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ABSTRACT

The strength and stiffness behavior of reinforced concrete
columns subjected to biaxial bending and compression was investigated.
In order to provide data points on biaxial interaction surfaces, nine
rectangular cross section columns and fifteen partial circular cross
section columns were loaded to failure as moments were increased while
thrust was maintained at a constant value. Test data included longi-
tudinal strain profiles as well as transverse displacement measure-
ments at all levels of load. Test measurements were compared with a
discrete element analytical model that was modified to provide results
that were in favorable agreement with measured response. Test results
from other investigators were included in the data against which

analytical results were checked.

The reciprocal thrust equation:

'1:1|r—l

ehh ok
was selected as the simplest analytical expression that provided
approximations of strength that were consistent with test results.
The influence of slenderness effects in skew bending was examined.
The moment magnifier method was used for approximate analysis of slen-
derness. Member stiffness relationships recommended by the ACI Building
Code (ACI 318-71) were studied in addition to alternate approximations
of EI. The ACI procedures were found to give safe results at low
thrust levels only if ACI Eq. (10-7) was used. Moment magnification
used separately for each principal axis of bending appeared to give
rational reflections of biaxial behavior. The discrete element
analytical model was also used to produce more analytical data for

comparison with the approximate methods of analysis. Simple
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approximations of EI were not found to be consistent with test data

when thrust levels varied and when slenderness ratios were large.

A deflection limit method for computing member strength was
introduced. The method involved assigning to the nominal eccentricity
an additional eccentricity that is a function of the slenderness ratio.
An empirical equation and a procedure for computing member strength

were proposed on the basis of agreement with experimental data.

KEY WORDS: columns, reinforced concrete, strength, stiffness,

biaxial bending, compression



SUMMARY

All reinforced concrete columns must be proportioned to resist
compression thrust that is assumed to act at some degree of eccentric-
ity away from the longitudinal centroid of the column. This report
contains an analytic and laboratory investigation of concrete columns
that are required to resist thrust that is eccentric about both
principal axes of member cross sections. Heretofore, the design of
columns to resist biaxially eccentric thrust has been dependent upon
largely unverified analytic combinations of design procedures for

uniaxial thrust.

The investigation incorporates results from other laboratories
where columns with square cross sections were tested. Since the
shape of columns in bridge structures frequently is rectangular or
partially circular (rectangular with circular ends), nine rectangular
specimens and fifteen partially circular specimens were tested as a

part of this investigation.

The investigation revealed that cross section strength and
cross section ductility are significantly undervalued analytically
if the customary Whitney constant stress block model is used to repre-
sent the limit strength of concrete on nonrectangular compression
zones. The investigation indicated that biaxially eccentric thrust
capacity Pi can be analyzed more accurately in terms of uniaxial
thrust capacities PX and Py’ and a squash load strength P0 in the

following equation of reciprocals
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The effects of slenderness can be incorporated through moment
magnificatiaon factors applied separately to each uniaxial thrust
capacity Px and Py' The skew bending tendency to twist the column
was found to be negligible. Values of flexural stiffness of cross
sections under thrusts less than 0.4Po should reflect the effects of

cracking and reinforcement percentage.

Simplified general formulas for flexural stiffness must
reflect lower bound resistance to deflection, and consequently they
become useless for moment magnifier applications to extremely slender
members. An analysis technique that employs a deflection limit as a
supplementary eccentricity is proposed in lieu of moment magnification

for extremely slender colummns.



IMPLEMENTATTION

Specific recommendations for design procedures have been made
as a result of this study. For many conditions of column design, the
cross sections and reinforcement can be selected on the basis of a
uniaxial bending load condition, and subsequent analysis must be made
to assure adequate strength for biaxial bending load cases. The
analysis for biaxial bending should employ the reciprocal thrust
equation and should not use any of the strength approximations now

"contours" under constant thrust. Applications of

employed for moment
the reciprocal thrust equation can be programmed for use in column
design or analysis computer subroutines, or applications can be based

on uniaxial strength interaction diagram design aids.

If biaxial bending load conditions are likely to represent
the most severe loading condition, an equivalent uniaxial moment can
be used for the preliminary selection of a cross section shape and
for longitudinal reinforcement. The equation for the equivalent uni-
axial moment is simply a crude adaptation of a moment contour function

for rectangular cross sectionms.

The biaxial bending capacity of prismatic slender columns can
be analyzed in terms of moment magnification factors., Two moment
magnification factors must be determined, one for each principal axis
of the column cross section and unsupported length. Thrust values PX
and Py in the reciprocal thrust interaction equation must represent

capacities under magnified eccentricities about each principal axis.

Implementation of the design and analytic verification recom-
mendations including slenderness effects could be expedited by means

of a computer program subroutine for the design of prismatic reinforced
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concrete columns. The design subroutine should be programmed to
include its own evaluation of cross section strength for selected
general shapes of columns. Equations for the analysis of slenderness
effects and for biaxially eccentric thrust load cases are given in

the report,
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CHAPTER 1

INTRODUCTION

1.1 General Review

A column that is subjected to axial compression and bending
moments about both major axes presents a biaxial bending problem in
the column. The problem always occurs in the design of monolithic
building frames, at corner columns. The corner column of a reinforced
concrete frame must resist biaxial bending because moments are intro-
duced from beams which frame to the column from both directions of
the major axes of the column. 1In many cases the beam from one direc-
tion predominates the total skew bending moment, but both directions

must resist moment,

For esthetic appearance, a single column bridge bent, as

shown in Fig. 1.1, has come into favor in the design of highway bridges.
Single column bridge bents require only one set of forms at a time.
Single columns that support bent caps in highway bridges are always
loaded with moments about both principal axes of column cross sections.
Moments are introduced to the column in one direction by the cantilever
action of the beam, as shown in Fig. 1.2(a). In the perpendicular
direction, longitudinal braking forces create moments in addition to
moment that is introduced from torsion when stringers from only one

side of the bent cap are loaded as suggested in Fig. 1.2(b).

Although numerous studies of columns under uniaxial bending
have been made and many design aids are available, the biaxial bending
problem has not benefited from as much research. Empirical and
analytical approaches to the problem have laead to complex and diffi-

cult design aids from which the precision of results have yet to be

demonstrated by physical tests.



Fig. 1.1 Single column bridge bents
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Fig. 1.2 Sketch of highway bridge

1.2 Review of Research on Biaxial
Bending of Concrete Columns

The ultimate strength design of columns with uniaxial bending
logically follows the concepts of nonlinear behavior as a basis for
concrete design. The special problem of biaxial bending was given
less attention, but several investigators suggested analytic and design

techniques.

1.2.1 The Investigation of Strength of Short Columns. In

1952, Craemer11 reported using the idea of plasticity to solve the
problem of skew bending for both beams and columns by an iteration

method. He assumed that compressive stress at the extreme fiber of

*Superscript numbers refer to references at the end of this
dissertation.
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of the member equals fé but the average stress of 0.85fé on the

compression zone was used for the calculations.

Tung Au3 presented a procedure and design charts for rectangu-
lar sections under skew bending. He assumed a uniform stress of
klf; over the compression zone bounded by the edges of the extreme
compressive corner and a line parallel to the neutral axis with an
equivalent depth measured from the extreme compressive corner taken

equal to k. h, where h is the distance from the corner to the neutral

1

axis. The value of k1 was taken not greater than 0.85 and it was to
be reduced at the rate of 0.05 per 1000 psi concrete strength in

excess of 5000 psi.

Kuang-Han Chu9 treated the analysis of biaxially loaded
reinforced concrete columns by separating the compression zone of
concrete into a plastic portion and an elastic portion. By trial and
error, the location of the neutral axis was located using the equilib-

rium of forces and moments on the section.

1.2.1.1 Concept of the Failure Surface. If the failure
interaction diagrams of load and moment about all axes of the columm
cross section are plotted using the same axis for thrust but with
different orientations of moment axes according to the moment angles,
a three-dimensional failure surface is formed.23 Every point on this
surface represents a failure load-moment condition for the cross
section. In 1960, Bresler5 used the failure surface concept to pro-
pose two equations which would represent approximately the failure

surface.

(a) Reciprocal Load Equation. When the inverse of the failure

load, 1/Pu, is plotted on one axis and the eccentricities, e and ey
of the two major axes on the other two axes, as shown in Fig. 1.3, the

approximate equation for this failure surface is:

"Uln—-

1
+5 -

1
P.
i X y o

"Uln—-

1.1



where Pi = Approximate load capacity of the section (i.e.,
Pi ~ Pu) when subjected to eccentricities e, and e

Px,P = Load-carrying capacities of the section under com-
y pression with uniaxial eccentricity e_ and e s
respectively y
Po = Load-carrying capacity of the section under concentric

axial compression

Bresler indicated that a formula similar to Eq. 1.1 is given
in the Russian Specification, but no reference is available for the

derivation of this equation.

(b) Load Contour Equation. Bresler described another failure

surface which is shown in Fig. 1.4. The failure thrust is plotted
against the associated failure moments, M., and Myu’ about two major
axes. At a level of axial 1load, Pu’ the failure moments corre-

sponding to that load can be related as:

M % M P1
X+ X =1.0 1.2
M M ) :
X0 yo
where M u’M u = moments at failure load, Pu’ about x-axis and y-axis,
xu-y respectively
MXO = Failure moment about x-axis when axial load, P , acts
with uniaxial eccentricity producing moment about the
x-axis only (i.e., My = 0)
Myo = Failure moment about y-axis when axial load, P , acts

with uniaxial eccentricity producing moment about the
y-axis only (i.e., Mx = 0)

“1’81 = Exponents depending on column dimensions, amount and
. distribution of steel and properties of concrete
Bresler tested some specimens and made calculations to evalu-
ate the validity of the proposed equations. He found that for
rectangular sections, oy and Bl in Eq. 1.2 could be assumed equal, so

Eq. 1.2 becomes

Mua‘l

GO+ G =10 1.3
X0 yo
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Fig. 1.3 Failure surface (1/P , e , e ),
the Reciprocal Load He thBd

Plane of constant
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Load contour

P Myu

Fig. 1.4 Failure surface (P , M u’ qu),
Load Contour Metho y



With o, varied from 1.15 and 1.55, a good result could be obtained.

1
From Eq. 1.1, Pi gave excellent agreement with tested and analytical

results.

30,31, 32 showed that

1.2.1.2 Transformation of Axis. Pannell
an interaction surface at any load level, Pu, of a rectangular cross
section, as shown in Fig. 1.5(a), could be transformed into an equiva-
lent interaction surface of a square section. If the interaction sur-
face in Fig, 1.5(a) is distorted by multiplying the minor axis
coordinate {f.e., M in Fig. 1.5(a)] by the ratio Myo/Mxo’ then it
will transform to coincide with the interaction surface of square
sections in Fig. 1.5(b), where Myo and Mxo are the uniaxial failure

moments at load'Pu eccentric about the major and minor axes,

respectively.

Myy
> : ¢0qu
'

(a) (b)

Fig. 1.5 Horizontal section of interaction surface;
for rectangular column (left); for square
column (right)



It was also confirmed that the ratio of Myo/Mxo at all load
levels for the cross section was effectively a constant and might be
represented by the ratio of 0 = Myb/be of "balanced" failure moments
about the major and minor axes. When the square column interaction
surface is used, it is possible to calculate the failure moment about
the diagonal, M. With three points, Myo’ Md’ and @lMxo in Fig. 1.6,
Pannell drew a smooth continuous curve "A" tangent to these points

and used the curve to define the entire failure surface.

Curve "A"

Curve "B"

dMxy  BMxo

Fig. 1.6 Horizontal section of quadrant
of actual failure surface and
surface of revolution

Also shown in Fig. 1.6 is the circular arc "B" which resulted
from revolving the uniaxial failure moment, Myo’ about the origin.
At the load angle of 450, the deviation from the diagonal failure
moment, M,, to the circular arc can be found as M - M, or NM_,
d yo d yo
where N =1 - Md/Myo' Pannell gave the equation of the deviation "S"

of curve "A" to the circular arc "B" as

, 2
S = NMyo sin 91 1.4

where 91 is the load angle.



At any point on the failure surface "A" with the load Pu and
resul ting moment M of “iM and M, Pannell showed that the required
ru ~1 xXu yu

uniaxial moment capacity is

M sec 8
M = yu 21 1.5
y 1 - Nsin“g)

. . _ -1
in which 61 = tan wiqu/Myu

Pannell also included a chart for the value of N calculated
from the basic equation of equilibrium of the section. He tried to
compare his method with Bresler's load contour equation (Eq. 1.3) by

rewriting the equation in the form that follows:

M a1 M %
[M—] + [_y_M ] = 1
X0 yo
oMy ML My
[M—] + [M ] = 1
yo yo
a a a
1 1 1
[Myo] = (mlqu) + (Myu) 1.6

After the comparison, Pannell concluded that his proposed Eq. 1.5
gave better accuracy than Eq. 1.6 and was easier to use. The
exponent o of Eq. 1.6 was difficult to determine because it varied
within a wide range and it was sensitive to the condition of eccen-
tricity. Pannell also claimed that his method was practical for

design, because only one major axis interaction curve was needed.

Ramamurthy,37 in 1965 presented his study in biaxial bending
at the 61lst Annual American Concrete Institute Convention. He first
investigated square columns and reported that for columns with eight
or more bars, the neutral axis is approximately perpendicular to the
line from the centroid of the section to the load point (i.e., 92 =0
in Fig. 1.7, where 92 is the load angle and 0, is the neutral axis

angle).
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LB\Z’/

Neutral

Axis /
/

Fig. 1.7 Load angle and neutral axis angle

Ramamurthy also observed that in any load contour for the
square column, the relationship between qu and Mxo of the same load
level can be expressed approximately as

., 3
qu = Mxo(l - sin ¢?) 1.7

where qu is the greater of the moments about the major axis. With

0y R’BZ, Eq. 1.7 gives

=M
Mru xu °€¢ 62
then M =M (1 - sin3 O-) sec o
ru X0 ) 2
where Mru = the resulting moment on the section

The simplified equation becomes

6,
M =M (1-0 1.8

ru X0 -1 45
in which 92 is the load angle expressed in degree or 92 = tan-1 ex/e
For rectangular columns, Ramamurthy used the transformation

of axis technique to change the section into an equivalent square

section and Eq. 1.8 had been adjusted to read:
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, 2
B2 2 SinB,
M = - . —_— —_ &
u MXO [1 - 0.15 45 cos 52+ N > 1.9
M%o 2
where k2 =¥
yo
tan BZ = k2 tan 92

It

transformed load angle

Values of k2 were also recommended for various aspect ratios t/b for

the rectangular sections.

The inclination of the neutral axis in rectangular columns
under biaxial bending also was studied by Ramamurthy and the values
of 92 and @, were tabulated. The conclusion of the study indicated
the variation in 62 and * is small, so the proposed relation of
92 = (o, can be used. Some specimens were tested to verify his method.
The reciprocal load Eq. 1.1 was also used and it was said to give a

reasonable result.

In 1967, H. Eloseily16 of Switzerland reported on rectangular
reinforced concrete sections under biaxial bending. He also trans-
formed the rectangular section into a square section and constructed
design charts and tables for many cases of concrete strength, steel
strength, amounts of reinforcement and various arrangements of steel

bars.

1.2.1.3 Simplification of Load Contour Equation. After
Bresler introduced the idea of a failure surface and the load contour
equation, some investigators developed a more practical criteria for

design purposes.

Furlong23 studied the problem of square columns using the
rectangular stress block for ultimate strength analysis in concrete
under compression. He constructed interaction diagrams and load con-
tours. His study concluded that for the design of ultimate moment
capacity in square colummns at a particular load level, Pu’ the limit

of the skew moment should not exceed an ellipse whose axes are the
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uniaxial moment capacities for the load Pu' His equation took the

form of Eq. 1.3 with o = 2.

qu2 Mzuz
(—Mxo) + (Myo) < 1.0 1.10

Furlong recommended that if | Po- Pbl /Pb < 1.0, the limit should

be reduced from 1.0 to 0.85 or 0.9, where P, is the load capacity at

b
a balanced condition.

Meek29 tested nine square columns and recommended that for
design purposes, the description of a load contour interaction curve
required another point in addition to the uniaxial moment capacities
(Mxo’ Myo)' He suggested using the case of equal eccentricities or the
moment about the 45° diagonal. Then a straight line interpolation
could be used between the moment about the diagonal and the moment

about a principal axis. Figure 1.8 shows Meek's approximated load

contour.

Mgeek's Approximation

M diagonal

\ Actual Load
\ Contour curve

MXO

Fig. 1.8 Meek's approximation of load contour
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In 1965, Fleming and Werner19 presented a set of design charts
for square sections with different f; and fy values. Weber45 also
constructed a set of design charts for diagonal bending in square
columns and used Meek's idea of linear interpolation between the
uniaxial bending and the diagonal bending in order to design square
columns with any load angles.

33,34

Parme related Bresler's load contour equation to the

logarithmic form

log 0.5 log 0.5
M log 83 M log 53
Xu yu =
vl + Iy = 1.0 1.11
X0 yo

where 83 = the ordinate of the load contour at the point at which
the moments, M /M and M /M , are equal. B, values
Fus X9 yu' yo 3
range between 0.5 and 1.0.

When compared to the theoretical curve, for columns with
various bar arrangements and different aspect ratios, Eq. 1.11 gave
results that agreed within 5 percent. Parme also pointed out that
53 was a function of the amount, distribution, and location of the
reinforcement, the dimensions of the section, and the properties of
materials., He found that 83 was dependent primarily on the ratio of
the load level, Pu/PO, bar arrangement, and the strength of the steel.
The parameters b/t, amount of cover or edge distance, and f; had a

minor effect on 83.

More simplifications were made for PCA Publication No. 18.34

As shown in Fig. 1.9, two straight lines intersecting at the point on
the load contour where the relative moments are equal (i.e.,
M =M /M = 53) were used to approximate a load contour

M
Xu Xo yu' " yo
surface. The two straight lines can be expressed;
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Mx/Mxo*
1.0
~N
N
~N
l} N
— —
N\
45° RN
|8y N
3N\
. \
e
o A
Fig. 1.9 PCA approximation
M (1 -8.) M M
yu Xu 3 yu xu
+ = ==
M M 3 1 when M > M 1.12
yo X0 3 yo X0
M (1 -18.) M M
Xu yu 37 Xxu Xu
v + ¥ 3 =1 when v v 1.13
xO0 yo 3 X0 yo
For rectangular cross sections, these equations were
(1 -8,) M M
Mu+Mub/t 3 3 R,Mowhenﬁy—u>M—XE 1.14
y X 3 y yo X0
a- 83) qu Mzu
and L u + Myu t/b B— ~ Mxo when M > v 1.15
3 X0 yo
where M was the moment about the strong axis and t was the depth

of the section.

The values of 53 with various bar arrangements, steel

strengths, and different load levels were also

report.

presented in this
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In PCA Publication No. 2035 more tables were included for
designing biaxially loaded columns. This publication also contained
materials for the section with unequal bar arrangements on the faces

and for rectangular cross sections.

Fleming,20 in 1974, used a discretization of a cross section
to analyze cross sections and he compared his results with experi-
mental data available for short columns loaded with biaxial bending.
He tried to analyze the problem using various stress-strain functions
for concrete. His results showed that the equivalent rectangular
stress-block gave a reasonable strength representation of concrete
behavior in skew bending. Fleming recommended that if an % value
for Eq. 1.3 were available, Bresler's load contour equation would be
easy to apply. However, without the aid of a computer, he concluded
that Bresler's reciprocal load equation was the simplest and it pro-

vided results as accurate as any analysis he had studied.

The studies that have been described treattonly the analysis
and design of cross sections. Most of the investigators used as a
basis of "correctness' the results of an analysis that employed
Whitney's concept of a rectangular stress block to represent concrete
in compression prior to failure. Investigators recognized that more
accurate results would require a more accurate representation of con-
crete strength. The strength influence of slenderness was not con-
sidered by these investigators. Slenderness effects have been studied,
and the most prémising analytic techniques have used digital computer

programs.

1.2.2 Numerical Analysis Methods. Research has been pursued

on the problem of skew bending, including length effects, using
numerical analysis methods. The method of analysis usually consists
of three steps: (1) find the load-moment-curvature (P-M-¢) relation~-
ship for all cross sections, (2) use moment-curvature functions to
find the deflected shape, and (3) verify the deflected shape by

iteration.
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Warner and Brettle6 developed a partitioned element method

for studying the ultimate strength of hollow colums. The plane of
strain in the cross section was defined in terms of maximum corner
strain, minimum corner strain, and the neutral axis angle. The cross
section was divided into small grid elements. The strain at the cen-
troid of each grid then was defined and the stress at each element was
obtained by using stress-strain relationships of the materials. Forces
and moments on the section then could be calculated by integrating

all forces and moments from the elements. For a given load and skew
bending moment, the proper plane of strain could be searched by itera-
tion. Warner44 made further studies on biaxial columns with square
and rectangular cross sections. He generated P-M-x curves for a con-
stant neutral axis angle by increasing P, or maximum corner strain,

before finding the resultant force and corresponding curvature,

Farah and Huggins17 defined the plane of strain by using
three corner strains., With the stress-strain relationship, the force
of each grid element could be found and integrated for the values of
total moment and force on the section in terms of the three corner
strains. The column was divided into small segments along the length.
With an assumed initial deflected shape, the curvature at each section
corresponding to the forces could be obtained. These curvatures then
were used to describe a new deformation of the column. An iteration
method was used for predicting each new deflected shape until the pre-
dicted and the resultant shapes were the same within acceptable

tolerances.

Drysdale14 studied the behavior of slender columns under
biaxial loading. He tested columns under both sustained load and
short term loading and the results gave good agreement with the
analytical results estimated by Farah and Huggins' method.

Wu,47 in 1973, studied the effect of the volume/surface ratio

or sustained loading behavior of biaxially loaded square slender

columns. Wu analyzed the problem by partitioning the cross section
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into strips parallel to the neutral axis in order to calculate the
P-M-¢p relationship of cross sections. He assumed that the neutral
axis angle and the load angle were orthogonal. He used a differential
equation which was solved by an approximate method in order to compute
the deflected shape, eventually yielding a continuous function for the

deflected shape.

Redwine38 used Farah and Huggins' method to study the behavior
of biaxially loaded rectangular columns. His analytic study included
possible twisting of the section as well as slenderness effects. He
concluded that torsional effects could be negligible. He found that
the difference between the neutral axis angle and nominal load angle,
My/Mx’ increased with the cross section aspect ratio, b/t, and reached
the greatest difference when the neutral axis was closest to the corner
of the maximum compressive strain. For deflection studies, he found
that the tendency for nonplanar behavior (neutral axis orientation
changes along the length of the column) increased with slenderness,
for small aspect ratios and for larger eccentricities, e/t. However,
he concluded that in general nonplanar behavior was of minor signifi-
cance. Redwine used Eqs. (10-7) and (10-8) in the ACI Building Code
(ACI 318-71)1 for calculating the stiffnesses of slender members, then
magnified separately the moment about each major axis and computed the

resultant moment by using the equation

_ 2 2,1/2
Mp = DM + (B M))™] 1.16

He observed that the use of these equations for stiffness gave a
smaller load capacity of the column than did the numerical analysis.
Thus, he concluded that ACI rules gave safe values for column design.
Using the analyzed load as a correct strength, he reported that the

/P ) would be smallest

safety ratio when using the ACI Code (Panalyzed ACT
for large ratios e/t. For smaller e/t ratios, an increase in slender-
ness decreased the safety ratio, but for larger e/t ratios slenderness

had less effect on the safety ratio.
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1.3 Scope of This Investigation

Previous studies have shown that Bresler's idea of failure
surfaces and his proposed equations were the most convenient design
methods for approaching the problem of columns under biaxial load.
Several tests indicated that both the reciprocal load equation
(Eq. 1.1) and the load contour equation (Eq. 1.3) gave results that
agree with experimental work. Most of the experiments were done on
square short columns. A small number of tests were conducted on
rectangular shaped columns. Although Fleming20 indicated that non-
rectangular shapes should exhibit good agreement analytically using
Bresler's equations, no physical test had been done to confirm his

prediction.

The load contour equation (Eq. 1.3) is easy to apply if the

exponential, q is known, but to find the value of oy is a difficult

1°
problem because many parameters are involved. The reciprocal load
equation is easier to apply but less research has been directed

toward it than that directed toward perfecting parameters for Eq. 1.3.

In the ACI Building Code (318-71)1 it is required that for
all compression members subjected to bending about both principal axes,
the moment about each axis must be amplified by a moment magnification
factor 5§, computed from the corresponding conditions of restraint
about each axis (ACI 318-71, Sec. 10.11.5.2). No experimental data

are available in support of this requirement.

The scope of the investigation reported here included the
development of an analytical capacity for studying long concrete
columns under biaxially eccentric thrust. Laboratory tests of columns
with rectangular and oval-shaped cross sections were monitored both
for strength and stiffness data. The oval shape consisted of a 5 in.
diameter semicircle at each end of a 5 in. by 6 in. rectangle, and

will be called a partial circle or oval cross section in this report.

At a relatively high thrust level, Furlong23 observed that

the contour lines of the complete failure interaction surface could be
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represented by an ellipse whose axes were the ultimate moment
capacities with the load Pu acting along the principal axes of the
column cross section., Thus, if moment capacity can be predicted for
bending about both principal axes at high thrust levels, intermediate
or biaxial moment capacity can be predicted also. 1In order to reveal
irregular aspects of the interaction surface, the thrust levels used

for physical tests in this report were set at thrust levels of O.ZPO,

0.35PO, and O.SPO, where PO is here defined as the axial load capacity
of the section, Po = Agfé + Asfy' The concrete cylinder strength fé
was used without the usual reduction factor 0.85 for strength calcula-
tions even though specimens were cast in the vertical position and the
majority of failure regions were above midheight of the specimens.

The absence of a reduction factor 0.85 kept analytical expressions for
stress-strain functions consistent for all load levels, and none of
the biaxial bending tests involved failures near the top of specimens.
For axial load levels below 0.6PO, the strength analysis of cross
sections is relatively insensitive to the precise value of Po’ and all

physical tests involved total axial loads less than 0'6Po'

The analytic computer programs were modified to produce
results consistent with physical test data from these tests, as well
as tests reported by others. Finally, the reliability of some
approximate analysis techniques useful for design were checked

against analytic as well as test results.






CHAPTER 2
PHYSICAL TESTS AND MEASUREMENTS

2.1 General

Twenty-four columns with two different shapes but the same
length were tested to failure. Nine specimens with rectangular
cross section were designated RC-1 through RC-9. Fifteen partial
circular columns were called C-1 through C-15. During the sequence
of loading, thrust was maintained at one of three different load levels,
0.2PO, O.35Po, or O.SPO, while eccentric loads were increased to produce
failure. Po was the squash load capacity of the section. Each type
of cross section for the column was tested with one of three nominal
skew load angles, 22-1/20, 45°

axial load levels. Uniaxial bending tests were made on partial circu-

, or 67-1/2°, and at one of the three

lar columns, but not on rectangular columns.

2.2 Type of Specimens

Test specimens were intended to represent one-sixth to one-
eighth scale models of bridge pier columns with low reinforcement
ratios for longitudinal steel. There were two different shapes in the
test columns but all specimens were the same length of 72 in. The
rectangular cross section had the nominal exterior dimension of 5 in.
by 9 in. The partial circular columns had two semicircles 5 in. in
diameter, located 6 in., apart, making the total depth of 11 in, with
a 5-in., width. Figure 2.1 shows the dimensions and details of both
cross sections. The longitudinal reinforcement was 6 mm diameter
deformed bar, 14 bars for the partial circular and 10 bars for the
rectangular columns. The reinforcement ratio was 0.0l for rectangular

sections and 0.0138 for partial circle sections. All the reinforcing

21
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bars were 72 in. long, placed 5/8 in. from the surface of the columms.
The longitudinal bars were tied with 13 gage steel wire spaced at

5 in. centers along the length of the columns.

2.3 Materials and Fabrication

2.3.1 Concrete. The prototype concrete mix was designed for
a strength of fé = 4000 psi, according to theAitate Department of High-
ways and Public Transportation Specification. The actual mix model
contained a maximum size of coarse aggregate of 3/8 in. Type 1 portland
cement was used for all specimens. The typical proportions of the con-
crete mix are shown in Table 2.1. Concrete was placed with the column
form in the vertical position. Cylinder forms also were filled with
concrete simultaneously so that the cylinders would represent the con-
crete in the batch. The concrete was placed and vibrated in approxi-
mately 2-ft, 1ifts. The cylinders also were machine vibrated.
Table 2,2 shows the listing of the average cylinder strength for every
specimen. Each cylinder strength in the table represents an average
from ten cylinder tests conducted on the same day that the column was
loaded to failure. Also shown in Table 2.2 are the standard deviation
and coefficient of variation for ten cylinders tested with each

specimen,

2.3.2 Reinforcing Steel. Deformed steel bars 72 in. long and

6 mm (0.24 in.) in diameter were used as longitudinal reinforcing bars,
and 13 gage wire was used as tie reinforcement at a spacing of 5 in.

on centers., A typical stress-strain relationship of the 6 mm bar is
shown in Fig. 2.2. The average of ten tension test specimens gave a
yield strength based on an 0.2 percent offset equal to 65.5 ksi, with
the values ranged between 64.3 ksi to 66.3 ksi, and the modulus of
elasticity was 30,000 ksi. The ultimate strength of the reinforcing

bars was 94.3 ksi. The average cross-sectional area was 0.049 sq.in.

2.3.3 Fabrication. A steel form was used for rectangular

columns. For partial circular columns, the form for the circular
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TABLE 2.1 PROPORTIONS OF THE CONCRETE MIX

FOR 6 CU.FT.

