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PREFACE 

This report describes an analytical evaluation of the effect of transverse 

cracks on the longitudinal bending rigidity of continuously reinforced con

crete pavements. It also presents a sensitivity study of the variables affect

ing the design of such pavements by the use of the discrete-element method of 

slab analysis. 

This is the twenty-second in a series of reports that describes the work 

done in Research Project 3-5-63-56, entitled "Development of Methods for Com

puter Simulation of Beam-Columns and Grid-Beam and Slab Systems." The project 

is divided into two parts, one concerned primarily with bridge structures and 

the other with pavement slabs. This is the seventh report in the series that 

deals directly with pavement slabs. The crack analysis is also useful in 

structures. 
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ABSTRACT 

Discontinuities exert significant influence on the bending rigidity of 

structural members. This study reports an analytical look at the effect of 

transverse cracks on the behavior of continuously reinforced concrete pave

ments. Results show that the percent reduction in bending stiffness at crack 

locations ranges between 80 and 90 percent of the original uncracked value. 

By simulating this effect on the discrete-element model, a sensitivity 

study was performed on the parameters considered in the design of continuously 

reinforced concrete pavements. These covered the practical range of each of 

the following variables: slab bending stiffness, modulus of subgrade reaction, 

and crack spacing. 

From the analysis of variance, the most significant variables, which ex

plained around 90 percent of the variation in deflection and principal moment 

(stress) responses, were slab bending stiffness and modulus of subgrade reac

tion. While the latter variable showed a higher contribution to deflections 

than to principal moments, slab bending stiffness possessed a contracting 

effect. Crack spacing showed a minor effect on slab behavior. 

Th~ orthogonal polynomial breakdown indicated that in a logarithmic model, 

the linear effect of both subgrade modulus and slab bending stiffness is highly 

significant. Furthermore, interactions between these two design variables do 

occur, indicating that variations in deflections and principal moments are not 

defined by the main effect of design variables alone. 

The influence of the width of the crack on the behavior and performance of 

continuously reinforced concrete pavements is highly significant. Slab deflec

tions increase drastically as crack width increases, while no significant 

change in principal moments is encountered. 

KEY WORDS: discrete-element analysis, cracks, pavement slab, continuously 

reinforced concrete pavements, sensitivity analysis, deflection, principal 

moment, boundary, restraints, program SLAB. 

ix 
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SUMMARY 

The problem of transverse cracking in continuously reinforced concrete 

pavements and its influence on the bending rigidity of the slab in the longi

tudinal direction was studied using basic moment-curvature relationships. 

Results showed that a significant drop is encountered in the bending rigidity 

(80 to 90 percent of the original full value) at the crack locations. A pro

cedure to simulate this effect using the discrete-element method is outlined. 

Besides the crack effect, other slab characteristics were investigated for use 

in modeling the real problem. These included slab partitioning with the cor

responding boundary restraints, tension in the longitudinal reinforcement, and 

Poisson's ratio effect. 

A sensitivity study was performed on the design variables used in the 

design of such pavements, namely slab bending stiffness, subgrade modulus, 

and crack spacing. Principal moment and deflection responses for the factorial 

combination of the design variables Were obtained by the discrete-element slab 

method. 

For the range of variables studied in this experiment, the analysis of 

variance indicated that the main effects of slab bending stiffness and subgrade 

modulus, as well as their interactions, explained most of the variations in the 

deflections and principal moments. Crack spacing showed minor influence on 

slab behavior. 

The comparison between the 90 and 100 percent reduction in bending stiff

ness at crack locations indicated the importance of crack width on the behavior 

of continuously rei~forced concrete pavements. Slab deflections increase at a 

high rate as crack width increases, while no significant drop is experienced 

in the principal moments. 

xi 
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IMPLEMENTATION STATEMENT 

The influence of transverse cracking on the behavior of continuously 

reinforced concrete pavements (CRCP) has been studied by use of the discrete

element analysis method (SLAB). In the past it has been extremely difficult 

to evaluate the effect of these transverse cracks on the load carrying capacity 

of the pavement. The results of this investigation provided additional infor

mation on the effect of these discontinuities on the structural behavior of 

such pavements. 

