL AllocBuffer(); 
 void SetBitMapHead(); 
 void CreateGrayPalette(); 
 MAPHEAD m_mapHead; 
 BYTE * gpBits; 
 void GetImage(FRAMEHANDLE frh); 
 void Paint(HDC hDC); 
 HPALETTE hpalette; 
 FRAMEHANDLE frh[2]; 
 int frhIdx; 
 int tagQ[2]; 
 HANDLE hBuf; 
 FGHANDLE fgh; 
 BOOL CameraInit(); 
 void CameraExit(); 
 virtual BOOL InitInstance(); 
 
 // Generated message map functions 
 //{{AFX_MSG(CCameraThread) 
  // NOTE - the ClassWizard will add and remove member 
functions here. 
 //}}AFX_MSG 
 
 DECLARE_MESSAGE_MAP() 
}; 
 
////////////////////////////////////////////////////////////////// 
#endif
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APPENDIX III RS232 I/O Implementation Source Code 

 
///////////////////////////////// 
// initialize the com port 
///////////////////////////////// 
BOOL CComPort::Initialize() 
{ 
 DWORD dwRC; 
 DWORD dwError; 
 char sMsg[512]; 
 
 m_bPortReady = TRUE; // everything is OK so far 
 
 m_hCom = CreateFile(m_sComPort,  
  GENERIC_READ | GENERIC_WRITE, 
  0, // exclusive access 
  NULL, // no security 
  OPEN_EXISTING, 
  0, // no overlapped I/O 
  NULL); // null template 
 
 if (m_hCom == INVALID_HANDLE_VALUE) 
 { 
  m_bPortReady = FALSE; 
  dwError = GetLastError(); 
   
  // example error code expansion follows 
  LPVOID lpMsgBuf; 
  lpMsgBuf = NULL; 
  dwRC = FormatMessage(  
   FORMAT_MESSAGE_ALLOCATE_BUFFER |  
   FORMAT_MESSAGE_FROM_SYSTEM |  
   FORMAT_MESSAGE_IGNORE_INSERTS, 
    NULL, 
   dwError, //  from GetLastError(), 
   MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), 
   (LPTSTR) &lpMsgBuf, 
   0, 
   NULL); 
   
  if (dwRC && lpMsgBuf) 
  { 
   sprintf(sMsg, "COM open failed: Port=%s Error=%d  

- %s", m_sComPort, dwError, lpMsgBuf); 
   AfxMessageBox(sMsg); 
  } 
  else 
  { 
   sprintf(sMsg,"COM open failed: Port=%s Error=%d", 
    m_sComPort, dwError); 
   AfxMessageBox(sMsg); 
  } // end if 
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  if (dwRC && lpMsgBuf) 
  { 
   LocalFree( lpMsgBuf ); 
  } // end if 
  
 } // end if 
 
 if (m_bPortReady) 
 { 
  m_bPortReady = SetupComm(m_hCom,  
   128, 128); // set buffer sizes 
  if (!m_bPortReady) 
  { 
   dwError = GetLastError(); 
   sprintf(sMsg, "SetupComm failed: Port=%s  

Error=%d", m_sComPort, dwError); 
   AfxMessageBox(sMsg); 
  } // end if 
 } // end if 
 
 if (m_bPortReady) 
 { 
  m_bPortReady = GetCommState(m_hCom, &m_dcb); 
  if (!m_bPortReady) 
  { 
   dwError = GetLastError(); 
   sprintf(sMsg, "GetCommState failed: Port=%s  

Error=%d", m_sComPort, dwError); 
   AfxMessageBox(sMsg); 
  } // end if 
 } // end if 
 
 if (m_bPortReady) 
 { 
  m_dcb.BaudRate = 9600; 
  m_dcb.ByteSize = 8; 
  m_dcb.Parity = NOPARITY; 
  m_dcb.StopBits = ONESTOPBIT; 
  m_dcb.fAbortOnError = TRUE; 
 
  m_bPortReady = SetCommState(m_hCom, &m_dcb); 
  if (!m_bPortReady) 
  { 
   dwError = GetLastError(); 
   sprintf(sMsg, "SetCommState failed: Port=%s Error  

= %d", m_sComPort, dwError); 
   AfxMessageBox(sMsg); 
  } 
 } // end if 
 
 if (m_bPortReady) 
 { 
  m_bPortReady = GetCommTimeouts (m_hCom,  

&m_CommTimeouts); 
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  if (!m_bPortReady) 
  { 
   dwError = GetLastError(); 
   sprintf(sMsg, "GetCommTimeouts failed: Port=%s  

