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PREFACE

This report presents the results of an analytical study which was under-
taken to develop an implicit numerical method for determining the transient
and steady-state vibrations of elastic beams and plates. The study consists
of (1) a theoretical analysis of the stability of difference equations used,
(2) the formulation of the difference equations for the general solution of
the beam and plate, and (3) a demonstration of the method by computer solu-
tions of example problems. A supplemental report will describe the use of the
associated computer programs for the beam and plate and will further illus~
trate the application of these programs to highway engineering problems.

Report 56-1 in the List of Reports provides an explanation of the
basic procedures which are used in these programs. Although the programs
are written in FORTRAN-63 for the CDC 1604 computer, minor changes would make
these programs compatible with an IBM 7090 system. Copies of the programs and
data cards for the example problems in this report may be obtained from the
Center for Highway Research at The University of Texas.

Support for this project was provided by the Texas Highway Department,
under Research Project 3-5-63-56 (HPR-1-4), in cooperation with the U. S.
Department of Transportation, Bureau of Public Roads. Some related support
was provided by the Natiomal Science Foundation. The computer time was
contributed by the Computation Center of The University of Texas. The authors
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ABSTRACT

A finite-element method is developed to determine the transverse linear
deflections of a vibrating beam or plate. The method can be used to obtain
numerical solutions to varied beam and plate vibration problems which can not
be readily solved by other known methods, The solutions for the beam and
plate are separate formulations which have been programmed for a digital com-
puter. Both solutions permit arbitrary variations in bending stiffness, mass
density and dynamic loading. The static equations have been included in the
development so that the initial deflections can be conveniently established.
In the beam, the difference equations are solved by a recursive procedure.
For the plate, the same procedure is combined with an alternating-direction
technique to obtain an iterated solution. The numerical results demonstrate
that the method is applicable to a wide range of vibration problems which are

relevant to a beam or plate.

vii



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



PREFACE . .

TABLE OF CONTENTS

e s " 5 5 « & o e s e & s e = .

LIST OF REPORTS . ., . . . ¢« ¢« « v v v o ¢ « o o &

ABSTRACT .
NOMENCIATURE
CHAPTER 1.

CHAPTER 2,

CHAPTER 3.

CHAPTER 4,

CHAPTER 5.

CHAPTER 6.

CHAPTER 7.

CHAPTER 8.

» o . . . . . » - » . . . L] - s .

- . e . . . s e « o . * - .

INTRODUCTION . . . . . . . . .
STABILITY OF THE BEAM EQUATION

Explicit Formula . . . . . . . .« . ,
Implicit Formula . . . . . . . « . .

DEVELOPMENT OF THE BEAM EQUATIONS

Static Equation ., . ., . . . . « . .

Dynamic Equation ., . . . . . . .+ «
Method of Solution for the Difference
Boundaries and Specified Conditions .

NUMERICAL RESULTS - BEAM

Verification of the Method . . . . .
Example Problems . ., +. . + o 4+ ¢ « &

STABILITY OF THE PLATE EQUATION

Explicit Formula . . . . . . . . .
Implicit Formula ., . . . . . . . .

DEVELOPMENT OF THE PLATE EQUATIONS

Static Equation . . . + . + « ¢ & . .
Dynamic Equation . . . . . . . . .
Method of Solution for the Difference
Boundaries and Specified Conditions .
Closure Parameters . . « « « « .

NUMERICAL RESULTS - PLATE

Problem 1: 4 x 4 Grid . . . ., . . .
Problem 2: 8 x 8 Grid . . . . . ..

Problem 3: 4 X 4 Grid and Reduced Time Increment .

. LI
. . * »

Equations

¢« v . .

. » . LI ]

. . o« . o«

Equations .

. w - . .

Problem 4: Moving Load on a Rectangular Plate

CONCLUSIONS . . . v v 4 s ¢ o ¢ « o

ix

-

. 11

. vii

xi

i

11
14
16
18

21
23

27
32

35
36
38
49
40

43
b4
b4
44

49



REFERENCES .

APPENDICES
Appendix
Appendix
Appendix
Appendix

Appendix

BWN R~

»

Dynamic Beam Equation . . . « - . « « « + ¢« 4 « « « « +» 55
Static Plate Coefficients . . . ¢« 4 & + &+ v « « + « « « 61

Dynamic Plate Equation . . . . . . . B Y
Summary Flow Diagram, Guide for Data Input, and Listing
for Program DBCL . . . . . . . . . e . 75

Summary Flow Diagram, Guide for Data Input, and
Listing for Program DPI1l . . . . . . . . . . . . . . . 103



Symbol Typical Units
A in.

G, in.

C, in.

D 1b-in®/1in
d lb-sec/in®
E 1b/ in®

e -
F 1b-in®

gz -
h in,

P

ht sec
h in,

X
h in.

y

I in®

i -

j -

k -

L in.

in-1b

=) US =

2

NOMENCLATURE

Definition
Constant
Constant
Constant

Flexural stiffness of plate
Distributed damping coefficient
Modulus of elasticity

Base of natural logarithms

Bending stiffness = EI

EI hta

p h.*

Length of plate increment

Length of time increment.

Length of beam or plate increment
Length of plate increment

Moment of inertia of the cross section
Index for plate axis

Index for plate or beam axis

Index for time axis

Length of beam or plate

Number of beam or plate increments
Bending moment

Index

Number of plate increments

Index

X1
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Symbol Typical Units

P 1b

Q 1b/sta or
1b/mesh point

q 1b/in or
1b/ in®

R in-1b/sta per rad

T in-1b/in per rad

S 1b/in per sta
1b/in per mesh point

S 1b/in® or
1b/ in®

t sec

T, in-1b/sta

tc in-1b/1in

u? -

v in/ sec

w in.

X in.

54 in.

o, radians

Bn radians

A 1b/in®

v -

p 1b sec®/1in®

1b sec®/in®

or

Definition
Axial load

Concentrated transverse load on a beam or
concentrated transverse load on a plate

Transverse load per unit length of beam or
transverse load per unit area of plate

Concentrated rotational restraint
Rotational restraint per unit length
Concentrated stiffness of elastic founda-
tion for a beam or concentrated stiffness
of elastic foundation for a plate
Stiffness of elastic foundation per unit
length of beam or stiffness of elastic
foundation per unit area of plate

Time

Concentrated applied couple
Applied couple per unit length

2

Dht

h4
*p
Velocity

Transverse deflection for a beam or plate
Distance along axis of a beam or plate
Distance along axis of a plate

Angle

Angle

Closure parameter
Poisson's ratio

Mass density per unit length of beam or
mass density per unit area of plate

Exponent



CHAPTER 1. INTRODUCTION

Advances in science and technology have brought about an increasing need
for solutions to structural problems in which dynamic behavior is an important
factor. Classical solutions are available for a limited class of problems in
this category. The development of the high-speed digital computer has made it
feasible to obtain approximate numerical solutions for a vast number of here-
tofore unsolved problems,

The primary purpose of this investigation is to develop a finite-element
method for determining the transverse time-dependent linear deflections of a
beam or plate. The method is based on an implicit formula which was introduced
by Crank and Nicolson (Ref 5)%* to solve the second order heat flow problem.

Essentially, the beam or plate is replaced by an arbitrary number of
finite elements and the time dimension is divided into discrete intervals.

This representation readily permits the flexural stiffness, elastic restraints
and the loading to be discontinuous. The governing partial linear differential
equation is approximated by a difference equation and a numerical solution is
obtained at specified intervals of time., The difference equation for the un-
known deflection may be formulated explicitly or implicitly. 1In an explicit
formula, there is only one unknown deflection in each difference equation,
whereas, in an implicit formula, there are several unknown deflections in each
equation. Thus the resulting set of difference equations must be solved simul-
taneously to obtain the unknown deflections.

Finite difference solutions for initial value problems are subject to

*See References on p 51.



instability. This can be illustrated by considering the following equation

for an undamped transversely vibrating beam:

*w 2w _
EI-a;z+p§__z'— 0 (1.1)

In the foregoing, E is the modulus of elasticity, I is the moment of
inertia, p is the mass density per unit length, w is the deflection, x is
the distance along the beam and t is the time. For suitable boundary condi-
tions and a given initial displacement, the beam will vibrate periodically. 1If
the deflections are calculated from a solution of the partial differential
equation, the contribution from the higher characteristic frequencies is
usually negligible. However, in a finite difference solution, it is possible
for the higher frequencies to cause the calculated deflections to become un-
bounded as time approaches infinity. 1In his book on difference methods,
Richtmyer (Ref 11) discusses the equivalence of stability and convergence. For
properly defined problems, stability insures convergence. Crandall (Ref 4)

and other investigators have discussed the stability of finite difference
approximations for Eq 1.1.

The stability criteria and pictorial representations of the explicit and
implicit formulas for a beam and plate will be presented in the subsequent dis-
cussion. Both formulations have been programmed for a digital computer. How-
ever, the development of the equations and the numerical results will pertain
to the implicit solution. As a convenience in establishing the initially
deflected shape of a beam or plate, the equations of statics have been included
in this development. All difference equations are based on the assumptions of
linear elasticity and elementary beam and thin plate theories. The symbols
adopted for use in this paper are defined where they first appear and are

listed in the Nomenclature.



CHAPTER 2. STABILITY OF THE BEAM EQUATION

From a theoretical standpoint, the use of difference equations for the
solution of a linear transient problem is complicated by stability require-
ments. In this discussion; a finite difference solution is stable if the solu-
tion is bounded as time approaches infinity. To facilitate a difference repre-
sentation of the terms in the vibrating beam equation, it is convenient to
establish a rectangular grid in an x,t plane. The coordinate axes for the
grid are the beam and the time axes, and the lines in the grid intersect at
mesh points. Any mesh point may be located by station numbers which are
identified by the indices j and k with respect to the beam and time axes.
The distances between the grid lines in the coordinate directions are fixed by
the lengths of the beam increment hx and the time increment ht . This grid

is illustrated in Fig 1.

Explicit Formula

An examination of the explicit formula for a uniform beam will demonstrate
the stability criterion which was first established by Collatz (Ref 1). The

explicit difference approximation for Eq 1.1 is

2 - -
8 [“’j-z,k T A Ty s wj+2,k:| WS k-1

- 2wj,k + wj,k+1 = 0 2.1)
wherein

h2
_ E
& P

g
¥ |
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Fig 1. Explicit operator for the transverse deflections of a uniform beam.,



At k =0 , the initial deflections and velocities are specified. Therefore,
the value of wj,k+1 is the only unknown in the equation. In Fig 1, the
operator associated with Eq 2.1 is superimposed on the rectangular grid. To
solve for each unknown deflection at k = 1 , the operator is applied succes-
sively at j=1, 2, ..., M~-1 . The boundary conditions are introduced to
establish the deflections at the ends of the beam. In a similar manner, the
unknown deflections are calculated for k=2, 3,...,® .

For a beam with hinged ends and M segments or increments, a solution to

Eq 2.1 is assumed to be

w A sin (38) e 2.2)

ik

in which A is a constant, j=0,1, 2, ..., M, and k=2, 3, 4,..., =

Equation 2.2 is substituted into Eq 2.1 to establish
ko . . . . . .
e sin (j-2) B, - 4 sin (3-1) B + 6 sin (JB )

- 4 sin (§+1) B_ + sin (§+2) Bn:|

+ sin jBn [e(k-1)¢ - 2ek¢ + e(k+1)¢] = 0 2.3)

The following trigonometric identities are used to simplify Eq 2.3:

sin (6 £ v) = sin 6 cos v t cos 6§ sin vy
and

cos 26 = 2 cos® 6 -1

Hence, Eq 2.3 becomes

;_1125 [e®D8 2k 4 O] o uge (1 - cos g)7 (2.4)

This may be reduced to



2?4 o? [4g2 (1 - cos B )° - z]a— 1 = 0 2.5)

On the boundaries, independent of k , the deflections and moments are zero,

Thus,
FVg Sy g
W = w = - = 2 = { (2‘6)
0,k M,k x> ox*
From Eq 2.2,
sin (MBn) = 0
Hence,
MBn = m, 2m, s 0T
or
= BT
Ph = m 2.7
where
n = 1, 2, 3, , M-1
Therefore, Eq 2.2 becomes
M-1
=\ . os oy k¢
LI" Z A sin (i M ) e (2.8)
n=1

The roots of the quadratic Eq 2.5 are substituted into Eq 2.8 so that

M-1
Wj,k = ZAn sin (j ﬁﬂ) [cl (e‘”l)k +C, (e%)k] (2.9)
n=1

where Cl and C, are constants. In Eq 2.9, for w,

2 ik
¢1

values of k , the roots of the quadratic, e and e¢2, must satisfy the

to be bounded for all

condition that

1], [e®2] < 1 (2.10)

This condition may be satisfied by defining g® in Eq 2.5. Thus, the limit-

ing value of g° occurs when the discriminant



(16 g - 2)2 -4 < 0 (2.11)

Expanding Eq 2.11 discloses that

4 g2 -1 < 0
and

2 < (2.12)

=

The preceding analysis is based on a uniform beam with hinged supports. For a

2
stable solution, the maximum value of g® , or §£ E , is prescribed by Eq
X

2.12, Because of this limitation, the explicit formula will not be used in

the subsequent development of the dynamic beam equation,

Implicit Formula

In Fig 2, an implicit operator of the Crank-Nicolson (Ref 5) form is
shown for Eq 1.1. All deflections at Station k+l are unknown. The fourth
derivative term that was previously at the kth station has been divided
equally between the stations at k-1 and %+l . For any Station j, this
implies that the deflection at Station k is an average of the sum of the
deflections at Stations k-1 and k+1 . At k=0 , the initial deflections
and velocities are specified. To solve for the unknown deflections at k=1 ,
the operator is applied systematically at j =1, 2, ..., M-1 . This proce-
dure establishes a set of simultaneous equations wherein each equation in-
cludes five unknown deflections. These equations may be solved by any con-
venient method. In a similar fashion, the unknown deflections are determined
for k=2, 3,4, ..., © .

The admissibility of the implicit formula can be established by a proce-

dure suggested by Young (Ref 16). Let L(w) be the differential equation

and G(w) be a Taylor series expansion of the terms in the implicit formula



e

(&
(&)
&)
(&)
®
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2 2 . 2
=29 Wiy, ke T /W 0 ke 7 2w =g/ w4

2 2
+29  w_y, x-r P (=307 -1 wy g 292W1+|, ' ‘(92/2)W1+2.k-|

2
where g =z —

Fig 2. Implicit operator for the transverse deflections of a uniform beam.



about the point j,k . When G(w) is subtracted from L(w) , the remainder,
or truncation error, is of the order (hx)2 and (ht)® . Furthermore, h
is a given function of h, .
Thus the
Lin [L@) - 6w ] = 0 (2.13)
b0k
X
and the admissibility of the implicit formula is established.

The implicit difference approximation to Eq 1.1 is

2
& [ - -
27 Y52,k T o1,k T OO ke T ek T Va2, ket
P kel T Mo k-1 T Oy k-1 T Ykl T wj+2,k-1]
+ wj,k-l - 2wj’k + wj,k+1 = 0 (2.14)

To establish the stability criterion, Eq 2.2 is substituted into Eq 2.14 to

yield

gi {e(k+1)¢'[sin (j-2) Bn - 4 sin (j-1) Bn + 6 sin (jBn)

4 sin (j+1) B, t sin (j+2) Bn] + e(k'1)¢ [sin (i-2) B,

4 sin (j-1) Bn + 6 sin (jBn) - 4 sin (j+1) Bn

sin (j+2) Bn] } + sin (jBn) [e(k'1)¢ . 2ek¢ + e(k+1)¢:|

-+

= 0 2.15)

The above equation reduces to

1 (k-)¢ _ , ko (k+1) ¢
(D, (kD¢ e 26! + D7 |

= 2¢2 (1 - cos Bn)2 (2.16)
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and the quadratic equation becomes

_ @ 2 -
2P - e |:1 T2 (L~ o3 Bn)2]+ 1 = 0 (2.17)

The value of Bn is given in Eq 2.7. The roots of the quadratic satisfy Eq
2.10 for all g® > 0 . Therefore, the implicit formula is stable for all
positive values of EI , o , ht , and hx .

The preceding discussion of stability has been based on free vibration of
a uniform beam and well defined boundary conditions. Analytical proofs for more
complicated cases are not feasible. For example, if the same beam has uniform

rotational restraints r , foundation springs s , and an axial tension P , the

quadratic form becomes

¢ -0 -
e*? - e EI S r+P ]
Lp + ht2 (2 E;Z (1 - cos Bn)2 + E-+ E;g (1 - cos Bn))

+ 1 = 0 (2.18)

An evaluation of stability from Eq 2.18 is not practicable. However, stable
numerical solutions have been obtained for complex problems.

Crandall (Ref 4) has shown that the optimum implicit formula for a uni-
form beam has a truncation error of the order (ht)3 . In a recent paper,
Tucker (Ref 15) used an implicit formula which has a truncation error of the
order (ht) . In this study, the general development of the beam and plate
equations will be based on the Crank-Nicolson (Ref 5) implicit form which has

a truncation error of the order (ht)2



CHAPTER 3. DEVELOPMENT OF THE BEAM EQUATIONS

The finite-element beam solution consists of the static equation, the
dynamic equation related to the initial velocities and the dynamic equation.
The static equation is due to Matlock (Ref 9) and is discussed briefly herein.
Central differences (Ref 3) are used in all derivations except where otherwise
noted. The coordinate system which was described in the preceding chapter is

applicable in the following development.

Static Equation

The beam segment in Fig 3 illustrates the static loads and elastic re-
straints which may be imposed on the beam to establish its initially deflected
shape. A finite-element model of this segment has been developed by Matlock
(Ref 9). Equation 3.1 is obtained by summing moments and forces on the beam
segment in Fig 3.