The sensitivity analysis performed on the factorial combination of slab 

bending stiffness, subgrade modulus, and crack spacing yielded information 

which is quite useful for evaluating the importance of CRC pavement parameters, 

and should ultimately lead to improved design methods. The results of the 

study can be made even more useful by correlating them with work from Research 

Project 1-8-69-123, entitled "A System Analysis of Pavement Design and Research 

Implementation." Regression equations can be developed to predict the maximum 

deflections and principal moments or stresses. These equations may be a part 

of a pavement system analysis model that requires stress or deflection values 

for certain design parameters. 

xiii 
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CHAPTER 1. INTRODUCTION 

A general discrete-element method for solution of discontinuous plates 

and slabs has been developed by Hudson and Matlock (Ref 1) and Stelzer and 

Hudson (Ref 4). The method is based on a physical model representation of the 

plate or slab by bars, springs, and torsion bars which are grouped in a system 

of orthogonal beams. The initial development utilized an alternating-direction 

iterative technique to solve for the deflections of the plate or slab, and a 

subsequent development utilized a direct matrix manipulation technique. The 

direct solution method has been shown to be more efficient computationally. 

Subsequent modification of the method for more precise modeling of orthotropic 

plates was done by Panak (Ref 7). 

The discrete-element method has been thoroughly checked by comparing its 

solutions with closed-form solutions of certain problems. Verification of the 

discrete-element model as a satisfactory tool for two-dimensional problems 

such as elastic plates under transverse loads was obtained by Agarwal and 

Hudson (Ref 11) through an experimental study of plates and slabs. Comparison 

of the experimental results with the analytical solution (Ref 11) showed that 

the discrete-element techniques provide extremely good results in predicting 

plate and slab stresses and deflections and can be a useful tool in the analy

sis of bridge slabs and pavements. Computer programs developed for the above 

discrete-element method are designated by the acronym SLAB. 

Extensive use of SLAB programs has been made in solution of two-way floor 

slabs continuous over many supports (Ref 7) and subjected to different concen

trated load patterns and in the analysis of rigid pavements (Refs 22 and 15). 

This report describes the application of SLAB methods in a study of continuous

ly reinforced concrete pavements (CRCP). The design variables usually con

sidered in this pavement type are concrete flexural strength, elastic modulus, 

slab thickness, percentage reinforcement, modulus of subgrade reaction, 

Poisson's ratio, environmental conditions, expected traffic loading, and crack 

spacing. In addition, in CRCP there are very fine cracks, which develop due 

to volume-change stresses. In previous analyses of such pavements, it has been 

1 
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extremely difficult to evaluate the effect of these cracks on the load carrying 

capacity and consequent performance of the slab. 

Objectives 

Scope 

The objectives of this research are 

(1) to analyze the effect of cracks on bending stiffness of concrete 
pavement slabs and 

(2) to investigate the importance of various rigid pavement variables on 
design, as shown by predicted changes in deflections and principal 
moments. 

This report describes the use of discrete-element SLAB methods to study 

the behavior of continuously reinforced concrete pavement, including modeling 

cracks and joints. The effect of cracks on slab bending stiffness was inves

tigated in this study using basic moment-curvature relationships, which conse

quently made discrete-element modeling of the crack feasible. Other slab 

characteristics were involved in modeling the real problem, including slab 

partitioning and the corresponding boundary restraints to represent continuity, 

tension in the longitudinal steel, position of the loads, and Poisson's ratio. 

For the second objective, the following design variables were considered: 

(1) pavement thickness, 

(2) modulus of elastiCity of concrete, 

(3) modulus of subgrade reaction, 

(4) loading position, 

(5) crack spacing, and 

(6) Poisson's ratio. 

The relative importance of each of these variables was based on changes 

in principal moments and deflections due to external wheel loads only. This 

study does not include temperature and warping stresses or their effects on 

slab performance. 

Report 

This report describes the analysis carried out to accomplish the study 

objectives. Chapter 2 discusses the influence of cracks on bending rigidity 



3 

and the use of moment curvature relationships as an approach to the problem. 

It also presents the factorial design experiment of CRCP design variables for 

the sensitivity analysis. 

Chapter 3 presents the analysis and modeling of real effects encountered 

in the cracked slab problem and their influence on changes in deflections and 

stresses. 

Chapter 4 is a brief presentation of SLAB results and a discussion on 

the analysis of variance performed on the maximum deflections and principal 

moments. Furthermore, different stiffness reductions at crack locations 

were studied to investigate its influence on slab behavior. 

Chapter 5 presents conclusions and some recommendations suggested for 

further study. 
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CHAPTER 2. TIlE PROBLEM AND APPROACH 

Continuously reinforced concrete pavement (CRCP) may be defined as a 

concrete pavement in which the longitudinal reinforcing steel acts continuously 

for its length and no transverse jOints other than occasional construction 

jOints, which do not interrupt the continuity, are installed. In actual prac

tice, the continuity is sometimes interrupted by expansion joints at struc

tures. Except for these, there is technically no limit to the possible length 

of CRCP. 