Material Weight (1bs)
Cement (Type 1) 125.5
Water 45.0
Sand 264.0
Aggregate 424.0
Septair 40.0 cc

TABLE 2.2 AVERAGE CYLINDER STRENGTH OF SPECIMENS

Average* Std.* Coef.* Average¥* Std.* Coef.,*
Specimen gilinder Devia, of. Specimen Cylinder Devia,. o?

rength o Varia- Strength C Varia-

(psi) (psi) tion (psi) (psi) tion

RC-1 4886 126 0,026 C-4 4831 169 0.035
RC-2 4871 246 0.051 C-5 4340 131 0.031
RC-3 5210 255 0.049 Cc-6 4396 270 0.061
RC-4 5181 228  0.044 c-7 4403 157 0.036
RC-5 5012 297  0.059 c-8 4760 269 0.057
RC-6 4425 132 0.032 c-9 4534 173 0.038
RC-7 4350 211 0,049 c-10 4425 107 0.024
RC-8 4446 135 0,030 c-11 4830 84 0.017
RC-9 4700 282 0.060 c-12 5091 188 0.037
c-1 4783 280 0.059 c-13 5397 115 0.021
Cc-2 4460 155 0.035 c-14 5514 381 0.069
c-3 4386 167 0.038 c-15 5468 295 0.054

*From 10 cylinder tests
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Fig. 2.3 Steel cages of rectangular column
and partial ecirecular columm



Fig. 2.4 Column after casting, forms have
not been taken out
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TABLE 2.3 SURFACE DIMENSION OF RC-2

. ist
Section ?;imaggs North Face South Face East Face West Face
1 3 in. 5 in. 5-1/16 in. 9-1/32 in. 9-1/16 in.
2 9 5-1/32 5-1/16 9-1/32 9-1/16
3 15 5-1/32 5-1/16 9-1/16 9-1/32
4 21 5-1/32 5-1/16 9-1/16 9-1/32
5 27 5-1/16 5-1/16 9-1/32 9-1/32
6 33 5-1/16 5-3/32 9-1/32 9-1/32
7 Q, 36 5-1/16 5-3/32 9-1/32 9-1/32
8 39 5-1/16 5-3/32 9-1/32 9-1/32
9 45 5-1/16 5-3/32 9-1/32 9-1/32
10 51 5-1/16 5-1/16 9-1/32 9-1/32
11 57 5-1/16 5-1/16 9-1/32 9-1/32
12 63 5-1/16 5-1/16 9-1/32 9-1/32
TABLE 2.4 SURFACE DIMENSION OF C-1
Section Distance Overall Overall
ec from Top Width Depth
(in.) (in.) (in.)

1 3 5,5 11

2 9 4-31/32,4-31/32 10-31/32

3 15 5,4-31/32 10-31/32

4 21 4-31/32,4-31/32 10-15/16

5 27 4-15/16,4-15/16 10-31/32

6 33 5,4-15/16 11

7 @. 36 4-15/16,4-15/16 10-31/32

8 39 4-15/16,4-15/16 11

9 45 4-29/32,4-7/8 11-1/16

10 51 4-15/16,4-31/32 11

11 57 4-31/32,4-31/32 11

12 63 4-15/16,4-15/16 11-1/16

13 69 4-15/16,4-15/16 11-1/16

|
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shape was made from a 5-in. diameter plastic tube. The tube was cut
longitudinally into halves and screwed to steel plates which were used
as sidewall forms for the straight sides of the column. Figure 2.3
shows the pictures of the forms with a reinforcement cage inside. The
cage was held in position with some small wire chairs to provide 5/8-in.

clear cover on longitudinal bars.

All columns were cast in the vertical position to represent
the actual field condition. Figure 2.4 shows the picture of both
rectangular and oval shape columns after the concrete was cast, but
before the forms had been removed. The form was stripped within two
days of casting and the specimen and cylinders were cured under

plastic covers.

The actual dimensions of the columns varied slightly due to
the imperfections in forming and the flexibility of the plastic tube.
Actual width and depth were measured at 6-in. intervals along the
colums. No sigqificant dimensional error was detected. The maximum
error from desired member cross section was less than *2.5 percent.

Tables 2.3 and 2.4 show the actual dimensions of Specimens RC-2 and C-1.

After the tests, some attempts were made to measure the actual
concrete cover of the reinforcing bars. It was found that the cover-
ing was almost the same as the nominal cover. For subsequent calcula-
tions the position of the reinforcing bars was assumed to be the same
as the nominal position, as shown in Fig. 2.1. Shown in Figs. 2.5 and
2.6 are the actual clear cover of the concrete for Specimens RC-6 and

C-1, respectively.

2.4 Loading System

The main axial thrust was applied by a 200 kip double acting
hydraulic ram along the centroid of the column cross section. Thrust
was transmitted to the specimen through a hemispherical head
welded to a flat plate. Loading tended to flatten the hemispherical

shape. 1Two 20-kip single acting rams were used to induce moment about



32

each principal axis. These moment rams were connected to one hand
pump in order to ensure that the eccentric loads in both rams remained
very near the same level. The schematic diagram of the loading system

is shown in Fig. 2.7.

Two loading heads were placed over the ends of the column to
transmit load from bearings and rams to the column. The heads were
made from 5/8-in. steel plates welded together to form a shape of the
cross section of the column. Two wide flange beam sections were butt-
welded to the side of each column loading head. Eccentric loads were
applied at the outside of the wide flange beams. The location of the
loading points on the eccentric moment arms were designed to produce

the assigned moment angles. The moment angle has been defined as:

M .
-1 “strong axis

g = tan
weak axis

-1 P X strong axis moment arm
P % weak axis moment arm

= tan

-1 strong axis moment arm
weak axis moment arm

= tan

In this test program there were five different moment angles,
90°, 67-1/2°, 45°, 22-1/2°, and 0°. Figure 2.8 shows a diagram of
the assembled loading system. Figure 2.9 is a picture of the column

with loading heads and rams in place.

2.5 Specimen Preparation

The following steps were taken in order to put the column

into its testing position:

(a) The faces of the column were marked into 6-in. segments
beginning 3 in. from midheight. The marking served to
identify points at which the actual size of the column was
measured and then served as reference lines for attaching

measuring devices.
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(b) Loading heads were attached to the column in the following

manner:

1.

The top loading head was set on the floor with the open

side up and the moment arms were leveled.

The top of the column was lowered into the loading head
with the aid of an overhead hoist. The column was
adjusted into the proper position so that the center of
the column and the loading head were aligned. By match-
ing the punched marks on the head with some longitudinal
reference lines on the column the load points on the
head also were aligned. All the alignment adjustments
could be made with some alignment bolts on the sides of

the loading head.

The column was pulled out of the head after the alignment

bolts had been loosened one turn.

Hydrastone was poured into the box and the column was
replaced. After a final adjustment of the alignment, the

hydrastone was allowed to set.

The column was turned end for end and the procedure was

repeated for attaching the bottom end of the column.

(¢c) The column then was placed in the loading position in the

loading frame. Overall alignment was aided by using a plumb

bob located so that the hemispherical head at both top and

bottom of the specimen would be positioned through the verti-

cal centroidal axis of the column.

2.6 Instrumentation Devices

Three types of data, the magnitude of applied loads, the

surface deformations, and the lateral deformations were collected

during the test.

2.6.1 Magnitude of Applied Loads. The axial load that was

applied at the centroid of the column was monitored by three 100 kip
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load cells. The load cells were placed side by side under a bearing
plate beneath the bottom hemispherical head. The three load cells
provided a stable support for the column and also sufficient capacity
for the highest load near 300 kips. A hydraulic pressure transducer
also was used to monitor the axial load and to provide the electrical
signal necessary for remote recording. In addition, visual observa-
tion of a pressure gage dial on the hydraulic pump provided a record

and continual control of the axial centroidal load.

The loads of the two small rams on the moment arms were also
monitored by two 10-kip capacity load cells located in the bottom
of the load saddles. One pressure transducer together with a pressure
gage dial were used to measure for recording the force in the two

rams which were connected to the same pump.

The loading devices were calibrated in so far as possible
under the same conditions as those of the actual test. Each load
arrangement of ram, pump, hemisphere bearing, pressure transducer,
load cell, and bearing plate was assembled in the same arrangement

for calibration and for the tests.

2.6.2 Lateral Deformation. Deflections in the direction of

each principal axis were measured by using linear potentiometers.
The potentiometers were placed along the 24-in. midheight portion
of the column at 6-in. intervals providing five measuring stations in

the midheight region.

Torsional displacements were measured at three positions in
the horizontal plane, one at the top, one at the bottom, and one at
midheight. The three measurements could be converted to records of
twist and the displacement in the direction of the minor axis. Twist
near the top of the column was monitored by two potentiometers mounted
6 in. apart on the longer face of the column at 11 in. below the top
end. Two dial gages were used to measure the twist near the bottom end,
also mounted 6 in. apart on the west face at 11 in. above the bottom

end. Another pair of dial gages was used for measuring twist at
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midheight of the column. The gages were placed 8 in. out from the

shorter faces of the column at midheight providing a longer twisting
arm,

All the deflection measuring devices were mounted on a 2-1/2
in. steel pipe vertical post supported on the laboratory floor. All
movement recorded, therefore, would be relative to the post, which

was assumed fixed in position and direction.

2.6.3 Surface Deformation. Six steel frame strain meters

(Fig. 2.10) were mounted on the column at 6 in. intervals through the
30 in. midheight portion of the column. The steel frames were
attached to the column by a bolt at each side, The bolts were
tightened to the column against aluminum bearing plates, which were
glued to the column at the desired points. A linear potentiometer

was placed between corresponding legs at adjacent frames. The records
from the potentiomeyers indicated the change in longitudinal position
between two adjacent frames. Similar frames were used by Chang,7
Breen,4 Furlong,22 and Green,24 et al., except that the system used

here was expanded in order to measure biaxial longitudinal deformation.

All data from load cells and poteniometers were recorded onto
magnetic tape and paper tape by a VIDAR data acquisition system which
also provided a printed teletyped output when one was desired. The
pressure transducer readings, dial gage readings, and pressure gage
readings were recorded on the data collection sheets. The linear
potentiometers and dial gages that were used gave an accuracy for the
readings to the nearest 0.001 in. The strain indicator which was
used to record the change in pressure transducer readings could give
readings as accurate as+5 microstrains. The pressure gage gave read-
ings to within *50 psi. A column with all devices attached and in

the position ready to be tested is showm in Fig. 2.9.

2.7 Test Procedure

The loading procedure in the test program was designed so

that the total amount of axial load would be maintained at a constant
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level while the moments would increase until failure. With this type
of loading, the eccentricity would increase, moving outward from the

centroid of the column along a nominally straight line.

After all devices had been connected and checked, pressure
was applied to the axial ram for about 10 percent of the desired axial
load level and then the load was released. This procedure helped to
seat the measuring devices and the column bearings. After seating,
the axial ram was loaded in about ten increments until the desired
thrust level was reached. After each increment of axial load a set

of data was recorded.

After the desired axial thrust level had been reached, the
eccentric moment load about both strong and weak axis was applied.
The loading points on the moment arms were located so that the nominal
eccentricity angle would be either 00, 22-1/20, 450, 67-1/20, or 90°.
The rams on each moment arm were loaded simultaneously from the same
pump. The increment of the ram load was very small at the first few
eccentric loadings. A graph of moment load and centerline deflection
on the weak axis was maintained during the loading sequence. The
magnitude of the load increment was adjusted according to the non-
linearity of this graph. After the column reached the inelastic range,
the load increment was kept very small, and readings were made only

after the column could maintain steadily a level of load for several

minutes.

The axial load was checked occasionally to keep the thrust
level constant. Adjustments of load were made to the axial ram only

if the total thrust varied more than 5 percent from the preferred

level.

During the test cracks were observed and each was marked
after each load stage. All data were recorded after each loading
before marking the cracks. While readings were made and the cracks
were marked, some creep and relaxation occurred. When it was noted
that the creep was significant, another set of readings was taken

before the next load increment was applied.
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As the column reached ultimate load, the moment ram load
could not be increased; because of the loss of stiffness the column
ceased to resist greater load, and the dial gage at the midheight of
the column showed increasing lateral deformation without any addi-
tional load increments. The VIDAR-recorded data readings could be
taken continuously until failure occurred. Moment rams were pumped
until failure of the column took place. It was found that the column
failure sometimes damaged the potentiometers. Consequently, for the
oval-shaped columns, loading was stopped after load instability of
the column was observed (i.e., centerline deflection increased
rapidly while the column could not maintain a constant moment).

Figures 2.11 and 2.12 show pictures of some specimens after failure.



Fig. 2.11

Specimen RC-6 after failure, before
measuring devices were taken off

Fig. 2,12 Specimen C-10 after failure, all
instruments were taken off

A



CHAPTER 3

ANALYSIS OF DATA

3.1 General

Three types of data were collected during the tests: lateral
deflection, concrete surface deformation, and load measurement. Defor-
mation and load cell readings were recorded on magnetic tape. A
standard VIDAR program decoded the information and converted the
readings to a reduced form of engineering units. Data files of this
reduced information have been stored on magnetic tapes as well as
punched cards. Computer programs have been written to reduce the data
to the form of axial load, applied moments, skew angle, deflections,
eccentricities, and surface strains. Another program has been pre-
pared to analyze the surface strains and compute the forces, moments,
and curvatures. Comparison of load and moments among different types
of load indicators has been made to verify the reliability of the

measured data.

3.2 Deflection

The deflected shapes in both weak axis and strong axis
directions have been plotted for every load stage. These graphs show
some aspects of behavior of the column during the test which would

affect the analysis of the magnitude of the load.

3.2.1 1Initial Position of Column. It had been observed that

during each load stage the top and bottom of the column moved. This
resulted in the changing of the position of the column. As higher
moments were applied to the column, the movement decreased and the
position of the ends stabilized finally at loads lower than eventual
failure loads. Figures 3.1 and 3.2 show the movement and the stable

position of RC-5 and C-11.
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For computer input the reference position of the column has
been taken for the load stage at which no further movement of the
column heads was noted. All the readings after the stabilized load

stage have been corrected to a reference axis through the stable posi-

tions of the ends of the specimens. The stable positions of the ends
of each specimen are tabulated in Table 3.1(a) as well as the deflec-

tions at midheight at failure of each column.

No measurement of column crookedness was made. It was assumed
that the columns were straight because of the use of straight steel
forms. Any error due to column crookedness was neglected. Specific
measurement of movement of the top end of the column during the test
was not attempted, but instead the column deflections were referred

to the estimated position of the chord between column ends.

3.2.2 End Eccentricity. Eccentricity of Axial Load Ram.

Axial loads were applied through hemispherical bearings located as near
as possible along the longitudinal centroid of the specimens. Even
with some flattening, the bearings could not transmit flexural forces,
and the applied axial force had to act along a line between end bear-
ings. The actual eccentricity of end bearings from the longitudinal
axis of the specimen was estimated from measured deformations at mid-
height of the specimen under the '"axial load only" condition. Subse-
quent application of flexural loads involved no change in the position

of end bearings for axial load rams.

A midheight correction e, for axial load end eccentricity was
computed on the basis of the elastic deformation of a beam column as
illustrated in Fig. 3.3 and defined by Eq. 3.1. The effect of Eq. 3.1
was to average the influence of end eccentricity at opposite ends of
the specimen for an estimate of the overall influence at midheight
before the application of flexural forces with accurately measured
eccentricities.

_ AEL [uz cos u 1
€ 2 '2(1 - cos u)

PL
JP/EL

3.1

where u =

N
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EI = Stiffness of the section

A = Midheight deflection taken as the lateral distance from
column centroid to the reference line between ''final"
position of ends of column

L = Length of the column

P P
ej &
A
e - >

_ Fig., 3.3 End eccentricity due to misalignment

The magnitude of centerline deflection and axial load at the
last load stage before moment load was to be applied had been used in
Eq. 3.1 to calculate initial end eccentricity in each direction. These

eccentricities are tabulated with every column in Table 3.1 (a).

Eccentricity due to End Rotation. As the column deflected,

the contact point between the hemispherical ball and the bearing
plate at the end of the column changed with respect to the column

axis., Rotation of the loaded ends created the change in end eccentric-

ity, as shown in Fig. 3.4,

R
%

. e Position of column
initial position head after rotation
of column head

ec

Fig. 3.4 End eccentricity due to end rotation

The change in eccentricity can be determined if the end slope
of the deflected column is known. It is assumed that the deflected
shape was one-half of the sine wave with the amplitude equal to center-

line deflection. The deflected shape then can be expressed as
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y = A sin jes 3.2

L
d X
the slope y E% = % A cos EE

= =0 A = 3.
at end, x = 0 y L b=6, 3
As illustrated in Fig. 3.4, if R equals the radius of the

hemispherical ball, the end eccentricity, e. is
ec = R tan eA

If eA is small so that tan eA = OA

ec = R eA
- I
ec R A L 3.4

In Figs. 3.1 and 3.2 a curve of the half sine wave adjusted
with the amplitude set equal to the centerline deflection is plotted
as a dashed line for comparison with the maximum measured deflected

shape that is shown.

Green25 measured the radius of the bearing surface of the ball
and found that R ~ 18 in. appeared to be the most reasonable value. The
column length, L, of 76.25 in. was measured between end bearings of
the specimen and was used in Eq. 3.4. The end eccentricities due to
end rotation changed during the test because the centerline deflec-

tion changed according to the applied moment.

Effects of misalignment and end rotation have been included in
the computer program that calculated applied force and effective total
moments, Table 3.1(a) also shows an example of the eccentricities

due to end rotation at the very last load stage in the experiment.

The end eccentricity due to misalignment of the axial ram on
the strong axis was small enough to be neglected for some specimens.
However, the misalignment eccentricity was found to be a significant

factor in calculating the total eccentricity at midheight of some
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TABLE 3.1 FAILURE MOMENTS AND DEFLECTIONS

(a) End Eccentricities and Deflectiona at Fallure Lnad Stage

Measurec Defle~cion fesTtion of Column Posltion of Columnm Adjwazed Deflection at Eccentricity due to fccentricity due to
at Micheight Endy, Strong Axie Ends, Weak Axis Cetiter Portion® Hisalignment End Roiation
Specimen Strong Veal 1 B

Axiy Axis P Bottom Top Bottom 'Aluor,g Auuk *1s “1e cr feu

(n.) (4n.) {n.) {n.) (in.) (r.) (In.) (ia.} {in.) (in.) (dn.) {in.})
RC-1 0.124 0.586 0.044 -€.026 ~0.007 -0.019 0.1ce 0.506 0.000 0.122 -0.08? -0 242
fc-2 0.23% 0.57° 0.178 0.020 -0.009 0.038 0.138 ¢.537 G. 000 C.129 -0.105 -0.416
RC-3 0.210 0.538 0.105 0.063 -0.030 0.011 0.148 0.56% 0. 002 0.116 -0.115 -0.443
RC-4 0.304 0.507 0.053 0.003 -0.016 -0.013 0.26) 0.490 0.000 0 14l -0.205 ~0. 387
RC-% 0.090 0.726 0.00) -0.005 -0.048 -0.010 0.073 0.719 ~0,l76‘ 0.209 -0.056 -0.560
RC-6 0.09) 0.868 0.022 -0, 004 -0.016 -0.051 0.080 0.847 0 000 0.186 -0.062 ~0.663
RC-7 0.250 0.898 0.056 0.001 -0.002 -0 015 0.209 0.861 -0.646 0.134 ~0.165 -0.676
Rr-8 0.404 0.581 0.010 0.025 0.038 c.03% 0.3b64 0.507 0 000 0.000 -0.287 -0.402
RC-9 €.3686 0.498 0.009 0.063 -0.002 0.018 0.213 0.466 a.0n¢ 0.000 -0.246 -0.361
c-3 0.095 0.512 -0.03¢6 -0.086 0.032 -0.047 0.150 0.490 ¢.716 -0.108 -0.114 ~0.383
c-6 0.157 0.59¢ -0.062 -0.036 0.083 -0.013 0.264 0.529 G.182 -0.23 -0.154 -0.416
c-7 0.118 0.617 -0.007 -0.065 0.086 0.0186 0.164 0.541 0.106 -0.048 -0.114 ~0,42C
c-8 0.003 0.891 0.004 -0.046 0.069 -0.013 0.092 0.81& 0.000 Q. 000 -0.062 -0.640
c-9 0,082 0.735 -0.022 -0.011 0.04) 0.020 0.091 0.721 0.000 0.000 -0.0% -0.56%
c-10 0.050 0.63 -0.072 -0.046 0.019 -0.001 0.098 0.593 0.000 0.272 -2 08! -0, 484
c-11 0.327 0.6B% -G.087 -0.023 -0.005 -0.003 0.381 0.63 0.333 0.426 -0.283 -0.512
c-12 0.472 0.612 -0.083 -0.054 0.021 -0.002 0.320 0.569 0.173 0.450 -0.147 -0 wb}
€-13 0.133 € 394 -0 100 -0.0%0 ~0.002 0.024 0.230 0.309 0.117 0.233 -0.1% -0.28
-1 - 0.796 - - -0.016 0.007 - 0.737 - 0.282 - -0.59)
C-2 - 0.480 - - 0.001 0.006 - 0,464 - 0.000 - ~0.333
c-15 - 0.7 - - -0.051 -0.048 - 0.779 - -0.146 - -0.60%

c-3 0.618 - 0.028 0.010 - - 0.594 - ¢.000 - -0.46% -

-4 C.347 - 0.033 0.007 - ~ 0.307 - 0.000 - -0 243 -

c-14 0.451 - -0.Mm4 -0.046 - - 0.442 - 0.00" - -0.364 -

*Averaged alomp 24 in portion st midheight

(b) Moments at Failure Load Stage

o g mmoen mmamn o Beme o SR
“hrust H.unng oaak P ey, PRy P2 e LR L Yoo ] ¥y
(x) (k-in.)  (k-In.) (k-i0.) (k-in.) _ (b-in.) _ (k-in.)  (b-im.) (k-1n.) (s-in)  (k-gn.)
RC-1 119.2 57.9 138.0 0.0 1.5 -10.4 -28.8 47.5 123.7 60.€ 184.0
RC-2 120.3 120.1 124.0 0.0 15.5 -12.6 -50.0 107.5 89.5 1240 154 .1
RC-] 9.3 125.0 127.6 0.0 10.9 -10.8 ~41.8 114.2 96.7 128.2 156.4
RC-4 128.8 221.4 96.0 0.0 18.2 -26.4 ~49.8 195.0 644 228.9 121 .4
RC-5 87.1 54,2 128.7 -15.3 18,2 4.9 Lt . 8 3.0 98.1 wi, ] 160.8
RC-¢ 53.9 51.2 126.2 0.0 1uv.0 -3 -3.0 47.9 100.2 52.2 145.9
RC-7 40.4 110.9 108.4 -26.1 5.4 -6.7 -27.3 78.1 R6.5 8€. 6 121.3
RC-8 40.4 187.3 82.2 0.0 0.G -11 6 -16.2 175.7 66.0 190.4 86.4
RC-9 85.8 211.8 93.2 0.0 0.0 -21.1 -31.1 192.7 82.1 217.5 102.0
c-5 49.5 101.1 113.6 35.6 -5.3 -5.6 -19.0 131.1 89.3 138.3 113.5
-6 92.2 164 .4 156.4 16.8 -19.7 +14.2 -)8.4 147.0 96.3 171.3 147 .5
c-7 139.7 143.3 151.4 14.8 -6.7 -15.9 -58.8 142.2 85.9 165.1 161.6
Cc-8 57.1 62.7 158.1 0.0 .2 -3.5 -36.5 59.2 121.6 64 .4 168.0
c-9 9.2 66.4 164.1 0.0 0.0 o -7.3 -54.4 5.1 109.7 67.8 179.1
c-1¢ 138.2 35.7 132.5 o0 37.8 -11.2 64,1 «3.5 106.0 57.1 188.0
c-11 53.2 227.9 99.6 1e.¢ 22.7 -15.1 -27.2 231.6 95.1 251.9 128.8
Cc-12 99.2 213.8 98.9 17.2 & .6 -19.5 k.3 211.5 99.2 243.1 155.6
¢-13 152.5 238.8 99.1 17.8 5.8 -23.% -43.3 ma 9.3 268.2 147.7
Cc-1 60.7 - 139.7 - 17.1 - 3.0 - 120.8 - 165.5
-3 135.6 - 1.7 - 0.0 - ~47.9 - 93.8 - 154.1
c-15 109.2 - 191.5% - -15.9 - -66.5 - 109.1 - 194.2
c-3 58.4 364.8 - 0.0 - -27.2 - 337.6 - 372.2 -
Ce4 155.8 4143 - 0.¢ - -37.9 - 376.4 - 424,2 -
c-1a 119.2 5.3 - 0.0 - 3.4 - 402.5 . 455.2 -

*From rax pressurs reading
téAiversgedalong 24 in. portiop st midheight
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columns. For example, Specimen RC-5 was found to have an end eccen-
tricity due to misalignment in the strong axis direction of 0.176 in.,
which produced moment equal to 38 percent of the total moment at mid-
height at the failure load. The weak axis misalignment of the axial
load ram was computed for every specimen. The maximum end eccentricity
due to misalignment about the weak axis was 0.45 in. for Specimen C-12,
creating 29 percent of the total moment at midheight at the failure

load stage.

The end rotation always was an important factor in the calcu-
lation of the total eccentricity. The ratio between moment due to end
rotation and the total moment at midheight was smaller for strong
axis than for the weak axis bending. At the failure load stage, a
maximum ratio of 20 percent was found in Specimen C-10 in the strong
axis direction. The maximum ratio of 39 percent was found in the weak
axis direction of Specimen RC-4. The moments due to misalignment and

due to end rotation at failure load are shown in Table 3.1(b).

3.3 Axial Load and Moments

The total axial thrust, P is the combination of the loads

T’
from three rams, one ram PA at the longitudinal axis of the specimen
and two rams PS and Pw on the eccentric thrust arms.
= 3.5
PT PA + PS + Pw

Total axial load

where

Load on axial ram

Load on weak axis moment ram

Load on strong axis moment ram

Applied moments for each principal axis were determined as
the combination of eccentric thrust from each ram, including the cor-

rections for alignment of the major force PA.

Mso = PS % strong axis moment arm + PA(eiS + ecs) 3.6
= i e e
MWO Pw X weak axis moment arm + PA( i + cw) 3.7
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where Mso’Mwo = Strong axis moment and weak axis moment applied at
ends of the column

€is28y = Strong and weak axis eccentricity of the axial load
ram

€ '€y = Strong and weak axis eccentricity due to end
rotation

The moments along the 24 in. middle portion of the column
were the sum of the applied moment at the end and the additional
second order moment due to thrust and lateral deflection. Table 3.1(b)
also shows the tabulation of total end moment and the moment at mid-

height at the failure load stage for every column.

3.3.1 Applied Loads Measured from lLoad Cells and from Ram

Hydraulic Pressure. There were two methods for measuring ram load:

the reading from load cells and the reading from the ram pressure
transducer. At the time the load cell calibration was made, the

system consisted of an axial load ram, bottom hemispherical ball,
bottom bearing plate, three load cells, and a pressure transducer.

The total load obtained from the load cells and from the pressure
transducer were nearly identical, as shown in Table 3.2. 1In the actual
column tests, although careful adjustment of alignment was attempted,
the readings in load cells indicated that each of the three load

cells did not carry equal load. Even the sum of different load cell
readings differed from loads indicated by the pressure transducers.
Comparisons between load cell readings and pressure readings have

been made at several load stages for each column. The average of the
ratio between load cell data and pressure data for each column is

shown in Table 3.3. Data in Table 3.3 indicate that the ram pressure
load was generally lower than the sum of load cell readings. During
any specimen loading, the ratios between ram pressure load and load
cell readings remained within 5 percent of a constant or mean value.
For uniaxial bending tests of partial circle specimens (Load Angle =

0° or 90° in Table 3.3), both measuring systems indicated loads that

were within 4 percent of one another.
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TABLE 3.2 CALIBRATION OF LOAD CELLS AND PRESSURE
TRANSDUCER READING FOR AXIAL RAM

Actual Load in Individual Load Cell Total Load from Load from
am e L.C.#  L.C.#5 L. #6 Load Cell poessure
(kips) (kips) (kips) (kips) (kips) (kips)
0 0 0 0 0 0
5.01 3.544 1.731 1.266 6.541 5.269
16.87 6.201 4,588 5.526 16.315 16.017
20.86 8.269 5.670 7.467 21.406 20.969
30.30 11.433 7.704 11.644 30.781 30.488
40.32 17.761 10.041 16.242 44,044 40.780
49,92 17.339 12.465 20.123 49.927 50.404
60.10 22,064 15.278 24.426 61.768 60.801
70.07 22.908 17.832 28.307 69.047 71.233
80.36 27.843 20.472 32.695 80.940 80.541
90.50 30.628 23,242 36.787 90.657 90.516
100,60 33.117 25.622 40,542 99.281 100.597
110.28 36.492 28.046 44.718 109.256 110.116
121.18 41.006 31.249 49.823 122.078 121.005
131.31 43.326 33.975 54,210 131.511 131.056
141.07 46.996 36.226 58.007 141.229 140.920
151.61 49.359 39.299 63.070 151.728 150.650
161.60 52.565 42.026 67.726 162,217 | 160.801

e ——— e

*Indicated from calibration machine



TABLE 3.3 RATIO BETWEEN LOAD CELL READINGS AND RAM
PRESSURE LOAD
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Load Load Angle Load on Ram Range of the No.
i Level -1 Load on Load Cell Ratio within of
Specimen (tan MS;MW) Specimen Reading
®) (average)
0 (degree) Max. Min,
c-1 0.2 0 1.023 1.039 0.996 10
c-15 0.4 0 0.963 0.981 0.958 7
c-2 0.6 0 0.982 0.996 0.974 10
c-3 0.2 90 1.003 1.037 0.959 11
C-14 0.4 90 0.983 1,007 0.961 12
C-4 0.6 90 1.007 1.028 1.005 9
c-5 0.2 45 0.971 0.979 0.946
C-6 0.4 45 0.963 0.979 0.940
c-7 0.6 45 0.980 0.985 0.972
Cc-8 0.2 22% 0.944 0.971 0.911
c-9 0.4 22% 0.969 0.995 0.935
c-10 0.6 22% 0.956 0.958 0.947
c-11 0.2 67% 0.946 0.996 0.919 11
c-12 0.4 67% 0.915 0.930 0.892 11
c-12 0.6 67% 0.921 0.940 0.894 11
RC-6 0.2 22% 0.881 0.907 0.869 14
RC~5 0.4 22% 0.899 0.915 0.892 12
RC-1 0.6 22% 0.847 0.880 0.838 18
RC-7 0.2 45 0.876 0.930 0.841 11
RC-3 0.4 45 0.914 0.972 0.899 13
RC-2 0.6 45 0.896 0.923 0.870 17
RC-8 0.2 67% 0.825 0.850 0,808
RC-9 0.4 67% 0.824 0.833 0.821 8
RC-4 0.6 67% 0.907 0.923 0.899 18
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Relationships between nominal load angle and the ratio of
axial thrust measured from ram pressure and load cells are also

plotted in Fig. 3.5. The plot shows that specimens with oval-shaped

cross section had better agreement between load cell readings and
pressure readings than did rectangular cross section specimens. For
biaxially loaded specimens, specimens with a nominal load angle of
67-1/2o showed the largest difference between load cell readings and
pressure readings, while specimens with a load angle of 45° had the
best agreement.