&,
= d dw |
- q Sw+dx [tc'l' (r + P) ax 3.1)
In the foregoing, Mb is the bending moment, q is the transverse load per
unit length, s 1is the elastic stiffness of the foundation per unit length,
t. is an applied couple per unit length, r 1is a rotational restraint per

unit length and P is an axial load. Combining Eq 3.1 with the differential

equation for a beam

2
£ e fy] - b
dx ax ax® (3.2)
establishes Eq 3.3
a2 vl _ df dw'|
dXQ[EI,dXZ = q-swtgc 4t S (3.3)

11
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qix)

Mp+dMyp

dw
V+dv !
w

Fig 3. Beam segment with static loads and elastic restraints.

qlx,t)

e
Ct L

ppttt g
SRR

]

Fig 4, Beam segment with transient loags.
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In a difference equation, the distributed quantities q , r , tC and s
are lumped as corresponding concentrated quantities Q@ , R , TC and S at
each incremental point along the beam. Equation 3.3 involves the derivative
of a product of two variables. In transforming this differential equation to
a difference equation, the left side of the equation is expanded from the out-

side to the inside in the following manner:

S8 - {08 0865 )

j+1
= L F (w - 2w +w.) - 2F, ( - 2w, + )
bt Ug-1 ™y-2 7 V51 T SRS TR IR R
+ Fj+1 (wj - 2wj+1 + wj+2)} (3.4)

In Eq 3.4, F represents the bending stiffness and hx is the length of a

beam increment. Similarly, Eq 3.3 is converted to the difference equation
[F._ -0.25h (R, , +h P, :!w - [2 0
S j-1 x -1 x J-l) j-2 (Fj-l + Fj)J Wj-l

+[F + 4F, + F + h 8

3-1)

+0.25h (R,,, +h P, :l E B
x gl T M Pp) [y [ 2 Fo ) v
+ [F - 0.25 h ]
j+l x <Ri+1 +th P j+1) Y42

- i - 0.5 hx2 (ch—l - Tc1+1) (3.5)

The application of this equation at each incremental point results in a set of
simultaneous equations which is solved by a recursive procedure. This proce-

dure and the boundary conditions will be discussed subsequently,
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Dynamic Equation

The partial differential equation for the transverse vibrations of a beam
can be derived from d'Alembert's principle. The concept of reversed effective
forces, or inertial forces, in d'Alembert's principle is quite easily visualized.
Imagine that the inertial and viscous drag forces and an externally applied
force q(x,t) are superimposed on the beam segment which is shown in Fig 4.

Thus the differential equation for a vibrating beam is

2 Sey] 2

where d 1is the coefficient of viscous damping and the other symbols have the
same meaning as before. The quantities r , s and P , which affect the stiff-

ness of a beam at any instant of time, are added to Eq 3.6 and this yields

Bw 3 QE] d®w W _
[F +ow - & [(r 0 B T g W - g ), G0

The implicit representation of Eq 3.7% is

h 4 h *
X
Ya¥i-2,1ct1 T Tb¥4-1,k+1 [Y +h 7P T h, 430 Y5, k41
h 4
- 3
Y51, k41 F Ye¥542 k1 by Ok [2 5 Pj :l Yik
h_ h*
- [ht= pj] vik-1t [ht dj] Wik " Ya¥i-2, k-1
T YYiin,k-1 T Ye¥ik-1 T Yd¥iH k-1 T YeViH2, k-1 G-8)
in which
y = 4 [F -0.25h (R, .+heP )]
a 2 j-1 x T j-1 x j-1

* A derivation of the implicit formula for Eq 3.7 is given in Appendix 1.
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I, = - [Fj—l +F, J

Y, = %{;Fj_l +AF R F gt h® 54 +0.25 by (Rj_l *hoR
TRy Ry Pj+1):]

o= - [E ey ]

Y, - %[Fjﬂ - 0.25 b Ry, +hy Pj+1):l (3.9)

k = 1,2, 3, .e., @

In the foregoing, ht is the length of time increment. The remaining symbols
have been previously defined. 1In Eq 3.8, the unknown deflections at k+l
appear on the left side of the equation, and the known deflections at k and
k~1 appear on the right side of the equation.

At the outset, the deflections and velocities at k=0 are given. With
these initial conditions, the unknown deflections at %=1 are then calculated
to begin the transient solution. This is accomplished by rewriting Eq 3.8 so
that the generic indices k+l , k and k-1 become 1 , $ and 0 respec-

tively. Furthermore, the initial deflections and velocities are introduced in

the computational procedure in accordance with the following equations:

Wi o+ W,
W | - ¥i,0 " Vi,2 (3 10)
ot 'j,0 ht/2
and
. - 2w. 1 + w.
aaw - wJ:O Js2 j,1
AR WA G.10)

The unknown deflections at k=% are eliminated by combining Eqs 3.10 and 3.11.
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Consequently, the deflections at k=1 are calculated. Commencing at k=2 and
thereafter, the solution progresses with time in accordance with Eq 3.8. This
is demonstrated in Fig 5.

The effects of rotatory inertia and shear deformation have been omitted in
the derivation of the dynamic equation. A discussion of these effects is given

in Ref 12.

Method of Solution for the Difference Equations

There are several systematic procedures available to solve simultaneous
equations. For an efficient machine procedure, it is convenient to use a method
of elimination described by Matlock (Ref 9).

The difference equation, whether static or dynamic, may be written in the

form

52,k TPk T ST T e T S e T B 018
k = 0’ 1’ 2’ 3’ J «©
The terms a. b, , C. , d,, e, and T. may be recognized by com-
i’ P35 j j i e & 4

paring the foregoing equation with either the static Eq 3.5 or the dynamic Eq

3.8. For instance, in Eq 3.8,

a, = Y

] a
by = Y

h % h *
- X X
c. = Y +5p. +—>24,
j c B*"3 h o ]
ds = Y4
e, = Y
] e

and
h4 h4

i = h 3, [ X ] _[L ]
£k R I L SRS B C LN R,

(equation continued)
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g BEAM AXIS

/ / k+ 1

-2 j-1 i el 2 /

BEAM : 0, 1, 2, ..., M
PRESCRIBED BOUNDARIES AT O, M { Iilustroted

above as a hinge )
TIME : 0, i, 2,...,@®
DEFLS ARE KNOWN AT k-2, k-1, k

DEFLS ARE UNKNOWN AT k+|

Fig 5. Propagation of solution for unknown beam deflections.
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4
X
+_ - - -
[it dj] Yik-1 " Ya¥j-2,%-2 T Wb¥j-1,k-2 © Yo¥i,k-2

-Y

T Y, k-2 T Ye¥ie2 k-2

The solution to Eq 3.12 is assumed to be

wj,k = Aj + ijj+1,k + Cjwj+2,k (3.13)
in which

Ay = DiEA, EjAj_z - fj,k) (3.14)

By = Dy (B, + E&) (3.15)

Cj = Dj (E&) (3.16)

Dy = -1/ (BB, +&C, ,+C) (3.17)

By = 3B, 55 (3.18)

Proceeding from either end of the beam in what is called a forward direction,
Equations 3.14 through 3.18 are applied at every station, including one ficti-
tious station beyond each end of the beam. On the reverse pass, the unknown

deflections are calculated from Eq 3.13.

Boundaries and Specified Conditions

Although the equations have not been established in a matrix array, it is
convenient to consider the coefficients a., ..., E} as terms in a quiﬁtﬁple-
diagonal coefficient matrix and the unknown deflections and known loads as
colum matrices. The first and last equations represent the moment at the free
edge of a beam, and the second and next-to-the-last equations represent the

shear one-half increment inside the free edge. For a uniform beam with an

unloaded free boundary, the first and second equations are
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i
o

w-l,k - 21‘70’k + wl,k = (3.19)

and

"w~1,k + 3w0,k - 31.71’k + WZ,k = 0 (3.20)

Thus an approximation of the natural boundary conditions for zero moment and
shear are automatically created by zero stiffness values beyond the ends of the
beam.

Specified deflections are established by equating Aj to the desired
deflection and setting Bj and Cj equal to zero in Eq 3.13. To specify a
slope at the jth station, the coefficients Aj s Bj and Cj at Stations j-1

and j+l1 are recalculated on the basis of the reaction couple that must be

developed about the jth station (Ref 9).
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CHAPTER 4. NUMERICAL RESULTS - BEAM

The static and dynamic equations that were developed in the preceding
chapter have been programmed in FORTRAN for the Control Data Corporation 1604
computer. A listing of this program, DCBl, a guide for data input, and a sum-

mary flow diagram are in Appendix 4.

Verification of the Method

Table 1 illustrates the problems which have been selected to verify the
method. The theoretical angular frequency of vibration for each problem is
given in Timoshenko (Ref 12). The period of vibration corresponding to the
lowest angular frequency was divided into an arbitrary number of time incre-
ments. For all problems, the number of beam increments is 10, the increment
length is 12 in., the stiffness is 1.08 X 109 1b-in2, and the mass density is
9.04 X 10.3 1b-sec2/in2. Each beam has hinged support.

In Problems 1, 2 and 3, the time increments are 2.653 X 10-4 sec, 5.306 X

10-4 sec and 2,565 X 10-3 sec. The initially deflected shape of each beam is
established as one-half cycle of a sine wave. This is the fundamental mode of
vibration of the beam. At k=0 , the beam is released and the deflections are
noted during the ensuing vibrations. The deflected shape of the beam at the
conclusion of the first period is similar to its initial shape. This is
illustrated in Table 1 by the recorded values of the initial deflections and
the subsequent deflections at the end of the first period. These three
problems demonstrate that a small time increment is desirable.

Problems 4 and 5 are similar to Problem 1 with the following alterations.

In Problem 4, the axial load is -3.70 X 105 1b and the time increment is

21
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TABLE 1.

A SUMMARY OF THE NUMERICAL RESULTS

VALUES AT CENTER OF SPAN

NUMBER OF SUBSEQUENT
TIME INCREMENTS INITIAL DE(T:\-CE:;'())N
BEAM AT INITIAL PER FUNDAMENTAL | pErLECTION |
CONDITIONS PERIOD OF VIBRATION {Inches)
BASED ON A THEO- TIME w
RETICAL SOLUTION STATION
99 -1.987
-2.004
—_——— 100 -1.999
(1) ;&=——="n 100
0 10 101 -2.004
102 -2.00l
-2.004 49 -1.955
(2) S&~———=n 50 -1.995
50
0 0 51 -2.005
52 -1.983
. -2.004 9 -0.723|
(3 S~—DO 0 10 -1.637
0 10 1 -2.018
2 -1.743
~3.952 99 -3.937
@y am—— == P | 100 -3.95]
0 0 00 101 -3.950
102 -3.933
(5) —_——— -6.672 99 -6.643
100 100 -6.669
101 -6.670
0 10 102 -6.644
0.0 25 1.619 x-10~"
locit - -2
o 4}y velocity 100 99 I.393x|0-3
100 [-6.512 x 1073 %.
° 0 01 7.156 x 1074
a 0.0 50 6.690
-2
I 00 99 7.954 x10
{7 100 3.407 x 1072 %
0 10 101 7.937x1i073

¥ DEFLECTION 1S ZERO IN THEORETICAL SOLUTION GIVEN BY TIMOSHENKO (REF.12)
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3.752 X 10-4 sec. In Problem 5, the uniform foundation spring is 12.0 X 103
lb/in/sta and the time increment is 1.540 X 10"4 sec,

The beam in Problem 6 has zero initial deflections and a uniform initial
velocity of 30 in/sec everywhere except at the supports. The time increment
is 2.653 X 10-4 sec. Theoretically, the deflections at the end of the first
period are zero.

In Problem 7, a concentrated load of 1.0 X 105 1b is applied suddenly at
the middle of the span and is removed at the end of the first period. The
time increment is 2.653 X 10-4 sec, At the conclusion of the first period
and thereafter, the deflections are zero,

Excluding Problem 3, the maximum error in the numerical results based on
the theoretical solutions is about 4%. Furthermore, these results confirm
that the finite-element method described herein can be used to solve vibra-

ting beam problems.

Example Problems

Two example problems have been selected to illustrate the versatility of
the finite-element method. The partially embedded beam, which is described
in Fig 6, is subjected to an axial load and a transient pulse. In addition
to the hinged supports, there is a rotational restraint at the upper boundary.
The soil modulus has been converted at each station to an equivalent elastic
spring. A damping factor of 10.0 1b-sec/in2 has been assumed arbitrarily.
Figure 6b shows the deflected shape of the beam at the conclusion of the
pulse, or k = 18 , and at a subsequent time. Figure 6c illustrates the
response of a typical station on the beam.

The second example, which is sketched in Fig 7, is a three-span beam
with a constant load moving along the beam at a uniform velocity of one beam

increment per time increment, Figure 7b illustrates the response of the beam
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d = 10.0 ib-sec/in?
FROM BEAM STATION 15 TO 30

o

-1.0ox 10° 1b

LH

2.4 x 10%1b -in®

3.0 x 10 b-in/rad
1.08 x !0_2 lb-secz;’in2

PULSE—\
: TIME INCREMENT = 5.0 x 10" sec

10 BEAM INCREMENT = 48.0 in.
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TIME STATION, k
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Fig 6. Partially embedded beam subjected to a load pulse.
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Fig 7. Moving load on a three-span beam.
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at Station 20, Figure 7c is a plot of the beam deflections at the two indi-

cated times.

For the Control Data Corporation 1604 computer, the execution time re-

quired for each solution is approximately 45 seconds.



CHAPTER 5. STABILITY OF THE PLATE EQUATION

A difference solution for the vibrating plate equation must meet the re-
quirements of stability. The restrictions that have been established for the
beam equation are not applicable to a plate, but the same procedures are in-
volved, Therefore, the following development will parallel the previous work.

The equation for the transverse deflections of a vibrating plate is

Qﬁg dtw a4w] Fw _
D[BX4+25X25}'2+B}’4 +p'a—tg'—0 (5.1)

where w 1is the deflection, D is the uniform flexural stiffness, x and vy
are the rectangular coordinate axes, t is time and p 1is the mass per unit
area of the plate, The independent variables in Eq 5.1 are x , y and ¢t .
Therefore, a difference representation of the terms in the above equation
requires a three-dimensional coordinate system in which x , y and t are
the three coordinate axes. A rectangular grid, whose lines are parallel to the
x and y axes, is established at each interval of time, The intersections of
these grid lines are known as mesh points. Any mesh point may be located by
station numbers which are defined by the indices i , j and k with respect
to the coordinate axes. In the x or y-direction, the distance between

adjacent grid lines is fixed by the length of the plate increment hp

Explicit Formula

Explicitly, the finite difference formula for Eq 5.1 is

2

u + 20w,
i

+
{Wi-z,j,k+wi+2,j,k Y2,k T Vi, 54,k .3,k
- + + w
8 [wi-l,j,k Vil ik T Y,k T wi,j+1,k:|
(equation continued)
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+ + |
2 [Wi-l,j+l,k Yitl, 1,k T Yi-1,5-1,k T wi+1,j-1,k] J

W ikl T Y5k T,k - O (5.2)
wherein
2
2 _Dht
u = —'-};—4
P P

Two initial conditions and eight boundary conditions are prescribed. At

k = 1 and thereafter, the only unknown is w,

. . e rator corres-
i3, k+l The ope or co ]

ponding to Eq 5.2 is shown in Fig 8. To solve explicitly for each unknown de-
flection at any time station, the operator is used successively at every mesh
point in the x,y plane. The boundary conditions are introduced to establish
the deflections along the edges of the plate. 1In this manner, the solution
marches forward with time.

For a rectangular plate with M by N increments and hinged supports

along the edges, a solution is assumed to be of the form

wi,j,k = Aek® sin (i&m) sin (jBn) (5.3)
where

i = 0,1,2, ..., M

i = 0,1,2, ..., N
and

k = 2,3, ..., .

A substitution of Eq 5.3 into Eq 5.2 establishes that
u® ezk(’ZS Isin (ip) [sin (i-2) @ - 8 sin (i-1) @+ 20 sin (ig )
L n m m m

!
- 8 sin (i+l) o, + sin (i+2) o |

(equation continued)
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i,i-2,k

2
-u [‘"i-z.i.k Wi, gkt YWig-a,k Y Wi jez ]

Wi kel
2 + + w + w
=207 Wiy ek Y Wien -0, i1, jehk P+l jel, &
+8u2[w-i-n.i.u~+ Wii-t, ko F Wikt Wi jer, ]
2
(=200 + 2) w0 Wi k-
D h
where wt 2 — '4
P hp

Fig 8. Explicit operator for the transverse deflections of a uniform plate.
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+ si

=]

(ia ) [sin (3-2) B_ - 8 sin (j-1) B_ - 8 sin (j+1) B_

+ si

=]

(§+2) Bn] +2 [sin (i-1) o sin (j-1) B_

+ sin (i-1) o sin (j+1) B_+ sin (i+1) o sin (j-1) B_

+ sin (i+1) o_ sin (j+1) Bn} } + sin (io ) sin (iB_) [e(k-l)¢
-2y DS L (5.4)

A simplification of Eq 5.4 yields

_ -2 -2
e ® -0 +e? = L4 { [cos o - ZJ + [cos B -2 -4
m n 4
+ 2 cos o cos an (5.5)
Equation 5.5 reduces to
e2¢ + e¢ {4u2 [(cos o, - 2)2 + (cos Bn - 2)2 -4
+ 2 cos o, €OS Bn:| - 2} +1 =0 (5.6)

On the boundaries, independent of k , the deflections must satisfy the fol-

lowing equations:

Yiok - YiNgk o0 (5.7)

Yo,ik - "Myik - ° (5.8)

TV a1k Yi1k (5.9)

T ViN-1,k 0 YiNHLLk (5.10)

T Vo150 0 Y1,5,k (5.11)
and

T MM-1,5,k 0 ML 5Lk (5.12)

The boundary conditions are satisfied for
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o = = mo= 1,2, ..., M-1 (5.13)
m M
and
B, = S no= 1,2, ..., N-1 (5.14)
Thus, Eq 5.3 becomes
M-1 N-1
NN .. WL . DIT [ 3
wi,j,k 2, 24 AmAn sin (i v ) sin (] N ) C1 (e™)
=1l n=1
+C, (e¢2)k] (5.15)
in which C1 and C2 are constants.
For stability,
le%1], |e2| < 1 (5.16)

An examination of Eq 5.6 shows that Eq 5.16 is satisfied if the discriminant
{4 21 - 2)% + (cos B_ - 2)° - 4+ 2 cos cos B ] - 2}"2
u cos o N QO a

-4 < 0 (5.17)

For o = Bn =1 , Eq 5.17 reveals that

(5.18)

1
=2 .
wos T

Dh 2
L .
For a stable explicit solution, the maximum value of e = oh + 1is pre-

dicted by Eq 5.18. For this reason, the explicit formula will not be used in
the development of the dynamic plate equation.

To verify this stability criterion and to gain some insight of the be-
havior of an unstable solution, a numerical experiment was performed with an
explicit plate program. The experiment consisted of five problems in which a
square plate with hinged supports about the edges was divided into a 4 X 4

grid. For each problem, D , p and hP were constants and the time
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increment ht was calculated on the basis of a prescribed value for the ratio
2
Dht
php*
basis of Eq 5.18, instability could be predicted for a ratio of 0.0625. At

. The values for this ratio were 0.04, 0.05, 0.06, 0.08 and 0.1. On the

k=0 , the initial deflections were specified, An examination of the computed
deflections revealed a divergent oscillatory solution for the largest ratio,
The deflections became increasingly larger at each successive time interval,
At ratios of 0.05, 0.06 and 0.08, irregularities were noted in the computed

deflections.

Implicit Formula

Figure 9 illustrates the implicit formula and operator for Eq 5.1. The
fourth derivative terms that were previously at the kth station have been
divided equally between the stations at k-1 and &+l . This assumes that
the deflections at the kth station are an average of the sum of the corres-
ponding deflections at Stations k-1 and kt+l1 . All deflections at k+l1 are
unknown, whereas those at k and k-1 are known from previous solutions.
Thus, for an implicit solution, a set of simultaneous equations must be solved.