Transverse contraction joints were long considered essential to prevent

ing pavement damage from volume-change stresses. CRCP takes care of these 

stresses in another way. It allows the pavement to develop a random pattern 

of very fine transverse cracks (Fig 1). The design concept for this pave

ment type is to provide sufficient reinforcement to keep the cracks tightly 

closed and to provide adequate pavement thickness to carry the wheel loads 

across these tightly closed cracks (Ref 2). 

Because of volume-change stresses, crack formation in the continuously 

reinforced pavement slab is inevitable until expansive cements are better per

fected. Therefore, a thorough understanding of the behavior of a pavement 

structure with such discontinuities is needed. The real pavement system in

cluding the cracks must be analyzed. This can be approximated with reasonable 

confidence using the SLAB programs. 

Figure 2(a) shows a cracked portion of CRCP and Fig 2(b) shows a sche

matic variation in the moment of inertia in the cracked region. The exact 

shape of this curve is not clearly known due to the complexity of the problem. 

To apply the discrete-element method to the discretized continuously reinforced 

concrete pavement, a method was developed using basic moment-curvature rela

tionships in which an average moment of inertia to simulate the effect of 

cracks on slab bending stiffness was determined. Furthermore, the develop

ment length bond idea (Ref 35) was used to specify the slab portion over whicry 

the average inertia could realistically be applied. 

Besides the discontinuity analysis, the use of other slab input variables 

to model real effects was investigated, including the following: 

5 
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Fig 1. Continuously reinforced concrete pavement (CRCP). 



Trans e e C ck v rs ra 
'~ / ongl U Ina 

Reinforcement 

~ ~ I " 
• 

(a) Cracked portion of CRCP. 

Slab Region Affected 
by the Crack -I 

........ I ,.."" -..... , I / 

\~I I 
I 

14 

(b) Schematic variation in moment of inertia 
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Fig 2. Effect of a discontinuity on the bending 
rigidity of the slab. 
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(1) partitioning of the slab and use of the effect of boundary restraints 
to represent continuity, 

(2) determination of the value of the tension in the longitudinal rein
forcement and its effect on deflections and principal stresses, and 

(3) determination of the value of Poisson's ratio which should be used 
and its sensitivity. 

After the SLAB method was evaluated for its applicability to the CRCP, 

the second objective was approached; this was a sensitivity evaluation of the 

rigid pavement structural design analysis utilizing the discrete-element 

method. 

In brief, a sensitivity analysis is a procedure to determine the change 

in a dependent variable due to a unit change in an independent variable. It 

can be used to evaluate the effect of a certain number of variables in the 

system and the interactions between them. In this research, the rigid pavement 

design variables were evaluated by means of a sensitivity analysis which deter

mined the changes in the magnitude of deflections and principal moments or 

stresses due to changes in the variables. The analysis involved the levels of 

the variables shown in Table 1. 

For this research, a full factorial of the variables listed in Table 1 

was evaluated. Both deflections and principal moments were computed for vari

ations in each variable in each block of the factorial (Table 2). Each block 

of the factorial involved a fixed level of three variables. Two solutions 

were made for each block: (1) for the loads on a crack and (2) for loads be

tween cracks for a total of 72 different problems. Figure 3 shows the load

ing and crack spacing pattern for the 4 and 10-foot cases only. This work was 

performed for a 24 by 40-foot slab size and for two 9,OOO-pound wheel loads, 

located at 2 and 8 feet from the slab edge, respectively, which simulates an 

l8-kip axle load. 

To cut down on the number of slab problems to be solved, the modulus of 

elasticity of concrete E , and the slab thickness t , were lumped together 

into the bending stiffness factor, namely Et 3 
2 • 

12 (1 - ~ ) 
of the low, medium, and high levels of each of E and 

in Table 1 resulted. 

From the combination 

t , the values shown 

The specific approach to the analysis of the cracked reinforced pavement 

and the sensitivity analysis by the discrete-element method are covered in the 

following chapters on analysis and results, Chapters 3 and 4. 
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TABLE 1. VARIABLES AND LEVELS IN THE DESIGN EXPERIMENT 

Level 

Variable Low Medium High 

Slab bending stiffness per 
106 150 x 10

6 
106 unit length D, (lb-in2)/in. 20 X 1125 X 

Crack spacing CS, ft 4 6 and 8 10 

Modulus of 2subgrade reaction 
k, Ib/in lin. 40 200 1000 
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TABLE 2. FACTORIAL VARIABLES 

150 X 106 
1125 X 106 

4 1 13 25 

6 2 14 26 

40 
8 3 15 27 

10 4 16 28 

4 5 17 29 

6 6 18 30 
200 

8 7 19 31 

10 8 20 32 

4 9 21 33 

6 10 22 34 
1000 

8 11 23 35 

10 12 24 36 
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~24ft ----1....r 

(a) Loads on the crack. 