For biaxial bending tests, the test with an eccentric load
angle of 67-1/2o on rectangular specimens gave the maximum differences.
The lowest value of the ratio between the load from ram pressure and
the load from load cells is 0.824. Since load indicated from load cell
involved the sum of three load cell readings, the effect of eccen-

tricity at bearings would be more prominent from load cells. Data

in Table 3.3 indicate maximum difference in total load measurements
when the load angle was 67-1/20. Load cell sensitivity to eccentric
force through the load cell was considered to be the source of observed
variations between ram pressure data and the sum of load cell readings.
Consequently, the ram pressures were used as the reported value of

load for all strength studies. The values read from pressure trans-
ducers were found to agree within 50 psi with the visual observations

of pressures from a gage in the hydraulic system.

From Table 3.3, RC-8 and RC-7 have the maximum difference of
the average ratio between pressure load and the load cell load. Also,
the ranges of the ratio are greatest for these two specimens. The
ratio of load cell reading and pressure transducer reading for several
load stages of RC-8 is listed in Table 3.4. The statistical analysis
of the data for RC-8 in Table 3.4 shows that the variations of the
measuring systems are not large. For RC-8, the standard deviation of
0.0116 and the coefficient of variation of 0.0l4 have been computed
when the ratios of ram pressure load to the load cell loads were used

as population in the analysis. With the maximum error of three
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Fig. 3.5 Load angle vs. ratio of thrust from
ram pressure and load cell



TABLE 3.4 INDIVIDUAL STATISTICAL ANALYSIS FOR

pressure/Pload cell OF RC-8
P ressure
Reading —PLESSHLE - -2
No. P load cell (x - %) (x - x)
(x)
1 0.827 0.0016 0.00000256
2 0.808 -0.0174 0.00030276
3 0.819 -0.0064 0.00004096
4 0.823 -0.0024 0.00000576
5 0.818 -0.0074 0.00005476
6 0.850 0.0246 0.00060516
7 0.830 0.0046 0.00002116
8 0.831 0.0056 0.00003136
9 0.823 -0.0024 0.00000576
ZX = 7.429 v = 0.00107024
x = 0.8254
/ -2
Standard Deviation g = ziﬁ—%—%l— = 0.011566

Code of Variation

e
0

0.014

9¢
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standard deviations, or *3.5 percent, most of the data of RC-8 can
be represented by the mean value of the ratio. Similar analyses were
conducted for other columns, and the results indicated that the
average of the ratio can be used to represent the difference between
the load cell reading and the ram pressure reading. The data from
pressure transducers could not be read at the load near failure,
whereas the load cell readings were available on magnetic tape until
failure. Load cell data were corrected in proportion to the average
ratio between ram pressure data and load cell data at lower levels of
load where ram pressure data were available. With corrections for end
eccentricity of spherical bearings, rotation of loading heads, and a
dual set of end thrust measurements, it is felt that reported thrusts
and moments are within #10 percent of a '"true'" value.

Computer programs were written to compute the total axial
load, end moment, moment along the column due to secondary effect

from deflections, the eccentricities and the effective angle of eccen-

tricity for every load stage of every specimen.

Although the axial load from the computer output shows that
the load cell reading and the ram pressure load reading are different,
the flexural effect of concentric thrust PA was minor and the computed
moments are almost the same. Figure 3.6 shows the comparison between
the centerline moments of Specimen RC-9 determined with concentric
thrust from load cells and from ram pressures plotted on the same
scale. Note that even though thrust measurements differed by 20 per-

cent, differences in end moments cannot be detected.

3.4 Analysis of Surface Deformation

Throughout the 30 in. center portion of each co lumn,
the surface deformations were measured at five stations of 6-in. gage
length. Four potentiometer readings for each section were recorded,
one for each face of the column. The potentiometers were attached to

the end of the arms of steel frames which were described in Chapter 2.

3.4.1 Plane of Strain. At each 6-in. station, four deforma-

tion readings were available. Only threewere needed to compute an
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equation of the deformed plane. Figure 3.7 shows the planes of strain
before load and the deformed plane after loading. It has been assumed
that plane sections before loading remain plane after the load was
applied. The validity of this assumption will be discussed later in

this section.

Fig. 3.7 Planes of strain

In Fig. 3.7, 1 1/, 22',33', and 4 4 ' represent the
strains at each corner of the section. The three potentiometer read-
ings that showed the most compressive deformation were used to define
the plane. The fourth point, which was frequently a tension deforma-
tion, was used as a check point. Using the coordinates as shown in
Fig. 3.7, the Z direction represents longitudinal deformation. An

equation of the deformed plane can be developed as follows:

The general equation of the plane is

AX + By + CZ + D=0 3.8
or A(x1 - x2) + B(y1 - y2) + C(z1 - 22) =0 3.9
A(x2 - x3) + B(y2 - y3) + C(z2 - 23) =0 3.10
A(xy - %) + B(yy = y)) +C(z4 - 2) =0 3.11
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With the data available for x, y, and z values, the three simultaneous
equations 3.9, 3.10, and 3.11 can be solved for the value of constants
A, B, and C. The general equation of strain was used to determine the

strain of the section at any point simply by input coordinates X, y of

the point.

A computer program was coded to reduce the potenfiometer read-
ings into the strains at the middle of each side of the measuring
station. This program also averaged the strain along all five stations.
The average strain for each face of every load has been printed onto
the magnetic tape permanent file for later studies with the computer

system,

The validity of the assumption that strains varied in a plane
was examined by comparing at the fourth measuring station the observed
strain and the strain which was computed from observations at the
other three stations. Data for three different load levels on two
specimens are shown in Table 3.5, These data are representative for
all specimens. The table shows at each measuring station the differ-
ence of values and an error ratio taken as the ratio between the
difference and the measured value, After each set of values for five
longitudinal positions along the specimen, the average of all five
strain values is shown, Error ratios were larger generally before
moment loading was applied, and the error ratios tended to become
smaller as moment loading was increased. The error ratio of 0,053
for the sum of all stations at the first cracking load on Specimen C-5
is considerably smaller than ratios as high as 0.544 at Station 1
under the same load, indicating the local influence of cracks that
cross from one station to another. Under high moment loading near
failure in each test, the error ratio for the sum of all stations was
never greater than 0.1 and usually less than 0.05, a range within
which the assumption of a plane variation of strain is acceptable.

The error ratio for the sum of all stations of each specimen at the

failure load stage is shown in Table 3.6.



TABLE 3.5 COMPARISON OF MEASURED AND COMPUTED
STRAINS AT 4th POINT

Load Stage Level nEast Deformaticn Difference Ercac*
Computed Measured

Specimen RC-1

16 1 0.00056 0.00030 0.00025 0.829
(Before moment 2 0.00164 0.00132 0.00023 0.249
load was 3 0.00288 0.00020 0.0026¢8 13.249
applied) [ 0.00168 0.00088 0.00080 0.903
5 0.00619 0.00381 0.00238 0.624

Sum 0.01295 0.00651 0.00644
Avg. 0.00259 0.00130 0.00129 0.988
25 1 0.03593 0.03875 -0.00282 -0.073
(1st crack) 2 0.04367 0.04158 9.00209 0.050
3 0.04525 0.04380 0.00144 0.033
4 0.03557 0.03688 -0.00132 0.036
5 0.04746 0.04601 0.00145 0.031

Sum 0.20787 0.20702 0.00085
Avz. 0.04157 0.04140 0.00017 0.00s
30 1 0.07910 0.09414 -0.01504 -0.160
(Failure) 2 0.11514 0.10637 0.00877 0.083
3 0.11093 0.11062 0.00031 0.903
4 0.09709 0.10097 -0.00388 -0.039
S 0.10912 0.10756 0.00156 0.015

Sum 0.51137 0.51965 -0.00828
Avg. 0.10227 0.10393 -0.00166 -C.016

Specimen C-5

9 1 -0.00297 -0.00243 ~0.00055 0.183
(before momen: 2 -0.00156 -0.00172 0.00017 -0.106
load was 3 -0.00231 -0.00253 0.00022 -0.097
applied) 4 -0.00196 -0.00192 -0.00004 0.020
5 -0.00023 -0.00074 0.00051 -2.198

Sum -0.00903 -0.00934 -0.00031
Avg -0.00181 -0.00186 -0.00006 -0.634
13 1 0.01661 0.02565 -0.00904 -0.544
(ist crack) 2 0.03023 0.02407 0.00615 0.204
3 0.02907 0.03136 -0.90229 -0.079
4 0.02011 0.02330 ~-0.00319 -3.159
5 0.02909 0.02767 0.00141 0.049

Sum 0.12510 0.13206 -0.00696
Avg 0.02502 0.02641 -0.0C139 -0.053
22 1 0.06744 6.07749 -0.¢1005 -0.149
(Failure) 2 0.08849 0.08433 0.00417 0.047
3 0.11029 0.10707 0.00322 0.029
4 0.07351 0.07829 -0.00478 -0.065
5 0.08824 0.08418 0.00406 0.046

Sum 0.42797 0.43136 -0.00339
Avg. 0.08559 0.08627 -0.00068 -0.008

*Ecror = Difference/Measured
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TABLE 3.

6 AVERAGE VALUE OF ERROR OF THE 4th POINT
COMPARISON AT FAILURE LOAD STAGE

Average value of Average value of
Specimen error a{ failure¥* Specimen error a{ failure¥*
RC-1 1.59 C-5 0.79
RC-2 2.75 C-6 3.61
RC-3 2.97 c-7 8.62%%
RC-4 1.81 c-8 0.78
RC-5 5.11 c-9 3.20
RC-6 1.34 c-10 1.28
RC-7 4.47 c-11 2.14
RC-8 1.74 Cc-12 0.46
RC-9 2.05%% c-13 5.81

*Average error

*%Avyerage from
level.

= Sum of the differences between measured and
computed value of every level divided by sum of
the measured values of the 4th point strains of
every level.

four levels only because of bad potentiometer at one
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Wu =~ also showed that it was evident that the strain distribu-
tion was almost linear even at high loads by plotting strain profiles
of the cross sections under various loadings, The assumption of
linear strain distribution was accepted also by Wu on the basis of

his observations.

The calculation of loads that correspond to measured strains
was based on the average value of strain along the five measuring
stations, It may also be implied that the strain in the steel bars
could be determined from the equation of plane of deformation. 1In
this test program there was no measurement of strain in steel bars;
all calculations of stress and strain in steel, therefore, were made

after the calculation of Eq. 3.8.

3.4.2 Discretization of a Cross Section. After the plane of

strain has been defined, the strain was used to compute the force,
moment, and curvature of the deformed section. The section was dig-
cretized into small grid elements. The grid system made it convenient
to analyze for both rectangular sections and partial circular sections.
Strain at the centroid of each element was computed, and a stress-strain

function of the material, either steel or concrete, was used in order

to get the stress and the force at that element. Integrating the
force and moment over the whole section yielded the internal force and

moments at each particular load stage.

3.4.3 Stress-Strain Relationship of Materials. For reinforc-

ing steel, the stress-strain curve has been shown in Chapter 2. An ideal-
ized stress-strain curve was used with no consideration of strain
hardening in reinforcing bars. The same stresg-strain relationship

was used for both compression and tension.

Several stress-strain functions for concrete were tried in the
analyses. The relationship proposed by Hognestad,27 Todeschini et al.,43
Chang,8 and Kent and Parkzawere used and the results were compared
to the test results. The functions proposed by Hognestad and
Todeschini were quoted from Fowler's report = on the study of rein-
forced concrete columns governed by concrete compression. It was

found that better agreement was achieved from all four stress-strain
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functions when the full cylinder strength of concrete, f;, was used
instead of a reduced maximum such as 0.85f2. The stress-strain functions
which were used in the calculations are shown graphically in Fig. 3.8.
More details on these stress-strain functions are displayed in

Appendix B. The summary of the load and moments at failure of each
specimen analyzed from strain measurements with different type of

stress-strain functions is shown in Table 3.7(a), (b), and (c).

Two more stress-strain functions were used in the analysis of
strain, the "Modified Hognestad stress-strain function," and the
"Parabolic-Rectangular stress-strain function." The details of these

two stress-strain functions are discussed in the following sections:

Modified Hognestad Stress-Strain Function. Hognestad's

stress-strain relationship consisted of two parts. The initial

parabolic curve is defined by the equation:

€ €
2
fo= £/ 12 = - (57 3.12

(¢} €O

where £ Maximum compression stress of concrete in flexure

c
= 0.85¢'
c
¢ = Strain in concrete corresponding to stress, fC
c
€ = Strain in concrete at maximum stress
2f”
c
= = 3.13
€o E
o
E = Initial slope of the curve
o

Beyond the maximum value of stress where the slope of the
parabola becomes horizontal and strain equals €y the curve is repre-
sented by a straight line which falls to the value of O.85fg at a

strain of 0.0038. Some modifications to Eq. 3.12 were studied.

Breen4 suggested that for horizontal cast columns if the maxi-
mum stress were taken as the cylinder stress (fg = fé), the function
gives a reasonably good agreement for the theoretical values when com-
pared to the experimental values. Sargin40 recommended that the

initial modulus of elasticity, Eo may be taken as
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TABLE 3.7 COMPARISON BETWEEN APPLIED LOAD AND LOAD
COMPUTED FROM STRAIN AT FAILURE

P computed from strain/P

Applied T T test
Thrust*
Specimen T test gg;:i::d ;:Z:::;ﬁiar Todeschini Hognestad Kent & Park Chang
k
(a) Thrust
RC-1 119.2 0.908 0.907 0.790 0.766 0.884 0.841
RC-2 120.3 0.872 0.876 0.758 0.734 0.838 0.811
RC-3 94.3 0.991 1.002 0.858 0.827 0.971 0.905
RC-4 123.8 0.755 0.769 0,655 0.632 0.725 0.700
RC-5 87.1 0.799 0.799 0.681 0.657 0.786 0.724
RC-6 53.9 0.732 0.709 0.606 0.579 0.698 0.650
RC-7 40.4 0.768 0.750 0.624 0.595 0.710 0.688
RC-8 40,4 0.756 0.741 0.617 0.587 0.716 0.674
RC-9 85.8 0.887 0.894 0.764 0.740 0.833 0.828
c-5 49.5 0.993 0.935 0.840 0.794 0.935 0.845
c-6 92.2 1.022 0.996 0.887 0.858 0.983 0.933
c-7 139.7 0.961 0.954 0.842 0.821 0.916 0.906
c-8 57.1 0.771 0.756 0.632 0.601 0.750 0.670
c-9 96.2 0.930 0.917 0.804 0.778 0.896 0.859
c-10 138.2 0,913 0.906 0.799 0.779 0.873 0.860
c-11 53.2 0.930 0.942 0.773 0.742 0.867 0.856
c-12 99.2 0.837 0.341 0.719 0.692 0.819 0.758
c-13 152.5 0.979 0.991 0.856 0.825 0.979 0.885
c-1 60.7 0.823 0.817 0.684 0.656 0.795 0.743
c-2 135.6 0.898 0.877 0.785 0.761 0.872 0.822
c-15 109.2 0.833 0.851 0.715 0.690 0.819 0.765
c-3 58.4 0.799 0.800 0.661 0.639 0.737 0.747
c-4 155.8 0.917 0.924 0.804 0.783 0.880 0.869
c-14 119.2 1.103 1.155 0.962 0.934 1.014 1.066
Mean 0.8824 0.8795 0.7548 0.7279 0.8457 0.8085
Standard Deviation 0,0973 0.1034 0.0958 0.0952 0.0935 0.0998
Coefficient of Variation 0.110 0.118 0.127 0.131 0.111 0.123
s‘::g:;eixu M computed from strain/M_ . .
*
Specimen :"me“t :Z:::::d ;:::::;iiar Todeschini Hognestad Kent & Park Chang
s test
k-in.
(b) Strong Axis Moment
RC-1 60.6 0.946 0.981 0.857 0.846 0.877 0.971
RC-2 124.0 0.890 0.924 0.801 0.794 0.821 0.904
RC-3 128.2 0.918 0.940 0.825 0.815 0.871 0.914
RC-4 228.9 0.869 0.894 0.778 0.765 0.814 0.854
RC-5 40.3 0.838 0.860 0.763 0.755 0.796 0.856
RC-6 52.2 0.710 0.724 0.643 0.638 0.691 0.716
RC-7 86.6 0.942 0.958 0.850 0.843 0.897 0.933
RC-8 190.4 0.827 0.825 0.749 0.735 0.794 0.792
RC-9 217.5 0.938 0.959 0.841 0.826 0.877 0.918
c-5 138.3 0.948 0.920 0.853 0.831 0.920 0.372
c-6 171.3 0.882 0.883 0.794 0.784 0.861 0.859
c-7 165.1 0.806 0.833 0.724 0.719 0.755 0.815
c-8 64.4 0.638 0.639 0.577 0.568 0.627 0.616
c-9 67.8 0.867 0.880 0.788 0.779 0.835 0.860
c-10 57.1 1.147 1.182 1.035 1.026 1.076 1.157
c-11 251.9 0.861 0.876 0.782 0.770 0.819 0.840
c-12 243,1 0.931 0.940 0.841 0.826 0.910 0.896
c-13 268.2 0.915 0.924 0.812 0.800 0.901 0.878
Cc-3 372.2 0.879 0.886 0.801 0.791 0.840 0.861
c-4 424.2 0.856 0.879 0.768 0.760 0.809 0.860
c-14 435.2 0.951 1.001 0.861 0.867 0.845 0.963
Mean 0.8838 0.9004 0.7973 0.7866 0.8398 0.8731
Standard Deviation 0.0991 0.1050 0.0888 0.0876 0.0893 0.1025
Coefficient of Variation 0.112 0.117 0.111 0.111 0.106 0.117

*From ram pressure
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Applied Mw computed from strainlﬂw test
specimen Y2k AXls T Paraboli
pec Momen t* 0 araboiic Todeschini Hognestad Kent & Park Chang
M Hognes tad Rectangular
w test
k-in.
{¢c) Weak Axis Moment

RC-1 184.0 0.834 0.842 0.740 0,728 0,809 0,809
RC-2 154,1 0.922 0.938 0.820 0.806 0,878 0.898
RC-3 150.4 0.972 0.986 0.865 0.846 0.946 0.927
RC-4 127 .4 0,895 0.921 0.799 0.784 0.840 0.876
RC-5 160.8 0.968 0.9%70 0.865 0.848 0.953 0.917
RC-6 145.9 0.844 0.833 0.760 0.744 0.824 0.798
RC-7 121.3 0.880 0.875 0.796 0.781 0.845 0.841
RC-8 86.4 0.861 0.860 0.775 0.761 0.812 0.826
RC-9 102.0 0.922 0.949 0.824 0.814 0.856 0.910
C-5 113.5 0.945 0.913 0.849 0.822 0.913 0.860
Cc-6 147.1 0.930 0.923 0.832 0.817 0.906 0.890
c~7 161.6 0.858 0.879 0.767 0.735 0.771 0.860
c-8 168.0 0.860 0.854 0.778 0.762 0.849 0.809
c-9 179.1 0.911 0.912 0.820 0.807 0.887 0.882
Cc-10 188.0 0.826 0.815 0.740 0.733 0.792 0.823
c-11 128.8 0.900 0.915 0.817 0,803 0,857 0.875
Cc-12 155.6 0.867 0.874 0.779 0.763 0.848 0.826
c-13 147.7 0.843 0,852 0,746 0.733 0.830 0.806
c-1 165.5 0.929 0.929 0.842 0.827 €¢.910 0.890
c-2 154.1 0.977 0.972 0.867 0.855 0.962 0.940
c-15 194.2 0.989 1.004 0.891 0.875 0.965 0.953
Mean 0.9016 0.9055 0.8082 0.7926 0.8692 0.8674

Standard Deviation 0.0505 0.0532 0.0453 0.C448 0.0569 0.0471
Coefficient of Variation 0.056 0.059 0,056 0.057 0.065 0.054

*From ram pressure
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Eo = 72,OOOA/fL 3.14

The stress-strain relationship used in this investigation was a com-
bination of those proposed above. The parabolic part can be expressed
as
2¢ € 2

f =] =< - (& ] 3.15

c ¢ €, €,
which is the same as the Hognestad curve except that f; is the
cylinder strength instead of 0.85f’ . Values of ¢ and Eo are defined

o)

c
in Eqs. 3.13 and 3.14, respectively.

At strains beyond €, the straight line with the same slope
as the Hognestad curve was used. The stress falls from f; at ¢ to
O.85f; at a strain of 0.0038, but the function was allowed to go
beyond the strain of 0.0038 with no limiting strain. The Modified

Hognestad Stress-Strain Curve is shown in Fig. 3.8,

Parabolic Rectangular Stress-Strain Function. The Comité Euro-

peén du Béton (CEB)10 " recommends a concrete stress-strain function
consisting of a parabola plus a zero slope straight line. The para-
bolic portion has the same equation as Hognestad's curve, but the
maximum concrete stress, fC equals O.85f; at a strain of €, = 0.002.
Beyond the strain of 0.002, a constant stress can be used up to the
failure strain of 0.0035. Analysis using this stress-strain relation-
ship underestimated results compared to the test values. A modifica-
tion of this type of curve was made so that the maximum stress at the
strain of €, = 0.002 is f; instead of 0.85f;. Also, the constant
stress of f; was used for strains beyond 0.002 with no limit to the
failure strain. Thus, the first portion had a parabolic path with
the same equation as the Modified Hognestad curve in Eq. 3.15, except
that €, Was always 0.002 (and Eo = 2f;/0.002), and there was no
reduction of stress beyond the strain of €, The graphical repre-
sentation of the Parabolic Rectangular Stress-Strain Function is also

shown in Fig. 3.8.
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The strain analyses using the full cylinder strength of con-
crete, f;, gave a better result for both thrust and moments than the
stress-strain function which used only 0.85f; as a maximum compressive
stress. The Hognestad stress-strain curve and the Todeschini et al.
function which used 0.85fg gave much lower values of thrust and moments
than the applied load measured from ram pressure. The thrust, moment
about the strong axis, and the moment about the weak axis at the
failure load stage analyzed from strains using several types of
stress-strain function are listed in Table 3.7. Also shown in this
table is the thrust and moment measured from ram pressure, which was

used as the applied load.

The comparison between applied thrusts and thrusts computed
from measured strains are shown in Table 3.7(a). The applied thrusts
were always higher than the computed thrusts regardless of the assumed
stress variation for concrete, except for Specimens C-14 and C-6 when
the Modified Hognestad stress-strain function was used. The Modified
Hognestad and Parabolic Rectangular stress-strain functions gave the
highest values among all stress functions used in the comparison.

The mean values of Pcomputed/Ptest were about 0.88 for both functions
with the standard deviation of about 0.10. The comparison of thrust
showed that if the value of thrust from load cell readings was used
for applied thrust, the deviation would be greater because load cells
always gave higher readings than ram pressure readings, as discussed

in Sec. 3.3.1.

A similar comparison for measured and computed moments is
shown in Table 3.7(b) and (c). The observed moments again were always
larger than the computed moments for both strong and weak axis bending,
except for strong axis moments of Specimens C=10 and C-14 when the
applied moments were smaller than the moments computed with some of
the stress-strain functions. The Parabolic Rectangular stress func-
tion gave the best agreement with the applied moment, giving a mean

value for M of 0.90 for strong axis bending and 0.91 for

computed/Mtest
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weak axis bending. The coefficient of variation of the comparison
for all stress functions was almost the same regardless of concrete
stress function, varying in a range of 0.11 to 0.12 for strong axis

moment and 0.05 to 0.07 for weak axis moment,.

It should be noted that when the stress-strain functions used
full strength of cylinder stress, f;, the differences in calculated
forces were small, although different stress~strain functions were
used with the strain analyses. Similarly, the reduction of stress
beyond the strain €, had a minor effect on results, and the best
result was from the function with no reduction of stress beyond the

strain of €

It could be concluded in this study that the stress-strain
functions using nominal cylinder strength of concrete, f;, should be
used in analysis, at least for short-time loading. The first part
of the function should be a parabola and the tail of the curve beyond
maximum stress can be considered constant with strain limit or decre-
ment of stress. Analysis for sustained load with some creep of con-

crete cannot be derived from data considered in these studies.

3.4.4 Superposition of Stress-Strain Relationship onto the

Discretized Deformed Section. The average longitudinal strains of

the cross sections at each load stage were stored on magnetic tape.

The equation of the strain plane was computed. For each grid element

of the discretized section, the strain at the centroid of each element
was calculated. The average stress on each element was found from the

stress-strain function.

Figure 3.9 shows the superposition of concrete stress-strain
relationships onto the cross section. At element A in the section,
the strain is €. A stress of fc was found and the force in the
element was simply the product of the stress and the area of that

element. Tension in concrete was neglected.
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Compression

Zone

-
L

Fig. 3.9 Superposition of stress-strain
relationship on the crosgs section

3.4.5 Force and Moments from Strain Measurement, The total

force corresponding to measured strains was obtained by integrating

all the element forces. Moments about each axis were determined by

summing the product of each element force and its distance from each

principal axis.
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A computer program called GRID used the geometry of the
section, the area and coordinates of the reinforcing bars, and the
location of the strains which were to be read from the tape. Strains
at each load stage were input. The procedure to find the plane of
strain, to discretize the cross section, and to relate the stress-
strain functions were coded into the program. Alternate subroutines
for different stress-strain functions could be used in the program.
The final results from each set of output were the axial force,
moments about the strong and weak axis, curvature about each axis,
moment angle, neutral axis angle, and the maximum compressive strain

and its location.

3.5 Comparisons between Applied Forces
and Theoretical Forces Computed
from Strains

In Figs. 3.10 to 3.33, graphs of thrust, moment about the
strong axis and moment about the weak axis are plotted against curva-
tures; strong axis moment is shown with strong axis curvature and
weak axis moment with weak axis curvatures. Thrust values are plotted
against total curvature about the skewed axis. Solid line graphs
represent observed data and dotted line graphs represent data computed
from the average of strain profile along five stations in the 30 in.
midheight portion of each specimen. The Parabolic Rectangular Stress-

strain Function was used for all computed forces on concrete.