The stability criterion for the implicit plate formula may be established
by the same procedure that was employed for the explicit formula. Accordingly,
Eq 5.3 is substituted into the equation that is shown in Fig 9. A separation
of variables yields

e 2 ]}

: o [, _o\2 o33 ]
1R2u [(tos o 2)° + (cos Bn 2)" + 2 cos o cos Bn 4

+1 =0 (5.19)
The roots of the preceding quadratic equation satisfy Eq 5.16 for all

v > 0 (5.20)



2 2
v fz{wi-z.i.m Wiz, kel * Wiaz, f ke ¥ ""i“a'“'] +u ["""h mt kel T Wil ol ke
w W, —4u2w + W, + W . + W
Wi, el kel I TIN T i=t, by k4l Lj=t kel il j, kel iyiel, kel
+(106% + 1) =2
u o+ Wi ket = Wk
- 52 W, +w + W + oW -u?lw, Wi
u j=2, k-1 fyj-2, k=t 142, |, k=1 1, i¢2, ket Pty f=ty Xt Bely j-1, k=1
2
Wi gelaet Y Wil e, k-l] +4u [Wi-n,;,u-| oW e et Y Y e T Wijen kel ]

+(-10u2- 1) wi oy

2 D hy?
where U F — "
P hp

Fig 9. Implicit operator for the transverse deflections of a uniform plate.
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Hence, the implicit formula is stable for any choice of positive values for
D, o, hp and ht . In a subsequent chapter, the implicit formula will
be employed to solve for the deflections of a nonuniform plate. Analytical
proofs for other boundary conditions are not readily attainable. Nonethe-

less, stability is indicated by the fact that numerical solutions have been

obtained for problems with other well defined boundaries.



CHAPTER 6. DEVELOPMENT OF THE PLATE EQUATIONS

The finite-element plate solution includes the static equation, the
dynamic equation related to the initial velocities and the dynamic equation.
Shear deformations, linear damping and the effects of rotatory inertia have

been omitted.

Static Equation

Consideration of static equilibrium and the moment-curvature relationship

(Ref 13) yields
@D

L B ) Bw :| - g -
+2 5= [D (1) §355 q - sw (6.1)

where

Eh®

D = T a-®

In the foregoing, h is the plate thickness, v 1is Poisson's ratio, s is the
foundation modulus and ¢q is the transverse static load. The coordinate system
which was described in the preceding chapter is applicable in the following
development.

In the finite-element solution, it is assumed that the increment length th
in the x-direction does not necessarily equal the increment length hy in the
y-direction. Furthermore, the stiffness D and the lumped quantities S and
Q may vary from one mesh point to another, The variation in D accounts for a
changing plate thickness, but the plate properties are isotropic. The partial
derivatives in Eq 6.1 are expanded in the same manner that was used for the beam

equation. This establishes the difference equation

35
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- 1 -
+
Xy gt B * Yy 28w [ Xy ¥ Yy 22

i,j]

.
+ + + + +
[X4 Y0 ¥ 2% Yit1, 5 Y XV 5 Y NV, 52

+ [ ]
+ [Yz X;o + 224:| Vil +ly, + X, + 2z LA

+ [Xg +Y + ZZlJ w

Tevs 542 6 i-1,3-1

+ [x6 +Yg+ 223} L2 + [xll + Yy + 227:| Vitl,j-1
+ [Xs +Y,, + 2z9} Vil il S [Q. -S| (6.2)
it+l,j i,] i,j i,j2 hkhy
In the above equation, the coefficients Xl’ cees X11 s Yl’ e Y11 and
10 e 29 are defined in Appendix 2. A finite-element model of the plate
has been developed by Hudson (Ref 6).

Z

Dynamic Equation

The partial differential equation of motion for forced lateral vibration

of a plate is
ORI A )

3
] +swtop gtz = q (x,y,t) (6.3)

+ 2 —-——'[D (1-v) 8 -

where ¢ (x,y,t) 1is the imposed lateral force, The implied difference

equation for Eq 6.3% is

1 (X ) [ k+1

k+1}
+ = +Y, + ,
1 2,7 (X2 Y ZZ ) [ i-1,]

S, . 0 \%
i,j i, ] k+1]
1 +Y, + +
12 Ry + Y, + 22, th) + 3 }[Wk- ) 5
(equation continued)

* A derivation of the implicit formula for Eq 6.3 is given in Appendix 3.
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W, W.
1 K+l 1 Mt
+= (X, + Y, +2Z s &)L
7 &+ Yo 8) w i+l 2 (X5) Lw, g dit2,
1 VieH1 - 1 Tkl
vz ap [, gy e x+22) |
2 1 Wia1tsd 2 2 2 10 4 Lwy 14157 1
W, — W. -
1 pe! 1 Kt
+= (Y, + X, + 22 ..+-Y[ .
2 ( 4 7 6) _wk_1_1,3+1 2 ( 5) wk_1J1,3+2
1 M it T
tg K * AT 22D [y i1
W
1 SO
o (X +Yg +225) [w __[i-l,j-!-l
k-1
W
1 'k+1]
tg Kyt Yg 22y [Wk-l i+1,3-1
+3ox, +y +2z)[wkﬂ} -Eié_i
2 Y8 T 11 9 Lw_jditl, 5 T THE Vi, gk
NN (6.4)
b h :

Xy

The compact notation in brackets in Eq 6.4 implies a multiplication of the co-
efficients by the deflections at k+1 and k-1. 1In Eq 6.4, the solution for
the unknown deflections at k+l is dependent on the known deflections at k
and k-1 .

To begin the transient solution at k = 0 , Eq 6.4 is modified so that the
generic indices k+l , k and k-1 become 1 , £ and 0 , respectively. 1In
addition, the initial velocities and deflections are introduced in the computa~-

tional procedure in accordance with the following equations:

-Wi . + w. .
ﬁ&’_l = wl’J:O wlaJ:%L
at'i,j,0 ht/2

(6.5)

and
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ng | = wiaj:»O j zwi:j’% + wi:j:]- 6.6
P 14,5, Pi,j (h /2)* €-6)

The unknown deflections at k = £ are eliminated by combining Eqs 6.5 and 6.6.
Thus the deflections at k = 1 are calculated. 3Beginning at k = 2 , the

plate deflections are determined from Eq 6.4 for each time interval as the

solution marches forward.

Method of Solution for the Difference Equations

To obtain a solution for the unknown deflections, either static or dynamic,
the appropriate equation is applied at each mesh point within the interior of
the plate, along all boundaries, and at one mesh point outside of these boun-
daries. For a square plate which has been divided into M intervals in both
directions, this procedure will introduce (M+3)? - 4 wunknowns in (M#+3)2 - 4

equations. In matrix form this becomes

][] - [e]

[B} is a square matrix with a predominant number of zero terms, but the non-
zero terms are not banded about the main diagonal. These equations may be
solved conveniently by an iterative procedure which is known as an alternating-
direction-implicit, or ADI, method. In a comparison with other iterative
methods, Young (Ref 17) has shown for second order difference equations that
the ADI method has the most rapid rate of convergence. Conte and Dames (Ref 2)
were among the first to utilize the ADI method to solve for the static deflec-
tions of a plate. Tucker (Ref 14) used this method successfully to solve the
static grid-beam problem.

The ADI method is comparable to line relaxation in the x and y-direc-

tions. Basically, for an ADI solution, Eq 6.4 is solved for the deflections
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[;;] in an x system and the deflections [E;] in a y system at alter-
nate iterations. Equation 6.8 shows the iterative procedure employed to solve

Eq 6.4 for the x system at iteration n+g .

1 — | nhg
7 &) [wxi-Z .3 k1

1 _ ot
Ty &tz [wxi-l,j,k-l-l:l

1 i 9% U (g ]+
+{2 Xy +25+5; ) +q5i+)‘m} [wxi,j,k-l-l
+3x +z)[ﬁ ]n%

7 &, T 23 i+, 5,k

1 — n+g
7 Xs) [Wxi+2,j,k+1]

Q' 3 D]
_ i ik — Tn \ p -
S Thah M [wyi (S [X’Y’Z’ h_z:l [W} (6.8)
X y b b t
In the foregoing, [WXJ P¥Z  are the unknown deflections for the x system at

iteration n+ , and [Wi] " and [ﬁ?] " are the known deflections from the
nth iteration for the x and y systems, respectively. The summation term
on the right hand side of Eq 6.8 implies a multiplication of the remaining X ,
Y, Z and Egg terms in Eq 6.4 with their respective deflections at iteration
t

n+% or n , or at a previous time interval. The closure parameter Xm will
be discussed subsequently. Equation 6.8 involves M3 unknowns in M+3 equa-
tions along a single line of mesh points in the x-direction., An equation
similar to Eq 6.8 can be written for the y system. One iteration consists of
solving 2M+2 lines in the x and y-directions, The total number of equa-
tions solved in each iteration is (@M+2)(H3) ,

Each equation has five non-zero terms banded about the main diagonal in
the coefficient matrix. This quintuple-diagonal system of equations is solved

by the same method which was described previously for the beam equations. The

solution is reached when |wx - wy| is less than a specified closure tolerance.
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Boundaries and Specified Conditions

For an unloaded free edge at x = a , the following difference approxima-
tions for moment and shear are automatically satisfied in the plate solution by

zero stiffness beyond the edge of the plate.

.- 1 . T .+ . =
Mar1,g T2 ) e g F a5 TV G T ) T 0 (69)
and
- (- L+ - - + ( )
(2-v) Va1, 4-1 2-v) Vo, i1 " Va2, i 3+2 (2-v) Va1, ]
-(3¥2 @w)w, .+ - (-
( 2 @) vy 5 F Va7 @) Ve g
+ (2-v) w = 0 (6.10)

a,jtl

Equations 6.9 and 6.10 are equivalent to the Kirchhoff boundary conditions (Ref

13) which are

2 2
(%{-?-w%%’—) = 0 (6.11)
and
A3 3
(§;¥ + (2-v) %£§§2) = 0 (6.12)

In the numerical solution, a zero deflection is conveniently established
by inserting very stiff elastic foundation springs at the desired mesh points,
No provision has been made to prescribe the slope at any boundary. However,

this could be accomplished by the same procedure that was used for a beam.

Closure Parameters

The scalars A A fes Km in Eq 6.8 are closure parameters that ac-

1 b 2! .
celerate the convergence of the iterative procedure. In fact, these parameters
are the key to an efficient solution. For a symmetric problem (Ref 6), these

parameters have been related to the eigenvalues of the difference equations

along any line in either the x or y system.
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The parameters for the static equation as it is formulated in this devel-

opment may be determined from

D -
- - +
Bt [wi-Z,j 6wy g, g T L0V 6V stV g
= AW, . (6.13)
In the above equation, the plate stiffness D is a constant and the increment

lengths hX and hy are equal. For hinged boundaries and M intervals, a

solution is assumed to be

wi,j = sin (1am) (6.14)
where
= I
CYm M
This yields
- D . o - mr
Am hx4 4 (1 - cos M ) (2 cos ) (6.15)
m = 1,2, ..., M-1

There are M-1 parameters which are used in cyclic order in the static and
dynamic equations. If the problem has mixed boundary conditions and non-
uniform stiffness, the closure parameters may be estimated from Eq 6.15.

The closure parameters for each system are inversely proportional to hX4
and hy4 . For an efficient solution, the iterative procedure must account for
this variation in closure parameters, Ingram (Ref 7) has demonstrated that
optimum closure is obtained if the calculated parameters for the =x system
are used in the solution of the y system and vice versa. This scheme has

been included in the plate solution.
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CHAPTER 7. NUMERICAL RESULTS - PLATE

The development of the plate equations in Chapter 6 has been assembled in
a FORTRAN program for the Control Data Corporation 1604 computer. A listing of
this program, DPI1, a guide for data input, and a summary flow diagram are in
Appendix 5. Four problems are used to interpret the computed results of the
plate program. Problems 1, 2, and 3 are intended to illustrate the effect of
variations in number of plate increments and length of time increment on the
accuracy of the solution and on the amount of computation time required to
propagate the solution through a given number of time increments. If the plate
in initially deflected in the shape of its fundamental mode of vibration and
then released, theoretically this deflected shape will be repeated at the end
of each integer multiple of the fundamental period of vibration. The program
was modified to permit specification of initial deflections, but since this is

of little practical use it was not made a permanent part of the final version.

Problem 1: 4 X 4 Grid

A plate with hinged supports along the edges is divided into a 4 X 4 grid.
The increment lengths hX and hy are 12 in., the uniform stiffness is 2.5 X

106 lb-in., Poisson's ratio is 0.25, the mass density is 7.5 X 1074

lb-secz/
in3, the increment of time ht is 4,233 X 10-4 sec and the closure para-
meters are 1.83 X 102, 9.62 X 102 and 2.24 X 103 1b/in3. The theoretical
period of vibration for the lowest angular frequency (Ref 12) is 30 ht . At
k=0 , the initial deflections of the plate are

%) i (T)

wi,j,O = s1in ( L.

in which L 1is 48.0 in. This shape corresponds to a normal mode of vibration.

The plate is then released. At the conclusion of the first period, or 30 ht ,
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the shape of the plate is similar to its initial shape. 1In Table 2, this simi-
larity is shown for selected mesh points. The maximum variation between the
initial deflections and the deflections at the conclusion of the first period
is about 9 percent. For a closure tolerance of 1.0 X 10 ~ in., four iterations
are required to solve for the unknown deflections for each time increment. The

computer execution time is 1.2 minutes for 30 increments of time.

Problem 2: 8 X 8 Grid

For this problem, the plate is divided into an 8 X 8 grid. Thus, the
increment lengths hX and hy are 6 in. and the summation in Eq 7.1 is
changed accordingly. The remaining dimensions are the same as those in the

preceding problem. The closure parameters are 2,93 X 103, 4,0 X 103, 5.0 X 103,

7.0 X 103, 1.0 X 104, 1.54 X 104, and 3.58 X 105 1b/in3. Seven iterations are
required for each time increment. The similarity between the initial deflec-
tions and the deflections at the end of the first period is illustrated in

Table 2. The variation in the deflections is about 2 percent. The computer

execution time is 6.3 minutes for 30 time increments.

Problem 3: 4 X 4 Grid and Reduced Time Increment

This problem is identical to Problem 1 with the exception that the time
increment ht is 2.117 X 10-4 sec, which is one-half of the wvalue used in Prob-
lem 1. The deflections are shown in Table 2. Three iterations are required
for each increment of time and the computer execution time is 1.7 minutes for
60 increments of time. The variation in the deflections for this problem is

about 7 percent.

Problem 4: Moving Load on a Rectangular Plate

Three different solutions have been obtained for the uniform plate which



TABLE 2. A COMPARISON OF THE NUMERICAL RESULTS

n

b
T = FUNDAMENTAL PERIOD

__é “é' —— OF VIBRATION OF

] THEORETICAL PLATE

[

PROBLEM 1 PROBLEM 2

MESH 4 x 4 GRID 8 x 8 GRID
pO‘NT T = 30 ht T = 30 h'
DEFL TIME DEFL TIME

] 0.8000 in. {0} 0.5000 in. {0)

0.4580 in. {7} 0.4910 in. (7))

2 0.7071 in. {(0) 0.7071 in. {0}

0.6478 in. (1) 0.6944 in. {7

3 1.0000 in. {(0) |.0000 in. (0}

0.9161 in. (T 0.982! in. (7))

PROBLEM 3

4 x 4 GRID

T : GOhf
DEFL TIME
| 0.5000 in. {(0)
0.4697 in. (7))
pd 0. 7071 in. (0}
* (7)) % NOT INCLUDED
IN OUTPUT
3 1.0000 in. (0)

0.93%3 in. (7))
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is described in Fig 10. First, the static load is applied at i = 7 and the
resulting static deflections are noted. For the two dynamic solutions, the
initial velocities and deflections are zero and the moving load is applied suc-
cessively at i =0, 1, 2, ..., 15. In one solution, the velocity of the moving
load is 9.45 X 102 in/sec. TFor the other solution, the velocity of the moving
load is 3.78 X 103 in/sec. The deflections are noted when the load is at

i =7 . Figure 10b illustrates the deflected shape of the plate for the three
solutions. Figure 11 shows the contours of the deflections for the same
solutions. The closure tolerance is 1.0 X 10-6 in. and the closure parameters
are 0.7, 1.0, 4.0, 6.0, and 11.0 lb/in3. The static solution requires 50 itera-
tions. The dynamic solutions require 16 iterations for each time increment
when ht is 5.08 X 10-2 sec and 5 iterations when ht is 1.25 X 10-2 sec.

This problem was selected to demonstrate the effect that the velocity of a
moving load has on the response of a plate. For v = 9.45 X 102 in/sec , the
dynamic deflection at i = 7 1is greater than the static deflection. However,
for v =3.78 X 103 in/sec , the dynamic deflection at i = 7 1is less than the
static deflection and the traveling wave lags behind the moving load. This
phenomenon was discussed by Reismann (Ref 10) in his theoretical solution for a

long rectangular plate.
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hy = hy = 4.8 in.

n

L = 192 in.
v ot 025
Q = 10 x 10° Ib/ste
FOR v = 945 x 10° in/sec
-2
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FOR v = 378 x 10° in/sec
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LOAD
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/ v = 945

2
x 107 in/sec
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Fig 10.
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Moving load on a rectangular plate.
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Q.0 in. +0.6 in.
y
/ / £+0Q2 in
4

STATIC

X,
) A (b)
\ T vz 9.45% 10° in/sec
~

Qin
+0C.49 in. 0.0 in.
y / /—+o.2 in,
4
(c)
. v=378x10° infsec

CONTOUR INTERVAL = 0.2 in.

LOAD 1S AT STATION =7

i refers to sta along the x axis

Fig 11. Contours of transverse deflections for a rectangular plate.



CHAPTER 8. CONCLUSIONS

A finite-element method has been presented to determine the response of a
vibrating beam or plate., The method is based on an implicit difference formula
of the Crank-Nicolson form. An examination of the difference equations for a
uniform beam and plate disclosed that the implicit formula is not subject to
instability. Therefore, this formula has been used in the development of the
beam and plate equations. Although several investigators have used difference
equations to solve the equation of motion for a uniform beam, the general devel-
opment described herein is applicable to nonuniform beams and plates.

For the beam equation, the development includes externally applied dynamic
loading, rotational restraints, elastic foundation supports, axial loads and
viscous damping. For the plate equation, the development is arbitrarily re-
stricted to externally applied dynamic loading and elastic foundation supports.
Separate computer programs have been written in FORTRAN-63 for the solutions of
the beam and plate equations. Both programs permit the flexural stiffnesses,
elastic restraints, mass densities and loads to be discontinuous. Numerical
examples demonstrate that the programs will be useful in solving many diverse
problems whose solutions are not easily attainable by other known methods.