Error = %d", m_sComPort, dwError); 
   AfxMessageBox(sMsg); 
  } // end if 
 } // end if 
 
 
 if (m_bPortReady) 
 { 
  m_CommTimeouts.ReadIntervalTimeout = 50; 
  m_CommTimeouts.ReadTotalTimeoutConstant = 50; 
  m_CommTimeouts.ReadTotalTimeoutMultiplier = 10; 
  m_CommTimeouts.WriteTotalTimeoutConstant = 50; 
  m_CommTimeouts.WriteTotalTimeoutMultiplier = 10; 
  m_bPortReady = SetCommTimeouts (m_hCom,  

&m_CommTimeouts); 
  if (!m_bPortReady) 
  { 
   dwError = GetLastError(); 
   sprintf(sMsg, "SetCommTimeouts failed: Port=%s  

Error = %d", m_sComPort, dwError); 
   AfxMessageBox(sMsg); 
  } // end if 
 } // end if 
 
 if (m_bPortReady) 
 { 
  BOOL bWriteRC; 
  DWORD iBytesWritten;  
   
  //Configure port A: Bit A0 is the pin for signal input 
  //Bit A7 is the output pin for motor control 
 
  iBytesWritten = 0; 
   
  bWriteRC = WriteFile(m_hCom, "CPA00000001\r", 

12, &iBytesWritten, NULL); 
  if (!bWriteRC || iBytesWritten == 0) 
  { 
   AfxMessageBox("Fail to initialize the port!"); 
  
  }  
 } 
  
 return m_bPortReady; 
} // end CComPort::Initialize 
 
///////////////////////////////// 
// terminate the com port 
///////////////////////////////// 
void CComPort::Terminate() 
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{ 
 CloseHandle(m_hCom); 
} // end CComPort::Terminate 
 
 
///////////////////////////////// 
// read data from the com port 
///////////////////////////////// 
BOOL CComPort::Read(CString& sResult) 
{ 
 BOOL bWriteRC; 
 BOOL bReadRC; 
 DWORD iBytesWritten;  
 DWORD iBytesRead; 
 char sBuffer[32]; 
 
 iBytesWritten = 0; 
 bWriteRC = WriteFile(m_hCom, "RPA\r",4,&iBytesWritten,NULL); 
 if (!bWriteRC || iBytesWritten == 0) 
 { 
  return FALSE; 
 } // end if 
 memset(sBuffer,0,sizeof(sBuffer)); 
 bReadRC = ReadFile(m_hCom, &sBuffer, 15, &iBytesRead, NULL); 
 
 if (bReadRC && iBytesRead > 0) 
 { 
  sResult = sBuffer; 
 } 
 else 
 { 
  return FALSE; 
 } // end if 
 return TRUE; 
} // end CComPort::Read 
 
///////////////////////////////// 
// write command to the com port 
///////////////////////////////// 
void CComPort::Write(const int& m_iCommand) 
{ 
 BOOL bWriteRC; 
 DWORD iBytesWritten;  
 DWORD dwError; 
 char sMsg[128]; 
 
 iBytesWritten = 0; 
 switch (m_iCommand){ 
 case 1: 
  bWriteRC = WriteFile(m_hCom, "SPA11100011\r", 

15, &iBytesWritten,NULL); 
  break; 
 case 2: 
  bWriteRC = WriteFile(m_hCom, "SPA10000011\r", 
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15, &iBytesWritten,NULL); 
  break; 
 default: 
  bWriteRC = WriteFile(m_hCom, "SPA00000011\r", 

15, &iBytesWritten,NULL); 
  break; 
 } 
 
 if (!bWriteRC || iBytesWritten == 0) 
 { 
  dwError = GetLastError(); 
   
  sprintf(sMsg, "Write of length query failed: RC=%d, " 
    "Bytes Written=%d, Error=%d", 
    bWriteRC, iBytesWritten, dwError); 
  AfxMessageBox(sMsg);   
 } // end if 
} 
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APPENDIX IV Pin Configuration of the Motion System Control 

Box 

1. Interior 

PIN # DIP5 DIP8 

1 PA6 (ADR101) PA7 (ADR101) 

2 F0 (FLASH) PA5 (ADR101) 

3 PA2 (ADR101) GND (Vcc) 

4 F1 (FLASH) PA1 (ADR101) 

5 PA0 (ADR101) Vcc (+5V) 

6 -- VDD (+12V) 

7 -- GND (VDD, VEE) 

8 -- VEE (-12V) 

 

2. Exterior 

PIN # Assignment PIN # Assignment 

1 DIP8 (6) 7 Motor B 

2 DIP8 (7) 8 Motor C 

3 DIP8 (8) 9 Sensor A(0) 

4 DIP5 (2) 10 Sensor A(1) 

5 DIP5 (4) 11 Sensor B(0) 

6 Motor A 12 Sensor B(1) 
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