Graphs for rectangular cross section columns are in Figs.
3.10 to 3.18. Thrusts computed from strains were always lower than
the applied thrust. Although at the beginning of loading Specimen RC-3
showed higher thrust analyzed from strains than thrust from the ram, but
as the moments increased the thrust analyzed from strain dropped to a
lower value than the ram pressure thrust. The maximum difference

between the analyzed thrust and the applied thrust was about 30 kips
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Fig. 3.10 Applied forces and forces computed from strains
Specimen RC-1 (Pu/Po = 0.472, load angle 22.5°)
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Fig. 3.11 Applied forces and forces computed from strains
Specimen RC-2 (P /P_ = 0.478, load angle 45°)
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Fig. 3.12 Applied forces and forces computed from strains
Specimen RC-3 (P /P_ = 0.353, load angle 45%)
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Fig. 3.13 Applied forces and forces computed from strains
Specimen RC-4 (Pu/PO = 0.485, load angle 67.59)
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Fig. 3.14 Applied forces and forces computed from strains
Specimen RC-5 (P /P_ = 0.337, load angle 22.5%9)
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Fig. 3.15 Applied forces and forces computed from strains
Specimen RC-6 (PU/P0 = 0.233, load angle 22.59)
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Fig. 3.16 Applied forces and forces computed from strgins
Specimen RC-7 (PU/Po = 0.177, load angle 45°)



80

O THRUST
0 STRONG AXIS
MOMENT
A WEAK AXIS
MOMENT
200+ —APPLIED FORCE
---FORCE COMPUTED
FROM STRAINS
150
MOMENT,
K-IN.
1004
50-
o L L | §
05 10 1.5
CURVATURE, RAD./INXIO >

Fig. 3.17 Applied forces and forces computed from strains
Specimen RC-8 (Pu/Po = 0.174, load angle 67.59)
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Fig. 3.18 Applied forces and forces computed from strains
Specimen RC-9 (PU{PO = 0.351, load angle 67.59)
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Fig. 3.19 Applied forces and forces computed from strains
Specimen C-5 (Pu/P0 = 0.190, load angle 45°)
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Fig. 3.20 Applied forces and forces computed from strains
Specimen C-6 (P /P = 0.349, load angle 459)
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Fig. 3.21 Applied forces and forces computed from stgains
Specimen C-7 (Pu/P0 = 0.529, load angle 45%)
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Fig. 3.22 Applied forces and forces computed from strains
Specimen C-8 (P,/P, = 0.203, load angle 22.59)
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Fig. 3.23 Applied forces and forces computed from strains
Specimen C-9 (Pu/Po = 0.355, load angle 22.59)
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Fig. 3.24 Applied forces and forces computed from strains
Specimen C-10 (Pu/Po = 0,521, load angle 22,59)
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Fig. 3.25 Applied forces and forces computed from strains
Specimen C-11 (Pu/PO = 0,186, load angle 67.5%)
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Fig. 3.26 Applied forces and forces computed from strains
Specimen C-12 (PufPo = 0.355, load angle 67.59°)
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Fig. 3.27 Applied forces and forces computed from strains
Specimen C-13 (P /P = 0.486, load angle 67.5°)
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Fig. 3.28 Applied forces and forces computed from strains
Specimen C-1 (Pu/PO = 0,215, weak axis uniaxial
bending test)
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Fig. 3.29 Applied forces and forces computed from strains
Specimen C-2 (Pu/P0 = 0.509, weak axis uniaxial
bending test)
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Fig. 3.30 Applied forces and forces computed from strains

Specimen C-15 (PUXPO = 0.345, weak axis uniaxial
bending test)

93



94

500+
400+
MOMENT
K,IN.
300+
o THRUST
0 STRONG AXIS
200- MOMENT
—APPLIED FORCE
---FORCE COMPUTED
FROM STRAINS
T I
10 LS

CURVATURE, RAD./IN.X10">

Fig. 3.31 Applied forces and forces computed from strains
Specimen C-3 (Pu/P0 = 0.223, strong axis uniaxial
bending test)
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Fig. 3.32 Applied forces and forces computed from strains
Specimen C-4 (P /P = 0,547, strong axis uniaxial
u o
bending test)
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Fig. 3.33 Applied forces and forces computed from strains
Specimen C-14 (P /Po = 0,374, strong axis uniaxial
bending test)
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for the applied thrust of 130 kips on Specimen RC-4, a difference of
23 percent. At the lower level of thrust the percentage difference
was higher although the value of the difference was lower. For
example, the difference was 18 kips in Specimen RC-7 for a measured
thrust of 47 kips, or about 38 percent. Moments computed from strains
were always lower than the moments indicated from ram pressures. The
analyzed moments gave better agreement with the applied moments than
did the thrust, with no difference between moment computed from strain

and from the applied moment greater than 20 percent.

Figures 3.19 to 3.27 show the graphs for Specimens C-5 to C-13,
the oval-shaped cross section columns under biaxial bending. Again,
the values of thrust and moments computed from strains were less than
the measured forces for almost all cases. Correspondence between
analytic and measured values was not as good as that of rectangular
columns. However, all comparisons indicated the same trends of
behavior. The maximum difference between the theoretical and the
measured thrust was about 32 percent in Specimen C-12. Oval-shaped
columns gave better agreement than the rectangular columns for thrust
comparisons in specimens with low levels of thrust. No moments
analyzed from strain deviated from measured moments by more than
15 percent at failure, except for the strong axis moment of Specimen
C-8, for which there was a 30 percent difference. The largest differ-
ence between the analyzed moment and measured moment was found at the
beginning of the loading of partial circular specimens. A difference
as high as 40 percent was found in the weak axis moment of Specimen
C-13 at the early stage of loading. These large differences decreased

as the loading approached failure.

Thrusts and moments computed from strains were always lower
than the observed values for the midheight region. The use of strains
averaged over a 30-in. length may account for the lower flexural
forces from analysis, but the smaller thrust values imply that the
initial slope of the parabolic rectangular stress function may not be

high enough.
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Thrust and moment versus curvature graphs for uniaxial bending
tests are shown in Figs. 3.28 to 3.33. Correspondence between thrust
for analyzed results and for the applied thrust was closer in uniaxial
specimens than in the biaxial bending specimens. Again, the applied
loads were higher than the theoretical load, except for thrust in
Specimen C-14. The maximum difference between the analyzed results
and the applied loads at failure was less than 20 percent for thrust,
12 percent for strong axis moment, and 17 percent for weak axis

moment.

3.6 General Behavior and Mode of
Failure of Specimens

The loading system of this test program was operated so
that the axial thrust should remain constant as moments or eccentricity
increased. The axial load was applied to the designated level first
before the moment load gradually was applied until failure, A summary
of the failure observations for all specimens is shown in Table 3.8,
The load and moment recorded by ram pressure and by load cells are
both shown in this table, but the load from ram pressure §as used as

the capacity of the column throughout this report.

(a) Type of Failure. Two types of failure were observed,.

Tension failure has been said to occur if the tension steel in the
specimen yields before concrete spalls in compression. When the
tension steel yielded (computed from the plane of strain), the speci-
men could carry more load and display large deformation after this
stage. Such a column then would fail when concrete in the compression
zone crushed and cracks on the tension face could be seen. Compression
failure occurred when concrete at the compression face spalled, or
crushed before yielding in the tension steel had been reached. For
high thrust levels (0.5?0), all specimens failed in the compression
mode, and for low axial load, all columns failed in tension. At the
load level of O.BSPO, a combination of these two modes occurred.
Figure 3.34(a) and (b) show the pictures of specimens failed in ten-

sion and compression modes.
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(b) Location of Failure. Because of the nonuniformity of

concrete, columns could fail at any location where the concrete was
weak and moments were high. Usually the columns failed near midheight

where the maximum moment was measured.

For Specimens C-3 and C-4, which were uniaxial strong axis
tests, the secondary moment effect was small, and moments were almost
the same along the length of the columns. These columns failed at
the position near the top of the specimens. Because of the vertical
casting procedure, the top portion of these columns was expected to
be weaker than lower portions and failure was considered likely to

happen near the top.

Listed in Table 3.8 are the mode of failure and its location
for all specimens. For specimens C-5, C-6, C-7, C-11, C-12, C-13,
and C-15, no crushing of concrete was reached. As previously explained
in Sec. 2.7, the tests were stopped before failure would occur to

prevent damage of the measuring devices.

(¢) Maximum Strain in Concrete. Maximum compressive strains

averaged across five stations (30 in.) along the center portion of

the columns are listed in Table 3.8. The maximum strain of all the
columns at failure varied from 0.00228 to 0.00393, except for Speci-
men C-5, for which the maximum strain through the 30-in. region was
only 0.00194. The strains across a 30-in. gage length were known to
be smaller than the localized values at positions 2 to 8 in. long
where concrete actually spalled at failure. The maximum compressive
strain at failure measured locally for the five stations at the 6-in.
gage length are also shown in Table 3.8 for every specimen. These
values ranged from 0.00306 to 0.00526, except for Specimen C-5, for
which the maximum strain was 0.00223 locally. The strength study that
is described in Chapter 4, together with the low compressive strains
indicated here led to the conclusion that the test for Specimen C-5 was

stopped before the column actually reached its maximum load.

The shape of the cross section was found to have an influence

on the maximum strain at failure. The partial circular specimens



TABLE 3.8 FAILURE SUMMARY

Curvature
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(50.7) {138.3) (11).6)
c-6 92.2 171.3 ts7.1 1.884 7.301 0.0M275 0.90306 14.1 56.2 49.4 35.) Compression Fo crushing, comp. steel ylelded
(93.3) (17017 (141.9)
c-7 139.7 163.1 161.6 1.762 1.816 0.00332 0.00387 12.7 ’8.8 45.6 32.9 Cowpreasion Wo crushing
1a2. v {165.72) (161.9)
c-3 7.1 4.4 168.0 0.827 12.590 0.00246 0.0035) 3.7 26.0 21.0 17.) Tension Midhright
(s9.9) (64.5) (160.3)
c-9 96.2 €1.6 179.1 0.843 to.m0 0.0078% 0.003%7 4.8 28.) 20.7 15.9 Tenafou 4+ Cowp. 12" belaw midheight
{98.9) 67.8) (179.5)
C¢-10 138.2 7.1 188.0 0.88) 8.698 0.007t1L 0.0043% 5.8 22.) 16.9 . Compresrfon 6" above midhalght
184.2) {57.2) (188.6)
c-n 5.2 251.9 125.8 4. A58 12.200 000367 0,00420 2.7 6.7 62.9 41,2 Tenrlop Mo crushing
B3 (252.1» (129.0)
c12 99.2 3.1 155.6 2.998 8.222 0.00296 0.00390 20.0 6.9 57.4 3.4 T fom + C
(106.9)  (242.3) (156.2) erefon + Lovp. Yo crushing
c-13 152.5 268.2 147.7 2.155 5.0%7 0.00266 0.00Y92 23.2 68.6 61.2 8.0 o 1
(1661) (269 03 (188.3) . . . omprassion Wo crushing
c-1 60.7 ~ 165.5 - 14,580 0.00256 0.00401 - - - - Tension 6" above midhsight
53.&) (186 3
c-? (}::;) - (:::;) - §.880 0.00228 0.00526 - - - - Compre=sicn 9" above aldheight
c-15 109.2 - 194.2 - 11.950 0.00277 0.00309 - - - - Tens |
T (194.9) enslon Ne crushing, wide crack
c-3 58.4 3722 - 8.¢8) - Q.00328 0.00381 - . - - Tension 15" helcw top of column
{58.3) @an.n
-4 (::Z:) (:;:;\ - 4.230 - 0.00)10 0 00347 - - - - Compression 15" betow top of rolumn o
C-14 (:;90:) (:z;:) - 6:1] - 0.0039) 0.00526 - - - - Tenaion + Comp. 6" above midheight S

*From ram pressure
{value from 10ad cell In pacentheais)

**for C-5 test siopped before column actuslly (ailed
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had smaller average strains at failure than the rectangular specimens.
Rusch's study of maximum strain of various shapes of compression

area under flexure indicated that a triangular shape would yield more
maximum strain at failure than a rectangular shape. In the case of a
rectangular cross section subjected to biaxial bending, the compression
area of the cross section would be a triangle as the width of the com-
pression zone reduces from the neutral axis to the maximum compressive
fiber. Therefore, in accordance with Rusch's observation a rectangular
cross section should have more strain at failure than the partial
circular cross sections, in which maximum strain is not at a corner. The
average of maximum strain at failure for fourteen specimens of partial
circular cross section (all except C-5) was 0.00298, while the average

of the maximum strain for all rectangular specimens was 0.00333.

(d) Load Angle and Neutral Axis Angle. Also tabulated in

Table 3.8 are the neutral axis angles and the load angles at both top

and center of the columns at the failure load stage.

The load angle is defined as

M
g = tan_l strong

e
-1 str
tan _%__EES

weak weak

f§ is measured from the strong axis of bending.

The neutral axis angle, ¢, is the angle between the weak axis
and the neutral axis. The sketch of these two angles is shown in
Fig. 3.33.

1. Change of load angle (» from end of the column to
to midheight of the column

From Table 3.8 it can be seen that the load angle
g is smaller at midheight than it is at the ends of the column., This
difference was due to the secondary effect of the deflection., The
column deflected more in the weak direction than in the strong
direction, such that the secondary effect was greater in the weak
axis direction. This caused the load angle to decrease as the

secondary effect increased from the loading point at the end to the



103

weak axis of bending

Load point

..

oy, —» strong axis
€weak of bending

Fig. 3.35 Load angle and N.A. angle

central portion of the column. The deviation of this load angle
along the length of the column had no measurable influence on thrust
level or the applied moment angle. The maximum change of the load
angle was 13.2 degrees and the minimum was 2.8 degrees. The shape
of the cross section was not found to effect the amount of change in

load angle along the column.

2, Difference between load angle and neutral axis angle

37

Some research reported by Wu47 and Ramamur thy
neglected the difference of load angle, 9, and neutral axis angle,(p,
and used the same angle for their strength analysis. Although Wu
observed that there was some difference between 8 and @, he concluded
that it was small and neglected the difference in order to simplify
his analysis. In this experimental program it was found that there
was a significant amount of difference between the load angle and the

neutral axis angle,

It was observed that the difference between load angle and
neutral axis angle or (§ - ¢ as shown in Table 3.8) is related to
the applied moment angle. As the load angle § increased the differ-
ence of B-p increased. The quantity (g-,) was greatest for specimens
with a nominal load angle of 67-1/2 degrees and smallest for speci-
ments with a nominal load angle of 22-1/2 degrees. No significant

effect of thrust level was found to be involved in the angle 8-¢.
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Figure 3.36 shows a plot between load angle, 8, and the
difference between load angle and neutral axis angle, §-¢. The plot
suggests a linear relationship between 8 and 8-« on the basis of the
data available which includes load angles between 15 degrees and 65
degrees. However, when a ""90-degree" load angle (major axis flexure)
was used for partial circle columns, there was almost no difference

between f and ¢.

Redwine38 studied the problem of the difference between the
load angle and neutral axis angle using his analytical model. He
concluded that the difference was mainly dependent on the orientation
of the neutral axis and the aspect ratio of the section. The axial
load level and strain gradient had only a small efﬁect on g-¢p. He
also observed that values of 6-¢ as large as 38 degrees could be pre-
dicted for columns with the same aspect ratio of sections used in

these tests.

o RECTANGULAR CROSS SECT.
& OVAL CROSS SECT.

40. A

o 24
A o ®
w-
o-¢ 0o’
201
DEGREE é
10+ vo

0 20 30 40 80 60 70 80
LOAD ANGLE @, DEGREE

Fig. 3.36 Load angle (@) vs. the difference between load
angle and neutral axis angle (8-¢)
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The practical significance of the real skew angle at midheight
involves the estimate of My and Mx components that must be checked
for strength in the design process. The application of moment magni-
fier coefficients that increase according to flexibility through a
given unsupported length of column produces the same trend of differ-
ence between load angle @ at column ends and column midheight as that

observed in these tests.

(e) Rotation about Longitudinal Centroidal Axis and Twist.

During the test, the specimen was observed to rotate about its longi-
tudinal centroidal axis. Measurements at the top, midheight, and
bottom of the columns indicated that before the moment load was
applied a very small rotation was recorded, but after moment was
applied the rotation increased continually until the failure load.
Specimen RC-9 was noted to have the most rotational movement. The
maximum rotations of RC-~9 after moment was applied were 0.25 degrees

at the top, 0.28 degrees at midheight, and 0.43 degrees at the bottom.

Twist of the column is defined here as the change of angle of
rotation along the length of the column. For each specimen there
were two measurements which indicated the twist, the change of angle
of rotation from top to midheight, and from midheight to the bottom
of the column. Although Specimen RC-9 was observed to have the maxi-
mum rotation, the maximum twist was not obtained from Specimen RC-9.
Maximum twist was measured for Specimen RC-2, a rectangular specimen
with 0.00746 radian (0.427 degree) of twist from top to midheight, and
0.00311 radian (0.178 degree) from midheight to the bottom. These
twist angles were the angle change along a length of 25 in. For par-
tial circular specimens, the maximum twist was found for Specimen C-11
to be 0.00386 radian (0.221 degree) from top to midheight, and
0.00731 radian (0.419 degree) from midheight to the bottom.

Redwine38 studied the torsion of columns under biaxial
bending and concluded that the effect of torsion should be negligible.
25

Green ~ also confirmed that the biaxially column failure was not

influenced by torsional effects.
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With the maximum angle of twist of 0.0075 radian measured
from RC-2, the torsional stress due to this twist can be estimated

as follows:

P

Qi3

1
J

where O Twist angle per unit length

Polar moment of inertia of section

Shear modulus

Torque on the section

38
Redwine used the value of J as 0.196bt3, where b was the
depth and t was the width of the section, and he used G equal to
1.25 % 105 psi for the shear modulus of concrete. These values

applied to Specimen RC-2 yield:

T
P
0.196bt3 ¥ 1.25 ¥ 105
3 5
T = [0.196 X 9 % 5° x 1.25 % 10°]
T=-Q‘—(2)—(5)l5—[0.196x9x53x1.25x105]
T = 8.2 k-in.

The allowable shear stress for torsion as specified in the

ACI Building Code(ACI 318-71)1 for plain concrete sections is

v

e
te 2.4 ch

169.7 psi for 5000 psi concrete

or the allowable torsional moment for concrete is

2
e XY
Tc g Vtc
- 53—"9 % 169.7

12.7 k-in. > 8.2 k-in.
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The calculation shows that when the column twisted to the
maximum angle of twist measured from all tests reported here, less
than two-thirds of the allowable torsional shear strength of plain
concrete wuld be generated. The inevitable presence of longitudinal
bars and ties in columns should reduce even further any likelihood
of torsional strength complications in biaxially loaded concrete

columns.






CHAPTER 4

CROSS SECTION STRENGTH AND STIFFNESS

4.1 Introduction

A surface that describes the ultimate capacity of a column
under combined axial thrust and flexure can be constructed by plotting
an infinite number of points for which thrust is the vertical axis and
flexural capacities about each principal axis are the coordinates in
the horizontal plane. Any vertical plane contains a thrust-£flexure
interaction diagram for a specific skew angle. Interaction diagrams
for uniaxial bending about a principal axis have been derived on the
basis of a limiting strain definition of failure. These uniaxial
interaction diagrams have been accepted as accurate enough for design,
and functions that relate biaxial capacities to the uniaxial capacities

have been proposed by some investigators.

One method of relating the uniaxial capacities of cross sections
to biaxial capacities is called '"the Load Contour Method." For any
levels of axial load the ratios between the component of skew moment
about each principal axis to the moment capacities about each principal

axis at the same thrust level can be expressed as

M A M =
_& + _ﬂl = 1
5 [0 4.1
Xo yo

Components of ultimate moment at the assigned thrust

£
e
t
-
xz
[+
=
il

yu
Mxo’ M o = Uniaxial moment capacities about each principal axis
y for the assigned thrust
% = Exponent that is a function of cross-sectional

properties and the ratio between M and M
X0 yo

109
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2
Many references ™’

have contained suggestions for evaluating
the exponent Qp,some involving relatively complex relationships
among parameters. The "calibration" of analytic functions for ay
has relied entirely on correlations with results from interaction
surfaces that were derived with a rectangular stress block to represent
concrete strength prior to failure. In most cases the analytic

results that were obtained from the use of Eq. (4.1) after o had been
evaluated were not checked against laboratory data from actual resis-

tance to 1oad.30’32’33

Another method, '"the Reciprocal Load Method" provides a
simple relationship between skewed thrust and the uniaxial thrust
capacities of the column. In this chapter the Reciprocal Load Method
introduced by Bresler5 will be discussed. This method requires only

uniaxial interaction diagrams before a cross section can be analyzed.

4,2 Reciprocal Thrust Equation

The derivation of the reciprocal thrust equation as presented
here was described by Bresler.5 A plane, S', passing through three
points, A, B, and C, which lie on the failure surface § is defined
for the surface sketched in Fig. 4.1. A, B, and C have the coordinates:

1
A (exA, o 3
y

1
B (o, e_ns )
vB Px

¢ (o, o, PO)

The thrust PO is the axial load capacity without any
eccentricity of the section, and Px and Py are the load capacity at the

uniaxial eccentricity e _ and e respectively., With these definitions

B xA’
point A represents a po{nt (Py’ Myu) on the uniaxial load-moment inter-
action curve for bending about the y axis, point B is a point on the
uniaxial interaction diagram for moment about the x axis and C is a
point on the interaction curve with no eccentricity and is the

common point of both uniaxial interaction curves.
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.!’
|
Py
> €y
e

Fig. 4.1 Failure surface for reciprocal load (from Ref. 5)

X 1
The general equation for the plane S’ with the same axes —=—,
u

1
— =
Dlex + D2ey + DcPu + D4 0 4.2

Substituting the coordinates of points A, B, and C which are

points that plane $’ passed through gives

1

+ = + = .
Diea O+ Dy +D, =0 4.3
y
1 _
0+ D2eyB + Djﬁ— + D4 = 0 4.4
X
0+0+D—l—+D=0 4.5
3" 4 :

Solving Eqs. 4.3, 4.4, 4.5 simultaneously in terms of

D4 yields
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D4 Po
D1= (P_-]-)
XA 'y
D P
D2=—é-(-1)—°-1)
yB X
D3 = -D4Po
Equation 4.2 then can be expressed as
1 Po 1 Po Po
- < - + —( - - — =
D4 5 (P l)eX 5 (P l)ey P + 1l=0 4.6
xA y yB "x u

Dividing Eq. 4.6 by D Po’ the equation for the plane S’

4

becomes

e e
x,1 1.+ vy 1 1 1.1
s 3 p) e(P "P)'P+P‘O 4.7
XA 'y o yB x o u o

Point 1, on the failure surface S with the coordinates

& T %A’ Sy = eB and 1/Pu = l/Pu1, is approximately equal to point
1’ on plane S’ with the coordinates e_ =e ,, e =e _ and 1/P = 1/P,.
X XA’ Ty yB u i

Equation 4.7 after substituting coordinates of point 1’ becomes

1 1,1 1 1 1 _
P P tP "% "% 'r 0 4.8
y ) X o i o
! 1,11
or P, PP P 4.9
i X y o

Equation 4.9 is called the Reciprocal Load Equation where

Pi = Approximate failure load capacity of the section under
biaxial bending with eccentricities e and ey
Px = Uniaxial load capacity of the section under eccentricity
e only
y
P = Uniaxial load capacity of the section under eccentricity
y e only
X
Po = Axial load capacity of the section without any

eccentricities
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Bresler5 and Ramamurthy37 compared results using this equation
and physical test results. They concluded that Eq. 4.9 can be used to
predict the approximate load capacity of reinforced concrete sections
with reasonable accuracy. Pannell32 indicated that Eq. 4.7 may be
inappropriate when small values of axial load are involved (P/P0 < 0,06)

and the sections should be designed only for flexure in such cases.

4.3 Uniaxial Interaction Diagram

In order to use Eq. 4.9 one must obtain values Px’ ey and
Py’ e which are shown on the uniaxial interaction diagram for each
major axis of the section. Three types of stress-strain relationships
for the ultimate compressive strength of concrete have been considered

for derivations of uniaxial interaction functions in this study.

Rectangular Stress Block. The compressive strength of

concrete at ultimate load can be represented by a rectangular block

of stress. The ACI Building Code1 (ACI 318-71) permits such a block
to be considered if the maximum compression strain at an extreme fiber
is taken as 0.003. A uniformly distributed concrete stress of O.85fé
is assumed to act over a compression region bounded by the extreme
compressive fiber and a line parallel to the neutral axis at a distance
a-= BOC from the extreme fiber of maximum compression strain. The
distance, C, is the distance from the neutral axis to the point of
maximum compression strain, and Bo is a factor that is used to modify
the total magnitude of compression force and to locate the centroid

of the force. The factor Bo may be taken as 0.85 for concrete
strengths fé up to 4000 psi, but it is to be reduced 0.05 for each
1000 psi stress for fé greater than 4000 psi. Figure 4.2 shows the
strain distribution and the concrete stress related to this distri-
bution. Tension in concrete may be neglected according to the ACI

Building Code.

Modified Hognestad Stress-Strain Curve. The second type

of concrete stress-strain relationship used was a modified Hognestad
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€,= 0-003 0-85 fg
1 =72 i
[ Z 1=
D | Ej S;uj O
Wz $( 83 o
N o g
8y Neutral Axis “
8y
215
ZIN
-
strain stress

Fig. 4.2 Rectangular stress block

curve which has been described in Chapter 3.

two portions, a parabola and a straight line.

For strains less than Go = 2fé/Ec’ the curve is a parabola

with the equation

where EC = 72000 ch

Beyond the strain of €, the curve is a straight line with a slope

The curve consists of

4.10

down from stress fé at €, to a stress O.SSfé at the strain of 0.0038.

Failure is assumed to exist when the maximum strain at the extreme

compressive fiber reaches 0.0038. No tension is considered for

concrete. Strain and stress distribution of this type are shown in

Fig. 4.3.

Parabolic-Rectangular Stress-Strain Function.

rectangular stress-strain function for concrete was discussed in

Chapter 3. 1In order to construct the interaction diagram between

A parabolic-
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€u=0'0038 085f'c
Z-
=13 - 2f,
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Fig. 4.3 Modified Hognestad stress-strain curve

thrust and moment for uniaxial bending in this chapter, the parabolic
curve had the same equation as the Modified Hognestad's curve ( Eq. 4.10)
but €, was taken as 0.002 instead of Zfé/Ec. Beyond the strain of

0.002 a constant stress was used up to the failure strain of 0.0035.

The failure strain of 0.0035 has been recommended by

the Comité Europeén de Befon{o Figure 4.4 shows the strain distri-
bution: and the stress corresponding to the strain on the section.

Again no tension stress in concrete was considered.

Points on interaction diagrams were calculated by assuming
a neutral axis location and the failure strain on the extreme
compressive fiber, strain distribution was assumed to vary linearly
acorss the section. The stress-strain relationships for concrete were
used to determine stresses and forces in the segments of the section.
These forces were integrated to get normal forces and moments about
the centroid of the section. The same procedure was used for
reinforcing steel except that the elastic-purely plastic stress-strain

function for steel was used.
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€,=0-0035 f,
B ; €,:0-002
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Fig. 4.4 Parabolic-rectangular stress-strain curve

4.4 Approximate Strength of the Section by
Reciprocal Thrust Equation

With the eccentricities specified about both axes, the uniaxial
strengths corresponding to those eccentricities can be found from
uniaxial interaction diagrams. The approximate strength of the
section under biaxial eccentricities ex,ey can be determined by using

Eq. 4.9.

In this section, the moments and axial load at the failure
load stage of every specimen were used as the actual load capacity
of the cross section. Eccentricity of the axial load on the cross
section was taken as the ultimate moment divided by the axial load.
All the given values are based on the thrusts and moments for the

center portion of the members.

With these "measured'" eccentricities, the predicted strength
was calculated using Eq. 4.9 and the uniaxial interaction diagrams.

Table 4.1 displays three values of the approximate strength of the



TABLE 4.1 COLUMN

STRENGTH USING RECIPROCAL LOAD EQUATION

Eccentricity

Rectangular Stresse

Modified Hognestad's

Parabolic-Rectangular

Block Stress-Strain Curve Stregs-Straln Curve -
Specimen £/ - -—-- P P /P

c - test * L2 § *k o

pst ECCs hLCw k Po P1 Piqu Po Pi P1/Pu Po P1 Pi/Pu

in. in. k k k k k k

c-8 4760 1.128 2.940 57.1 246.4 49.3 0.863 282.0 51.6 0.904 252.0 53.1 0.930 0.2025
c-5 4340 2.796 2.295 49.5 228.7 53.6 1.08')1 261.1 56.2 I.lJS1 261.1 58.5 1.182 0.1896
c-11 4839 4,135 2.420 53.2 249 .4 42.1 0.791 285.5 44.8 0.842 285.5 46.0 0.865 0.1863
c-9 4830 0.704 1.8u1 96.2 236.9 84.5 0.873 270.8 88.1 0.916 270.8 91.4 0.950 0.3552
Cc-6 4396 1.859 1.595 92.2 231.1 78.0 0.846 264.0 83.8 0.909 264.0 88.1 0.956 0.3492
c-12 5091 2.45) 1.568 94.2 260.4 81.0 0.817 298.4 87.3 0,880 298.4 91.3 0.920 0.3324
c-10 4425 0.413 1.360 138.2 232.3 106.2 0.768 265.4 107.5 0.778 265.4 118.3 0.856 0.5207
c-7 4493 1.182 1.157 139.7 231.4 107.0 0.766 264.3 111.1 0.793 264.3 118.0 0.845 0.5286
c-13 5197 1.759 0.968 152.5 273.3 124.0 0.813 313.6 130.3 0.854 313.6 138.5 0.908 0.4663
RC-1 4886 0.508 1.543 119.2 219.5 92.8 0.779 252.6 97.4 0.817 252.6 104.9 0,880 0.4719
RC-2 4871 1.031 1.281 120.3 218.9 98.3 0.817 251.9 101.9 0.847 251.9 109.7 0.912 0.4776
kC-4 5181 1.777 0.989 124.8 230.4 102.4 0.795 265.4 106.5 0.827 265.4 114.5 0.889 0.4853
RC-S 5012 0.463 1.845 f7.1 224.3 82.2 0.944 258.2 86.2 0.990 258.2 92.5 1.062 0.13373
RC-3 5210 1.360 1.594 94.3 231.9 84.7 0.898 267.2 90.0 0.954 267.2 95.8 1.016 0.3529
RC-9 4700 2535 1.189 85.8 212.4 73.9 G.861 244.2 78.7 0.917 244 .2 83.0 0.967 0.3514
RC-o 4425 0.968 2,705 53.9 201.8 46.4 0.861 231.7 48.2 0,894 231.7 49.9 0.926 0.2326
RC-7 4350 2.144 3.003 40.4 199.0 36.2 0.896 228.5 37.9 0.938 228.5 39.3 0.973 0.17€8
RC-8 4446 4.716 2,141 40.4 202.% 35.3 0.874 232.7 36.4 0.901 232.7 37.7 0.933 C.1736

Mean 0.8392 0.8802 0.9287

Standard Deviation 0.0497 0.0560 0.0548

Coef, of Variation 0,0592 0.0636 0.0590

=
For rectangular stress block type P = 0.856/ A + Asf

*he
For parabolic stress-strain type Po - l.Gf; Ac + Asf

y

1
ipecimen C-5 not included in statistical analysis,

y

L11
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section, one value for each type of stress-strain relationship of
concrete. Table 4.1 shows the comparisons of these values and also the
observed thrust Pi when ultimate moments occurred. The ratios of

the calculated strengths and the observed strength are listed in
Table 4.1.