The present beam program effectively uses about 60 percent of the core storage
of the Control Data Corporation 1604 computer. In contrast, the plate program
utilizes the entire core storage of the computer and is restricted to problems
whose maximum grid dimensions are 15 X 15, This limitation can be alleviated
by storing a portion of the program on auxiliary tape.

A future extension of the preceding development will incorporate nonlinear

flexural stiffness, foundation supports and damping. In addition, coupling
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between response of the beam, or slab, and response of a moving mass must be
considered. The fundamental ideas and procedures described herein may have

a potential application in shell dynamics and in other initial-value problems

in engineering.
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APPENDIX 1. DYNAMIC BEAM EQUATION

The partial differential equation for the vibrating beam has been shown

to be

2 2
%;g [F g;;] + sw - %- [(r + P) J*p atg gz = q(x,t) (Al.1)

A finite difference form of the above equation is derived in the following man-

ner. All symbols have been previously defined. Expansion of Eq Al.l establishes

E%KF%Z?E j-1,k 2(Faxe Jk+<F >J+lk:|

X
+
(Sw)j,k I: <(r TP ox \J 1,k
+<(r+P)@ :|+—-j-’_w - 2w, +w ]
dx Jj+l,k htz L "3,k~1 i,k j ktl
ii
+ ht [ -wj,k + wj,k+l ] = qj,k (Al1.2)
and
—;( F (w -2 w + )
h =L "3-1 73-2,k 3-Lk T Y5,k
-2F ) - .+,
(WJ 1,k 2 Yik T Y,k )
+ F, . - J+ 5.W,
#1507 2 Yt e k) i3k

(equation continued)
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1
Sy [ D Gy )
PR e b, )]

p
‘*’Ei""[ ikl T2 et Ve ]

and

2
]
o

:1

Equations Al.3, Al.4, Al.5 and Al.6 are combined to yield
[ 7 -025n, ® )+ hP ) W,
-2 ¥, +E, | [ + +12
j-1 j Wj-l,k + Fj-l + 4FJ Fj+1 hx Sj

+ 0.25 hx (Rj~1 + thj—l + RJ._H + thj+1 ) ]wj,k

(equation continued)

Al,2

(A1.3)

(Al.4)

(Al.5)

(Al1.6)



Al.3 57

hd + - - ”
2 [ Fy4E ijﬂ’k [Fj+l 0.25 by (Ryy,

h 4
X
+ —— -
*hPin) ]wj-i-z,k h2 P [ Tyl T2 e Ve ]

+ 4, = - oY ] - B2Q, (A1.7)
For an implicit formula, the preceding equation becomes
0.5 | Foy - 025h (R, +hR ) ] Wy o e
- Fiai* Ey ] Vi1, T {05 [ Fyoy + 48y + Py + 008,

h 4
=

b4
tio4) } Vi kL [ FotFin ]wj+1,k+1

+ 0.5 [ Fj+l - 0.25 hx (Rj-i'l + hx}'}j'i-l ) ]wj+2,k+1

h 4 h 4 h *
= 3 X_ P =_
B G P2 EE Pk TRE Pk YR 4k

0.5 [ Fyp - 0.25h, Ry, +hR, ) :]wj-z,k-l
+ [ Fiq +F, :}wj-l,k-l - 0.5 [ Fo tAE FE
3
+h S, + 0.25 h (Rj_1 + thj_l TRt thj-l-l ) ] i k-1

(equation continued)
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-

+ [: FybE Jw,j+1,k-1 - 0.5 [,Fj_H - 0.25 b Ry,
thPi ) J Va2 k-1

The foregoing equation corresponds to Eq 3.8 in the text,

Al.4

(Al.8)
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APPENDIX 2. STATIC PLATE COEFFICIENTS

ol
o

i'l’j

2 [ 2y
- {D,_ +D ] =T T Dyl
hx i-1,] i,] hx hy 1=1,]

1 Ay
n LERRLWEL L W12 "1,

2 yAY)
TH [Di,j + Di+1,j] A Dy,

1
D
i Pue
=% D
n he i-1,1
X'y
- 'Ejh%r
B 1,3

—2—
hi h; i+1,}

Dy3-1
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Let

2
2 h‘; [D1,1-1

1
Y3 = 13 [Di,j-1+4Di,j+
y
2
Y, = -2 [p
4 h* [ 1
v ,J

Y, = 1_
h4
y

Dy, 441

V
Y. = 533 Dy 44
6 e hy 3]
Y, = = 1’2% D
7 h? hy 1,]

g = W B Dy, 441

Ty = U D1y, 401y

(1-v) D

Ty, 441 1-172, 3+1/2

(1-v) D

Ti41, 14172, 3-1/72

,J] T h2 Pi,3-1

4
D1,1+1] T i Dyl

,j+1—l W h3 Dy, 41

A2,



A2.3

Then

Tit, 41 (1-9) Dypz 54a
1
2. T w®w@ L,;
Xy
Z, = -~ [Nt )
2 h® h2® [ 7i,j i,j+l
X'y
z, = —gl—— T
3 h® h® "i,j+l
Xy
7 = - i [T + T ]
4 h® he |L7i,j i+l,j
Xy
zZ. = ——l—g [T + T + T + T ]
5 hi hy i,j i,j+l i+1,j i+1, j+1
z, = = —gl—— [T + T ]
6 hx h§ i,j+1 i+1, j+1
= L
27 T 1@ 1 Titl,j
Xy
7. = - —i= [T T ]
8 h® h2® [ “i+l,j + "it+l,j+l
X'y
zZ, = —gl—g T
9 h® h° “i+l, i+l
Xy

63
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APPENDIX 3. DYNAMIC PLATE EQUATION

The partial differential equation for a transversely vibrating plate is

%&[ﬁ%w%—iﬁb%}[ﬂi’%w%)]

(1 ) axg ]* SW‘“PS—? = q (x,y,t) (A3.1)

The finite difference form of Eq A3.1 is derived in the following manner.

An expansion of Eq A3.1 establishes

'1?1?' { [D (%;‘;4. W%?’)]i-l,j,k -2 [D<¥+V%>]i,j,k

X
+[D(%*V%ig)]m,j,k}‘hﬁ}l?{[])(%g
+v§%>:l,_]lk Z[D ?g "g_z%)]i,j,k
+rD< azw :]i,j+l,k}

+._S_:¥l { (? oxdy :%ﬁyg,j'ya»k - axay :%“y233+yg:

( axay )143/3,3-%'2, (D %0y )1#/3, Y,k } + (sw)y

- + B
[“’i,j,k-l 2405,k ""i,j,kﬂj 94,3,k (A3.2)

and
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D‘
1-1,,1{ 1 [ i 7
b ? b7 Yi2,9,k T M1,k T Y gk J

v o
+ hy"“’ [wid,j—l,k R wi-l,j+l,k] }
D, .
{55 [ ]
- —a — -
252 1B L-1,0,k 7 20,5, T Ve, 50k

N
+ E;f ["i,j—l,k 29 5% TV L ] }

D
1+1, { 1 [ i ]
+ B2 107 L¥1,1,k 2,5,k T Va2, 9,k

! _
+ hy’ [wi-i-l,j-l,k T2 Vi, g,k T Ve, Lk J}

L3l (1T 7
t4 2 { B2 [Y1,9-2,k - 2%, -1,k T Vi, 4,k
y y
Y

P )
h 7 L¥1-1,3-1,k 29y 41,k F Vi, 51,k

D
h

i,]
F
y

1
-2 {i;'f [“i,j-l,k T2V 5,k T e, 5Lk ]

YV
+ 2 [ , -2 + ] }
B2 L¥1-1,0k 7 V1,1, 7 YiH, 1,k

(equation continued)

A3.2
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D
i,j+l{ 1 [
g8 ARSI 2wi,j+1,k+wi,j+2,kJ

+ —Xe [w - 2w +w ]1
hx"J i-1,i+1,k i,j+1,k i+1, j+1,k f

2(1"\)) { i":yaxl-]f [: -
¥i-1,3-1,k ~ Yi-1,49,k © Vi,3-1,k

- D
_ i o, it [ _ _
“’i,j,k_J hxﬁ_yJL Yi-1,3,k T Yi-1, 5K,k T Yi,4,k

+w 7 _iﬂ&z_l'.]/_&[ W - w
4,k T £,3-L,k T Vi, 5,k T Viel, 5-1,k
. w/gz]wg
RS TN [ Y1,k T 1,54,k T V41, 5,k
+ wi+1,j+1,k] } * 81,5,k
. Py ; i
h,2 [Wi,j,k-l T2 ik T ke J RTR" (43.3)
let
si,j = hxhy 1, (A3.4)
Uik T By 950k (43.5)

C, . = (1-v) Di‘%{g, jiYs (A3,6)
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Cc, . = 1- D .
1,3+ (1-v) 15,32
C . = 1- D, .
1+1, j (1-v) i, 3,
and
Cc . = - D, ,
i+1, j+1 (1-v) 1""-'/2 , _'j+]72

Equations A3.3 through A3.9 are combined to yield

Di1j 1 -
50 Y R (D S - ow R . J
hxa { hxa [ i“Z)J)k i'lxjxk wi)J)k
+ [w - 2w + w ] }
hy2 i-1,j-1,k i-1,3,k 1-1,3+1,k |

- 2 Di’j { 1 [w -2 + 1
B2 U LMi-1,5,k T e, 1,k T Ve, 5k

v -
¥ h? [wi,j-l,k 2y 5k TV ik ] }

-

i+1,1 {
* h ? L 1,5,k " 2Ya41, 5,k T Yi42,5,k ]

N

+ hy2 [wi+1,j-l,k T 2Via1, 4,k T Vi, 14k ] J

’”{ I - ]
b2 [71,5-2,k 29y 3-1,k Y Ve,

(equation continued)

A3.4

(A3.7)

(A3.8)

(3.9)
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N

_V_ _ !
T2 [Wi-l,j-l,k 29g -1,k T Vi, 51,k S

[
{7
——
lH
1
—J

TR E 1%, 51,k 7 29,50 T Ve, 541,k

3

h? [“i-l,j,k Tk T Vi, Lk J

h2 (| h? [wi,j,k T2V Lk TV 2k J
AY
+ b7 [wi-l,j+1,k 29y 541,k T Vi, 4Lk ] }

r -
+—%§—§{C .Lw . -w .. =W +w, . _J
hX hy 1,] 1-1,3-1,k 1-1,3,k i,3-1,k 1,3,k

-c +

i,j+l [Wi-l,j,k TVie1, 34,k Y, kT Y, 4Lk J

" Gy, 3 [wi,j—l,k Tk T Yiel, -1,k T Vi, g,k

CRCTRTRPSUN)
PO LY, 50k T e, gk T Yk, 5k T Pk, 1Lk

Bh. 1,1,k [ L,5,k1 " 2,5,k T Ve, 9,00 ]

= —2dar (A3.10)
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A3.6

The static plate coefficients, which are defined in Appendix 2, are substituted

into Eq A3.10.

For an implicit formula

» BEq A3.10 becomes

1l [ :| 1 [
2 KD (Yo gkl PV g (T2 K Y H20) (v g

1 _|[
TV, ]+ [ 7 Bg v Y3 +22, 48, D+, 5 [V 4,k1
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1 1
3 (&) l:wi+2,j,k—1 Vi, 5,k ]+ 2 ) l:wi,j-?_,k-l

11
2 +
Vg [T

1

F3 (Y, + X +22) [wi’

++ ) l:w +w
7 Us) [ Yi j42,%-1

+ 2Z1) [wi—l,j-l,k-l +w

_
+223) (Wi g4,k-1 T

+22,) l:w1+1,j-1,k—1 tw
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(A3.11)
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SUMMARY FLOW DIAGRAM - DBCI

A |

READ problem identificatioﬁj

75

PRINT problem identificatioaw

l

9999

READ and PRINT

Specified slopes and deflections

Table 2. Constants

Table 3.

Table 4. Beam data

Table 5. 1Initial velocities
Table 6. Time dependent loading

N

DO for each time K from 2 to MTP{)

PRINT Table 7. Deflectionéw

CONTINUE

——————
| I
| ———— DO for each station J from 3 to MPé)
| |
| | - SIENUF
ol N |
) | 7001 | 7002 0 7003
4 | static Dynamic equations Dynamic
I I equations with initial velocity equations
| G i J
| | 7004
| | CONTINUE
I
| oo { contnue
I
o CONTINUE
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GUIDE FOR DATA INPUT FOR PROGRAM DBCl (BEAM)

with Supplementary Notes
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DBC1 GUIDE FOR DATA INPUT --- Card forms

S
v
IDENTIFICATION OF PROGRAM AND RUN ( 2 alphanumeric cards per run )
1 80
1 80
IDENTIFICATION OF PRQBLEM (one card eoch problem)
PROB Description of problem (alphonumeric)
1 5 n 80
TABLE 2. CONSTANTS ( one card)
NuUMm BEAM NUM TIME NUM CARDS (N TABLE
BEAM INCR TIME INCR
INCRS LENGTH INCRS LENGTH 3 4 5 6
6 10 20 26 30 40 46 50 56 60 66 70 76 80
TABLE 3. SPECIFIED DEFLECTIONS AND SLOPES ( number of cards according to TABLE 2)
BEAM
STATION CASE DEFLECTION SLOPE
j | | CASE = 1 for deflection only, 2 for slope only, 3 for both
6 10 16 20 30 40

6L
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TABLE 4 BEAM DATA AND STATIC LOADING {number of cards according to TABLE 2). Dota added to storage as lumped quatities per

increment tength, linearly interpolated between values input at indicated end stations, with 1/2-volues at each end station.

Concentrated effects are established as full values at single stations by setting %inal station =initial station, {2 cards
per set of data required)

ENTER 1
IF CONTD
FROM 10 ON NEXT F RHO DF
BEAM BEAM SET OF BENDING MASS DAMPING
STA STA CARDS STIFFNESS DENSITY COEF
6 0 5 z0 f(J 4ol 3
Q S P T R
TRANSVERSE SPRING AXIAL TRANSVERSE ROTATIONAL
L.OAD SUPPORT LOAD COUPLE RESTRAINT
I l I I |
6 15 2% 35 a5 55
TABLE 5§ INITIAL VELOCITIES (number of cards according to TABLE 2) Full values of velocity occur at each station and the input is
not cumulative.
ENTER 1
FROM TO_ IF CONTD wVv
BEAM BEAM ON NEXT INITIAL
STA STA CARD VELOCITY
s 10 15 20 30

TABLE 6 TIME DEPENDENT LOADING ( number of cards according to TABLE 2 ) Full

values of load occur at each station and the input is
not cumulative.

ENTER 1 QT
FROM 10 FROM JO F conTD TIME
BEAM BEAM  TIME TIME ON NEXT DEPENDENT
STA STA STA STA CARD LOADING

6 10 i5 20 25 30 40

l [STOP CARD (one blank card at end of run)
i 5

THV

18
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GENERAL PROGRAM NOTES

6"V

The data cards must be stacked in proper order for the program to run.

A consistent system of units should be used for all input data; for example: pounds, inches, and seconds.

All 5-space words are understood to be Integers . . ¢ v ¢ v 4 o ¢ o e 4 e 4 e e e e e e e e e -4321

All 10-space words are floating-point decimal numbers in an E format . . . . . . . . |- 4 ., 32 1E+0O0 3|

All integer data words must be right justified in the field provided.
The calculated deflections for all beam stations are printed in tabular form for each station.

The program will adjust the number of time stations so that this value will be a multiple of five. Thus, the
number of time stations input will be increased by the computer by one to four to accommodate the output
format.

TABLE 2. CONSTANTS

Typical units for the beam and time increment lengths are inches and seconds.
The maximum number of beam increments into which the beam-column may be divided is 100.

There is no maximum number of time increments, except that dynamic loading may be specified for only the first
110 time increments.

TABLE 3. SPECIFIED DEFLECTIONS AND SLOPES

The maximum number of stations at which deflections and slopes may be specified is 20.
Cards must be arranged in order of station numbers.
A slope may not be specified closer than 3 increments from another specified slope.

A deflection may not be specified closer than 2 increments from a specified slope, except that both a deflec-
tion and a slope may be specified at the same station.

TABLE 4. BEAM DATA AND STATIC LOADING

Typical units:
variables: F RHO DF Q S P T R

values per station: lb_inz :U.')--SeCB /in2 lb-sec/in 1b ]_b/ln 1b lb-in lb-in-rad

£8
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Axial tension or compression values P must be stated at each station in the same manner as any other dis-
tributed data; there is no provision in the program to automatically distribute the internal effects of
an externally applied axial force.

TT1° %V

For the interpolation and distribution process, there are four variations in the station numbering and in
referencing for continuation to succeeding cards. These variations are explained and illustrated on the
following page.

There are no restrictions on the order of cards in Table 4, except that within a distribution sequence the
stations must be in regular order.

TABLE 5. INITIAL VELOCITIES

Typical units:
variable: WV
values per station: in/sec

A linear variation in initial velocities may be specified for any interval of beam stations, including the
two end stations. The sequential order of the stations must be observed.

Initial velocities are input in the same manner as distributed quantities in Table 4, except that full values
occur at every beam station and the input is not cumulative.

TABLE 6. TIME DEPENDENT LOADING

Typical units:
variable: QT
values per station: 1b

The time dependent loading may be specified for any beam station and for a maximum of 110 time stations.

The program permits any continuous linear variation in loading with time; however, if the loading is input for
an interval of beam stations, the timewise variation in loading must be the same for every station within
the interwval.

The sequential order of both beam and time stations must be observed.

Full values of load occur at each station and the input is not cumulative.

G8
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STATION NUMBERING AND REFERENCING FOR TABLE 4.

Fixed - position Data FROM _TO_ CONT'D
BEAM BEAM TO NEXT
Individual- card Input STA STA CARD ? F Q
Case a.l. Data concentrated ot one sta......... | 7—!—»7 |0= NO I I 3.0 I.
Case a.2. Dato uniformly distributed. ... ... ... [ s —Le15 Jo=No] 2.0 | K=
[ 15 —F=20 Jo:=Nno]| 4.0 [ 10 &
| 10—=20 [o:=nNo ] | 20 |O
Multiple-card Sequence
Case b. First-of ~ sequence .. ... .. .. .. . ... .. | 25 | ||‘=YESI 0.0 | 2.0 N
\\ /®
Case ¢. Interior — of - sequence ... . ... .. .. .. .. I |/30 ||=YESI 4.0 | \®
|
| [»35 |i1zvyes| 2.0 | o.0 J(e
(
Case d. End-of~- sequence .................. | [Wa0 Jo:no | 2.0 | e
Resulting Distributions of Data
- -1 — 4 — -~
STIFFNESS F ! | ST
\— 3 — A e,
I ) ~
I~ - — 2 — . YT T I
/
— ] — %
-& -
Sta: S 10 15 20 25 30 35 40
LOAD Q - Y — 3 —
|
| —2— 00000
) | ~
i =% [T
\? \Q‘ O—O—O
O T OO OO
Sta: 5 10 15 20 2 30 35 40

E1" vV

L8
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TABLE 6.

TIME DEPENDENT LOADING (continued)

The variable QT is input at any beam station and time station by specifying j and k
and TO columns.

EXAMPLES OF PERMISSIBLE INPUT OF THE VARIABLE QT ARE SHOWN BELOW

in the FROM

ST %V

BEAM STATIONS CONT'D
TIME STATIONS T0 NEXT Q.
FROM TO FROM TO CARD ? b
| 5 [ 15 | | o | 20 | | 1=YES | 0 |
[ 5 | 15 | | 0 | 20 | T 0:=NO ] 10 |
| 20 | 20 ] | 20 | 40 ] | o=nO ] 15 ]

68
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A4.17

91

1D
ID
1D
1D
ID
1D
1D
ID

-COOPsCEU51118sMATLOCKS/2S. DBC1 DECK 1
—FTNsEsRsNs
PROGRAM DB(C1
1 FORMAT (5Xs52HPROGRAM DBF1 - DECK 5 - HJ SALANIs H MATLOCKZ22JL5 1D
1 28H REVISION DATE = 12 JUN 66 )
C=—=~—- SOLVES FOR THE DYNAMIC RESPONSE OF A BEAM BY AN IMPLICIT METHOD 01JLS
C—=—- NOTATION FOR DBC 1 ) 01JLS
C AN1( )y AN2( )sETC IDENTIFICATION AND REMARKS (ALPHA-NUM} 12JE3
C DF({J) DAMPING COEF 01JL5
C DWSI( ) VALUE OF SPECIFIED SLOPE DW/DX 04JE3
C ESM MULTIPLIER FOR HALF VALUES AT END STAS 07JE3
C FN1sFN2sF (J) FLEXURAL STIFFNESS (EI) (INPUT AND TOTAL) 12JE3
C H BEAM INCREMENT 09JLS
C HT TIME INCREMENT 01JLS
C ITEST BLANK FIELD FOR ALPHANUMERIC ZERO 22JL5
C J BEAM STATION 09JL5
C Jls J2 INITIAL AND FINAL STATIONS IN SEQUENCE 05JE3
C JS STA OF SPECIFIED DEFLECTION OR SLOPE 05JE3
C K TIME STATION 09JL5
C KASE CASE NUM FOR SPECIFIED CONDITIONS 07JE3
C KASE 1=DEFLs 2=SLOPEs 3=BOTH 0l1JL5
C M TOTAL NUMBER OF INCREMENTS OF BMCOL 12JE3
C M MAX NUM = 50 0l1JL5
C MT NUMBER TIME INCREMENTS 01JL5
C MT MAX NUM NOT SPECIFIED 09JL5
C NCT3+445 AND 6 NUM CARDS IN TABLES 33495 AND 6 07JNG6
C NPROB PROBLEM NUMBER (PROG STOPS IF ZERO) 25MY3
C NS INDEX NUM FOR SPECIFIED CONDITIONS 05JE3
C PN1s PN2s P(J) AXIAL TENSION OR COMPRESSION(INPUTs TOTAL}12JE3
C QN1s QNZs Q(J) TRANSVERSE FORCE (INPUT AND TOTAL) 23MR4
C QT(JsK) TIME DEPENDENT TRANSVERSE LOADING 01JL5
C QT (JsK)} MAX NUM (50+110) 09JLs5
C RHO(J) MASS DENSITY OF BEAM 01JL5
C RN1ls RN2s R(J) ROTATIONAL RESTRAINT ( INPUTs TOTAL ) 12JE3
C SN1s SN2ys S(J) SPRING SUPPORT STIFFNESS (INPUT AND TOTAL)23MR4
C TN1s TN2Z2s T(J) TRANSVERSE TORQUE « INPUT, TOTAL ) 12JE3
C Wi{JseK) LATERAL DEFL OF BEAM AT JsK 09JL5
C WS(JS) SPECIFIED VALUE OF DEFL AT STA JS 12JE3
C Wvi(J) INITIAL VELOCITY 09JLS
C XF 9 XB MULTIPLIER 01JLS
DIMENSION AN1(32)s AN2114)s F(107)s Q(107)s ST1107)s T(107)> 07JN6
1 R(107)s P(1U7)s A(107)s B(107})s C(107)s W(10798)> 07JN6
2 KEY(107)s WS(20)s DWS(20)s QT(1075110)s RHO(107)> 07JN6
3 WV(107})s DF(10T) 07JN6
10 FORMAT ( 5H s 80Xy 10H[—-==—- TRIM ) 27FE4
11 FORMAT ( 5H1 s 80Xs 10HI—--=-- TRIM ) 27FE4
12 FORMAT ( 16A5 ) 04MY3
13 FORMAT ( 5Xs 16A5 ) 27FE4
14 FORMAT ( A5+ 5Xs 14A5 ) 18FES
15 FORMAT (///10H PROB s /5Xs A5s 5X9 14A5 ) 18FE5
16 FORMAT (///17H PROB (CONTD)s /5Xs A5 5Xs 14A5 ) 18FES
19 FORMAT (///48H RETURN THIS PAGE TO TIME RECORD FILE == HM ) 12MR5
21 FORMAT [ 2( 5Xs I59 E1043 )9 4( 5Xs I5) ) 07JN6
31 FORMAT ( 2(5Xs I5}s 2E10e3 ) 23MR4
41 FORMAT ( 5Xs 3159 3E1043 ) 07JIN6
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201 FORMAT (///25H TABLE 2+ CONSTANTS
1 / 5Xs 25H NUM BEAM INCRE s 20Xs 110
2 / 5Xs 25H BEAM INCRE LENGTH 520Xs E1043»
3 / 5Xs 25H NUM TIME INCRE s20Xs 110
4 / 5Xs 25H TIME INCRE LENGTH s 20Xs E1Qe3»
5 / 5Xs 25H NUM CARDS TABLE 3 s20Xs 110>
6 / 5Xs 25H NUM CARDS TABLE 4 520Xs 110>
7 / 5Xs 25H NUM CARDS TABLE 5 s 20Xs 110
8 / 5Xs 25H NUM CARDS TABLE 6 s 20Xs 110 )
300 FORMAT (///747H TABLE 3 — SPECIFIED DEFLECTIONS AND SLOPES
1 / 5Xs 48H STA CASE DEFLECTION . SLOPE
311 FORMAT ¢ 10Xs I35 7Xs [2s 8Xs E10e3s 9Xs 4HNONE )
312 FORMAT | 10Xs I3s 7Xs [2s 11Xs 4HNONEs 8Xs E10e43 )}
313 FORMAT ( 10Xs I3s 7Xs [2s 3Xs 2(5Xs E10e3) )

400 FORMAT (///45H TABLE 4« BEAM DATA AND STATIC LOADING )
411 FORMAT (5X,30H FROM TO CONTD s/910Xs 31 I4s 4X )
1 //5Xs 45H F RHO DF ’

2 1UH Q /9 5Xs 4 5Xs E10e3 ) o
3 //5Xs 45H S P T ’
4 10H R s/9 5Xs 4( 5Xs E10e3 ) » /7 )
412 FORMAT (5X+30H FROM TO CONTD s/s 10Xs T4 12Xs 14,
1 //5Xs 45H F RHO DF )
2 10H Q /9 5Xs 40 5Xs E1043 ) o
3 //5Xs 45H S P T ’
4 10H R /9 5Xs 4 5Xs F1043 Y 9 // )
413 FORMAT (5X+30H FROM TO CONTD s/ 18Xs I4s 4Xs 14,
1 //5Xs 45H F RHO DF ’
2 10H Q /9 5X» 4( 5Xs E1043 ) »
3 //5Xs 45H S P T ’
4 10H R s/ 5X» 4( 5Xs E10e3 ) » /7 )
500 FORMAT (///37H TABLE 7« DEF LECTTIONDS s/
1 35H J=BEAM AXISs K=TIME AXIS )
511 FORMAT ( 5Xs 149 2Xs 6E12e3 )
602 FORMAT { 5Xs 5(5Xs E10.3) )
604 FORMAT { 5(5Xs E1Ve3) )
605 FORMAT (///35H TABLE 5. INITIAL VELOCITIES )
606 FORMAT ( 5Xs 5E1Ce3 )
607 FORMAT (///40H TABLE 6 TIME DEPENDENT LOADING s/
1 5Xs 30H BEAM STA TIME STA />
2 5Xs 50H FROM TO FROM TO CONTD QT )
608 FORMAT ( 10Xs 2I4s 7Xs 214s 5Xs 14s 2Xs E10e3 )
609 FORMAT ( 5Xs 5155 E1043 )
610 FORMAT { 10Xs I3s 3Xs I3s 6Xs I3s 3Xs I3s 5Xs EL1063)
611 FORMAT ( 10Xs 2149 7Xs I4s 9Xs I4s 2Xs EL10e3 )
612 FORMAT ( 5Xs 315 ElUe3 )
613 FORMAT { 5Xs 25H FROM TO WV s/9 10Xs 2( I49 3X )
1 ElUe3 )
614 FORMAT ( 13Xs 4HR{J)s 11Xs 4HP(J)»s 10X»s S5HDF(J)s 9Xs 6HRHO(J))
€15 FORMAT ( 5Xs 34H FROM TO CONTD wV s/s 10Xs 14>
1 12Xs 14 4Xs E1063 )
616 FORMAT ( 5Xs 34H FROM TO CONTD' WV s/ 17Xs 14,
1 5Xs T4s 4Xs ElUe3 )
617 FORMAT {/s 18Xs 2HK=5 I3y 10X, 2HK=s I3, 10Xs 2HK=»s I3, 10X»
1 2HK=9 135 1UXs 2HK=s I3 }
618 FORMAT ( 7H J= 5 I3s 5( 5Xs E10e3 ))

A4.18

01JL5
01JL5
01JL5
01JL5
01JL5
01JL5

07JN6
07JN6
20JA4

JO1JLS

23MR4
23MR4
23MR4
01JL5
07JN6
07JN6
07JN6
07JN6
07JN6
01JL5
07JN6
07JN6
07JN6
07JN6
01JL5
07JN6
07JN6
07JN6
07JN6
0lJL5
01JL5
23MR4
01JL5
01JL5
07JN6
07JN6
01JL5
07JN6
07JN6
07JN6
07JN6
01JL5
07JN6
07JN6
07JN6
07JN6
01JL5
07JN6
07JN6
07JN6
07JN6
01JLS
01JL5
01JL5
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FORMAT ( 30Xs I4s 5Xs I4s 2Xs E1Ue3 )}

FORMAT (// 4UH TOO MUCH DATA FOR AVAILASLE STORAGE /7 )
FORMAT ( //40H ERROR STOP -- STATIONS NOT IN ORDER )
START EXECUTION OF PROGRAM - SEE GENERAL FLOW CHART

ITEST = 5H
PRINT 10
CALL TIME

PROGRAM AND PROBLEM IDENTIFICATION
READ 12s ( ANLI(N)s N = 1s 32 )
READ 14s NPROBs { AN2(N)s N = 1s 14 )
IF ( NPROB - ITEST ) 1020s 9990Us 1020
PRINT 11
PRINT 1
PRINT 13s ( ANI(N)s N = 19 32 )
PRINT 159 NPROBs ( AN2(N)s N = 1 14 )
INPUT TABLE 2 CONSTANTS
READ 21s My Hs MTs HTs NCT3s NCT4s NCT5s NCTG6
PRINT 201s Ms He MTs HTs NCT3s NCT4s NCTS5s NCTH
COMPUTE CONSTANTS AND INDEXES
HTZ2 = H + H
HTE2 = # HT
HE 2 H
HE3 HE2
HE4 HE?3
MP1 1
MP 4
MP5
MP 6
MP7
MTP2
MTP9
H&41T
H4T2
XF= Jeb
XB= Ue5
INPUT TABLE 34 SPECIFIED SLOPES AND DEFLECTIONS
PRINT 300
DO 1315 J = 3,
KEY(J) = 1
CONT INUE
IF ( NCT3 - 20 )Y 1327 1327, 1326
PRINT 904
GO TO 1v1v
JS = 3
DO 1350 N = 1s NCT3
READ 31s INls KASEs WS(N)s DWSI(N}
IF ( INl + 4 = JUS ) 1328, 1328, 1329
PRINT gu7
GO TO 9999
JS = INl + 4
SET INDEXES FOUOR FUTURE CONTROL OF SPECIFIED CONDITION ROUTINES
GO TO ( 13309 13359 1340 )s KASE
KEY(JS) = 2
PRINT 311s IN1ls KASEs WSI(N)
GO TO 1350

[[IR ]
XIIT

oo
TXTX

HT
#*
#*
3
+
+
+
+
+

MT

++ N

2
MT 9
HE4 7/ HT
HE4 / HTEZ

W oo

MP5

07JN6
04FE4
03FE4
23MR4
19MR5
12JL3
18FES
04MY3
18FES
28AG3
26FE5
26AG3
18FE5
18FES
26AG3
01JL5
07JIN6
07JN6
10JE3
03JE3
01JL5
30MY3
30MY3
01JL5
01JL5
30MY3
30MY3
10JE3
30MY3
01JL5
01JL5
01JL5
01JLS
01JL5
01JL5
01JLS
03JE3
23MR4
03JE3
03JE3
01JL5
04JE3
09JL5
U3FE4
01JL5
03FE4
03FE4
03FE4
03FE4
03FE4
10JE3
05JE3
05JE3
03FEs4
03JE3
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ID
ID
ID
ID
ID
ID
1D
1D
ID
1D
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1335 KEY{JS=1}) = 3
KEY(JS+1) = 5
PRINT 312 IN1s KASEs DWS(N)
GO TO 1350
134y KEY{JS=1) = 3
KEY{JSY = 4
KEY{JS+1) = 5§
PRINT 313s IN1s KASEs WSINIs DWSIN}
1359 CONTINUE
1399 CONTINUE
C CLEAR STORAGE
DO 1402 J=1sMP7
FiJ)y = Va0
QiJ) = Ual
S(J) = U'U
T(J) = Cev
R(J) = 0.0
PlJ) = U0
RHO(J) = Gu0
DF{J) = Gau
WVIJ) = JeJ
DO 1403 K= 1s 110
QT{JsK) = weU
1423 CONT INUE
DO 1402 KD= 1s 8
W{JsKD} = vaU
1402 CONT INUE
Com=—- INPUT TAGSLE 4+ BEAM DATA
NCH4 = NCT4 / 2
1400 PRINT 4u0
1406 KR2 = 0
DO 1480 N=1s NCH4
KR1 = KRZ2
READ 41 IN1s IN2s KRZ2s FNZ2s RHONZ2s DFNZ
READ 606y QN2 SN2y PH2s TNZs RNZ
JN = IN1 + 4
Jz o= IN2Z2 + 4
KSW = 1 + KR2 + 2 % KR1
GO TO { 1407s 1610, 1415s 1415 )s XKSW
1407 PRINT 411s INLls INZ2s KRZs FNZ2s RHONZs DFNZ2s GUNZs SN2»
1 RNZ
GO TO 142¢
141¢ PRINT 412 INls KR2s FN2s RHONZs DFNZs QNZs SN2 PN2Z»
Go 10 142v
1415 PRINT 4134 INZ2s KR2s FNZ2s RHONZs DFN2s QNZs SN2s PN2Zs
GO TO 1435
142¢ J1 = UM
1425 FN1 = FN2
AN = QNZ
SN1 = SN7Z
TNl = TN2
RN1 = RN2
PN1 = PN2
DFN1 = DFN2
RHON]1 = RHON2

PNZ s

TNZ2 s

TNZ s

A4, 20

05JE3
05JE3
O3Ft4
03JE3
05JE3
05JE3
05JE3
O3FE4
03JE3
04JE3
01JL3
01JL5
30MY3
19MR4
19MR4
30MY3
30MY3
30MY3
01JL5
01JL5
0lJLs
01JLS
01JLS
01JL5
g1JLS
01JLS
04JE3
01JLS
01JL5
04JE3
04JE3
01JLS
28MY3
07JNE
O7JINE
28MY3
28MY3
28MY3
04JE3

TN2s07JN6

RN2

RN2

07JN6
O4EJ3
07JNE
04JE3
07JNE
04.JE3
04JE3
04JE3
28MY3
28MY3
28MY3
28MY3
28MY3
01JL5
01JL5S
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GO TO ( 143
C===-- SEE FLOW CHART,
1435 JINCR
ESM =
IF ( J2 - J
1437 PRINT 9U7
GO TO 1010
1440 DENOM
ISW =
GO TO 1455
1450 DENOM
ISW =
1455 DO 1460 J
DIFF =
PART =
FtJy =
Q(Jd)y =
S(J) =
T(J) =
R(J) =
P(J)y =
DF(J)
RHO( J)
1460 CONTINUE
IF ( ISW )
1465 JINCR
ESM =
ISW =
GO TO 1455
1470 GO TO ( 148
1475 Jl = J
GO TO 1425
1480 CONTINUE
C-m—— INPUT TABLE 5,
PRINT 605
KR2 =
DO 1493 N=1
KR1 =
READ 612, 1
JN = 1
J2 =1
KSW =
GO TO ( 148
1481 PRINT 613, 1
GO TO 1484
1482 PRINT 615, 1
GC TO 1484
1483 PRINT 616 I
GO TO 1486
1484 Ji1 = J
1485 wvl =
GO TO ( 148
1486 IF ( J2 - J
1487 PRINT 907
GO TO 1010

5+ 1480, 9999 1480 )s KSW
TABLE INTERPOL AND DISTRIB

=1

1.0

1 ) 1437, 1450, 1440

= J2 - Jl

1

= 1leU

0

= Jls J2s JINCR

J - Jl

DIFF / DENOM

F(J) + { FN1 + PART * ( FN2
Q(J) + ( QN1 + PART 3 ( QN2
S{J)y + ( SN1 + PART * ( SN2
T(Jy + ( TN1 + PART % ( TN2
R(J)y +# ( RN1 + PART % ( RN2
P{J)y + ( PN1 + PART ¥ ( PN2

= DF(J) + ( DFN1 + PART *

= RHO{(J) + ( RHON1 + PART

9999, 1470 1465

= J2 - J1l

- 0.5

0

O0s 9999 1480, 1475 )s KSW

2

INITIAL VELOCITIES

0

s NCT5S

KR2

Nls IN2s KR2s WV2

N1l + 4

N2 + 4

1 4+ KR2 + 2 * KR1

1s 1482, 1483, 1483 )s KSW

N1ls IN2s WV2

Nls KR2s WV2

N2s KR2s WV2

N

wv2

6s 1493, 9999, 1493 ), KSW

1 ) 1487, 1489, 1488

FN1
QN1
SN1
TN1
RN1
PN1

— v o —

{DFN2 — DFN1)

ok ok ok ok Xk

)

ESM
ESM
ESM
ESM
ESM
ESM
¥ ESM

(RHON2 - RHON1) )