It has been noted that for Specimen C-5 the approximate value
from Eq. 4.9 predicted much higher strength than the actual test
strength. This indicated that the test on Specimen C-5 had not
reached a failure load stage at the end of testing, and the column
would carry higher moments than the moments recorded when the test was
stopped. The results from Sec. 3.6 indicated that the maximum com-
pressive strain at the final load stage was lower than the strain in
other tests and no yielding in the reinforcing bars was observed when
strains in the bars were calculated from the equation of the plane of
deformation. With the observations both in Sec. 3.6 and in this sec-

tion, it was concluded that for Specimen C-5 the test result did not

represent the "failure load",

As indicated in Table 4.1, the results from the rectangular
and Hognestad stress-strain functions are lower than the observed
strengths. For the parabolic rectangular stress-strain curve, the
results indicate lower analytic values except for two specimens, RC-3

and RC-5. The average of the ratio between Pi and Pu for all specimens

shows that with rectangular stress block stress diagram the result

was least accurate and parabola-rectangle function gave the best
agreement between analysis and test results. The standard deviation
of the ratio of Pi/Pu is between 5 percent and 5.6 percent, and the
coefficient of variation is between 5.9 percent to 6.4 percent for all
three types of stress-strain curves of concrete. The highest and

best mean value that was determined was 0.929 from the modified CEB

curve with the standard deviation of only 5.5 percent and a coefficient

of variation of 5.9 percent.
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4.5 Strength of Section on Uniaxial Tests

Six specimens with a partial circular cross section were
tested in bending about only one major axis at a time. Listed in
Table 4.2 are the results from the tests and the predicted failure
moments from three types of interaction diagram analyzed for the
same axial load level as the tests. The results indicate again that
the parabolic-rectangular stress-strain function for concrete
gave the most favorable agreement between test values and analytic
values. The mean value of the ratio between the moment from this
interaction diagram and the actual failure moment was 0.996 with
the standard deviation of 7.3 percent and a coefficient of variation
of 7.33 percent. It should be noted that this interaction function
gave failure estimates higher than those measured for load about the

weak axis, but the excess was less than 4 percent.

The parabola-rectangle (Modified CEB) stress-strain function

was used for the strength investigation that follows.

4.6 Study of Other Experimental Results

Data from two other investigators were used for further evidence
of the reliability of the reciprocal load equation. The data include
four rectangular columns tested by Bresler5 and 55 square and
rectangular columns tested by Ramamurthy.37 The 18 biaxial tests

reported here make the specimen sample total 77 for this investigation.

The approximate strength Pi was calculated by using the
reciprocal load equation for every sample. The ratio of Pi and the
actual tested strength Pu for each column was used as an index of the
accuracy of the reciprocal load method. The mean value of the ratio
between Pi and Pu taken from all samples was 0.9428. The standard
deviation was 0.0689, and the coefficient of variation was 7.31

percent.

These results indicate that the reciprocal load equation

with a proper thrust-moment interaction diagram for uniaxial bending



TABLE 4.2 FAILURE LOAD OF THE UNIAXIAL TESTS

Actual Moment

From Interaction Diagram

Specimen £’ P M M Rect, Para- Modified N /M M /M M
€ v u weak “u strong Stress bolic Hognes - a m e Mb u

Block Rect. tad

M) M) M)

psl k k-in. k-in. k—éiln. k-:n. I:—i‘;n.
c-1 4783 60.7 165.5 - 160 169 166.5 0.9668 1.0211 1.0060
c-15 5468 109.2  194,2 - 181 208 202 0.9320 1.0711 1.0402
c-2 4460 135.6 154.1 - 140 167 157 0.9805 1.0837 1.0188
c-3 4386 58.4 - 372.2 331 350 346.5 0.88913 0.9404 0.9310
c-14 5514 119.2 - 455.2 387 447 436.5 0.8502 0.9820 0.49589
C~4 4831 155.8 - 424 .2 304.5 371 348 0.7178 0.8746 0.8204
x 0.8894 0.9955 0.9626
a 0.0886 0.0730 0.0734
Coefficient of Variation 0.0996 0,0733 0.0762

A
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gives a good prediction for cross section capacity under biaxial
bending and compression, Further studies of the influence on accuracy
from variables such as axial load level, percentage of steel and

section shape will be described.

4.6.1 Influence of Axial Load Level. Figure 4.5 shows data

points comparing values of the ratio Pi/Pu with the relative thrust
level Pu/P0 for all 77 data points. More data fell below the average
value of Pi/'Pu = 0.9428 for the thrust level greater than 0.4, but
one cannot conclude that the axial load level has any apparent trend
that affects the accuracy of the reciprocal thrust strength calcula-

tion because of the lack of data at thrust levels higher than 0.6P0.

4.6.2 Influence of Percentage of Reinforcement, Aspect

Ratio and Load Angle. The accuracy of strength predictions was not

found to be influenced by the amount of reinforcement. The data
included specimens with reinforcement ratios of 1 percent to 4.5
percent. Table 4.3 shows the list of percentage of reinforcement on
the cross section and the average ratio of Pi/Pu for each percentage.
These data show that the accuracy or inaccuracy of the reciprocal

thrust estimate of Pi was independent of the amount of reinforcement.

Table 4.4 compares the relationship between the aspect
ratio (depth/width) of the section and the predicted strength
Pi/Pu° Again there is no evidence that the aspect ratio influences
the accuracy of strength calculated from the reciprocal load equation.
The limited number of specimens with partial circular cross sections
showed the most inaccurate result, suggesting that there might be
some influence from the shape of the cross section. However, the low
estimates of strength may be due not to the reciprocal thrust

equation, but instead due to the uniaxial strength estimates.

The relationship between Pi/Pu and the aspect ratio d/b is
also shown graphically in Fig. 4.6. A linear regression analysis of

data points gives the relationship as
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Fig. 4.5 Approximate strength P_./P (from Reciprocal Load
Equation) and failure toad level Pu/Po

Al
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TABLE 4.3 INFLUENCE OF PERCENTAGE OF REINFORCEMENT

Percentage of Number of Average
Steel, Specimens Pi/Pu
0.0109 9 0.951
0.138 8 0.904
0.0218 5 0.943
0.0245 19 0.952
0.0256 4 1.005
0.0291 5 0.998
0.0341 4 0.926
0.0383 8 0.944
0.0430 8 0.947
0.0455 6 0.867

TABLE 4.4 JINFLUENCE OF ASPECT RATIO

Aspect Ratio Number of Average
d/b Specimens Pi/Pu
1.0 35 0.949
1.33 4 1.005
1.5 11 0.926
1.8 9 0.951
2,0 9 0.936
2.2% 8 0.904

*
Partial Circular Cross Section



124

1.10
.08 p‘ y
o1 T' 1.0I7-0044 —
100+ ° v b
')
0.95- o o
0
0.90 T T T T T Y 9 T
1.0 12 14 16 18 20 22 24
ASPECT RATIO d/b
Fig. 4.6 1Influence of aspect ratio
Pi/Pu = 1.017 - 0.044 d/b 4,11
with the coefficient of correlation equal to r = -0.577. From the

low coefficient of correlation, one could not conclude that there was
any influence of aspect ratio on the accuracy of the reciprocal load
approximation. But the trend showed that at higher aspect ratios there

might be some influence on the accuracy of the calculation.

Listed in Table 4.5 are the skew angles and the average
ratio of Pi/Pu at those load angles. No unique relationship between

skew angle and the reciprocal load equation is apparent.

None of the parameters studied, reinforcement ratio, aspect
ratio, thrust level, or load angle, appeared to have a predictable
influence on the relative accuracy of the reciprocal thrust equation
for estimating the biaxial bending strength Pi' The accuracy
of the reciprocal thrust equation is dependent only on the accuracy>

of uniaxial strength estimates for Px and Py that act at the

specified eccentricities e_ and ey
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TABLE 4.5 JINFLUENCE OF LOAD ANGLE

Number of Average
Skew Angle Specimens Pi/Pu
10°-20° 21 0.945
20°- 30° 15 0.929
30°-40° 12 0.966
over 40° 28 0.934

4,7 Stiffness of the Cross Section

The relationship between the measured moments about both
principal axes and the corresponding curvatures were studied with
graphs shown in Figs. 4.7 to 4.30. These graphs show the measured
moment-curvature (M-»n) results of all the columns tested. The moment
values were the midheight moments computed from the ram pressure
readings, and the curvatures were the average values obtained from
five stations along the center portion of the column as described in
Chapter 3. These average moment-curvature graphs represent the column
section at midheight. The slope of the M-¢ curve would represent the

flexural stiffness EI of the cross section at midheight.

The nominal computed values of EI about each axis for uncracked
sections and for cracked sections are also shown as lines of constant
slopein Figs. 4.7 to 4.30. The uncracked section nominal EI was com-

= JE! = 30000 ksi =
puted as Eclg + E I where E_ 57000 £, Eg 30000 ksi, Ig gross

moment of inertia of the section about the axis of bending, and IS

i

moment of inertia of the reinforcing steel about the appropriate axis
of bending. Because of the low percentage of steel (0.011 and 0.013),
the cracked section EI values were estimated as 40 percent of the gross
stiffness E 1 of the section on the basis of the approximation in

1,2 -
ACI Eq. (10-8), EI = EchJZ.S Values of Eclg’ ESIS and Ech/Z.S
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Fig. 4.7 Moment-curvature relationship, Specimen C-1
(Pu/PO = 0.125, weak axis uniaxial bending
test)
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Fig. 4.8 Moment-curvature relationship, Specimen C-2
(Pu/Po = 0.509, weak axis uniaxial bending
test)
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Fig. 4.9 Moment-curvature relationship, Specimen C-15
(P“/P0 = 0.345, weak axis uniaxial bending
test)
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Fig. 4.10 Moment-curvature relationship, Specimen C-3
(PU/P = 0,223, strong axis uniaxial bending
test)
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Fig. 4.12 Moment-curvature relationship, Specimen C-14

(Pu/P = 0.374, strong axis uniaxial bending
test)
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Fig. 4.17 Moment-curvature relationship, Specimen RC-5
(Pu/Po = 0.337, load angle 22.59)
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for all specimens are shown in Table 5.1 in Chapter 5. Cracked
section estimates of EI are shown by dashed lines in Figs. 4.7 to 4.30,
The initial slope of the graph representing uncracked EI was changed

to the cracked EI slope at the moment for which cracking was observed
visually during the loading sequence. The ACI1 Building Code recom-
mends in Sec. 9.5.2.2 the estimation of cracking moment, Mcr =

f1I
_§_g where fr = 7.5 Jfé , Ig = gross moment of inertia of the section,

an& Ve = distance from centroidal axis o% gross section to extreme
fiber in tension. Table 4.6 shows the values of the computed cracking
moment for each axis and the cracking moment as observed for every
specimen. The comparison between the computed and observed cracking
moments indicated either that the ACI Code formula underestimated the
cracking moment or visual evidences existed well after theoretical
cracking both for strong axis and weak axis. Only in Specimens RC-1,
RC-5, and RC-6 were the observed strong axis cracking moments lower
than the moments computed according to the ACI Code equation. Lower
observed values were recorded with the lcad angle of 22—1/2o (i.e.,
the weak axis moment was greater than the strong axis moment). Speci-
mens with load angles of 22-1/2o on both oval-shaped and rectangular
columns had observed cracking moments closer to the computed values
for strong axis bending. For other load angles the observed moment
was significantly higher than the computed moment for strong axis bend-

ing. The differences were greater for weak axis moment on all specimens.

For uniaxial moment tests, the computed cracking moment was also

less than the observed value. Observed and computed cracking moments

of uniaxial test specimens are shown in Figs. 4.7 to 4.12. The graphs
show that the slope of the M-® relationship began to decrease at a
moment between the observed and computed cracking moments. This
observation indicates that the ACI Code equation underestimates the
cracking moment, and the crack should occur before becoming a visible
crack, so that the observed values were too high. In this report the

cracking moments which are shown in Figs. 4.13 to 4.30 are the moments
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TABLE 4.6 CRACKING MOMENT

fr= 7.5/?2 Mcr N frIg/yt* Mcr observed**
Specimen Mcr strong Mcr weak Mcr'strong Mcr weak
psi k-in. k-in. k-in. k-in.
RC-1 524.2 35.4 19.7 24.7 75.5
RC-2 523.4 35.3 19.6 113.0 139.8
RC-3 541.4 36.5 20.3 69.6 82.4
RC-4 539.8 36.4 20.2 180.7 100.7
RC-5 531.0 35.8 19.9 16.3 91.2
RC-6 498.9 33.7 18.7 24.2 65.7
RC-7 494.7 33.4 18.6 36.0 61.9
RC-8 500.1 33.8 18.8 81.5 33.8
RC-9 514.2 34.7 19.3 116.9 50.0
c-5 4941 37.9 27.2 97.5 65.8
C-6 497.3 38.2 27.3 128.8 103.8
c-7 497.7 38.2 27.4 141.5 129.0
c-8 517.4 39.7 28.4 40,2 100.7
c-9 505.0 38.8 27.8 54.0 134.3
c-10 498.9 38.3 27.4 49.0 161.4
c-11 521.2 40.0 28.6 147.3 75.7
c-12 535.1 41.1 29.4 179.0 117.2
c-13 551.0 42.3 30.3 257.8 118.7
c-1 518.7 - 28.5 - 93.3
c-2 500.9 - 27.5 - 140.2
c-15 554.6 - 30.5 - 143.0
c-3 496.7 38.1 - 177.5 -
C-4 521.3 40.0 - 395.9 -
Cc-14 556.9 42.8 - 360.0 -

*From ACI Code, Sec. 9.5.2.2,

**Moment at load stage when first visible crack was noticed.
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which were determined from ram pressures at the load stage at which

the first visible crack was detected during the test.

Behavior of column stiffness as influenced by various param-
eters is discussed on the basis of the M-¢ plots in Figs. 4.7 to 4.30.
The influence of the thrust level and the load angle on the stiffness
of columns will be discussed together with a comparison between the
slope of the M~¢ curve and the computed EI values before and after

cracks occurred.

Influence of Thrust Level. Before cracking, the nominal EI

for bending about the strong axis agrees well with the initial slope
of the measured M-¢ curve for both rectangular-shaped and oval-shaped
columns in every level of thrust, as shown by virtually identical
slopes to observed and analytical graphs at precracking stages. The
slope of the M-¥ curve decreased before reaching the observed cracking
moment, as has been discussed, suggesting that cracking occurred and
column stiffness decreased before visible cracks could be seen. The
same phenomenon was observed for the weak axis stiffness of specimens
under low thrust (O.ZP0 - 0.35Po) on both rectangular columns and

oval-gshaped columns with uniaxial eccentricities.

For weak axis bending, as thrust levels increased for rectangu-
lar columns, the nominal uncracked stiffness for bending about the weak
axis suggested stiffer EI values than the measured values, The initial
slope of the M~ curve for bending about the weak axis on the oval-
shaped columns was smaller than the nominal EI value at every thrust

level.

For the cracked section, the strong axis stiffness for columns
of both shapes showed obvious similarities between measured and esti-
mated values of EI, although the computed EI was greater than the slope
of the M- curve after cracking. The slope of the M« curve for bending
about the weak axis after cracking showed that the nominal EI over-
estimated the section stiffness for both rectangular and oval columns

at all levels of thrust.
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Influence of Nominal Load Angle. The nominal initial

stiffness (uncracked EI) for strong axis bending showed good agree-
ment with the initial slope of M- curves at large moment angles. The
load angle as used here refers to the angle for which the tangent
equals the ratio of moment about the strong axis and weak axis. At a
moment angle of 22-1/20, the measured slopes deviated from the nominal
EX and showed stiffness softer than calculated, especially on oval-
shaped columns. For weak axis stiffness of biaxial bending specimens,
no unique influence of load angle could be detected. All specimens
showed that the initial slope of M-¢® curves was smaller than the com-
puted EXI. However, better agreement was found for the weak axis

uncracked stiffness of the uniaxial test specimens.

The observation of stiffness after cracking indicated reason-
able agreement between measured and nominal EI values for bending
about the strong axis. For weak axis values of EI, a smaller stiffness
was detected from the slope of the measured M-¢ curves than from the
estimated cracked section stiffness. Specimens with small load angles
(22-1/20) showed better agreement than specimens with large load angles,
although no consistent relationship was apparent between load angle and

the cracked section changes in EI.

The investigation of the stiffness of the columns could be sum-
marized with the observation that before cracking, the nominal uncracked
section was in good agreement with the EI measured from M-¢ curves
especially for strong axis bending. The observed cracking moment was
higher than the moment at which the initial slope of the M-¢» curve
started to change to indicate softer or cracked section stiffness.

After cracking, the nominal stiffness calculation overestimated the
EI of the section, but it was within reasonable agreement for strong
axis bending. Better results were observed for columns under low
thrust than under high thrust. The nominal uncracked section EI gave

a better estimation for columns with larger moment angles than those
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with the smaller load angles. No relationship between stiffness and

locad angle could be observed after columms cracked.

M-¢ Curve by BIAMZ?B A computer program called BIAM2 prepared

by Redwine38 was used to predict the strength and stiffness behavior

of rectangular columns in this test program. BIAM2 was coded to analyze
pinned end columns loaded with biaxial bending with equal end eccentrici-
ties. For consistency of the analytical results and experimental results
BIAM2 was modified to use the parabolic-rectangular stress-strain curve
for concrete as previously described. A grid system to discretize the
cross section was also used. Failure of columns was defined analyti-
cally to occur when the maximum strain of 0.0035 on any section was
reached. The loading input was specified so that the axial thrust was
applied first before the eccentricities on each major axis were made

to increase gradually at a constant load angle the same as in the test
specimen. Total thrust was maintained constant throughout., The toler-
ance limit for deflection, which was the control of convergence in
BIAM2, was increased from 0.01 in. at early loads up to 0.05 in. near
failure in order to improve the rate of convergence and the computa-

tional stability of the analytical model.

Analytical moment-curvature relationships for the midheight
section of each rectangular column were plotted with dashed lines in
Figs. 4.13 to 4.21. The M-¥ plots from BIAM2 followed almost the same
path as the observed M-~p curves. The failure moments at midheight from
BIAM2 were lower than the observed moments in every specimen with the
maximum difference not greater thanm 20 percent. The convergence proce~
dure did not allow BIAM2 to approach the same ultimate limit as that
observed. A summary of the end eccentricities from BIAM2 at failure
is shown in Table 5.8 for a comparison with the results from the actual

test.



CHAPTER 5

MEMBER STRENGTH

5.1 1Introduction

The strength analysis in Chapter 4 considered only the cross-
sectional strength of the columns. Data were taken from short column
tests or from the position in which maximum moments were measured. No
slenderness effect was included in the investigations that were
reported in Chapter 4. Member strength is differentiated from cross

section strength in that slenderness affects member strength,

In this chapter the strength of columns subjected to biaxial
bending will be discussed with length effects included. 1In general,
the methods that use moment amplification, such as required in the
ACI Building Code,1 will be employed in order to predict slenderness
effects. Member strength as determined according to an analysis that
employs the reciprocal thrust equation (Eq. 4.9) will be used in con-
junction with moment magnification as recommended by the ACI Building
Code for biaxial bending in slender columns, in order to compare
analytic predictions with test results. Data from Dr}.'sdale14 and
from Wu47 for short term loading tests of slender columns will be
included in the data as well as a set of analytical medel column
variable lengths, but with the same cross~sectional properties as the
rectangular columns of this test report, Recommended procedures for

handling the effect of length will conclude this chapter.

5.2 Moment Magnification Required
in the ACI Building Code

When a column is loaded with end eccentricity, supplementary
moment must be considered along the column length in addition to the

moment due to end eccentricity alone, 1In Fig, 5.1 a column with equal

155
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D
1

Column Deflected Shape Moment Diagram

"Fig. 5.1 Column subjected to end eccentricities

end eccentricities, e, is shown subjected to a moment Pe at each end.
Secondary moments Py due to lateral displacements of the column axis
will increase the magnitude of moment between column ends. The deflec-
tion y is greatly dependent on the overall length, so that this

secondary effect is called a "long column effect'.

If cross section strength is uniformly constant, the capacity
of a column will decrease as length increases, because between the ends
of the column the secondary moment Py must be sustained in addition to
the end moment Pe. The amount of secondary moment Py increases with

length.

The three curves A, B, and C in Fig. 5.2 show graphs of maximum
(midheight) moment and thrust in short, intermediate, and long columns

under the same end eccentricity e.

Curve 1 illustrates the strength interaction diagram for failure
thrust and moment at all cross sections. When the thrust moment condi-

tion at any point along the column intersects the interaction curve,
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- \/A, Short Column

B, Intermediate Column

«—Curve (O

Moment

Fig. 5.2 Interaction diagram and load-moment
patterns of columns

material failure (defined as the stage at which crushing and spalling
of concrete occurred on extreme compression fibefs) of the column can
be assumed to have occurred. The load-moment curve A for a very

short column is a straight line, For intermediate length columns, the
auxiliary or secondary moments Py increase nonlinearly as P increases,
and the columh fails at an axial load lower than the short column
capacity, because of the larger moment at the failure section. Long
column instability is represented by curve C, which suggests that a
maximum thrust cannot be sustained until moments increase enough to

reach the interaction diagram for strength.

The ACI Building Code (ACI 318-71)1 requires that secondary or
Py moments be considered for the design of slender compression members.
The Code groups columns into three slenderness categories based on the
slenderness ratio k{/r (effective length of column to radius of gyra-

tion of cross section). A short single curvature column is said to
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have a slenderness ratio less than 22 for which the effect of
slenderness may be neglected. At the other extreme, for all com-
pression members with kf/r greater than 100, a special analysis that
includes the influence of axial load, variable moment of inertia or
member stiffness and the affect of lateral deflection on force and
moment must be made. Columns with k{/r less than 100 can be designed
using the design axial load and a magnified design moment, Mc’ defined

as (quoted from ACI 318-71, Chap. 10)

Mc = 5M2 5.1
C
where 5 = ___E_F_ 1.0 5.2
u
1 -
2 ¢Pc
and P = = EIZ 5.3
(kg)
in which
Mc = Moment to be used for design of compression members
M2 = Value of larger design end moment on compression member
§ = Moment magnification factor
Cm = A factor relating the actual moment diagram to an
equivalent uniform moment diagram
Cm = 0.6 + 0.4 MI/MZ > 0.4
M1 = Value of smaller design end moment on compression member,
positive if member is bent in single curvature, negative
if bent in double curvature
Pu = Axial design load in compression member
¢© = Capacity reduction factor
Pc = Critical load
EI = Flexural stiffness of compression members
ky = Effective length of compression members

In this report the columns to be analyzed are assumed to be

pinned at their ends and subjected to equal end moments that create a

deflected shape that is called symmetric single curvature. Single
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curvature simply indicates curvature of a single direction as opposed
to double curvature which would involve a point of inflection between
ends of the column. The factor Cm in Eq. 5.2 is 1.0 for symmetric
single curvature, and the effective length coefficient k is also 1.0.
Since laboratory studies will involve measured material strengths and
dimensions, no capacity reduction factor ¢ should be applicable, and
©® will be taken as unity. The moment magnification factor 8 should be
applied to moments that have been computed on the basis of a first
order frame analysis. First order analysis is an analysis performed
without considering secondary effects of lateral displacements of

joints or members.

For members subjected to bending about both principal axes,
the ACI Building Code requires the amplification of moments in both
directions, each & factor determined as if bending occurred separately
about each axis. With Cm, k, and © equal to 1.0, the magnified

factor can be expressed as

1
) = T-7p /p 5.4
u
2
where P = m El 5.5
c LZ

There may be differences in the cross section stiffness factor EI
values for each axis of bending and corresponding differences in &

values for each axis of bending.

5.2.1 EI Computed from ACI Code. The value of compression

member flexural stiffness EI, as specified by the ACI Building Code1

may be taken either as

E1I
<& E1
5 s's
EI = —/—mMmM— ACI (10-7)
d
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EI
-c8
or Bl = —2:2 ACI (10-8
1 +8, ~8)
where Bd = the sustained load factor which for short term loading
can be taken as zero
Ec = the modulus of elasticity of concrete
= £7 i
57OOOA'/fc in psi
ES = the modulus of elasticity of steel
I = the gross moment of inertia of the concrete cross section
8 about the centroidal axis of bending
I = the moment of inertia of reinforcement about the cen-

troidal axis of bending of the member cross section

The discussion in the Commentary of the ACI Building Code2 and
in Chapter 14.18 of Ref, 18 recommends that for small percentages of
reinforcement (pt about 0.01 to 0.02), Eq. ACI(10-8) gives a good
approximation of EI, while Eq. ACI(10-7) is preferable for larger per-
centages of reinforcement. The approximate EI from these two equations
when compared to the theoretical EI computed from the slopes of thrust-
moment-curvature functions gives a variety of results. The variety,
however, tends always to predict EI softer than that measured. Since
the EI values as computed from these equations are lower than measured
values, the size of 5 should be larger than those determined from
tests or from more accurate estimates of EI. No published discussions
of the moment magnifier for columns under biaxial bending have been
found. The study in this chapter includes the observation of moment

magnifiers for columns under compression with bending about both axes.

Table 5.1 contains calculated values that were used to deter-
mine EI from Building Code Eqs. (10-7) and (10-8) applied to the cross
section properties of all 24 specimens in the test series reported
here. Because the percentage of steel pt was only 0.011, Eq. (10-8)
gives larger values of EI than Eq. (10-7) for both strong axis and

weak axis bending.

5.2.2 Moment Magnifiers According to ACI Code Compared with

Tests. With the stiffness listed in Table 5.1, the critical loads, Pc,



161

TABLE 5.1 FLEXURAL STIFFNESS ACCORDING TO ACI BULIDING CODE
Specimen Data ACI Ey. (10-7) ACI Eq. (10-8)
£ 1 1 Strong Axis Weak Axis £l - Echfs"':’Is £ - Ec*s’!z‘j
Specimen < s A
ksi E I EI g1 E1 Strong Weak Strong Heak
< g 58 [ 53
=, =, ind , 5 5 a8 5 gy pd
c-8 3933 é & 1.66x10 5,406x%10 5.623%X10°  1,534410° 6,.644X10° 2.162%1C
£-5 CIEE TN - 1.586 5.159 5.473 1.4858 6. 364 2.064
['ad
c-11 3961 & - 1.873 5,462 5.647 1.541 6.692 2.1
K L]
Iy -~
c-9 3838 2 2 1.621 = 5,273 = 5.543 1.508 6.484 2.109
- vt
c~6 3779 - . 1.596 ~ 5,191 x 5.493 1.491 6,384 2.076
~ ~r — [l
C-12 4067 e & 1.718 3 5.588 " 5.737 1.571 6.872 2,235
-l el ,,; ~
[N [
Ll ~
c-10 3792 o 1,602 5.210 5.505 1.495 6.408 2,084
o8 -
c-7 37s2 ¥ - 1.597 5.19% 5.495 1.492 §.388 2.078
I [ ]
c-13 4187 @ s 1.769 5.753 5,839 1.604 7.076 2,301
—Im i—(m
-, ., 6 5 . 5 R 5 ; 5
RC-1 398 ¢ & 1.210210 3.735x10 3.752¢107  1.1074107 4.840x10° 1.494x¢10
RC~2 978 ¢ o 1.208 3.729 3.748 1.106 4,832 1.492
RC~& 4103 < - 1.246 3.847 3.824 1.129 4,984 1.539
[ 1]
v
RC-5 4035 & 3 1.226 ° 3.783 o 3,784 1.117 4.904 1.513
RC-3 4l . o L230 : 3.857 x 3.832 1.131 5.000 1.543
RC-9 3908 ¢ 2 1.187 = 3.664 2 3.706 1.093 4,768 1.466
- - —- -
= °
RC-6 792 g g‘ 1.152 3.555 3.636 1.071 4,608 1.622
RC-7 3759 ’l" . l.ie2 3.524 3.616 1.065 4,568 1.410
RC-8 3801 = 3 1.135 3.563 3.642 1.073 4,620 1.425
- Ed
-3_ «r
£ £
™~ -
e e 5 -5 5
c-1 3942~ - - 5,416x10 - 1.536x10 - 2.166%10
ca1s en1s ‘ . - 5.791 - 1.611 . 2.316
c-2 3807 35 B - 2 5.231 e - 1.499 - 2.092
- - x x
RN -t = 5
> o (3 = ol B 3 5
c-3 315 & £ 1.595¢100 - ] 5.491x10C - 6.380x10 -
=~ ~5 - 2 .
c-16 4233 & + 1.788 - 5.877 - 7.15
c-4 3962 o o 1.67a - 5.649 - 6.636 -
~F -
& E]
@ 3
-] ]

1

1

I
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of each column for bending about each axis were computed according to
Eq. 5.5 and a length kg = 76.25 in. The moment magnifier for bending
about each axis was then computed using Eq. 5.4 with Pu taken as the
thrust that measured from ram pressure at failure. Moment magnifiers

computed by Eqs. ACI (10-7) and (10-8) are listed in Table 5.2,

Also included in Table 5.2 are the measured compression force,
the end eccentricities and midheight eccentricities for both axes of
bending. The maximum deflection and consequent maximum secondary moment
was expected at midheight due to symmetrical loading. The measured
moment magnifier was taken as the eccentricity at midheight divided by

end eccentricity.

max Puemax “max
6test M “Pe T e 3.6
end u end end
isons b A 6  in Table 5.2 indi
The comparisons between ACT and test ™ Table 5.2 indicated

that with low compression forces ACI Eq. (10-8) gave some unsafe values

of magnifier ( /b ¢ < 1.0), the lowest values underestimating weak

5ACI tes

axis magnifiers by 22 percent. For the higher axial loads,

ACI Eq. (10-7) exaggerated the values of weak axis magnifier by as
much as 80 percent, while ACI Eq. (10-8) gave a maximum value only

27 percent higher than that which was measured. The comparison
showed that for strong axis moment magnifiers both ACI Eq. (10-7)

and ACI Eq. (10-8) gave good agreement with the test values. The
ACI/étest for strong axis was 0.997 for ACI Eq. (10-7)

and 0.971 for ACI Eq. (10-8), with the standard deviation of 0.041 and

mean value for &

0.037 respectively. Less favorable results were found for weak axis
ACIlétest was 1.171 for

ACI Eq. (10-7) and 0.94 for ACI Eq. (10-8), with the standard devia-
tion of 0.244 and 0.103, respectively.

moment magnifiers. The mean value of 5

The shape of the column also had some influence on the moment
magnifier comparison. It can be seen that larger ratios of
A 8 i h
ACI/'test were obtained from rectangular shaped columms than those
from the oval shaped columns at the same thrust level.