22JA4
23MR4
07JE3
07JE3
03FE4
03FE4
01lJL5
07JE3
07JE3
07JE3
07JE3
07JE3
04JE3
28MY3
28MY3
28MY3
19MR4
19MR4
28MY3
28MY3
28MY3
01JL5

¥ESMO1JLS

04JEO
O03FE4
07JE3
07JE3
28MY3
04JE3
23JA4
04JE3
04JE3
04JE3
01JLS
07JN6
07JN6
07JN6
07JN6
07JUN6
07JN6
07JUN6
07JN6
07JN6
07JN6
07JUN6
07JUN6
07JN6
07JN6
07JN6
07JN6
07JN6
07JN6
07JN6
07JN6
07JN6

95
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1488

1489
1490

620
621
622

6213
624

625
626

627
628

629

630
631

632
633

634

DENCOM = J2 - J1

GO TG 1490
DENOM = 1.0
DO 1491 J = Jl, J2
DIFF = J - J1l
PART = DIFF / DENOM
WVIJ) = WV1 + PART * ( WV2 - WV1)
CONTINUE
GO TO { 1493 9999, 1493, 1492 ),
J1 = J2
GO TO 1485
CONTINUE
INPUT TABLE 6 TIME DEPENDENT LOADING
PRINT 6UT
KRZ = 0
DO 635 N = 1+ NCT6
KR1 = KR2
READ 609s INls INZ2s KN1ls KN2, KRZ2s QTN
J1 = IN1 + 4
Jz = IN2 + 4
KN = KN1 + 2
K2 = KN2 + 2

KSW = 1 + KRZ + 2 ¥ KR1
GO TO { 620 621 622y 622 ) KSW

PRINT 608s INls IN2s KN1s KN2s KRZ2» QTN

GO TO 623
PRINT 611s INls IN2s KN1» KRZ2s QTN
GO TO 623
PRINT 619+ KN2s KR2» QTN
GO TO 625
K1 = KN
QN1 = QTN

GO TO ( 625s 635s 9999 635 )+ KSW
IF { J2 -~ J1 } 6264 627y 627
PRINT 907
GO TO 9999
IF { K2 - K1 )Y 628 6295 630
PRINT 907

GO TO 9999
DENOM = 140
GO TO 631
DENOM = K2 - K1
DO 633 J = Jls J2
DO 632 K = Kls K2
DIFF = K - K1
PART = DIFF / DENOM
QTIJsK) = GN1 + PART % { QTN - QN1
CONTINUE
CONTINUE
GO TO { 6352 635s 6359 634 }s KSW
K1 = K2
GO TO 624
CONTINUE

START OF BEAM~-COLUMN SOLUTION
PRINT 11

A4, 22

07.JN6
07JN6
07JN6
0T7JN6
07JN6
07JN6
07JNE
07JN6
07JN6
07JN6
07JN6
07JNGE
01JLS
01JL5
07JNGE
07TJNG
07JN6
07JN6
07JN6
07JN6
07JN6
07JN6
O07JN6
07JNG
07JN6
07JN6
07JN6
07JN6E
07JN6
07JN6
07JN6
07JN6
07JN6
0T7JNG6
07JNé
07JN6
07JN6
07JNE
07JNE
07JN6
07JN6
07JN6
07JN6
07JN6
07.JN6
07JUNE
07JN6
Q07JNE
07JNG
07JNG
07JN6
07JN6
07JN6
10JE3
08MY3 1D
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PRINT 1 18FES 1D
PRINT 13s { ANI(N})s N = 1s 32 ) 18FE5 1D
PRINT 16 NPROBs { AN2IN}s N = 19 14 1} 28AG3 ID

PRINT 500 23MR4

K =1 01JLS

DO 7009 NOT= 8s MTP9s 5 01JL5

IF ( NOQT - MT - 4 ) 7009, 7005+ 7005 01JL5

7005 MTP = NOT 01JL5

GO TO 70Us 01JL5

7009 CONTINUE 01JLS

7006 DO 7000 KD = 2» MTP 01JL5

K = K+ 1 QlJLS

6000 NS = 1 04JE3

DO 6060 J = 34 MPS 04 JE3

IF {110~-KD} 704, T705s 705 01lJLS

T04 QTP = 0.0 01lJL5

GO TO 706 01JLS

705 QTP = QT(Js KD-1) 01JL5

706 CONTINUE 0lJLS

[ COMPUTE MATRIX COEFFS AT EACH STA J 10JE3

YA = F(J=1) - 025 * H * ( R(J-1) + H * pP{J~1} } 01JL5

YB = = 2,0 % { F(J-1) + F(J) ) 01JL5

YC = F(J=~1) + 40 *¥ F{J} + F(J+1) + HE3 * S{J} + 0LJLS

1 Oe25 * H * ( ( R{J-1) + H * P(J=-1} )} + ( Ri{J+1) 01JL5

2 + H # P{J+1) 1 ) 01JLS

YD = — 2.0 * { F(Jy + F(J+1) ) 0lJLS

YE = F(J+1) ~ 025 % H % { R(J+1) + H ¥ P(J+1} ) 0lJLd

[F (KD-3) 70U1s 7002s 7003 01JLS

7001 AA = YA olJLS

BB = YB 01JLS

cC = YC olJLs

DD = YD 01JL5

EE = YE 01lJL5

FE = HE3Z % Q(J) — 0.5 * ME2 * { T{(J~1) - T(J+l) ) 01JL5

GO TO 7004 01lJLS

7002 AA = XF ¥ YA olJLS

BB = XF * YB 01JLS

CC = XF # YC + 440 % H4T2 * RHO(J)Y + 240 * H4lT * DF{J) O01JLS

DD = XF * YD 01JLS

EE = XF * YE 0lJLS

FF = HME3 % QTP ~ XB % (YA % W(J-2,K-1} + YB * W(J-1sK=1} OlJL5

1 + YC ¥ W(JeK=1) + YD * W{J+1+K~1) + YE * W(J+2+K-1}3101JL5

2 + B0 % H4T2 # RHO(J) # {(W{JsK=1) + 0,5 * HT * WV{J)0LlJLS

3 ) o~ 440 * HGT2 * RHO(J) * W{JsK=1) + 2.0 * H41T * 01JL5

4 DE(J} * (W(JsK=1} + 0.5 * HT * WV(J)) OlJLs

GO TQ 7004 0lLJLS

7003 AA = XF * YA 0lJL5

BB = XF * YB 0l1JLS

CC = XF * YC + H4T2 ¥ RHO(J) + H4lT * DF(J) 01JL5

DD = XF * YD QlJLsS

FE = XF % YE 0lJLS

FF = HE3 % QTP — XB % (YA * W{J-2+sK=2) + YB * W{J-1sK=2) 01lUL5

1 + YC ® W{JeK=2) + YD * W(J+]1sK=2) + YE #* W(J+22K~2))101JL5

2 + 260 ¥ H4T2 ¥ RHO{J) #* W(JeK—=1) = H4T2Z #* RHO(J) 0l1JL5

3 * W{JsK=21 + H&lT * DF{(J) * W{JsK~1) 01JLS
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COMPUTE RECURSION OR CONTINUITY COEFFS AT EACH STA

CONTINUE
E = AA * B(J-2) + BB
DENOM = E #* B(J-1) + AA * ((J-2) + (CC
IF ( DENOM ) 601Uy 60U5, 6010
NOTE IF DENOM IS ZEROs BEAM DOES NOT EXISTs D = 0O SETS DEFL = 0.
D = 0.0
GO TO 6V15
D = - 1.0 / DENOM
C(J) = D * EE
BtJy = D % ( E # C{J-1) + DD )
A(J) = D * ( E % A(J-1) + AA * A(J-2) - FF )
CONTROL RESET ROUTINES FOR SPECIFIED CONDITIONS
KEYJ = KEY(J)
GO TO ( 6060 6020y 6030y 6020 6050 )y KEYJ
RESET FOR SPECIFIED DEFLECTION
C(J) = 0.0
B(J) = Ja0
A(J) = WSINS)
IF { KEYJ = 3 ) 6059, 6030, 6060
RESET FOR SPECIFIED SLOPE AT NEXT STA
DTEMP = D
CTEMP = C(J)
BTEMP = B(J)
ATEMP = A(J)
CltJ) = 1.0
B(J)y = 0,0
A(J) = — HT2 #* DWSINS)
GO TO 6060
RESET FOR SPECIFIED SLOPE AT PRECEDING STATION
DREV = 10 / ( 10 ~ ( BTEMP 3% B(J-1) + CTEMP = 10 ) *
D 7 DTEMP )
CREV = DREV * C(J)
BREV = DREV * ( 8(J) + ( BTEMP * C(J-11) ) % D / DTEMP )
AREV = DREV #* ( A(J) + ( HT2 * DWSI(NS) + ATEMP + BTEMP
* A(J-1) ) * D / DTEMP )
C(J) = CREV
B(J) = BREV
A(J) = AREV
NS = NS + 1
CONTINUE
COMPUTE DEFLECTIONS
DO 6100 L = 3s MP5
J=M+8-1L
W(JsK) = AlJ) + BlJ) * W(J+1sK) + C(J) #* W(J+25K)
CONTINUE
IF ( 8 — K ) 7007s 70U7s 7000
KSA = KD - 8
KsSB = KD - 7
KSC = KD - 6
KSD = KD - 5
KSE = KD - ¢4
PRINT 617 KSAs KSBs KSCs KSDs KSE
DO 7008 J = 3, MP5H
JSTA = J - 4

A4 .24

10JE3
01JL5
01JL5
28MY3
28MY3
10JE3
28MY3
28MY3
28MY3
28MY3
28MY3
28MY3
10JE3
04JE3
20JA4
20JA4
05JE3
28MY3
05JE3
20JA4
17JA4
05JE3
28MY3
28MY3
28MY3
28MY3
28MY3
05JE3
04JE3
23MR4
05JE3
04JE3
28MY3
28MY3
05JE3
04JE3
28MY3
28MY3
28MY3
20JA4
28MY3
23MR4
23MR4
30MY3
01JL5
30MY3
01JL5
01JL5
01JL5
01JL5
01JL5
01JL5
01JL5
01JL5
C1lJL5



A4 25

PRINT 61B»s JS5TAS
7008 CONTINUE
K= 3

DO 7010 J = 3s MP5

W({Js2) =
W{Js3) =
7010 CONTINUE
7000 CONTINUE
CALL TIME
GO TOo 1010

9990 CONTINUE

9999 CONTINUE
PRINT 11
PRINT 1

PRINT 13s { ANIIN}»

PRINT 19
END

END
FINIS

-EXECUTE S

WNlJds3t

1s 32 )

wilJded)o

WiJs5])

Widsg}

0g1JLS
01JL%
0lJtLs
01JLs
01JL5
01JL5
01JL5
01JLS
18FE5
26AG3
12MR5
O4MY3
08MY3
18FES
18FE5
26A03
25JE4
04MA3
01JL®
01JL5
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iD
i
ID
1D
1D
1D
1D
1D
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APPENDIX 5

SUMMARY FLOW DIAGRAM, GUIDE FOR DATA INPUT,
AND LISTING FOR PROGRAM DPT1
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A5,

1

SUMMARY FLOW DTAGRAM - DPI1

4

READ problem identificatioﬁw

PRINT problem identification

READ and PRINT

Table
Table
Table
Table
Table
Table

Program control data

Constants

Stiffnesses and static loads
Initial velocities and densities
Dynamic loads

Closure parameters

PN =

DO for each time KT from 2 to MTP%)

DO specified num of iterations)

Solve x

system

DO for each station J from 4 to MYP4

I from 3 to MXP5

CONTINUE

Solve y

system

DO for each station I from 4 to MXP4

J from 3 to MYP5

CONTINUE

PRINT monitor dataw

Closure of
WX and WY

CONTINUE

-

PRINT deflectionﬂ

CONTINUE

103
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GUIDE FOR DATA INPUT FOR PROGRAM DPI1l (PLATE)

with Supplementary Notes
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DPI1 GUIDE FOR DATA INPUT -- Card forms

IDENTIFICATION OF PROGRAM AND RUN ( 2 alphanumeric cards per run )

80

80

IDENTIFICATION OF PROBLEM (1 alphanumeric card each problem)

NPROB DESCRIPTION OF PROBLEM (alphanumeric)

80

TABLE 1 CONTROL DATA ( One card )

NUMBER CARDS IN TABLE MAX
NUM CLOSURE
3 4 5 6 ITER TOLERANCE
[ 1] 1 1 [ 1] 1 I
6 10 16 20 26 30 36 40 46 50 56 65
MONITOR MESH POINTS ( specify the I and J stations for three mesh points)
I_I_I ' ) JI—I ' : Ix—l ' I;I
6 10 16 20 26 30 36 40 46 50 56 60
TABLE 2 CONSTANTS ( One card)
NUM NUM NUM X Y TIME
X Y TIME INCR INCR INCR POISSON'S
INCRS INCRS INCRS LENGTH LENGTH LENGTH RATIO
[ I [ I I I I I I I
3 10 16 20 26 30 40 50 60 70

24

¢

LOT
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TABLE 3. STIFFNESS AND STATIC LOADING ( number of cards according to TABLE 1)

D T S Q
FROM I0 BENDING TORSIONAL SPRING TRANSVERSE
i ' J I N J STIFFNESS STIFFNESS SUPPORT FORCE
| l | l | | I ]
6 ) I5 20 25 35 45 55 65

TABLE 4. INITIAL VELOCITIES AND DENSITIES {(number of cards according to TABLE {)

FROM TO WV RHO
1, J 1, VELOCITY DENSITY

LSV

6 10 15 20 25 35 45

TABLE 5. DYNAMIC LOADING ( Number of cards according to TABLE 1§ )

FROM TO QT

1, J , K 1, J , K LOAD
I I | I | | | I
6 10 15 20 25 30 35 45

TABLE 6. CLOSURE PARAMETERS ( Number of cards according to TABLE 1 ) Use one card for each parameter.

CLOSURE
PARAMETER

601

l [ STOP CARD ( One blank card at end of each run)
] 3
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GENERAL, PROGRAM NOTES

Two cards containing any desired alphanumeric information are required (for identification purposes
only) at the beginning of the data for each new run.

The data cards must be stacked in proper order for the program to run.
A consistent system of units must be used for all input data; for example, pounds, inches, and seconds.
All integer data words must be right justified in the field provided.
All data words of 5 spaces or less are integers . . . o ¢« ¢ + 4 o ¢ 4 4 s e e e e e e s . EZ::E:E:E]

All data words of 10 spaces are to be entered as floating-point decimal numbers in an E format
-1 .234FE+0 3]

Blank data fields are interpreted as zeros in an integer or floating point mode.

One card with a problem number in columns 1-5 is required as the first card of each problem. This
number may be alphanumeric. The remainder of the card may contain any information desired.

Any number of problems may be stacked in one runm.
One card with problem number blank is required to stop the run.
The calculated deflections for the monitor mesh points are printed after each iteration.

When the closure tolerance is satisfied at all mesh points, or when the maximum number of iterations is
reached, the calculated deflections for all mesh points are printed.

TABLE 1. CONTROL DATA

The maximum number of iterations is 999.

A closure tolerance of 1.0 X 10-6 in. is usually adequate.

194

6°

IT1
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TABLE 2, CONSTANTS

T1°6V

The maximum number of x and y plate increments is 15.

There is no maximum number of time increments.

TABLE 3. STIFFNESSES AND STATIC LOADING

Typical units:
variables: D T S Q
values per station: 1b-in 1b-in 1b/in 1b

_ Eh®
T 12 (1 - V)
The remaining symbols have been previously defined.

In the foregoing, D wherein h 1is the thickness of the plate, and T =D (1 - v) .

For a rectangular plate that is divided into an M x N grid, i=0,1, . .. , M and j=0,1, ..., N.
The variables D, S, and Q are input at any grid or mesh point by specifying i and j 1in the
FROM and TO columns. However, the variable T defines the torsional stiffness which is assumed to
be concentrated at the center of each rectangular grid. In the program, T is numbered according
to the mesh point that is located in the upper right corner of each grid, and it is assumed that
the i station numbers increase from left to right and the j station numbers increase from
bottom to top. Thus, for an M X N grid, T 1is specified from i=1 , j=1 to i=M , j=N .

There are no restrictions on the sequential order of the cards. The input is cumulative with full
values at each mesh point.
TABLE 4. INITIAL VELOCITIES AND DENSITIES
Typical units:
variables: wv RHO

values per station: in/sec 1b sec®/in®

The variables WV and RHO are input at any mesh point by specifying i and j in the FROM and TO
columns.

A zero initial velocity is automatically established in the program. Thus only non-zero velocities
must be specified.

€lt
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TABLE 4. Continued

>
There are no restrictions on the sequential order of the cards. The input is cumulative with full t:
values at each mesh point. w
TABLE 5. DYNAMIC LOADING
Typical units:
variable: QT
values per station: 1b
The variable QT is input at any mesh point and time station by specifying 1, j , and k in the
FROM and TO columns.,
There are no restrictions on the sequential order of the cards. The input is cumulative with full
values at each station.
The loading may be specified for any mesh point and for a maximum of 28 time stations. Therefore,
k maximum is 28.
TABLE 6. CLOSURE PARAMETERS
Typical units:
variable: RP
values per station: lb/in3
The maximum number of parameters that may be input is nine.
The parameters are used in the cyclic order in which they are input.
The parameters are calculated on the basis of an average stiffness D and the increment length
h in the x-direction from the equation,
(RP) = 4 (1 - cos2N) (2 - cos=%) 3 m = 1, 2,3 ....M-1.
m h4 M M
X
-
The parameters for the y system are calculated internally in the program. v



This page replaces an intentionally blank page in the original --- CTR Library Digitization Team



A5.15

9C00P,CEO51015,

9

OO0

FTN+E.

PROGRAM DPI1

1 FORMAT
1

(5Xy52HPROGRAM

MATLOCK-SALANI,

S72S,

10, 6000.