TABLE 5.2 MOMENT MAGNIFICATION FACTOR

(Measured from Test and Computed Based on ACI Building Code)

Moment Magnifier &

Test Data L} 8 5
ACI’ test "AC]/ test

s . f' . Stron?l:x;s Ecc. Heuk(t:l; Ecc. About Strong Axis About Weak Axis Pu/P A:o:: [ACL Eq. (10-7)] {ACI . (10-8)]
pecimen S u — - = ACl Fq. ACl Eq. Test ACI Eq. ACi Eq. Test ° 8 Strong Weak Strong Weak
(psl) (klpe) End Mldheight End  Mldheight (10-7) (10-8) (10-7) (10-8) (degree) Axis Axis Axis Axis
c-8 4760 57.1 1.036 1.128 2,128 2.940 1.064 1.053 1.089 1.281 1.184 1.382 0.2025 22-1/2 0.977 0.927 0.567 0.857
c-5 4340  49.5 2.644 2.796 1.403  2.295 1.056 1.048 1.057 1.244 1.165 1.273 0.1896 45 0.999 0.977 0.991 0.915
C-11 4830 53.2 4.35% 4.735 1.787  2.420 1.059 1.049 1.088 1.255 1.168 1.354 0.1863 67-1/2 0.973 0.927 0.564 0.863
c-9 4534 96.2 0.614 0,704 1.414 1.861 1.114 1.096 1.147 1.602 1.367 1.316 0.3552 22-1/2 0.971 1.217 0.955 1.039
c-6 4396  92.2 1.594 1.859 1.066 1.595 1.110 1,093 1.166 1.573 1,354  1.496 0.3492 45 0.952 1.051 0.937 0.905
c-12 5091 99.2 2. 2,451 1.000 1.568 1.113 1.093 1.150 1.592 1.3%4 1.568 0.,3324 67-1/2 0.968 1.015 0.950 0,864
C-10 4425 138.2 0.315 0.413 0.767 1.360 1.174 1.146 1.311 2.196 1.641 1.773 0.5207 22-1/2 0.895 1.239 0,874 0.926
c-7 4403 139.7 1.018 1.182 0.616 1.157 1.176 1.148  1.161 2.230 1.656 1.878 0.5286 45 1.013 1.187 0,989 0.882
c-13 5397 152.5 1.529 1.759 0,599 0.968 1.182 1.145 1.150 2.273 1.640 1.616 0.4863 67-1/2 1.028 1.407 0.996 1.015
RC-1 4886 119.2 0.399 0.508 1.038 1.543 1.230 1.170 1.27) 2,735 1.887 1.487 0.4719 22-1/2 0.966 1.839 0.919 1.269
RC-2 4871 120.3 0.893 1.031 0.744 1.281 1.23) 1.172  1.155 2,785 1,905 1.722 0.4776 45 1.067 1.617 1.015 1.106
RC-4 5181 128,8 1.514. 1.777 0.499 0,989 1.248 1.180 1,174 3.048 1,972 1,982 10,4853 67-1/2 1.063 1.538 1.005 0.995
RC-5 5012 87.1 0.390 0.463 1.127  1.84S 1.157 1.117  1.187 1.850 1.513  1.637 0.3373 22-1/2 0.975 1.130 0.941 0.924
RC-3 5210 9.3 1.211 1.360 1.026 1.59% 1.170 1.114  1.12) 1.830 1.498 1.554 0.3529 45 1.042 1.178 0.992 0.964
RC-9 4700 85.8 2,222 2.535 0.723  1.189 1.158 1.119  1.141 1.861 1,526 1.645 0.3514 67-1/2 1.015 1.131 0.981 0.928
RC-6 4425 53.9 0.888 0.968 1.860 2.705 1.096 1.074 1.090 1.421 1.287 1.454 0.2326 22-1/2 1.006 0.977 0,985 0.883
RC-7 4350 40.4 1.935 2,144 2,141 3.00} 1.070 1.055 1.108 1.288 1.203  1.403 0.1768 45 1.014 1.071 0.952 0.857
RC-8 4446  40.4 4.349 4.716 1.632 2.141 1.070 1.054 1.084 1.285 1.200 1.312 0.1736 67-1/2 0.987 0.979 0.972 0.915
c-1 4783 0.7 - - 1.990 2.728 - - - 1.304 1.198 1.371 0.2150 0 - 0.951 - 0.874
C-15 5468 109.2 - - 0,999 1.778 - - - 1.665 1.385 1.780 0.3450 0 - 0.935 - 0.778
c-2 4460 135.6 - - 0.692 1.136 - - - 2,140 1.618 1.642 0.5090 - 1.303 - 0.985

c-3 4386 58.4 5.782 6.375 - - 1.067 1.057 1.103 - - - 0.2230 90 0.967 - 0.958 -

C-14 5514 119.2 3.377 3.813 - - 1.136 1.109  1.129 - - - 0.3740 90 1.006 - 0.982 -

c-4 4831 155.8 2.416 2.723 - - 1.194 1.159 1.127 - - - 0.5470 90 1.059 - 1.059 -
Mean 0.9973 1.1712 0.9707 0.9402
Standard Devlation 0.0405 0.2437 0.0368 0.1030

€91
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5.3 Method of Computing Measured EI

Having observed that for the biaxial bending problem in
columns, the moment magnifier procedure of the ACI Code with simpli-
fied relationships for flexural stiffness gave inconsistent results,
alternate relationshibs were considered. The stiffness EI was over-
estimated for low axial loads and underestimated at high axial loads
and appeared to be shape sensitive. The ACI Commentary2 and the

discussion of Ref. 18 included thrust levels higher than the axial

loads in this test program.

The measured moment at the end and the moment at midheight of
the column were calculated. The measured moment magnifiers for the
two major axes were computed. The reverse procedure was then used in
order to calculate a flexural stiffness of each column under the

actual loading conditions. Rearranging Eq. 5.4 gives:

P

u _ 1
7 = l-3 5.7
[
PU
or P = — 5.8
c 1 l
T A
2
But P, = il EI
I3
P 2
s0 El = u1°£_2 5.9
l-g T

The measured EI at the failure load stage was determined with
Eq. 5.9. Table 5.3 shows intermediate calculations in this procedure
and the resulting value of EI. Also tabulated in Table 5.3 is the
ratio between EIg and the computed EI, where EIg is the gross flexural
stiffness based on the product of concrete stiffness and the gross
moment of inertia of the cross section. This EIg ratio was plotted

against the axial load ratio Pu/Po in Fig. 5.3. The data are rather



TABLE 5.3 FLEXURAL STIFFNESS COMPUTED FROM TEST DATA

Strong gxis Weak A;is EIg/EI
Specimen F /PP 5 P_=—] EI 8 P=— EI
v § < l-g ; v € 1-3 “2 Strong Axis Weak Axis
kips in. kips = k-in| in. kips k-1in’, ‘
c-8 0.2025 57.1 1.089 698.7 4.116)(105 1.382 206.6 1.217x105 4,035 4.440
c-5 0.1896 49.5 1.057 917.9 5.407 1,273 230.8 1.360 2.933 3.793
c-11 0.1863 53.2 1.088 657.7 3.874 1.354 203.5 1.199 4,319 4.539
c-9 0.3552 96.2 1.147 750.6 4.422 1.316 400.6 2.360 3.666 2,234
c-6 0.3492 92.2 1.166 647.6 3.815 1.496 278.1 1.638 4.183 3.169
c-12 0.3324 99.2 1,150 760.5 4.480 1.568 273.8 1.613 3.835 3.464
Cc-10  0.5207 138.2 1.311 582.6 3.432 1.773 317.0 1.867 4.668 2,791
c-7 0.5286 139.7 1.161 1007.4 5.934 1.878 298.8 1.760 2.691 2,952
c-13 0.4863 152.5 1.150 1169.2 6.888 1.616 400.1 2.357 2.568 2.441
RC-1 0.4719 119.2 1,273 555.8 3.274 1.487 364.0 2.144 3.696 1.742
RC-2 0.4776 120.3 1.155 896.4 5.281 1.722 286.9 1.690 2.287 2.207
RC-4 0.4853 128.8 1.174% 869.0 5.119 1.982 260.0 1.532 2.434 2.919
RC-5 0.3373 87.1 1,187 552.9 3.257 1.637 223.8 1.318 3.764 2.870
RC-3 0.3529 94.3 1.123 861.0 5.072 1.554 264.5 1.558 2.465 2.476
RC-9 0.3514 85.8 1.141 694.3 4,090 1.645 218.8 1.289 2.902 2.843
RC-6 0.2326 53.9 1.090 652.8 3.846 1.454 172.6 1.017 2.995 3.496
RC-7 0.1768 40.4 1.108 414.5 2.447 1.403 140.6 0.828 4.676 4.256
RC-8 0.1736 40.4 1.084 521.4 3.072 i.312 169.9 1.001 3.760 3.559
c-1 0.215 60.7 - - - 1.371 224.3 1.321 - 4.100
c-15 0.345 109.2 - - - 1.780 249.2 1.468 - 3.945
c-2 0.509 135.6 - - - 1.640 347.5 2.047 - 2.555
c-3 0.223 58.4 1.103 625.4 3.684 - - - 4,330 -
c-14  0.374 119.2 1.129 1043.2 6.145 - - - 2,910 -
C-4 0.547 155.8 1.127 1382.6 8.145 - - - 2.022 -

9T
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and

scattered, but a trend of the relationship between EI /EI
g’ “"measured

P /P can be observed,
u' o

A linear regression analysis was made using PU/P as an inde-
o]

as a dependent variable. The

pendent variable and EI /EI
g’ “measured

results showed that the relationship between EI /EI and P /P
g' “measured u' o
could be approximated.
E = -
Ig/EImeasured 5.017 4.958 Pu/Po 5.10
or approximately
EI
El 5.11

I - S
5(1 - Pu/PO)

With the adjustment of EI using Eq. 5.11, when Pu/Po is less
than 0.5, the computed value of EI will be less than that computed
from ACI Eq. (10-8). The values in Table 5.2 show that for higher
levels of thrust, ACI Eq. (10-8) gave a safe estimation of moment
magnifiers, so ACI Eq. (10-8) may be applied for the thrust levels
greater than 0.5. The dotted line graph of Fig. 5.3 indicates that a
value 6 instead of 5 in the denominator of Eq. 5.1l provides a lower

bound for all data.

Table 5.4 contains a list of the stiffness and moment magnifier
values computed from Eq. 5.11 plus the ratios between computed and

measured values. The ratio 5E 4 8ave a mean value of

5
q. 5.11/ measure
0.994 for strong axis and 1.033 for weak axis, with the standard devia-
tion of 0.0296 and 0.1087, respectively. The overall average ratio on

both axes was 1.0135, with a standard deviation of 0.08

5.4 Column Strength Analysis Including
Length Effects Using Moment
Magnifier Method

5.4.1 Specimens in This Test Program. The 24 specimens of

this series of tests consisted of intermediate length columns with



TABLE 5.4 MOMENT MAGNIFIER BASED ON FLEXURAL STIFFNESS FROM EQ. 5.11

EI =
5.11
5(1 - Pu/Po)
)
Strong Axis Weak Axis 5.11/6test
Specimen P P /P

u w0 By Posgy Msan Prese FTsiin Posaun %5011 Crese  Stromg  Weak
c-8 57.1 0,2025 4.166x105 707.2 1.088 1.089 1.355x105 230.0 1.330 1.382 0.999 0.962
c-5 49.5 0.1896 3.914 664 .4 1.081 1.057 1.273 216.1 1.297 1.273 1.023 1.019
c-11 53.2 0.1863 4,112 698.0 1.083 1.088 1.338 227.1 1.306 1.354 0.995 0.965
c-9 96.2 0.3552 5.028 853.5 1.127 1.147 1.636 277.7 1.530 1.316 0.983 1.163
c-6 92.2 0.3492 4,905 832.6 1.125 1.166 1.595 270.8 1.516 1.496 0.965 1.013
c-12 99.2 0.3324 5.147 873.7 1.128 1.150 1.674 284.2 1.536 1.568 0.981 0.980
c-10 138.2 0.5207 4,799 814.6 1.204 1.311 2.174 369.0 1.599 1.773 0.918 0.902
c-7 139.7 0.5286 6,776 1150.3 1.138 1.161 2.204 374.1 1.596 1.878 0.980 0.849
Cc-13 152.5 0.4863 6.887 1169.1 1.150 1.150 2.240 380.2 1.670 1.616 1.000 1.033
RC-1 119.2 0.4719 4,582 777.8 1.181 1.273 1.415 240.2 1.985 1.487 0.928 1.335
RC-2 120.3 0.4776 4,625 785.1 1.181 1.555 1.428 242.4 1.901 1.722 1.023 1.104
RC-4 128.8 0.4853 4,842 821.9 1.186 1.174 1.495 253.8 2.030 1.982 1.010 1.024
RC-5 87.1 0.3373 3.700 628.1 1.161 1.187 1.142 193.9 1.816 1.637 0.978 1.109
RC-3 94.3 0.3529 3.863 655.8 1.168 1.123 1,192 202.3 1.873 1.554 1.040 1.205
RC-9 85.8 0.3514 3.660 621.3 1.160 1,141 1,130 191.8 1,809 1,645 1,018 1,100
RC-6 53.9 0.2326 3.002 509.6 1.118 1.090 0.9265 157.3 1.521 1.454 1.026 1.046
RC-7 40.4 0.1768 2,775 471.1 1.094 1.108 0.8562 145.3 1.385 1,403 0.987 0.987
RC-8 40.4 0.1736 2,795 474.5 1.093 1.084 0.8623 146 .4 1.381 1.312 1.008 1.053
c-1 60.7 0.2150 - - - - 1.3799 234.2 1.350 1.371 - 0.985
c-15 109.2 0.345 - - - - 1.768 300.1 1.572 1.780 - 0.883
c-2 135.6 0.509 - - - - 2.131 361.7 1.600 1.642 - 0.974

c-3 58.4 0,223 4,106 697.0 1.091 1.103 - - - - 0.989 -

Cc-14 119.2 0.374 5.712 969.6 1.140 1.129 - - - - 1.010 -

Cc-4 155.8 0.547 7.391 1254 .7 1.142 1.124 - - - - 1.016 -

891
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two types of cross-sectional shapes. Nine rectangular shaped columns
and nine oval shaped specimens were tested under biaxial bending
moment and compression. The slenderness ratio 4/r of rectangular
shaped columns was 27.5 for strong axis bending and 50 for weak axis
bending, if r is taken as the radius of gyration of the uncracked

transformed cross section. The oval shaped columns had slenderness
ratios of 24,3 and 43 in the strong and weak axis directions,
respectively, if r were taken again as the radius of gyration of the

uncracked transformed section,

Moment magnifiers computed from the use of ACI Eq. (10-7) and
ACI Eq. (10-8) were used to magnify the measured end eccentricities
at the failure thrust stage. Then column strength according to these
eccentricities was computed with the reciprocal load equation dis-
cussed in Chapter 4 as rewritten below:

1 1 1 1
p. - p T p T TP 2.12
i x y o

Also determined were the column capacities using moment
magnifiers as proposed by Eq. 5.11. The computed strengths are
listed in Table 5.5 for comparison with the actual test loads. The
measured end eccentricities and moment magnifiers were already shown

in Table 5.2 and Table 5.4.

From Table 5.5, the computed strength of C-5 is included
even though the capacity was felt to be larger than the maximum
test value, as previously mentioned in Chapters 4. The
strength of C-5 was the only overestimated strength obtained from
the use of Eq. 5.11. The EI value from ACI Eq. (10-7) gave good
results at lower levels of axial load, but grossly underestimated the
strength at higher thrusts. The use of ACI Eq. (10-8) gave good
approximations at high axial loads, but overestimated the strength
when the thrust was low. Overoptimistic strength estimates cannot
be tolerated for design purposes. The EI values from Eq. 5.11 resulted
in estimates of member strength closer to measured values and also

predicted less strength than any of the observed values except the



TABLE 5.5 COLUMN STRENGTH USING MOMENT MAGNIFIER METHOD

0LT

P t t/Pi
Specimen Pt ¢ es P /P0
ACI Eq. ACT Eq. , . |, es ACI Eq.  ACI Kq. 5 11 u
(10-7)  (10-8) Hd- 2 (10-7) (10-8) - -
C-8  58.74 65.26  55.77 57.1 0.972 0.875 1.024 0.2025
C-5  59.49 63.12  56.76 49.5 0.832 0.784 0.872 0.1896*
c-11  49.86 52.84  47.53 53.2 1.067 1.007 1.119 0.1863
C-9  74.99 88.84  78.93 96.2 1.283 1.083 1.219 0.3552
c-6  85.93 95.22  87.84 92.2 1.073 0.968 1.050 0.3492
c-12  91.25  101.18  92.78 99.2 1.087 0.980 1.069 0.3324
c-10 101.31  126.37 128.32 138.2 1.364 1.094 1.077 0.5207
c-7 106.31  126.47 129.00 139.7 1.314 1.105 1.083 0.5286
c-13 114.96  137.91 136.61 152.5 1.327 1.106 1.116 0.4863
RC-1  51.24 85.17  80.14 119.2 2.326 1.400 1.487 0.4719
RC-2  74.39  102.78 102.80 120.3 1.617 1.170 1.170 0.4776
RC-4  89.89  114.37 112.86 128.8 1.433 1.126 1.141 0.4853
RC-5  80.41 99.26  82.27 87.1 1.083 0.877 1.059 0.3373
RC-3  83.45 98.17  81.58 94.3 1.130 0.961 1.156 0.3529
RC-9  77.92 86.43  78.92 85.8 1.101 0.993 1.087 0.3514
RC-6  52.11 59.54  47.35 53.9 1.034 0.905 1.138 0.2326
RC-7  44.03 48.06  39.97 40.4 0.918 0.841 1.011 0.1768
RC-8  39.12 41.35  36.57 40.4 1.033 0.977 1.105 0.1736
Mean 1.2448 1.0275 1.1242
Standard Deviation 0.324 0.218 0.104

*#C-5 did not fail according to Sec. 4.4.
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aforementioned C-5 result. The average ratio between Pt and Pi

est
using Eq. 5.11 (excluding Specimen C-5) was 1.124 with a maximum value

of 1.49 and a minimum of 1.01, the standard deviation was 0.104. ACI

Eq. (10-8) gave better mean values of Ptest/Pi than did Eq. 5.11, but

with more scatter in the data (mean = 1.028 and standard deviation =
0.218). ACI Eq. (10-7) gave the worst comparison. The maximum ratio
for Specimen RC-1 involved a measured weak axis magnifier that was

33 percent greater than that predicted by the use of Eq. 5.11 for EI.

5.4.2 Slender Columns Tested by Others. Thirty-three slender

column test results reported by others were analyzed, twenty-two
columns were from the experiments reported by Drysdale14 and eleven
reported by Wu.47 All columns were square columns with the same
slenderness ratio of g/r = 105 and with approximately a 3 percent
reinforcement ratio. The details of cross section properties and

loading conditions for these columns are given in Appendix A.

Another set of imaginary columns named RC-1A to RC-9A were
modeled in a computer aided analysis, so that they had the same
dimensions and reinforcement as the rectangular specimens described
in Chapter 2, but with the length increased to 108 inches. The
longer length gave a slenderness ratio of 75 about the weak axis. The
computer program BIAM2 written by Redwine38 was used to provide the
analytical predictions for these columns. The nominal loadings for
the column were input so that there were three load levels, O.ZPO,
0.4?0, and 0.6?0, and nominal moment angles of 22-1/2, 45, and
67-1/2 degrees for each load level. These imaginary column loadings
were the same as the proposed loadings of the actual test program
reported here, The concrete strength f; = 4500 psi was assumed to

possess a parabola-straight line stress-strain relationship.

(a) The Computation of Column Flexural Stiffness. Flexural

stiffness of columns described in Sec. 5.4.2 were computed using

ACI Eq. (10-7), Eq. (10-8), and Eq. 5.11. The calculated stiffnesses
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are tabulated in Table 5.6, as well as the critical load P computed
c

from Eq. 5.5.

From Table 5.6, the stiffnesses computed from ACI Eqs. (10-7)
and (10-8) and Eq. 5.11 can be called conservative, because
each gives very large moment magnifiers 5. With the "soft" EI values
and large slenderness ratio, the computed critical loads shown in
Table 5.6 were lower than the actual failure loads reported from
experiments. This indicates that the moment magnifier method cannot
be applied to these long columns under biaxial bending unless an
appropriate adjustment for the stiffness of columns can be made.
These results do indicate that design applications of ACI Eq. (10-7),
(10-8), or Eq. 5.11 would give "too safe'" results at least for the

very slender columns.

(b) Strength of Columns Predicted by BIAM2. The strength of

Drysdale and Wu specimens were computed analytically using computer
program BIAMZ.38 For a very slender column such as the Drysdale14
and Wu47 specimens, the analysis converged slowly. It was noted that
the control tolerance limit for deflections which were the control

of convergence in BIAM2 needed to be increased up to 0.1 in. in

order to let the program converge. With the control deflection
tolerance of 0.1 in., the analytical results of strength of Drysdale
and Wu specimens are shown in Table 5.7. Comparing to the test
strength, BIAM2 gave a reasonable result although for the 6-1/4 and

7-1/2 in. column from Wu specimens the program overestimated the

strength of the columns as much as 17 percent.

The BIAM2 analysis also was used to predict the strength
of rectangular columns tested in this report. Input for that study
was adjusted so that the axial thrust could remain constant at the
failure thrust while the eccentricities about each principal axis
were increased gradually until failure was predicted. The results
from BIAM2 for RC-1 to RC-9 are recorded in Table 5.8. The predicted

member strength from BIAM2 showed good agreement with test results,



TABLE 5.6 FLEXURAL STIFFNESS

. T2 2 1
Specl B/P ACL KEq A:: E T oo LR
pecimen 5q . q. ACL . ACI . P
° (10-7) (1o-8y B4+ 311 (10_§§ (10_§§ Bq. 5.11 u ®act 107 Cacz 10-8 Os.11
z10° x10°  x10° k k K K
Drysdale Specimens
AlC 0.2647 1.0808 06,7406  0.5036 43,83 30.04 20.43 37.6 7.035 i *
AlD 0.2842 1.0803 0.7396 0.5166 43,81 29.99 20,95 40.3 12,481 dok L
A2A 0.2788 1.0794 0.7377  0.5114 43,78 29.92 20.74 39.4 9,995 ok Aok
A2B 0.2831 1.0794 0,7377 0.5145 43.78 24,92 20.87 40.0 11.582 ok ek
A3C 0.2650 1.0869 0.7529  0.5122 44,08 30.53 20,77 38.5 7.900 *k ok
A3D 0.2588 1.0869 0.7529 0.5079 44,08 30.53 20.60 37.6 6.802 ek e
RiC 0.2565 1.0622 0.7035 0.4731 43.08 28.53 19.19 34.0 4.744 *k ok
BLD 0,2595 1.0622 0.7035 0.4750 43.08 28.53 19.26 3.4 4,963 *k *h
B2C 0.2761 1.0702 0.719 0.4969 43.40 29.18 20.16 37.7 7.614 *k *k
B2D 0.2761 1.0702 0.719  0.4969% 43.40 29,18 20.16 37.7 7.614 ke %
C2A 0,2791 1.0798 0.7387 0.5123 43.79 29.96 20,78 39.5 10,207 *k **
C2B 0.2769 1.0798 0.7387 0.5108 43.79 29.96 20.72 39.2 9.540 wok L
C3A 0.2815 1.0916 0.7622 0.5304 44.27 30.91 21,51 41.6 16,581 ok T
C3B 0.2686 1.0916 0.7622  0.5211 44,27 30.91 21.13 39.7 9.687 ke *%
ElC 0.2296 1.,0808 0.7406 0.4807 43.83 30.04 19.50 32.6 3.903 *%k ek
EID 0.2365 1.0808 0.7406  0.4850 43.83 30,04 19.67 33.6 4,284 ke ek
E2A 0.2177 1.1043 0.787¢ 0.5034 44.79 31.94 20,41 33,7 4.039 ik dek
E2B 0.2158 1.1043 0.7876  0.5022 4479 31.94 20.37 33.4 3,932 ok dke
FlA 0.3965 1.0920 0.7631 0.6322 L4 29 30.95 25.64 58.7 *k Fk *hk
F1B 0.3762 1.0920 0.7631  0.6117 44.29 30.95 24.81 55.7 *x i i
F24 0.3799 1.0957 0.7704  0.6212 b4, b4 31.24 25.19 57.0 *% el wk
FZB 0,3799 1.0957 0.7704  0.6212 bh. 464 31.24 25.19 57.0 ke el i
Wu Specimens
1 0.2291 0.3424 0.239%4 0.1553 25.01 17.48 11.34 19.0 4.161 ke *k
2 0.2207 1.0300 0.7566  0.4854 41.77 30.68 19.68 31.8 4.187 L sk
3 0,1973 2.5539 1.8566 1.1565 67.14 48.81 30.40 45.0 3.033 12.811 ok
4 0.2065 5.4252 3.8681 2.4374 99,05 70.62 44 .50 69.0 3,296 43,593 sk
10 0.2117 1,0300 0.7566 0.4799 41.77 30.68 19.46 30.5 3.706 170,444 *F
16 0.2093 1.0286 00,7538  0.4767 41,72 30.57 19.33 30,0 1,560 53.632 e
16 0.2239 1.0220 0.7406  0.4771 41.45 30.04 19.35 31.3 4,084 ok i
26 0.1783 0,3615 06,2776 0,1689 26 .40 20,27 12.33 18.3 3.259 10.289 hex
27 0.1871 1.0%04 0.8774 0.5397 44,22 35.58 21.89 33.5 4,125 17,106 kit
28 0.1700 2.6968 2,1425 1.2907 70.90 56,23 33.93 47.8 3.069 6.604 bl
29 0.1535 5.7123 4.4421 2.6238 104.30 81.10 47.90 62.7 2,507 4,408 *h
*AC1 Fq. (10-7) EI = ECISIS + les **Pu > PC
ACT Bq. (10-8) EI = Eclglz,s

Eq. 5.11 EL = EL/5(1 - R/R)

€Ll
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TABLE 5.7 STRENGTH OF COLUMN FROM BIAM2, DRYSDALE AND WU SPECIMENS

End Eccentricity P P P
Specimen - . (fmm“ test) (BIA;;z) .PBI_AMZ.
X y test
in. in. kips kips
Drysdale*
fé = 4000 psi 0.707 0.707 37.0 36.9  0.997
0.383 0.924 40.0 36.9  0.923
0.574 1.386 38.6 30.0 0.777
0.191 0.462 57.0 51.9 0.911
Wu
1 0.662 0.662 19.0 19.1 1.005
26 0.563 0.975 18.3 19.5 1.066
2,10,16  0.885 0.885 31.8 31.6 0.99%4
27 0.750 1.300 33.5 32.5 0.970
3 1.110 1.110 45.0 49.7 1.104
28 0.938 1.625 47.8 51.0 1.067
4 1.325 1.325 69.0 73.75 1.069
29 1.125 1.950 62.7 72.0  1.148

%A1l Drysdale specimens were the same dimension

with small variation of concrete strength

(3500 psi to 4400 psi).

Concrete strength of

4000 psi was assumed in the input data for

BIAM2 to represent all the Drysdale specimens.




TABLE 5.8 STRENGTH OF RC COLUMNS FROM BIAM2

i

Specimen  Axial Load Test End Ecc. BIAM2 End Ecc, ECCBIAMZ
(kips) 8 Cw €s v Ecctest
RC1 119.2 0.399 1.038 0.320 0.8336 0.802
RC2 120.3 0.893 0.744 0.880 0.7330 0.985
RC3 94.3 1.211 1.026 1.250 1.0600 1.032
RC4 128.8 1.514 0.499 1.480 0.4869 0.978
RC5 87.1 0.390 1.127 0.440 1.2707 1.128
RC6 53.9 0.888 1.860 0.890 1.8663 '1.002
RC7 40.4 1.935 2.141 1.970 2.1808 1.018
RC8 | 40.4 4.349 1.632 4.090 1.5378 0.940

RCY 85.8 2,222 0.723 2.260 0.7345 1.017

A
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involving a maximum overestimate of 13 percent and an underestimate
not greater than 20 percent of the observed strength. For an overall
comparison with Wu, Drysdale, and the rectangular columns reported
here, the average ratio between analytical strength and test strength
was 0.997 with the standard deviation of 0.091 indicating good

agreement,

5.5 Member Strength Using Deflection Limit

It has been observed that the moment magnifier method for
column strength is not an accurate approach for the biaxial bending
problem with very slender columns. In this section another study is
reported using the available experimental data to substantiate an

alternate approach.

With seventeen of the Drysdale and Wu specimen tests on
square columns subjected to equal eccentricities on both axes (i.e.,

load angle = 450), a backward computation was performed as follows:

(1) The test strength was taken as Pi’ and Po was computed from
reported section properties. Px and Py could be determined
from the reciprocal load equation.

1 1 1 1
P. - p T T " P (5.12)
i X y )

1f Px == Py (Load angle = 457)

2 1 1
P = P + P 5.13
X i 0
e -2
Px 1 + 1 5.14
Pi Po

{2) With the calculated Px’ the failure eccentricity e, could be

located on the interaction diagram for the section.

(3) Assuming that the column fails at midheight where the maximum

moment was expected, the deflection at midheight becomes



TABLE 5.9 COLUMN STRENGTH OF DRYSDALE AND WU SPECIMENS
WITH EQUAL END ECCENTRICITIES

1

1 + L e - f!:fﬁ!ﬂ - Eltest EELQ:Z

Specimen Pu Po Pu Po Px e €ond L, T A/L total l’/l’o 6 P/Pc PC (x105) EItest
AlC 37.6 142,05 29.73 59.46 2.050 0.707 0.0086 0.01216 0.2647 2.90 0.655 57.4 1.4153 0.7637
AlD 40.3 141.8 31.38 62.76 1.886 0.707 0.0076 0.01075 0.2842 2.668 0.625 64.48 1.5899 0.6795
A2A 39.4 141.3 30.81 61,26 1.930 0.707 0.0078 0.01103 0.2788 2.730 '0.636 62.15 1.5325 0.7043
A28 40.0 141.3 31.17 68.34 1.897 0.707 0.0078 0.01103 0.2831 2.683 0.627 63.80 1.5731 0.6862
A3C 38.5 145.3 30.44 60.88 2.039 0.707 0.0085 0.01202 0.2650 2,884 0.653 58.96 1.4538 0.7476
A3D 37.6 145.3 29.87 59.74 2,098 0.707 0.0089 0.01259 0.2588 2.967 0.663 56.71 1.3983 0.7773
B1C 34.0 132.55 27.06 54,12 2.154 0.707 0.0093 0.01315 0.2565 3.047 0.672 50.60 1.2477 0.8513
B1D 34.4 132.55 27.31 54.62 2,123 0.707 0.0091 0.01287 0.2595 3.003 0.667 51.57 1.2716 0.8353
B2C 37.7 136.55 29.54 59.08 1.964 0.707 0.0081 0.01146 0.2761 2,778 0.640 58.91 1.4526 0.7367
B2D 37.7 136.55 29,54 59.08 1.964 0.707 0.0081 0.01146 0.2761 2.778 0.640 58.91 1.4526 0.7367
1 19.0 82.95 15.46 30,92 1.808 0.662 0.0099 0.01400 0.2291 2.731 0.634 29.97 0.4104 0.8343
2 31.8 144,06 26.05 52.10 2.477 0.885 0.0102 0.01442 0.2207 2,799 0.643 49.46 1.2196 0.8445
3 45.0 228.1 37.59 75.18 3.518 1.110 0.0124 0.01754 0.1973 3.440 0.709 63.47 2.4141 1.0579
4 69.0 334,21 57.19 114,38 4,039 1.325 0.0117 0.01655 0.2065 3.048 0.672 102.68 5.6238 0.9647
10 30.5 144 .06 25.17 50.34 2,603 0.885 0.0110 0.01556 0.2117 2.941 0.660 46.21 1.1394 0.9040
16 30.0 143.31 24,81  49.62 2,639 0.885 0.0112 0.01584 0.2093 2,981 0.665 45.11 1.1123 0.9248
16 31.3 139.81 25.57 51.14 2.459 0.885 0.0101 0.01428 0.2239 2.779 0.641 48,83 1.2040 0.8488

8.1
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(4) Moment magnification was taken as the ratio ex/eend

(5) Computed flexural stiffness: EI was computed using the same
procedure described in Sec. 5.3 (the reverse procedure with

Eqs. 5.7 - 5.9).

(6) Values of A/L for both axes were computed using A from step 3
to find the total A/L, A/L total = ,\/(AX/L)Z + (Ay/L)2

A step-by-step computation is tabulated in Table 5.9. The
study on these slender columns subjected to biaxial bending then was
considered with two different column behavior parameters, the column

stiffness EI and a deflection limit at failure, A/L.

5.5.1 Column Stiffness EI. Table 5.9 contains the list of

EI values computed backward from failure loads of Drysdale and Wu
square columns loaded by equal eccentricities on both principal axes.

A ratio between EIte and EI computed according to ACI Eq. (10-7) was

st
found and also tabulated in Table 5.9. A linear relationship between

the ratio EI /EI and the relative thrust level was found to be
10-7 test
EI
10-7
1 = 1.6(1 - 2 Pu/Po) 5.15
test
EI
or EI = 10-7 5.16

test 1.6(1 - 2P /P )
u' o

Using Eq. 5.16 to compute the moment magnifier for specimens
with unequal eccentricities, the reciprocal load method for column
strength then was applied in order to calculate the column strength
P.. The calculated strength P, and the actual strength P for

1 1 test
Drysdale and Wu slender columns are shown in Table 5.10. The results
obtained using Eq. 5.16 for the flexural stiffness showed inconsistent
accuracy of the computed strength. The result of using Eq. 5.16 was

good for calculating the strength of columns under equal eccentricities.

For Drysdale columns with unequal moments, Eq. 5.16 overestimated the.
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TABLE 5.10 COLUMN STRENGTH BY MOMENT MAGNIFIER METHOD
USING EQ. 5.16
EI
BT = 10-7
. - P
1.6(1 - 2B /P )
Specimen £ " Eccentricity 6 Pi
P c o e, ey Px Py P1 ?ust ?u“
Drysdale Specimens
AlC 3890 142.05  0.707 0.707 2.8244  60.43 60.43 38.4 37.6 1.021
AlD 3880 141.8 0.707 0.707 2.7408 61.62 61,62 39.4 40.3 0.978
A2A 3860 141.3 0.707 0.707 2.7558 61,21 61.21 35.1 39.4 0.992
A2B 3860 141.3 0,707 0.707 2,7339 61,55 61.55 39.3 40.0 0.983
A3C 4020 145.3 0.70? 0,707 2,9145 60,46 60.46 38.2 38.5 0.992
A3D 4020 145.3 0,707 0.707 2.9272  60.29 60.29 38.0 37.6 1.011
BlC 3510 132,55 0.707 0,707 2.5970 60.08 60,08 38.8 34.0 1.141
BID 3510 132,55 0.707 0.707 2.5948 60,11 60.11 38.9 3.4 1.131
B2C 3670 136.55 0.707 0.707 2,6477 60,98 60.98 39.3 37.7 1.042
B2D 3690 136.55 0.707 0.707 2.6477 60,98 60,98 39.3 37.7 1.042
(73 3870 141.55 0.383 0.924 2.7595  B6.42 50.90 41.4 39.5 1.048
c28 3870 141.55 0,383 0.924 2,7706  86.27 50.75 41.3 39,2 1.053
{34 4120 147.8 0.383 0.924 2,9153 87.90 50.71 41.1 41.6 0.988
€38 4120 147.8 0.383 0.924 2.9761  87.04 49,95 40.4 39.7 1.018
EIC 3890 142.05 0.574 1.386 2.8071 69.40 34.19 27.3 32.6 0.837
EID 3890 142,05 0.574 1,386 2.8281  69.09 33,89 27.1 33.6 0.807
E2A 4400 154.80 0.574 1,386 3.1222 70,18 30.82 24.9 33.7 0.739
E2B 4400 154.8 0.574 1.386 3.1073 70.40 31.02 25.0 33.4 0.749
FlA 4130 148,05 0,191 0.462 1.7825 124.61 100,06 88.8 58.7 1.513
F18 4130 148,05 §.191 0.462 1.9930 122,29 95.89 84.4 55.7 1.515
P2A 4210 150.05 0.191 0.462 1.9724 124,19 97.57 85.9 57.0 1.507
F28 4210 150.05 0.191 0.462 1.9724 124,19 97,57 85.9 57.0 1.507
Wu Specimens
1 4060 82.95 0.662 0.662 2.9289 29,33 29.33 17.8 19.0 0.937
2 4060 144 .06  0.885 0.885 3.1285 48.03 48,03 28.8 31.8 0.906
3 4100 228,10 1.110 1.110 2.8503 81.36 81.36 49.5 45.0 1.100
4 4140 334,21 1.325 1,325 2.8920 118.71 118.71 72.2 69.0 1.0486
10 4060 144,06 0.885 0.885 3.0636 48.83 48,83 29.4 30.5 0.964
16 4030 143.31 0.885 0.885 3.0216 49.13 49,13 29.6 30.0 0.987
16 3890 139.81 0.885 0.885 3.0051 48,31 48.31 29.2 31.3 0.933
26 5460 102.64  0.563 0.975 3.4898 34.64 16.11 12.3 18.3 0.672
27 5460 179.06 0.750 1.300 4.1396 48.88 22,25 16.7 33.5 0.499
28 5480 281.23  0.938 1.625 3.4716 94,47 45.72 3.5 47.8 0.724
29 5460 408.46 1,125 1.950 2.9994 154,48 84.20 62.9 $2.7 1.003




TABLE 5.11 COLUMN STRENGTH USING DEFLECTION CONTROL--DRYSDALE AND
WU SPECIMENS WITH UNEQUAL END ECCENTRICITY

A
Specimen p/e AfL Total T!cc% A L1 Y] . End !“:‘e E“‘: Ecc_.}_p;i— P, Py v r, v, Pl/r
x y x y x y
C2A 0.2791 0.0125 0,265 0.640 0.004782 0.011549 0.383 0.924 1.1290 2.7257 83,89 4R 45 141.55 39.2 39.5 0.992
C2% 0.2769 0.0125 0.265 0.640 0.004782 0.011549 0,383 0.924 1.1290 2.7257 B3.89 4B.45 141.55 39.2 9.2 L.000
CH 0.2815 0.0125 0.265 0,640 0.004782 0.011549 0.383 0.924 1.1290 2.7257 87.44 50.78 147.8 40.72 41.6 0.979
cis 0.2686 0.0125 0,265 0.6A0 0.004782 0.011549 0.383 0.924 1.1290 2.7257 B7.44 50.28 147.8 40,72 19.7 1.026
FlC 0.2295 0.0140 0.398 0,961 0.005357 0.012935 0.574 1.386 1.4097 3.4038 75.00 40.00 142.05 31.96 32.6 0.980
F10 0.2365 0.0140 0,398 0.961 0.005357  0.012935 0.574 1.386 1.4097 3.4038 75.00 40.00 142,05 31.96 33.6 0.951
E2A 0.2177 0.0140 0.398 0.961 0.0053.57 0.012935 ' 0.574 1.386 1.4097 3.4038 R1.19 41.74 154.8 33.54 33.7 0.995
F28 0.2158 0.0140 0.398 0.961 0.005357 0.012935 0.574 1.386 1.4097 3.4038 81.19 41.74 154.8 33.54 33.4 1.004
F1A 0.3965 0.0095 0.132 0,320 0.003623 0.008782 0.191 0.462 0.7561 1.8320 103,18 66.48 148,05 55.62 58.7 0.948
FiR 0.3762 0.0095 0.132 0,320 0.00362) 0.008782 0,191 l 0.462 0.7561 1.8320 103.18 66.48 148.05 55.62 55.7 0.999
F2A 0.3799 0.0095 0.132 0.320 0,003623 0.008782 0.191 0.462 0.7561 1.8320 106.56 67.28 150.05 56.30 57.0 0.989
F28 0.379% 0.,0095 0.132 0.320 0.003623 0.,008782 0,191 0,462 0.7561 1.8320 104.56 67.28 150.05 56.30 57.0 0.988
26 0.1783 0.0175 0,520 0.900 0.008748 0.015157 0.563 0,975 1.5800 2.7370 40.88 23.42 102,64 17.42 18.3 0.952
27 0.1871 0.0175 0.520 0.901 0.008748 0.015157 0.750 1.300 2,11469 3.6645 70.54 39.18 179.06 29.3 33.5 0.875
28 0.1700 0.0175 0.520 0,901 0,008748 0.015157 0.938 1.625 2.6324 §.5617 111.39 62.56 281.23 46.72 47.8 0.977
29 0.1535 0,017S 0.520 0.901 0.008748 0.015157 1.125 1.950 3.1589 5.64140 162.38 92.37 40B.46 68.79 62.7 1.097
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column strength on columns with small eccentricities and under-
estimated the column strength on columns with large eccentricities.
The equation underestimated the strength of columns tested by Wu, but
better agreement was found on large cross section columns than on the

small cross section columns.

5.5.2 Deflection Limit at Failure. A study on the deflec-

tion limit of long columns was conducted. In Table 5.9, a relation-
ship between A/L total and Pu/P0 was observed, with the average of
Pu/Po at 0.2703 and A/L total equal to 0.01183 for Drysdale specimens.
Average values Pu/P0 were 0.2141 in the Wu specimens, with A/L total
equal to 0.01546. These values indicated that as the relative thrust

level increased, the failure deflection A/L decreased.

An analyéis of results for columns subjected to unequal eccen-
tricities was made to study whether the deflection control would give
satisfactory results. A deflection control was assigned for each
principal axis proportional to the e/r ratio (ratio of eccentricity to
radius of gyration) of the cross section about the centroidal axis

such that the total amount of deflection should equal A/L total

(i.e., J(AX/L)2 + (Ay/L)2 = A/L total). The Drysdale and Wu test
data with unequal end eccentricities of columns were grouped accord-
ing to their relative thrust level. An arbitrary deflection limit
A/L total was assigned to each group on a trial and error basis, from
which the most satisfactory deflection for each group is shown in
Table 5.11. Values of AX/L and Ay/L were computed and also the mid-
height eccentricities e = End Ecc + A. The reciprocal load method
was applied and the computed strength Pi was tabulated. The assigned
A/L total for each group was changed until a result was obtained for

which Pi was within 5 percent of the reported failure load Pu'

From the results in Table 5.9 and Table 5.11, the average
value of Pu/Po and the deflection limit A/L total assigned for each

group was found, and the average values are listed in Table 5.12 below.
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Graphs displaying A/L total as a function of the inverse of
Pu/Po are shown in Fig. 5.4, and the linear relation between these two
variables can be observed. Using the same procedure, values of A/L
total were assigned to other specimens with different slenderness
ratios. By trial and error an assigned A/L was selected to give a

a computed value of Pi nearest to the actual test P .
u

TABLE 5.12 LOAD LEVEL Pu/P0 AND ASSIGNED
DEFLECTION LIMIT

1

P /P A/L total P /P
u o u o
0.1722 0.01750 5.807
0.2140 0.01546 4.673
0.2249 0.01400 4.446
0.2703 0.01183 3.700
0.2765 0.01250 3.617
0.3831 0.00950 2.610

The assigned A/L total and Pu/Po for each specimen are also
plotted in Fig. 5.4. For each group of slenderness ratios, a linear
regression analysis was made, and the relationship between A/L total

and Pu/Po were computed as follows:

A/L total = 0.00293 + 0.00259 P }P for specimens with 5.17(a)
uwo g/r 4 = 105
A/L total = 0.00274 + 0.00193 7 }P for specimens with
u o z/rweak = 75 5.17(b)
A/L total = 0.00372 + 0.00107 F—%F— for specimens with
u' "o z/rweak = 52.8 5.17(c)
A/L total = 0.00340 + 0.00078 ? }P for specimens with
u "o z/rweak = 45.8 5.17(d)

From Eq. 5.17(a) to Eq. 5.17(d) it was found that the first
term of the right-hand side of these equations changed only slightly,
and thereafter the first term was assumed to be constant. The coeffi-

cient of the second term varied in the proportion of 4/r For

weak®
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specimens with different 4/r ratios, the ratio of the coefficients of
different groups was close to the ratio of the corresponding slender-
ness ratios. Eq. 5.18 was then proposed, using the most conservative
values from Eq. 5.17(a) to Eq. 5.17(d) (the coefficient that would
give the largest A/L total):

1 1 z/rweak
/P 105
u' o

A/L total = 0.00372 + [0.00270 P 5.18
Table 5.13 shows the calculation of column strength using

Eq. 5.18 for all 59 specimens reported in this chapter. The compari-
son between Pi and the actual Pu was calculated as Pi/Pu and also has
been shown in Table 5.13. The mean value of Pi/Pu for all specimens
was 0.9397, with the standard deviation of 0.046 and the coefficient
of variation of 0.049. It should be noted that there were a few
specimens that gave unconservative results; i.e., Pi/Pu > 1.0. The
maximum Pi/Pu was 1.13, or a 13 percent overestimate, while the mini-

mum was 0.848, or a 15 percent underestimate of the actual strength.

In conclusion it has been demonstrated that a method of
strength analysis more consistent than the moment magnification analy-
sis for the length effect of reinforced concrete columns under biaxial
bending can be developed in terms of a deflection limit, A/L total, as
in Eq. 5.18. The method of assigning a deflection limit to calculate
an additional bending moment or eccentricity has been called an addi-

tional moment or complementary moment method.26’49

The deflection limit is a function of axial load level Pu/Po
and slenderness ratio kg/r. For each axis of bending, the limit is
proportioned according to the g/r ratio on the weak axis and the strong
axis. The term relative eccentricity was defined as the ratio of the
eccentricity to the radius of gyration of the same direction of bend-
ing, so the relative skew angle was the fictitious angle between the rela-
tive eccentricities. The eccentricity to be calculated for estimating
the column strength is simply the end eccentricity plus the deflection

A from the deflection limit. With this procedure, the approximation



TABLE 5.13 COLUMN STRENGTH USING DEFLECTION CONTROL
() Total = 0.00372 + [0.00270 3 /P —m] Té's'
Eeely Ay fnd Bec End Fec + &

Apecimen L 878 Toral o, o, FY Ky e e Tt . : P r’ L L ™ LI
rC-64 0.3 0.01336) 1.11239 0.82938 0.010717 0.007989  2.890 1.197 6.087  2.7%0 n. 79.5 2346 44,7 4%, 92 0.953
RC-7A 0.1 0.013363 0.57737  L.019% 0.00648% ©0.011682 1,500 1.500 7.201 2.762 125.2 52.8 6.6 461 46.92 0.%0
*c-8A 0.1  0.01336) 0.25%8 1.17880 0.00199% 0.013013  0.66) 1.600 0.987  3.006 178.8 46.6 234.6 43.9 46.91 0.93%
KC-34 0.4 0.008541  0.52733  0.¥971  0.006850 0.905101 1.370 0.567 2.110  1.11s 1287 111, 2%4.6 8.9 93.84 0.958
-3 8.5 0.008541  0.27129 043201 0.004147 0.0N7487 0110 .70 1158 1.51% 170.6 105.8 23466 90.% 9).84 0.964
RC-9A 0.4 0.008581 0.12597 0.34747  0.00191% 0.00MIF  D.327 0.790 0.535  1.689 202.0 96.9 2%.8 90.8 93.84 0.968
ne-1A 0.6  0.00693& 0.2463% 0.1R369  ©.0M53%9 0.00A143  0.640 0.265 1.2 0.713 166.7 183,35 3.6 121.3 140.76 0.904
nC-24 0.6  0.006934 0.11932  £.I1483  0.003387 0.0060K2 0,310 0.310 0.676  0.96% 1969 142.9 4.6 126.9 140.76 0.902
WC-4A 0.6 0.00693 0.05103 0.22176 O0.0M3SS O.MEIST  0.133 0.320 0.301  1.0%0 295.% 1364 2344 129.7 140.76 0,921
RC-6 0.2326 0.009357 0.3818  1.2890  0.0024% 0.009238 0.8 1.060 1.075  2.%64 172.1 385 231,16 53.8 53.9 . 0,99
rc-¥ 0.1768 0.011399  0.7468  1.4837  0.005114 0.010187  1.933 6 .31 .918 1.3 ar.y 2r.19 40.0 40.4 0.9%
RC-§ 01736 0.00I541  1.6760  1.1310  0.0M9363 0.006461  &.349 1,632 .07 1.17% 52.1 5.8 232.11 35.6 40.4 0.881
rc-3 0.337) 0007745 0.1301  0.7810  0.001462 0.007606  0.)90 127 0.501  1.r07 223.8 0N & 257.61 9.4 87.1 1.130
RC-3 0.3579 0.007967  0.4661  0.7110  0.00414% 0.006328  1.211 1.026 1.527 1.5 1760 119.6 266.33 96.6 94.3 1.024
xC-9 © 3516 0.00758% 0.8553  0.3010  0.00634¢ 0.003833  2.222 0.723 2. 1.ms 1n.a 144.3 243,55 8.6 85.8 0.986
RC-1 0.4730 0.006%93  0.15% 0.7119) 0,001376 0.006448 0.)99 1.038 0. 306 1.5 1187 12.3 251.93 105.2 19.2 0.88)
®C-2 0.4776 0.006563 0.34)7  0.5156  0.003660 O0.D0S461  0.89) 0.744 1AL 1160 182.1 1.2 251.28 1.6 120.3 0.964
RC-4 ©.6853 0.006510  0.382F 0.3 0.005608 O.ONIIFE 1,514 0.499 1.951  0.719) 152.7 181.0 265.722 12004 1268 0.935
c-8 0.7075 0.009336  ©0,3552  1.2789  0.000552 0.009188  1.036 2 1131 2.829 207.0 59.6 281 .40 55.4 57.1 0.970
c-11 0.1863 0.010062  1.4926  1.073%  0.008151 0.003863  4.1%4 (W3 6,976  2.234 1.6 835 28487 67.2 53.2 0.887
c-9 0.3552 0.007036 0.1105  0.6856  0.00106%5 0.006726  0.614 1161 0771 1.55% 222.6 108.9 0.1 100.3 96.7 1.043
c-¢ 0,349 0.007093  0.546%  0.6506  0.006603 0.005)36  1.39% 1,066 1.965  1.477 161.1 116.7 263.30 91.1 92.2 0.988
c-12 0.)326 0.007261  ©.7306  0.6010  0.005609 0.004615  2.13% 1.000 7.3  1.3%2 1% .1 180, 297.85 97.5 99.2 0.9
c-10 0.3207 0.0035982 0.109C  0.4609  0.00136% 0.003826  0.M5 0.767 0.41%  1.211 238.2 1360 266,76 128.6 138.2 0.9%1
c-7 0.3286 0.005%8 ©0.349%6  0.3702  0.006084 N.004324 .08 0.616 1.329  0.96 189.2 151.5 263.65  121.% 139.7 0.917
c-13 0.4863 0.006142 0.5262 03600  0.005087 0003471  (.579 0.599 1915 0.484 192.5 195.7 NINE 140.6 152.% 0.922

Dryedeie’s Specimems
Are 0.2647 0.013920, 0.488 0.488 0.009P4) 0.007643  0.707 0.707 2.263  2.26) 55.9 55.9 142.05 LN ] 1.6 0.926
BID 0.2842 0.013220 ©.480 0.488 0.009348 0.0091%8  0.707 0.107 2.165  2.16% 51.2 57.2 181.8 .. 40.3 0. 98K
A2M 0.2700 0.013404  0.438 0.488 0.009478 0.00%470  0.707 0.707 2.186  2.186 $6.7 6.7 141.3 35.% 39.4 6.901
A 0.2831 0.013257  0.488 0.488 0.0M376 0009376 0.707 0.707 2.169  2.169 s7.0 57.0 141.9 35.1 4«0.0 a.89)
AN 0.2650 0.013909  0.488 0.488 0.0098)3 0.009835  0.707 0.707 2261 2,241 57.0 57.0 145.3 35.5 8.5 0.922
sic 0.256% 0.016246  D.488 0.488 0.010073  0.010073  0.707 0,707 2718 2.8 52.1 52.¢ 132.5% 32.4 .0 0.953
8D 0.259% 0014123 0.488 0.400 ©.00998% 0.009988  0.707 o, ror 2.265  2.16% 52.3 52.3 132,55 32.6 M. 0.948
e 0.2761 0.01Myy  0.488 0.488 0.009%3 0.009545  0.707 0.107 .196  2.19% $6.9 5.8 136 5% 4.3 3. 0.910
s 0.2761 0.013499 0,608 0,480 0.009545 0.009543  0.707 0.707 2.196 2,19 Sh.M 548 116.5% . 11,7 0.910
A 0.1389 0,01415) 0 488 0.488 0.01000% 0.010008 0.707 0.707 2.268 1,268 $6.5 56.% 145.3 5.1 .. 0.9
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TABLE 5.13 (Continued)

Eccfr I End Ecc End Bee + B
Specinen v i 4/L Total e 4 P P P P PP
P LAPS ex!rx ey[r AL x ALy ®ond % ®ond y e e’ x y o 1 i £t u
Drysdale's Specimens (Continued)
C2A 0.2791 0.0133% 0.265 0.640 0.005124 0.012375 0,384 0.924 1.183 2.855 82.0 46.9 141.5% 37.8 19.% a.957
Cc28 0.276% 0.01371 0.265 0.640 0.005154 0.012446 0,384 0.924 1.188 2,866 81.8 46,7 141.55 37.6 39.2 0.959
D2t 0.281% 0.013311 0,265 0.640 0.005092 0.012298 0.384 0,924 1.118 2.0842 85.6 48.7 147.80 3%.3 41.6 0.945
€3 0.2686 0.013772 0,265 0.640 0,005269 0.0127%4 0,384 0.924 1.206 2.90% 8.6 41.8 147.80 38.5 39.7 0.970
£1c 0.2295 0.015485 0.398 0.961  0.005925 0.014307 0.574 1.386 1.498 3.618 72.4 7.3 162.05 9.8 32,6 a.314
ElD 0.236% 0.015136 0.398 0,961 ©0.005792 0.013984 0.574 1.386 1.478 J.568 72.9 7.9 142.05 3.2 3186 0.89%
E2A 0.2177 0,016122 0.398 0.961 0.006169 0.014895 0.5%4 1.386 1.5% 3,710 7.3 .6 154.80 30.2 33.7 0.8%6
E2B 0.2158 0.016232 0,398 0,961 0.006211 0.014997 0.5% 386 1.543 3.726 7.1 37.4 154. 80 30.1 331.5 0.3501
Fli 0.3965 0,010530 0.132 0.320  0.004015 0.009734 0.191 L4562 0.817 1,981 100.4 63.1 148,05 2.5 58.7 0,894
F1B 0.3762 0,010897 0.132 0.320 0.004155 0.01007% 0.191 0.462 0.83% 2.0% 99.3 62,0 148.05 51,4 55.7 0.923
F2A 0.3799 0.010827 0.132 0.320 0,0041298 ©.010009 0.191 0.462 0.835 2.02) 100.8 &3.0 150.05 52.2 57.0 0.918
F28 0.379% 0.010827 0,132 0,320 0.004129 0.01000% 0.191 0.462 0.835 2.02) 100.8 £3.0 150.0% 52.3 57.0 0.918
¥Wu's Specimens
1 0.2291 0.015505 0.611 0.611  0.010%4 0.010964 0.662 0.662 1.937 1.937 29.3 29.3 82.95 17.8 19.0 0.937
2 0.2207 0.015954 0.614 0.614 0.011281 0.011281 0.885 0.885 2,645 2,645 50.0 50.0 144,06 30.2 31.8 0.950
3 0.1973 0.017405 0.615 4,615  0.012307 0.012307 1.110 1.110 3.494 3.494 75.6 5.6 228.10 45.3 45.0 1.007
4 0.2065 0.016795 0.612 0.612  0.011876 0.01187%6 1.325 1,325 4.086 4. 0B& 113.4 113.4 334.21 68.3 69.0 0.990
10 0.2117 O0.016476 0.614 0.614 0.011649 0.011649 0.885 0.885 2,702 2.702 49.0 49.0 144.06 29.5 30.5 0.967
16 0.2091 0.0165620 0.614 0.616  0.011752 0.011752 0.885 0.885 2.18 2.8 48.5 48.5 143.31 9.2 30.0 0.973
16 0.2239 ©.01577¢9 0.614 0.6164  0.011157 0.0111%7 0,885 0.885 2.625 2.635 48.8 48.8 13%.81 29.6 3.2 0.946
26 0.1783 0,018853 0.520 0.900  0.009437 0.016333 0,561 0.975 1.660 2.8% 39.4 21.9 102.84 16.3 18.3 0.891
27 0.1871 0.018151 0.520 0.901  0.009073 0.015711 0,750 1. 300 2,165 3.752 63.3 7.9 179.06 28.4 33.5 0,848
28 0.1700 0.019502 0.520 0.901  0.009798 0.016977 0.938 1.625 2.836 4.914 105.4 56.2 281.23 42.1 47,8 0,881
% 0.153% 0.021310 0.520 0.901 0.010602 0.018370 1.125 1.950 3.590 6.221 147.8 76.8 408.46 57.7 62.7 0.920
’l
£ P 35.6443
R
Ra. of data %9
Mean  0.9397
Standard devistion 0.0462
Coeffictent of varfation 0.D492
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of member strength of pinned-end columns with equal end moments that
cause columns to deflect in single curvature can be estimated more
accurately than the approximation of strength derived only on the

basis of moment magnifiers and the strength of cross sections. The

moment magnifier method was found less effective for the estimation
of column strength in biaxial bending because of its inconsistency in

the calculation of column stiffness.

5.6 Procedure to Calculate Column
Strength Using Deflection
Control

A column can be analyzed for capacity to support a given
condition of thrust and moment about each principal axis using the
deflection control procedure. A step-by-step outline of the procedure

is described as follows:

1. Compute the end eccentricities under the load conditions given,
and then calculate the relative eccentricity e/r about each

principal axis.