DPI1 - MASTER DECK

28H

DPI1

HJ SALANI,

----- SOLVES FOR THE DYNAMIC RESPONSE OF A PLATE BY AN IMPLICIT METHOD

~~~~~ NOTATION
ANA(N),ANB(N)
A(N) yB(N),C(N)

CTOL CLOSURE TOLERANCE
D(I,J) PLATE STIFFNESS PER UNIT AREA
D(IsJ) (EHHH)/((12) [1-VV})
DNy RHON, TNy QN, QTN TEMP VALUES OF DyRHO,T,Q,QT
HXyHY,HT INCREMENT LENGTHS IN X,Y AND Z DIRECTIONS
ITEST BLANK FIELD FOR ALPHANUMERIC ZERD
ITMAX MAX NUM ITERATIONS
I X PLATE AXIS
J Y PLATE AXIS
K TIME AXIS
IM1,JM1 ETC MONITOR STAS FOR DEFL
MXy MY, MT NUMBER OF INCREMENTS IN X,Y AND Z
MX g MY, MT DIRECTIONS. MAX MX=MAX MY= 15,NO MAX MT
NCT34...NCT6 NUMBER CARDS IN TABLES 3 THRU 6
NPROB PROBLEM NUMBER,ZERO TO EXIT
PR POISSON&S RATIO
QllyJ) TRANSVERSE STATIC LOAD PER MESH POINT
QT{I4J4K) TRANSVERSE DYNAMIC LOAD PER MESH POINT
QT MAX NUM QT =28
RHO(I,J) MASS DENSITY OF PLATE PER UNIT AREA
RP(N) CLOSURE PARMETER
StIyJ) SPRING SUPPORT PER MESH POINT
T(IsJ) STIFFNESS PER UNIT AREA, (1-V)I(D)
WVI(I,J) INITIAL VELOCITY
WY (14JyK) TRANSVERSE DEFLECTION FOR Y SYSTEM
WX(I4J,yK) TRANSVERSE DEFLECTION FOR X SYSTEM
DIMENSION AN1(32)y AN2(14),
1 Q(22,422)y WVI(22422),
2 S(22,22)4RHO122,22),QT122,22,30)4+A122),48B(22)4C(22),
3 RP(9) s WX12292244)9WY(22,2244)4+JSTA(25)
COMMON/1/D122922)3T(22422)72/X14X29X39X49X59X69XT9sXB9XF9X10y
1 X11oY1loY2,Y3,Y4,Y5,Y6,Y7,3Y8:Y9,Y10,Y11,XY1lyXY2,XY3,
2 XY4 9 XYS5 9 XY69XYT o XYByXY9y [4JyHAyHBy HCyHDyHXYA,
3 HXYB, HXYC yHXY1
10 FORMAT ( SH + 80Xy 10HI-——-- TRIM )
11 FORMAT ( 5H1 y 80Xy 10HI-—-—- TRIM )
12 FORMAT ( 16A5 )
13 FORMAT ( 5Xy 16AS5 )
14 FORMAT ( A5, 5X, 14A5 )
15 FORMAT (///10H PROB 4 /5Xy A5, 5Xy 14A5 )
16 FORMAT (///17H PROB (CONTD), /5X,y A5y 5Xs 14A5 )
19 FORMAT (///48H RETURN THIS PAGE TO TIME RECORD FILE -— HM )
20 FORMAT (5(2X+13)45X,E10.3)
21 FORMAT (///30H TABLE 1. CONTROL DATA v/
1 30H NUM CARDS TABLE 3 v 40Xy 15, /
2 30H NUM CARDS TABLE 4 r 40X, 15, /
3 30H NUM CARDS TABLE 5 v 40X41I5, /
4 30H NUM CARDS TABLE 6 r 40X,15, /
5 30H MAX NUM ITERATIONS , 40X,I15, /
6 30H CLOSURE TOLERANCE v 35X,E10.3 )
22 FORMAT ( 815)
23 FORMAT | 30H MONITOR STAS I,J v 20X9301242X91244X))
24 FORMAT (3110,4E10.3)

ALPHA NUMERIC IDENTIFICATION
COEFFICIENTS

o1JL>S
01JLS
01JLS
01JLS
01JLS
01JL5
01JL5
0l1JLS
01JLS
22JLS
01JL5
0l1JLS
0lJLS
01JLS
01JLS
01JL5
01JLS
0lJLS
0l1JL5
0l1JLS
0l1JLS
01JLS
01JLS
0l1JLS
01JLS
01JLS
0l1JLS
01JLS
01JLS
0lJLS
18FES
01JLS
0l1JLS
01JLS
16MR5
16MRS
16MR5
16 MRS
2TFE4
2TFE4
04MY3
2TFE4
18FES
18FES
18FES
12MRS
01JL5
01JLS
01JLS
01JL5
01JLS
01JLS
01JLS
01JLS
01JLS
01JLS
01JLS
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H MATLOCK22JLS ID
REVISION DATE 22 JUL 65)

ID

ID
ID
ID
ID
ID
ID

ID



HA=1.0/HXE4 $ HB=2.0%HA $ HXY1=1.0/HXY

118
25 FORMAT (///30H TABLE 2. CONSTANTS v/
1 30H NUM INCREMENTS MX r 40X4154 /
2 30H NUM INCREMENTS MY s 40X,15, /7
3 30H NUM INCREMENTS MT r 40X415, /
4 30H INCR LENGTH HX s 35X,E10.3, /
5 30H INCR LENGTH HY y 35X4E10.3, /
6 30H INCR LENGTH HT s 35X4E10.3, /
7 30H POISSONES RATIO s 35X4E10.3
26 FORMAT (//745H TABLE 3. STIFFNESSES AND STATIC LOADING 7/
1 29H FROMUI4J) THRU(TI»J) +6Xs1HD,9X,1HT,10X
2 2HS $10X,3HQ )
28 FORMAT (415,4E10.3)
29 FORMAT 10X 12:2X91294Xs1242X21244Xs4(E10.3,2X)
33 FORMAT (///50H TABLE 4. INITIAL VELOCITIES AND DENSITIES
i 34H FROMITI,J) THRU(I,J), 20Xs2HWY ,
2 12X, 3HRHO }
35 FORMAT { 10X 122X 12+9%912+2X512+419X,E10.3 ,5%X4E10,3
36 FORMAT (//730H TABLE 5. DYNAMIC LOADING , /
1 36H FROM(1,J4,K) THRU( I, JeK),y 18X, 2HQT
38 FORMAT (615,C10.3)
39 FORMAT | 10X 12+42Xs1242X91295X91292Xs12,2X912415X,E10.3
40 FORMAT (//735H TABLE 6. CLOSURE PARAMETERS
42 FORMAT | E10.3)
43 FORMAT | 10X,E10.3 )
45 FORMAT (/7730H sae MONITOR DEFLS ### D
1 /10Xy 3BHITRyTX; 2HSFs8Xy3HNOTy TXy4HTIME, 16Xs3HI4J o
2 / 10Xy 3HNUMs 17X, 6HCLOSED, 10Xe 124 1Xe12,7Xy1241X,12,
3 TXe1241%X,12 )
77 FORMAT ( S5X,2HWXs3XsI4y 2Xe E10.3y 4Xs IS5y 5Xy I3, 2X, E10.3,
1 E10.3, 2X, E10.3, /4 SX, 2HWY, 36X, 3(2X,EL10.3) )
85 FORMAT (///36H #%% DEFLECTTIONS #ss2 ,/,5X,4HTIME,
1 1X:14, 10X, 15HSTAS NOT CLOSED. I4 )
87 FORMAT (/17X:s5(2HJ=,12,11x ) )
88 FORMAT (/ 5X,2HI=,12,2X,2HWX,2X, S(E10.3,5X )]
91 FORMAT ( 11Xy2HWY42X, 5(EL10.3,5X) )
95 FORMAT (5X, 11E10.3)
104 FORMAT | )
ITEST = 5H
1000 PRINT 10
CALL TIME
L PROGRAM AND PROBLEM IDENTIFICATION
READ 12, { AN1{N}, N = 1, 32 )
1010 READ 14, NPROB, { AN2{N}, N = 1, 14 }
IF { NPROB - ITEST ) 1020, 9990, 1020
1020 PRINT 11
PRINT 1
PRINT 13, ( AN1(N)y, N = 1, 32 )
PRINT 15, NPROB,s ( ANZ2{N), N = 1, 14 )
————— INPUT TABLE 1, CONTROL DATA
READ 20sNCT34NCT44NCTS,NCT6, ITMAX,CTOL
PRINT 21,NCT3,NCT4,NCTS:NCT6,ITMAX,CTOL
READ 224 1M1, UM, IM2,UM2,IM3,JM3
PRINT 23,IM1,JM1,IM2,JM2,IM3,JM3
(08 Sttt INPUT TABLE 2, CONSTANTS
READ 24 s MX g MY s MT yHXy HY o HT , PR
PRINT 25 ,MX MY MT HX,HYHT,PR
MXP3=MX+3 §& MYP3=MY+3 § MXPZ= MX+Z § MYP2=MY+?
MTP2=MT+2 & MXPT=MX+T7 & MYPT7=MY+T7 t MXP4=MX+4
MYP4=MY+4 & MXP5=MX+5 & MYPS=MY+5
HXE4=HX#%4 $ HYE4=HY##4 $ HTE2=HT«HT
HP=HX#HY $ HXY=HP#HP $ HT2=2.0#HT

)
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01JL5
O1JLs
O14L5
01JL5
014LS
OlJL5
Cl1JLS
01J4L5
01JL5
01JLS
01JLS
01J4L5
O1JL5

»/01JLS

)

2Xy

OlJLS
01JL5
o1JL5
01JLS
01JL5
01415
01JLS
014L5
01JL5
01JLS
O1JLS
01415
O1JLS
01JLS
O1JL5
014L5
O1J4L5
01J4L5
014L5
C14L5
01JLS
014L5
01415
19MRS
12JL3
18FES
O4MY3
18FES
28AG3
26FES
26AG3
18FES
18FES
26AG3
01JLS
01JL5
01JL5
01JL5
01JLS
O1JLS
01JLS
01JL5
01JLS
01JLS
014L5
16MRS
16MR5
16MRS
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HXYA=(1.0/HXY)#PR $ HXYB=2.0%HXYA 16MR5

HXYC=4.0%HXYA $ HC=1.0/HYE4 $ HD=2.0%HC 16MR5

C——m—- CLEAR STORAGE 01JL5
DO 30 I=1,MXP7 01JL5
ACI)=B(I)=ClI) = 0.0 01JL5

DO 30 J=1,MYP7 01JL5
D(I,d)=TI(I,J)=Q(1,J)=WV(I,J)=S(I,J)=RHO(I,J)= 0.0 01JLS

DO 31 K=1!,4 01JL5
WX{IsJsK)=WY(IsJsK)= 0.0 01JLS

31 CONT INUE 01JLS

DO 32 KK=1,30 01JL5
QT(I,J,KK)=0.0 01JL5

32 CONT INUE 01JLS

30 CONT INUE 01JLS
C-mm—- INPUT TABLE 3, STIFFNESSES AND STATIC LOADING 01JL5
PRINT 26 01JLS

DO 27 N=1,NCT3 01JLS

READ  28,IN1,JN1,IN2,JN2,DN,TN,SN,QN 01JLS

PRINT 29, IN1,JN1,IN2,JN2,DN, TN, SN,QN 01JL5
I1=IN1+4 $ J1=JNl+4 § I2=IN2+4 $ J2=JIN2+4 01JL5

DO 27 I=I1,12 01JL5

DO 27 J=J1,J2 01JL5
D(I,J)=DII,J)4DN $ TU(I,J)=T{I,J)+TN 01JLS
QUI,J)=Q(I,J)+QN $ S(I,J)=S{I,J)+SN 01JLS

27 CONT INUE 01JL5
C-——m- INPUT TABLE 4. INITIAL VELOCITIES AND DENSITY 01JL5
PRINT 33 01JL5

DO 34 N=1,NCT4 01JL5

READ  28,INL1,JN1,IN2,JN2, WVN , RHON 01JLS

PRINT 35,IN1,JN1,IN2,JN2, WVN , RHON 01JLS
I1=IN1+4 $ J1=JNl+4 $ I2=IN2+4 $ J2=JN2+4 01JLS

DO 34 I=11,I2 01JLS

DO 34 J=J1l,J2 01JL5

WV, J)=WVII,J)+WVN 01JL5
RHO(T,J)=RHO(I,J)+RHON 01JLS

34 CONTINUE 01JL5
Cmmm—- INPUT TABLE 5. DYNAMIC LOADING 01JLS
PRINT 36 01JL5

DO 37 N=1,NCTS 01JL5

READ 38, IN1,JN1,KNL1, IN2,JN2,KN2,QTN 01JL5

PRINT 39,IN1,JN1,KN1,IN2,JN2,KN2,QTN 01JL5
I1=IN1+4 & J1=JN1+4 $ K1=KN1+2 01JL5

[2=IN2+4 $ J2=JN2+4 $ K2=KN2+2 01JL5

DO 37 I=I1,12 01JL5

DO 37 J=J1,J2 01JL5

DO 37 K=K1l,K2 01JL5

QT(I,J,K) = QT{I,JsK) + QTN 23FES

37 CONT INUE 01JLS
C-----INPUT TABLE 6. CLOSURE PARAMETERS 01JL5
PRINT 40 01JL5

DO 41 N = 1, NCT6 01JL5

READ  42,RP(N) 01JLS

PRINT 43,RP(N) 01JLS

41 CONTINUE 01JLS
Comum- SET ERRONEOUSLY STORED DATA TO ZERQ 01JLS
DO 44 I=3,MXPS 01JL5

DO 44 J=3,MYP5 01JLS
D({I,MYP5)=0.0 $ D{MXP5,J)=0.0 01JLS

T(I,MYP5)=0.0 $ T(MXPS5,J)=0.0 09JLS

44 CONT INUE 01JL5

C—~=—=-CALCULATE JSTA(N) 01JLS
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DO 89 N=4,25 & JSTA(3)= -1 § JSTA(N)=JSTA(N-1)+1 L1FES
89 CONTINUE 01J4L5
C--——- SOLUTION OF PROBLEM-—===~==———m—mmmmmme e - --01JL5
K=1 01JL5

DO 46 KT=2,MTP2 01JL5
KSTA=KT-2 $ K=K+1 014L5

IF(4-K) 82,83,83 01JL5

82 K=3 01JLS
DO 84 [=3,MXP5 01JLS

DO 84 J=3,MYPS 01JL5
WX{Iydy1)= WX(L4d,3) $  WY[I4Jsl)= WYLI,J,3) 01JL5S

WX(I,d52)= WX{I,d04) $ WY(I,J92)= WY(I,Jy4) 01JL5

84 CONT INUE 0LJL5
83 CONT INUE 01JL5
ITER=0 $ N=0 01JL5

PRINT 45, IM1,JM1,IM2,JM2,1M3,JM3 01JL5

DO 47 NIT=1, TMAX 01JL5

KCTOL =0 01JL5

ITER=ITER + 1 $ N=N+1 01JLS

IF (NCT6-N) 78,79,79 01JL5

78 N=1 01JLS
79 CONT INUE 01JL5
C————- SOLVE X SYSTEM 01JL5
204 DO 48 J=4,MYP4 01JLS
DO 49 [=3,MXPS 01JL5

IF (DUI,J)) T4,T4,96 01JL5

74 SF=0.0 01JL5
GO TO 99 01JL5

96 SF= RPIN) * ({ HX / HY ) =% 4 ) 01JL5
99 IF(28-KT)50,51,51 014L5
50 QTP=0.0 01JLS
GO TO 52 01JLS

51 QTP=QT{1,J,KT-1) 01JL5
52 CALL COXY 16MRS
IF(KT-3)53,54,55 01JLS

53 AA = X1 01JL5
BB = X2 + XY2 01JLS

CC = X3 + XY5 + S (I,J) / HP + SF 01JLS

DD = X4 + XY8 01JL5

EE = X5 01 JL5

F1 = Q (I4J) / HP + SF # WY (I4JsK) = X6 * WX (I-1,J+1,K)01JLS

1 - XT » WX (I3J+14K) — XB # WX {I+1,J41,K) - X9 * WX {I-1,J-1, OLJLS

2 K) = X10 # WX (I,J=1,K) = X11 # WX (I+1,J-1,K) —~ YL * WY (I,J OlJLS

3 ~2,K) = Y2 # WY (I,J=14K) = Y3 ® WY {I,J,K) =Y4 = WY (1,J+1,K)01JLS

4 - Y5 ® WY {I1,J42,K) — Y6 ® WY (I-1,J-1,K) - Y7 * WY {I~1,J,K) O1JLS

5 = Y8 ® WY (I=1,J+1,K) = Y9 % WY (I+1,J=1,K) — Y10 % WY {I+l, OLJLS

6 JeK) = Y11 ® WY (I+1,J+1,K) 01JLS
F2 = = XYL & { WX (I=1,J=1,K) + WY {I=1,J=1,K) ) = XY2 = OlJLS

1 WY (I-1,J5K) = XY3 & { WX (I-1,J41,K) + WY (I-1,J+14K) ) = 01JLS

2 XY4 ® [ WX (I,J-1,K) + WY [I,J=1,K) ) = XYS5 & WY (I,J,K) - 01JL5

3 XY6 ® [ WX (I,J+1,K) + WY (I,J+1,K) ) = XY7 % { WX (I+1,J-1,K)0LJLS

4 + WY (I+14J-1,K) ) = XY8 ® WY (I+1,J,K) = XY9 & { WX (I+1,J+1,01JL5

5 K} + WY (I41,J41,K) ) 01JL5
FF = F1 + F2 01JL5

GO TO 56 01JL5

54 AA = 0.5 * X1 01JL5
BB = 0.5 % (X2 + XY2) 0lJLS

CC = 0.5 = (X3 + XYS5 + S{I,J) / HP + SF) + 4.0 = (RHO(  OlJL5

1 1,J) /7 HTE2) 01JL5
DD = 0.5 & (X4 + XY8) 01JL5

EE = 0.5 * X5 01JLS

F1 = QTP / HP + 0.5 = SF » WY(I,J,K} + 4.0 % {RHO(I,J)  OLJLS
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/ HT) # WV(IL4d) + 4.0 & (RHO{I,J) / HTE2) # WX(I,J,K-1) 01JL5
F2 = -0.% & (X1 # WX(I-2,J,K-1) + (X2 + XY2) = WX{I-1,J,KO1APS5

=1) + (X3 + XY5 + S(IsJ) /7 HP) = WX(I,JsK-1) + (X4 + XYB8) # 01APS
WX(I+19JyK=1) + X5 & WX{I+2,J,K-1) + (X6 + XY3) = (WX(I-1,J+1,01APS
K=1) + WX(I-1,J+1,K)) + (X7 + XY6) & (WX(I,J+1,K-1) + WX(I,J+101APS
1K)) + (XB + XY9) # (WX(I+1,J+1,K-1) + WX(I+1,J+1,K)) + 01APS