2, Find the relative skew angle according to the relative

eccentricities.

3. Use Eq. 5.18 and compute the total deflection ratio, A/L, for the

relative thrust level Pu/PO.

4. Proportion the deflection ratio components to each principal axis

according to the relative skew angle in step 2.

5. Determine the deflection limit A about each axis by multiplying
A/L values from step 4 by the column length.
6. The failure eccentricity for each axis is the end eccentricity

plus the deflection limit in step 5.

7. Apply the failure eccentricity in step 6 to the uniaxial
interaction diagram and locate the uniaxial failure thrust

values Px and Py for each axis.
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8. Use the Reciprocal Load Equation (Eq. 5.12) to predict the

strength of the column Pi'

9. Compare Pi to the given thrust Pu. If Pi > Pu the column is safe
under the loading condition given. If Pu > Pi the column is not
strong enough to carry the loads assigned.

An example for the above procedure is illustrated step by

step, using Specimen RC-1:

The details of the problem

Failure thrust 119.2 kips
Strong axis moment 47.6 k-in.
Weak axis moment 123.8 k-in.
fé 4.886 ksi
fy 65.5 ksi
Column length 76.25 1in.

Column dimension and reinforcement were shown in Chapter 2
(i.e., 5 in. by 9 in. rectangular column with 10 - 8mm diameter

deformed bars).

Strength Analysis

The step numbers are the same as previously described above.

1. End eccentricity e = 0.399 in.
e = 1.038 in.
w
Radius of gyration r = 2,598 in.
r = 1.443 in.
v 399
Relati tricit € = 222
elative eccentricity .S 7598 0.1536
e 1.038
™ T T.aay - 007193
- -1,0.1536
2. Relative skew angle = tan (0'7193)
= 12.05 degree
/
3. Squash strength P0 = Acfc + Asfy
= 252.0 k
Pu 119.2
Relative thrust level 7 “355.0 = 0.473



190

Deflection limit from Eq. 5.18

A/L = 0.00372 + [0.00270: 1 ] L/rweak
S ' P /P_° 105
u (o]
1 76.25
A/L = 0.00372 + [0.00270 ) TR

AJL = 0.006593

4. Proportion for weak axis and strong axis

0.006593 sin (12.05°)

s -
= 0.001376
A o
v = 0.006595 cos (12.05°)
= 0.006448
. . - )
5,6 Maximum eccentricity e = € nd + I L
Strong axis e = 0.399 + 0.001376 % 76.25 = 0.504 in.
= 1.038 + 0.006448 % 76.25 = 1.530 in.

Weak axis ew

7. With e = 0.504, e, = 1.530 from interaction diagram for uniaxial
bending of RC-1 in Fig. 5.5
P = 218.7 k
S
P = 112.3 k
w

11,11
8. From Eq. 5.12 P " P + P P
i s w o
11 + 1 _ 1
Pi T 218.7 112.3 252.0
P, = 105.2 k
i

The analyzed strength was 105.2, which was about 12 percent lower

than the actual strength of 119.2 k.

The sensitivity of the computation procedure for changes of
the relative load level Pu!P0 in Eq. 5.18 was investigated. When
the actual failure strength Pu is not known, it was found that even
with inaccurate estimates of Pu used in Eq., 5.18, the resulting pre-
dicted strength Pi was found to converge toward the "correct'" value.

Convergence was more rapid for an iteration method that started with
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values Pu greater than Pi and the rate of convergence was slowest
for low ratios Pi/Po' For Specimen RC-1 as an example if the first

estimate of Pu = 200 k, the resulting Pi = 110.1 k, and then using

110.1 k as Pu for the next calculation, Pi = 104.2 k. TIf the pro-
cedure had started first with Pu = 70 k, the resulting Pi = 81.5 k,

and the second iteration yields Pi = 84.0 k. A review of values from
Drysdale and Wu specimens showed that if the iteration procedure were
used to compute the column strength with unknown values of Pu’ con-
vergence should not be assumed unless the computed value of Pi is

less than the initial value Pu used in the calculation of A/L in

Eq. 5.18. The assumed Pu at the start should be greater than the
actual strength of the column for the quickest convergence. Of course,
if Pi is greater than Pu’ the Pi estimate does represent at least a

lower bound on the maximum or "correct" value.

Data from very slender columns that were tested by Saenz and
Martin48 were used to test the deflection limit method for long con-
centrically loaded columns. Equation 5.18 was used to calculate A/L
and the total deflection was assigned to the weak axis deflection.
With concentric loading the end eccentricity was considered zero and
the maximum analytic eccentricity used was taken as the total deflec-
tion. The predicted failure thrust was determined from the uniaxial

interaction diagram with thrust and moment acting about the weak axis.

End conditions of the specimens were assumed partially fixed such

that the effective length used in the computation was 0.75L. Three
types of specimens were selected in the study: specimens with lengths
of 7-1/2, 9, and 12 ft. with concrete strengths of 3350, 4930, and
5590 psi, respectively. The column cross section was 5 in. by

3-9/16 in., with four #2 bars as longitudinal reinforcing steel. The
deflection limit method gave the strength of the columns as 53.4,
67.5, and 55.3 kips for 7-1/2, 9, and 12 ft. specimens, respectively.
The average test strengths of these specimens were 54.3, 72.0, and
54.2 kips. The results showed that deflection limit procedures may

also apply for predicting the strength of columns under concentric
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load, even without an initial or arbitrary eccentricity specified for

analysis.






CHAPTER 6

CONCLUSIONS

6.1 Summary of the Investigation

The purpose of the investigation reported herein was to
study the behavior of reinforced concrete columns subject to loads
that cause bending moments about two principal axes plus compression
in the longitudinal direction. A general review on column strength
included data available from previous studies by other investigators.
Additional data were obtained from physical tests on columns with
rectangular and partial circle cross sections. Strengths estimated
from an approximate method of calculation were compared with the
experimental data, and the influence of parameters that would
affect the accuracy of the method was studied. Secondary effects of
lateral deformation were included in the investigation of member

strength.

A moment magnifier method was used also for comparing
results with the experimental data. Methods of computing member
stiffness as recommended by the ACI Building Code1 were included in
the comparisons with test data. A numerical analysis method was
also used after it was adjusted to agree with test results and it
was used to develop more analytical data for comparison with the
approximate methods of analysis. Member strength for very slender
columns could be estimated from a deflection control method
which was introduced. An empirical equation for column strength was

proposed on the basis of its favorable comparison with experimental

results.
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6.2 Results of the Investigation
from Physical Tests

(a) The assumption that plane sections remain plane before
and after loading was examined and was found to be acceptable. On
the basis of correspondence between a fourth point measurement and
a plane section analytical prediction, test data showed that the
distribution of the average cross-sectional strain was within 10 per-
cent of being a plane when long gage-lengths (5 thicknesses of the
member) were used, although the local strain differences for each
6-in. gage length showed greater values. The variations overall at
less than 10 percent were considered accurate enough for computing
forces compatible with plane strain distribution. This assumption
was used with average strains through a 30-in. length of specimen in

all the strength analyses throughout this report.

(b) In the analyses of forces that were consistent with strain
measurements, the stress~strain functions for concrete that used a
full cylinder strength fé as the maximum stress gave better correla-
tion than stress-strain functions that used reduced maximum strength
such as 0.85fé as the maximum compressive stress. The integration of
stresses consistent with strains that were determined from measured
longitudinal displacements indicated that a parabolic rectangular
stress~-strain function for concrete gave values of force and moment
in better agreement with measured loads than any other form of stress-

strain functions for concrete that were investigated.

(¢) Load angle and neutral axis angle were found not to be
equal. The difference between the load angle and the neutral
axis angle always showed that the neutral axis shifted toward the
weak axis of bending. The difference was significant enough that
it should not be neglected in the analysis when both the neutral
axis angle and load angle are required such as in numerical analysis.
The difference between these angles tended to increase as the nominal

angle increased. No effect of thrust level was observed to be
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involved in this difference. Secondary deflections caused the net

value of load angle (M ™ ) to vary along the length

strong axis' 'weak axis
of a slender column. The load angle change indicated that columns
deflected more in the weak axis direction than in the strong axis
direction. The deflection caused more secondary moment about weak
axis than about the strong axis. Thus the load angle decreased from

end to midheight of the column where the maximum deflection occurred.

(d) Torsional effects from twisting of the member were small

and could be neglected in the analysis.

6.3 Results of the Study of Cross
Section Strength and Stiffness

6.3.1 Strength. The strength of short columns can be

approximated using the reciprocal load equation:

+
i X y

1 .
P

"Uln—-
"U||—-

.l
P
o
This equation requires uniaxial interaction diagrams of thrust and

moment about each principal axis. The investigation of strength

revealed that:

(a) The reciprocal load equation could be used to predict the
strength of the column cross section (with the average of less than
6 percent difference from the test results) when the accurate uniaxial

interaction diagrams were used.

(b) Interaction diagrams of ultimate thrust and moment derived
with the rectangular stress block for concrete strength showed gen-
erally less strength than that obtained in measured tests. Conse-
quently, when the interaction diagrams derived from the rectangular
stress block assumption are used, the biaxial column strength was

underestimated by the reciprocal load equation.

(c) The stress-strain function that best represented the
concrete behavior in constructing the uniaxial interaction diagram
was the parabolic rectangular function. The stress-strain curve

consisted of a parabola with a maximum stress of fé at a strain of
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0.002, and beyond the strain of 0.002 the concrete stress remained
constant at fé until the failure strain was reached. The actual maxi-
mum strain across a 30-in. gage length at failure from tests varied
from 0.00228 to 0.00393; the maximum strain up to 0.00525 was found
locally in the 6 in. segment of the column. 1In the construction of
interaction diagrams for failure thrust and uniaxial moment, the

failure strain of 0.0035 was assumed for every specimen.

(d) The amount of reinforcement, aspect ratio, and load angle
were not found to be factors that influenced the calculation of
strength with the reciprocal load method. The accuracy of the equa-
tion depended on the accuracy of the interaction diagram of thrust

and moments about each principal axis.

6.3.2 Stiffness. The slope of the graphs of moment and
curvature (M-¢ curve) at the middle portion of the colummn repre-
sented the stiffness EI of the section. The study of stiffness of

the section showed that:

(a) Before cracking the computed stiffness EI based on an
uncracked cross section agreed well with the initial slope of the
measured M- curve for strong axis bending of both rectangular and
oval-shaped sections. For weak axis flexural stiffness, the computa-
tion of a nominal wuncracked section stiffness overestimated the
stiffness of the oval-shaped column. At low levels of thrust
(Pu = O.ZPO) the computed uncracked section stiffness for bending
about the weak axis of rectangular cross sections compared well with
the initial slope of the M-® curves, but at higher thrust levels the

same computation again overestimated the cross section stiffness.

(b) After each specimen cracked the nominal cracked section
EI was assumed to be equal to 40 percent of the uncracked stiffness.
The comparison with graphs from tests showed that the nominal
cracked stiffness for bending about the strong axis was larger than

the slope of the measured M-® curve, but still in reasonable agree-

ment. For bending about the weak axis, the computed uncracked section



199

El overestimated the column stiffness at every level of thrust for

both rectangular and oval-shaped columns.

6.4 Results of the Study of Slenderness
Effects on Member Strength

6.4.1 The study on length effects showed that the moment
magnification method would not give accurate results in predicting
the member strength if the flexural stiffness EI of the member was
inaccurately computed. The recommended stiffnesses in the ACI Build-
ing Code1 were used in the investigation. It was found that for the
test specimens reported,ACI Eq. (10-7) underestimated weak axis

stiffness at high levels of thrust (O.SPO), but better agreement

with test results were obtained at lower levels of thrust. However,
ACI Eq. (10-7) gave good agreement with the tests for calculating
strong axis stiffness at every level of thrust. The stiffness com-
puted with ACI Eq. (10-8) overestimated the column stiffness at low
thrust levels (0.2P0), but gave reasonable values at higher thrust
levels. The data from experiments suggested that member stiffness
should reflect the influence of the level of thrust. A graph of
measured flexural stiffness and the thrust level showed that the
effective stiffness EI increased as the thrust level increased for
thrust values as high as 0.55P°. The study of long columns tested
by other investigators showed that a different relationship exists
between thrust level and stiffness. It was concluded that simplified
estimates of stiffness were inconsistent; each method of calculating
stiffness might be good for one specimen but might not be accurate

for others that had a different overall slenderness or load angle.

6.4.2 The numerical analysis of column strength using
computer program BIAM2 gave favorable results compared with the
experimental data (average of 0.997 with a maximum of 13 percent over-
estimate and 23 percent underestimate when compared to the observed
strength). The convergence of the iteration method was found to

be the main problem in the BIAM2 analysis. The iteration could
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not converge if tolerance limits were too small, but when larger

tolerances were used the problem converged slowly.

6.4.3 Although intentional underestimations of stiffness are
generally safe for design, for the most slender columns in this report
the method of computing column stiffness from the ACI Code formulas
could not be applied because the formulas indicated that columns
failed in instability at loads lower than the actual failure load

(i.e., P < Pu). It was found that in addition to the slenderness

cr
ratio the thrust level should be a factor in the complementary moment

or deflection control. An empirical equation for the deflection

limit was derived from the data available. The assigned deflection
then was distributed to each principal axis according to the nominal
ratio of eccentricity about each axis of bending. The reciprocal
load equation then was applied to calculate the column strength after
the additional deflection had been added to the end eccentricity (if
any). Predictions of column strength from the method were found to

be within 15 percent of measured values from tests.

6.5 Conclusions and Recommendations

The reciprocal load equation provides a good method for
estimating approximate column strength for biaxial bending problems.
This method requires only uniaxial interaction diagrams for bending
about two major axes and it is independent of other biaxial bending
parameters such as percentage of steel, load angle, and column shape
aspect ratio. Accurate results require the use of interaction dia-
grams that are accurate. A parabola-rectangle function for concrete
stress-strain behavior with a full cylinder strength f; for maximum
compressive stress gave results less likely to underestimate strength
than did the use of rectangular stress block. Eccentrically loaded
columns can be designed for specified thrust and eccentricities plus
additional eccentricities that accommodate length effects. The
moment magnifier method for biaxial bending problems is accurate
only if the flexural stiffness is accurately computed. More con-

sistent results were found using the deflection limit to assign the
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additional eccentricity to the column. No computation of flexural
stiffness EI is required for using the deflection limit method. Also
the neutral axis angle was not required in the deflection limit pro-
cedure, so that the relationship between load angle and neutral axis

angle is not involved in the computation.

In this test series only columns with pinned-ends subjected
to equal end moments that caused the columns to bend in single curva-
ture were studied. Further work on columns with other end conditions
and different end moments should be observed. It is recommended that
further studies of stiffness of members be conducted. The existing
computer program BIAM2, with possible modifications for more rapid
convergence, can be used as a '"true'" strength predictor when no
physical test data are available. Simplified general forms of equa-
tions to predict EI can be studied systematically in order to deter-
mine the domains of accuracy for the simplified equations. The
biaxial bending capacity of unique shapes of cross section such as

L, T, or hollow boxes can be studied also.
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APPENDIX A

DRYSDALE AND WU SPECIMENS

(a) Dimensions and Properties
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(b) Concrete Strength and Loading Information
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Specimen fé Failure Load End Eccentricity
psi kips e ey
in. in.
Drysdale Specimens
AlC 3890 37.6 0.707 0.707
AlD 3880 40.3 0.707 0.707
A2A 3860 39.4 0.707 0.707
A2B 3860 40.0 0.707 0.707
A3C 4020 38.5 0.707 0.707
A3D 4020 37.6 0.707 0.707
B1C 3510 34.0 0.707 0.707
B1D 3510 34.4 0.707 0.707
B2C 3670 37.7 0.707 0.707
B2D 3670 37.7 0.707 0.707
C2A 3870 39.9 0.383 0.924
C2B 3870 39.2 0.383 0.924
C3A 4120 31.6 0.383 0.924
C3B 4120 39.7 0.383 0.924
ElC 3890 32.6 0.574 1.386
E1D 3890 33.6 0.574 1.386
E24A 4400 33.7 0.574 1.386
E2B 4400 33.7 0.574 1.386
FlA 4130 58.7 0.191 0.462
F1B 4130 55.7 0.191 0.462
F2A 4210 57.0 0.191 0.462
F2B 4210 57.0 0.191 0.462
Specimen Size fé Failure Load End Eccentricity
psi kips e, ey
in. in.
Wu Specimens
1 3-3/4"%3-3/4" 4060 19.0 0.662 0.662
2 58%5" 4060 31.8 0.885 0.885
3 6-1/4"%6-1/4" 4100 45.0 1.110 1.110
4 7-172"%7-1/2" 4140 69.0 1.325 1.325
10 5"&5" 4060 30.5 0.885 0.885
16 5V%5" 4030 30.0 0.885 0.885
16 5M"x5" 3890 31.3 0.885 0.885
26 3-3/4"%3-3/4n 5460 18.3 0.563 0.975
27 55" 5460 33.5 0.750 1.300
28 6-1/4"x6-1/4" 5460 47.8 0.938 1.625
29 7-1/2"x7-1/2" 5460 62.7 1.125 1.950
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APPENDTIX B

STRESS-STRAIN RELATIONSHIP OF CONCRETE

The stress-strain functions of concrete used in the strain
analysis in Chapter 3 were the functions which were proposed by
Hognestad, Todeschini, et al., Xent and Park, and Chang. The

details of these functions are described below.

(a) Hognestad Stress-Strain Function. The function consists of

two parts, the first part is a parabola with an equation of

ul 2¢ € 2
£ 5[ (D ]
o €

where fc = Concrete stress at strain ¢
fg = Maximum compressive stress at strain €9 equals 0.85fé
f; = Concrete cylinder strength
€ = Strain of concrete associate with stress fc
Go = Strain of concrete at maximum stress
f:
® e
Eo E
c
Ec = Modulus of elasticity of concrete

The functions were quoted from Fowler's report.

The latter part was a straight line with the stress of fg

at strain € and a decrease to 0.85fg at a strain of 0.0038 which

is considered the maximum strain of concrete at failure.

(b) Todeschini, et al. Stress-Strain Function. The function

proposed by Todeschini is a continuous curve with the equation

- ” €
fc ch 2

€
€, 11 +(€0) ]

with the same notation as (a).
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(¢c) Kent and Park Stress-Strain Function. The Kent and Park

stress-strain function has two parts as does Hognestad's function,
but the full concrete cylinder strength, fé is used. The equation
for the parabola is
2 2
£, = £o 155 - () ]
o o
with the same notation as function (a), but € is taken as 0.002

instead of 2f’/E .
c' ¢

For strains greater than €, the function is also a straight

line which is represented by the following equations:

for confined concrete and ¢ > 0.002

= ! _ _
£o= £ [L - 2(e - €))]
7 = 2.5 -
€50h €50u €
=_3_ n [b”
€50h 5 P s
" " H
+
v o 2(b d )As
p .blldllS
7
3 + 0.002fc
=—T—_——
€5ou £/ - 1000
where A: = Area of hoop bar
s = Spacing of hoop reinforcement
b",d" = Width and depth of the confined area, b” <4’
Z = Slope of the straight line portion of the function

In the calculation in Chapter 3, Z was calculated and approXimated

as 260.

(d) Chang Stress-Strain Function. Chang modified the Kent and

Park stress-strain function by including the compression steel effect

in the slope of the straight line. The first portion of the function
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is the same as Kent and Park except that Chang used €, = 2f(':/Ec
instead of 0.002. The tail of the function has the same equation as
function C, but the calculation for p" contains also the effect of
compression steel,

20" +a")a” Al

”o_ + S
p bnslls blrdn

4 .
where A" = Area of steel under compression
]

The calculation of Z by Chang's method for the specimen in

this test program gave a Z value of 68 which was used in Chapter 3.

Two more stress-strain functions were introduced in Chapter 3,
the Modified Hognestad Stress-Strain Function and the Parabolic-
Rectangular Stress-Strain Function. Details of these two functions
are explained in Chapter 3 and will not be repeated here. The
graphical expression of all these stress-strain functions are shown

in Fig. 3.7 for the concrete strength of 5000 psi.






10.

11.

REFERENCES

ACI Committee 318, Building Code Requirements for Reinforced
Concrete (ACI 318-71), American Concrete Institute, Detroit, 1971.

ACI Committee 318, Commentary on Building Code Requirements for
Reinforced Concrete (ACI 318-71), Detroit, 1971.

Au, Tung, "Ultimate Strength Design of Reinforced Concrete
Members Subject to Unsymmetrical Bending," Journal of the
American Concrete Institute, Vol. 29, No. 8, February 1958,
pp. 657-674.

Breen, J. E., "The Restrained Long Concrete Column as a Part of
a Rectangular Frame,'" unpublished Ph.D. dissertation, The Univer-
sity of Texas at Austin, June 1962.

Bresler, B., "Design Criteria for Reinforced Columns under Axial
Load and Biaxial Bending," Journal of the American Concrete
Institute, Vol. 32, No. 5, November 1960, pp. 481-490.

Brettle, H., J., and Warner, R. F., "Ultimate Strength Design of
Rectangular Reinforced Concrete Sections in Compression and
Biaxial Bending,” Civil Engineering Transactions (Australia),
Vol. CE10, No. 6, April 1968, pp. 101-110.

Chang, W. F., "Long Restrained Reinforced Concrete Columns,"
unpublished Ph.D. dissertation, The University of Texas at Austin,
June 1961.

Chang, D. C., Computer program for calculating interaction
diagram using maximum moment from P-M- relationship, The Univer-
sity of Texas at Austin.

Chu, K. K., and Pubarcius, A., '"Biaxially Loaded Reinforced Con-
crete Columns," Journal of the Structural Division, ASCE,
Proc. V. 84, No. ST8, December 1958.

Comite Europeen du Beton, Recommendation for an International
Code of Practice for Reinforced Concrete, American Concrete
Institute, London, 1970.

Craemer, H., "Skew Bending in Reinforced Concrete Computed by
Plasticity," Journal of the American Concrete Institute, Vol. 23,
No. 6, February 1952, pp. 516-519.

215



216

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Concrete Reinforcing Steel Institute, CRSI Handbook Based Upon
the 1971 ACI Building Code, Concrete Reinforcing Steel Insti-
tute, Chicago, 1972.

Desai, J. A., "Strength and Stiffness of Reinforced Concrete
Rectangular Columns under Biaxially Eccentric Thrust,'" unpub-
lished M.S. thesis, The University of Texas at Austin, December
1975.

Drysdale, R. G., “"The Behavior of Slender Reinforced Concrete
Columns Subjected to Sustained Biaxial Bending,' unpublished
Ph.D, dissertation, University of Toronto, Canada, 1967.

Drysdale, R. G., and Huggins, M. W., "Sustained Biaxial Load
on Slender Concrete Colummns,'" Journal of the Structural Divi-
sion, ASCE, Proc. V. 97, No. ST5, May 1971, pp. 1423-1443.

Eloseily, H., "Ultimate Strength of Rectangular Reinforced
Concrete Sections under Biaxially Eccentric Loads," Swiss
Federal Institute of Technology, Zurich, December 1967.

Farah, A., and Huggins, M. W., "Analysis of Reinforced Concrete
Columns Subjected to Longitudinal Load and Biaxial Bending,"
Journal of the American Concrete Institute, Vol. 66, No. 7,
July 1969, pp. 569-575.

Ferguson, P. M., Reinforced Concrete Fundamentals, Third
Edition, John Wiley & Sons, Inc., New York, 1973.

Fleming, J. F., and Warner, S. D., "Design of Columns Subjected
to Biaxial Bending,'" Journal of the American Concrete Institute,
Vol. 63, No. 3, March 1965, pp. 1205-1230,

Fleming, R. J., "Ultimate Strength Analysis for Skew Bending
of Reinforced Concrete Columns,' unpublished M.S. thesis, The
University of Texas at Austin, May 1974.

Fowler, T. J., "Reinforced Concrete Columns Governed by Concrete
Compression,'" unpublished Ph.D. dissertation, The University of
Texas at Austin, January 1966.

Furlong, R. W., "Long Columns in Single Curvature as Part of
Concrete Frames," unpublished Ph.D. dissertation, The University
of Texas at Austin, June 1963.

Furlong, R. W., "Ultimate Strength of Square Columns under
Biaxially Eccentric Loads," Journal of the American Concrete

Institute, Vol. 32, No. 9, March 1961, pp. 1129-1140.



24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

217

Green, R., "Behavior of Unrestrained Reinforced Concrete
Columns under Sustained Load," unpublished Ph.D. dissertation,
The University of Texas at Austin, January 1966.

Green, D. J., "Physical Testing of Reinforced Concrete Columns
in Biaxial Bending," unpublished M.S. thesis, The University of
Texas at Austin, May 1975.

Hage, S. E., and MacGregor, J. G., "The Second-Order Analysis
of Reinforced Concrete Frames,'" Structural Engineering Report
No. 49, Department of Civil Engineering, University of Alberta,
Edmonton, Alberta, Canada, October 1974.

Hognestad, E., "A Study of Combined Bending and Axial Load in
Reinforced Concrete Members," Bulletin No. 399, University of
Illinois Engineering Experiment Station, Urbana, November 1951.

Kent, D. C., and Park, R., "Flexural Members with Confined
Concrete," Journal of the Structural Division, ASCE, Proc. V.
97, No. ST7, July 1971, pp.1969-1990.

Meek, D. C., "Ultimate Strength Design Charts for Columns with
Biaxial Bending," Journal of the American Concrete Institute,
Vol, 60, No. 8, August 1963, pp. 1035-1064.

Pannell, F. N., "The Design of Biaxially Loaded Columns by
Ultimate Load Methods,'" Magazine of Concrete Research (London),
Vol. 12, No. 35, July 1960, pp. 99-108.

Pannell, F. N., "Biaxially Loaded Reinforced Concrete Columns,"
Discussion of Proceedings, Journal of the Structural Division,
ASCE, Proc. V. 85, No. ST6, June 1959, pp. 47-54.

Pannell, F. N., "Failure Surface for Members in Compression and
Biaxial Bending,” Journal of the American Concrete Institute,
Vol. 60, No. 1, January 1963, pp. 129-140.

Parme, A. L., Neives, J. M., and Gouwens, A., "Capacity of
Reinforced Rectangular Columns Subject to Biaxial Bending,"
Journal of the American Concrete Institute, Vol. 63, No. 9,
September 1966, pp. 911-923,

Portland Cement Association, 'Capacity of Reinforced Rectangular
Columns Subject to Biaxial Bending," Advanced Engineering
Bulletin No. 18, Portland Cement Association, Skokie, Illinois,
1966.

Portland Cement Association, "Biaxial and Uniaxial Capacity of
Rectangular Columns,' Advanced Engineering Bulletin No. 20,
Portland Cement Association, Skokie, Illinois, 1967.




218

36.

37.

38.

39.

40.

41.

42,

43,

44

45,

46.

47.

Portland Cement Association, "IBM 1130 Computer Program for the
Ultimate Strength Design of Reinforced Concrete Columns,"
CEPA Library No. 03.0140, Skokie, Illinois, December 1967.

Ramamurthy, L. N., "Investigation of the Ultimate Strength of
Square and Rectangular Columns under Biaxially Eccentric Loads,"
Symposium on Reinforced Concrete Columns, ACI publication

SP-13, Detroit, 1966, pp. 263-298.

Redwine, R. B., "The Strength and Deformation Analysis of
Rectangular Reinforced Concrete Columns in Biaxial Bending,"
unpublished M.S. thesis, The University of Texas at Austin,
May 1974,

Rusch, H., "Research Toward a General Flexural Theory for
Structural Concrete," Journal of the American Concrete Institute,
Vol. 57, No. 1, July 1960, pp. 1-28.

Sargin, M., "Stress-Strain Relationship for Concrete and the
Analysis of Structural Concrete Sections," Study No. 4, Solid
Mechanics Division, University of Waterloo, Waterloo, Ontario,
Canada, 1971.

Texas Highway Department, Standard Specifications for Road and
Bridge Construction, 1962, pp. 473-487.

Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability,
Second Edition, McGraw-Hill Book Co., Inc., New York, 1961.

Todeschini, C. E., Bianchini, A. C., and Kesler, C. E.,
"Behavior of Concrete Columns Reinforced with High Strength
Steels," Journal of the American Concrete Institute, Vol. 61,
No. 6, June 1964, pp. 701-716.

Warner, R. F., "Biaxial Moment Thrust Curvature Relations,"
Journal of the Structural Division, ASCE, Proc. V. 95, No. ST5,
May 1969, pp. 923-940.

Weber, D. C., "Ultimate Strength Design Charts for Columns with
Biaxial Bending,'" Journal of the American Concrete Institute,
Vol. 63, No. 11, November 1966, pp. 1205-1230,.

Whitney, C. S., and Cohen, E., "Guide for Ultimate Strength
Design of Reinforced Concrete," Journal of the American Concrete
Institute, Vol. 53, No. 5, November 1956, pp. 455-490.

Wu, H., "The Effect of Volume/Surface Ratio on the Behavior of
Reinforced Concrete Columns under Sustained Loading," unpublished
Ph.D. dissertation, University of Toronto, Ontario, Canada, 1973.



48,

49.

219

Saenz, L. P., and Martin, 1., "Test of Reinforced Concrete
Columns with High Slenderness Ratios,”" Journal of the American
Concrete Institute, Vol. 60, No. 5. May 1963, pp. 589-616.

Planning and Design of Tall Buildings, Draft 2, Chapter 23
"Stability," Lehigh University, Bethlehem, Pennsylvania,

September, 1976,



	Abstract

	Summary

	Implementation

	Contents

	List of Tables

	List of Figures

	Notation

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Appendix A

	Appendix B

	References