(X9 + XY1) & (WX(I-1,J-1,K-1) + WX[I-1,J-1,K)) + (X10 + XY&4) OlAPS
# (WX(IaJ-1sK=1) + WX(IoJ-1,K)) + (X11 +XYT7) # (WX(I+1l,J-1, 01APS
K-1) + WX(I+1,J-1,K))) 01JL5
F3 = 0.5 # (Y1 #(WY(IsJ=-29sK=1) + WY(I,J-2,K)) + (Y2 + 01JLS
XY4) & (WY(I9J-1,K-1) + WY(I4J-1,K)) + (Y3 + XYS5) # (WY(I,Jy OLlAPS
K=1) + WY(I,4yK)) + (Y& + XY6) & (WY(I,J+1,K-1) + WY(IsJ+1, O0lAPS
K)) + Y5 & (WY(I,J424K-1) + WY{I,J+2,K)) + (Y6 + XY1) & (WY( OlAPS
I-19J-1+K=1) + WY(I-19J-14K)) + (Y7 + XY2) = (WY(I-14JsK~1) + O1APS
WY(I-1,J,K)) + (Y8 + XY3) # (WY(I-1,J+1,K-1) + WY(I-1,J+1,K)) O1APS5
+ (Y9 + XYT) & (WY[I+14J=19K-1) + WY(I+1,J-1,K)) + (Y10 + 01APS
XY8) # (WY(TI+1,J,K=1) + WY(I+1,J,K)) + (Y114 XY9) = (WY(I+1l, O1lJLS
JH14K-1) + WY(I+1,J+1,K))) 01JL5
FF = F1 + F2 + F3 01JLS

GO TO 56 01JLS
AA = 0.5 = X1 01APS

BB = 0.5 & (X2 + XY2) 01APS

CC = 0.5 # (X3 + XY5 + S(I,J) /7 HP + SF) + RHO(I,J) / 01APS

HTE2 01APS

DD = 0.5 # (X4 + XY8) 01 APS

EE = 0.5 = X5 01APS5

F1 = QTP / HP + 0.5 & SF # WY(I,J4K) - (RHO(I,J) / HTE2) O01AP5

* WX(Iy9JeK=2) + 2.0 # (RHO(I,J) / HTE2) # WX(IsJoeK-1) 01APS
F2 = -0.5 # (X1 # WX(I-2,J,K-2) + (X2 + XY2) # WX(I-1,J,KO1AP5

-2) + (X3 + XY5 + S(I4J) 7/ HP) = WX({IeJyK=-2) + (X4 + XY8) = 01APS5
WX(I+19JsK=2) + X5 # WX(I+24J,K-2) + (X6 + XY3) # (WX(I-1,J+1,01AP5
K=2) + WX(I-19J+1sK)) + (X7 + XY6) # (WX(I4J+14K-2) + WX(I,J+101APS
1K)) + (X8 + XY9) # (WX(I+1,J+41,K=2) + WX(I+1,J+1,K)) + 01 APS
(X9 + XY1) # (WX(I-1yJ-14K=2) + WX(I-19J-1,K)) + (X110 + XY4) OlAPS
* (WX(IyJd-19K=2) + WX(I,J-14K)) + (X11 +XYT7) = (WX(I+1,J-1, 01AP5
K=2) + WX{(I+14J-1,K))) 01APS
F3 = -0.5 & (Y] #{WY([4J=-2+yK=2) + WY{I,J-2,K)) + (Y2 + 01JLS
XY4) = (WY(I9J-1,K=2) + WY(I,J-1,K)) + (Y3 + XY5) # (WY(I,Jy OlAPS
K=2) + WY(I9JyK)) + (Y4 + XY6) & (WY(I4J+1,K-2) + WY(I,J+1, 01APS
K)) + Y5 & (WY(I,J429K=-2) + WY(I,J+24K)) + (Y6 + XY1) # (WY( OlAPS
[-14J-1+K=2) + WY(I-1,J=-14K)) + (Y7 + XY2) & (WY(I-1,J,K=2) + O1APS
WY(I-1yJ,K)) + (Y8 + XY3) = (WY(I-1,J+1,K-2) + WY(I-1,J+1,K)) O1APS
+ (Y9 + XYT) & (WY(I+41,J-1,K-2) + WY(I+1,J-1,K)) + (Y10 + O1APS
XY8) & (WY(I+14J,K=2) + WY(I+1,4J,K)) + (Y114 XY9) = (WY(I+l, OlJLS
J+1,K=-2) + WY(I+1,J+1,K))) 01 APS
FF = F1 + F2 + F3 01APS

CONTINUE olJLS
E = AA #B(I-2) + B8 01JLS
DENOM=E#B(I-1)+AA=C(I-2)+CC 01JLS

IF (DENOM) 57,58,57 0l1JLS
D=0.0 0l1JLS

GO TO 59 01JLS
D= -1.0/DENOM 0l1JLS
C(I)= D=EE 01JL5
B(I)= D#(E«C(I~-1)+DD) 01JL5
AlI)= De(E«A(I-1)+AA#A(I-2)-FF) 01JL5
CONTINUE 0l1JL5
DO 60 L=3,MXP5 ol1JLS
I=MX+8-L 0l1JLS
WX(T9JsK)= A(I)+ B(I)#® WX(I+1l9JyK) + C(I)#WX(I+2,JyK) 0l1JL5

CONT INUE 0lJL5
CONTINUE 01JLS

121
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SOLVE Y SYSTEM
DO 61 I=4,MXP4
DO 62 J=3,MYP5
IF (D(I,+J)) 97,97,98

SF=0.0

GO TO 100
SF=RP(N)

IF(28-KT)63,64,64
QTP=0.0

60 TO 65
QTP=QT(I,4J,KT-1)

CALL COXY

IF(KT-3)66,67,68
AA = Y1
BB = Y2 + XY4
CC = Y3 + XY5 + S (I,J) / HP + SF
DD = Y4 + XY6
EE = Y5
F1 = Q (I4J) /7 HP + SF # WX (I4J9K) = Y& & WY (I-14J-1,K

= YT # WY [I-143JyK) — Y8 # WY (I-1yJ+1,K) - Y9 = WY (I+1,J-1,
K) = Y10 & WY (I+1,JyK) = Y11 & WY (I+1,J+1,K) = X1 # WX (I-2
J'K) - X2 # WX (I—IQJ'K) - X3 & WX (I'J'K) —X4 #WX (I"'l'J'K)
X5 # WX (I42,J9K) = X6 # WX (I-14J+1,K) = X7 & WX (I4J#+1,K) -
X8 # WX (I+1,J+1,K) = X9 # WX (I-1,J-1,K) - X10 # WX (I,J-1,K
- X11 # WX (I+1,J-1,K)

F2 = — XYl # ( WX (I-1yJ=1,K)} + WY (I-1,J-1,K) ) = XY2 =

( WX (I-1,J,K) + WY (I-1,JsK) ) = XY3 & ( WX (I-19J%#1,K) + WY
(I-14J+#1,K) ) = XY4 # WX (I,J-1,K) = XYS5 # WX (I,JsK) = XY6 #
WX (I9J+14K) - XYT7 # ( WX (I+1,J-14K) + WY { I4+1,J-1,4K) ) -
XY8 # ( WX (I+14JsK) + WY (I+1yJsK) ) = XY9 & ( WX (I+1,J+1,K
+ WY (I'.’].’J'.’l’K) )

FF = F1 + F2
GO 70 69

AA = 0.5 « Y1

BB = 0.5 # (Y2 + XY4)

CC = 0.5 # [Y3 + XY5 ¢+ S[(I,J) / HP + SF) + 4,0 = {RHO

(I,J) / HTE2 )

DD = 0.5 # (Y4 + XYb6)

EE = 0.5 = Y5

F1 = QTP / HP + 0.5 # SF # WX{I4J9K) + 4,0 & (RHO(I,J) /
HT ) & WVI{I,J) + 4.0 « (RHO(I,J) / HTE2) * WY(I,JsK~1)

F2 = -0.5 % (Y1 # WY(I,J-29K-1) + (Y2 + XY4) = WY(I,J-1,

K=1) + (Y3 + XY5 + S(1,J) 7/ HP) % WHY(I,J,K=-1) + (Y4 + XY6)
* WY(IsJ+14K=1) + Y5 & WY(I,J429K=1) + (Y6 + XYL} #* {(WY(I-1,
J=1,K=1) + WY(I-1sJ-1,K})} + (YT + XY2) % (WY(I-1yJyK-1)} +
WY(I=-15JsK)}) + (Y8 +XY3) % (WY(I-1yJ+14K=1) + WY(I-1,J+1,K)}}
(Y9 + XYT) # (WY(I+14J-14K-1) + WY(I+1,J=1,K})} + (YLO0 + XY8)
# (WY(I+1sJsK-1) + WY(I+1yJ,K}) + (Y11 + XY9) & (WY(I+1,J+1,
K=1) + WY(I+14J+14K)})}

F3 = —0.5 % (X1 # (WX{I-2,JyK=1) + WX(I-2,J,K}) + (X2 +
XY2) # (WX(I-19J,K-1) + WX(I-14J,K)) + (X3 + XYS) ® (WX(
IydygK=1) + WX(I4J,K)) + (X4 + XY8) # (WX{I+1l,J,K-1)

+ WX{I+19J9K)) + X5 & (WX(I42,J,K-1) + WX(I4+2,J,K))
+ (X6 + XY3) & (WX(I-1,J414K-1) + WX(I=-14J%1,K)) + (X7 + XY6)
* (WX(I,J#1,K-1) + WX(I,J+1,K)) + {X8 + XY9) = (WX(I+1,J+1,K
=1} + WX(I+1,J+14K)}) + (X9 + XY1) # (WX(I-1,J-1,K-1) +
WX{I=~13J-14K)) + (X10 + XY4) % (WX{IsJ=1sK-1) + WX(IsJ=1,K}}
+ (X11 + XY7) # (WX(I+1yJ-1,K-1) + WX(I+1,J-1,K)))}
FF = F1 + F2 + F3

60 TO 69

AA Yl
(Y2 + XY4&)
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01APS
01JLS
01JLS
01JLS
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01JLS
01APS
01JL5
ol1JLS
01J4L5
01APS
O1APS
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69
201

71

70
72

62

109

CC = 0.5 = (Y3 + XY5 + S(I,J)
HTE2
DD = 0.5 *= (Y& + XY6)
EE = 0.5 * Y5
F1 = QTP / HP + 0.5 * SF = wWX{
* WY(I,JyK~2) + 2.0 = (RHO(I,J) / H

F2 = =0.5 # (Y1 # WY(I,J-2,K-2

/ HP + SF)

I,JyK) -

(RHO(I,J)

TEZ) * HY(I!J!K‘I)

) + (Y2 + XY&)

+ RHO(I,

Jy 7

/ HTE2)

*® WY(I,J-1,

K=2) + (Y3 + XY5 + S(I,J) / HP) #* WY(I,J,K=-2) + (Y& + XY6)

# WY(IsJ+1,K=2) + Y5 # WY(I,J+2,K-2
J=14K-2) + WY(I-1,J-1,K)) + (YT + X

K=2) + WY(I+1,J+41,K)))
F3 = =0.5 & (X1 = (WX(I-24J,K=-

XY2) # (WX(I-19J9K=2) + WX(I-1,J,K)) + (X3 + XY5) =

IeJeK=2) + WX(I,J,K)) + (X4 + XY8)
+ WX(I+1,JyK)) + X5 = (WX(I+

) + (Y6 + XY1) =

(WY(I-1,

Y2) # [WY[I-1,J,K=2) +

WY(I-1,JsK)) + (Y8 +XY3) # (WY[I-1,J41,K-2) + WY(I-1,J+1,K))
(Y9 + XYT7) = (WY(I+1,J-14K-2) + WY(I+1l,J-14K)) + (Y10 + XY8)
# (WY(I+1,J,K=2) + WY(I+14J,K)) + (Y11 + XYO9) # (WY(I+1,J+1,

2) + HWX(I-24+J9K))

= (WX(I+1sd,K=-2)

Z'J'K_Z)

(x2 +

(WX (

+ WX(I+42+J,K))

+ (X6 + XY3) = (WX(I=1yJ414K=2) + WX(I-1,J41,K)) + (X7 + XY6)
# (WX(I+1,J+1,4K

* (WX(IoJ+19K-2) + WX(I,J+1,K)) + {X8 + XY9)
(WX(I-1yJ-1,K-2) +
+ WX(I,J-1,K))

=2) + WX(I+1,J+41,K)) + (X9 + XY1) =

WX(I-1,J=-1,K)) + (X10 + XY&) # (WX(IsJ-1,K=2)

+ (X1l + XYT) = (WX(I+41pJ=19K=2) + WX{I+1sJ-1,K)]))

FF = F1 + F2 + F3

CONT INUE

E = AA % B(J-2) + BB

DENOM= E#B8(J-1)+AAsC(J-2)+CC
IF (DENOM) 70,71,70

D=0.0
60 TO 72

D= ~-1.0 /DENOM

ClJ)= D=EE

B(J)= D#(E*C(J~1)+DD)

A(J)= D*(E#A(J-1)+AA®A(J-2)~FF
CONT INUE
DO 73 L=3,MYP5

J=MY+8-L

)

WY(I,Jy,K)= A(J)+ BUJ)#WY(I,J+1,K)+ ClI)® WY(I,J+2,K)

CONTINUE
CONTINUE

COUNT STAS WHERE WX AND WY NOT CLOSED
DO 113 I=4+MXP4
DO 113 J=4,MYP4
IF(ABSF(WX{IsJyK)=-WY(I,J,K))=CTOL)
KCTOL =KCTOL + 1
CONT INUE
CONTINUE

PRINT MONITOR DATA

94,494,76

PRINT T7,ITERsRP(N) oKCTOL,y, KSTAyWX(IMLl+4,JM1+4,K),
WX{IM244,UM2+44,K) yWXTIM344,UM344,K) yWY(IML1+4,JM1+4,K),

WY (IM2+443JM2+444K)y WY(IM3+4,JM
IF (KCTOL) 75,75.81
CONTINUE
CONTINUE
CONTINUE
PRINT DEFLS
PRINT 11
PRINT 1
PRINT 13, ( AN1(N), N = 1, 32 )
PRINT 16, NPROB, ( AN2(N), N = 1, 14 )
PRINT 85, KSTA , KCTOL
JI=3 § JF=7 $ JTEST= MYP5/5

3+44,4K)

01APS5
01 APS
01 APS
OIAPS
01APS
O1APS
01 APS
O1APS
01JL5
01APS

+01JL5

01APS
01APS
O1APS
01 APS5
01APS
01JLS
0lJLS
0l1JLS
OIAPS
O1APS
O1APS
01APS
01APS
01JL5
Ol1JLS
Ol1JLS
O1JLS
0lJL5
01JLS
OlJLS
01JLS
0lJLS5
01JLS
0l1JL5
01JL5
OlJLS
OlJL>S
01JL5
0lJL5
01JL5
01JLS
OlJLS
01JL5
0lJLS
01JLS
01JL5
OlJL5
01JL5
01JLS
0lJLS
01JL5
0lJLS
01JL5
01JLS
0l1JLS
0o8MY3
18FES
18FES
28AG3
Ol1JL5
01JLS
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124.

107

86

92

108

93

101

46

9990
9999

W N -

DO
PRINT
DO

92 JKE=1,JTEST
BTy (JSTA(N)yN=JI,JF )
86 I=3,MXP5
ISTA= 1-4
PRINT 88, ISTA ,
PRINT 91,
CONTINUE
JI=JI+5 $
CONT INUE
IF ( MYP5 - JIl )
JF = MYP5
JTEST =1
GO 70 107
CONTINUE
DO 101 I= 4,MXP4
DO 101 J=
WY(I,JyK) =
WX(IyJdyK) =
CONT INUE
CALL TIME
CONTINUE
CALL TIME
GO TO 1010
CONTINUE
CONTINUE
PRINT 11
PRINT 1
PRINT 13, (
PRINT 19
END
SUBROUT INE
SUBROUTINE COXY

(WX(IyJsK),
(WY(I,yJ,K)y

J=JIyJF)
J=JIyJF)

JFE=JF+5
93,

108, 108

WY(IyJ,yK)

ANL(N)y N = 1y 32 )

O.5# ( WX(Iy4J9K)

+ HY(I,J'K) )

COMMON/1/D(22422)4T(22,22)/2/X19X29X34X49X54X69XT9XB,X9,X10,
X119YLlyY29Y39Y4sY5,Y69YT9YB,Y9yY10,Y11,XY1sXY2,XY3,

+ D (I+l,J) ) -

1J-1) + 4.0 = D (I,J)

+ D (IyJd+1) ) -

I HXYB « D (I-1,4J)

J) ) -
(1 + D (I+1,4) )

’
D vJ)

HXYB # D (I+1,J)

I,J) ) - HXYB # D (I,J~1)

+ D (IyJ+1) )

HXYB # D (I,J+1)

XY4 9 XYS5S 9 XY6 XY Ty XYByXY9y 1 yJyHAyHByHCyHD,HXYA,

HXYBy HXYCyHXY1

X1 = HA = D (I-1,J)

X2 = - HB = ( D (I-1ysJ) + D (

X3 = HA = ( D (I-1yd) + 4.0 =
+ HXYC = D (1,J)

X4 = — HB # ( D {(I,J)

X5 = HA &= D (I+1,J)

X6 = HXYA « D (I-1,J)

X7 = = HXYB # D (1,J)

X8 = HXYA # D (I+1,J)

X9 = X6

X10 = X7

X11 = X8

Y1 = HC = D (I,J-1)

Y2 = -~ HD # ( D (I,J-1) + D (

Y3 =HC =« (D (I
+ HXYC # D (IyJ)

Y6 = — HD & { D (1,J)

Y5 = HC = D (I,J+1)

Y6 = HXYA = D (I,4-1)

Y7 = X7

Y8 = HXYA # D (I,J+1)

Y9 = Yé

Y10 = Y7

Y1l = Y8

XYl = HXY1l # T(I,J)

XY2 = = HXYL = ( T (I,J) + T{

IyJ+11 )

A5.22

01JL5
01JL5
0l1JL5
01JL5
01JLS
01JL5
0l1JL5
01JL5
01JL5
0lJL5
01JL5
0l1JL5
0l JL5
OlJL5
0l1JL5S
01JL5
01JL5
0l1JLS
01JL5
0lJL5
0l1JL5S
18FES5
26AG3
12MR5
04MY3
08MY3
18FES
18FES
26AG3
04MY3
0l1JL5
16MR5
16MR5
16MR5
16MR5
16MR5
0l1JL5
01JL5
0l1JLS
0l1JL5
01JL5
01JL5
0l1JL5
01JL5
0l1JL5
0l1JL5
01JL5
01JL5
0l1JL5
0l1JL5
OlJL>5
01JLS
0l1JL5
01JL5
01JL5
0l1JL5
0l1JL5
01JL5
OlJL5
01JLS
09JL5
09JL5

1D
ID
ID

ID
ID
ID
ID



A5.23

END
END

GEXECUTE.

FINIS

XY3
XY4
XY5
XY6
xX¥Y7
Xysg
XY9

[ I I O I

HXY]1 # T (I,J+1}

- HXY1l & ( T{I.«+J} +« T{I+1,J) )
HXY1l # [

= HXYLl & { T(I,sJd+1) + TiI+1,J4+1)
HXY1 » T{I+1ls4)

=HXYL # [ T(I+1l,J) + TUI+1l,d%1}) )
HXYL & T{I+1l,J+1)}

}

09JL5
09d4L5

TUI4d) + TUI,Jd41) + TiI+41,3) + T(I+41,J+41}3)094L5

09J4L5
09J4L5
09J4L5
09J4L5
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