~24ft--.l 

(b) Loads between cracks. 

Fig 3. Pavement loading and crack spacing pattern. 
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CHAPTER 3. ANALYSIS AND MODELING 

In this chapter, the analysis and modeling of real effects encountered 

in the cracked slab problem are described together with their influence on 

changes in deflections and stresses. These effects include slab discontinui

ties, boundary slab restraints, tension in the longitudinal steel, Poisson's 

ratio, and loading position. 

Theoretical Background 

Analytical solutions for two-dimensional plate problems have been dis

cussed by Timoshenko and others (Ref 21), all of whom characterize three kinds 

of plate bending: (1) thin plates with small deflections, (2) thin plates 

with large deflections, and (3) thick plates. 

For thin plates with small deflections (i.e., in which the deflection is 

small in comparison with thickness), a satisfactory approximate theory of 

bending of a plate by lateral loa.ds can be deve loped by making the following 

assumptions: 

(1) There is no deformation in the plate's middle plane. 

(2) Points of the plate which initially lie normal to the middle sur
face of the plate remain normal to the middle surface of the plate 
after bending. 

(3) Normal stresses in the direction transverse to the plate can be 
disregarded. 

With these assumptions, the deflected surface of an isotropic plate is 

described by the biharmonic equation 

= q (3.1) 

where 

D = the bending stiffness of the plate, 

13 
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w = the deflection (with positive upward), 

q = the lateral load. 

A complete discussion of this equation is given in Chapter 2 of Ref 21. 

For a given set of boundary conditions, solution of this differential 

equation gives all the information necessary for calculating stresses at any 

point in the plate. Closed-form solutions of this equation are available for 

a number of special cases, including homogeneous, isotropic plates, which gen

erally have infinite dimensions in the x and y-directions or are round with 

finite radii. The loading conditions in most closed-form solutions are 

either uniform over the entire plate or concentrated in the center of the 

plate. As the problem becomes involved, with various combinations of load, 

support, and stiffness conditions, closed-form solutions are generally not 

available and a numerical method must be used to solve the problem. Such a 

method is the discrete-element method. 

Figure 4 is a pictorial representation of the discrete-element model of 

the slab as suggested by Hudson and Stelzer (Ref 4). The slab or the rigid 

pavement structure is replaced by an analogous mechanical model representing 

all stiffness and support properties of the actual slab. The joints of the 

model are connected by rigid bars which are in turn interconnected by torsion 

bars representing the plate twisting stiffness C. The flexible joint models 

the concentrated bending stiffness D and the effects of Poisson's ratio ~. 

The modulus of subgrade support k is represented by independent elastic 

springs, i.e., the Winkler foundation (Ref 36). A problem involving almost 

any physical combination of loads and restraints applied to a slab, including 

lateral loads, in-plane forces, and applied couples or moments, can be solved. 

Furthermore, slab discontinuities as well as partial subgrade support can be 

simulated on the model. 

The deflection at each joint is the unknown. The basic equilibrium equa

tions are derived from the free-body of a slab joint with all appropriate in

ternal and external forces and reactions. These equations include summing the 

vertical forces at each joint and summing the moments about each individual 

bar. A complete derivation of these equations and the fourth-difference equa

tions can be found in Ref 4. 



Elastic Joint (Plate Bending 

E t3 
Stiffness 0: 12 (I -fl2») 

Rigid Bar 

i+1 

Torsion Bar (Plate Twisting 

E t3 
Stiffness C:: 12(1 +10') ) 

Fig 4. Discrete-element model of a plate or slab (after Ref 4). 
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Crack Effect and Method of Attack 

Figure 5 shows a plan view of a plate segment that is divided into in-

crements in the x and y-directions with increment lengths 

spectively. These "beam" increments are designated with 

hand h re-x y , 
i in the x-direction 

and j in the y-direction. The joint on the positive end of each increment 

is numbered the same as that increment. This numbering system then gives the 

i, j grid indicated in this plate segment. The stiffness D. . for a plate 
1.,] 

is a unit value per inch of width. For use in computations, it is convenient 

to input average stiffness over a full increment width. x D. . represents the 
1.,J 

average stiffness in the y-direction; that is, the average bending stiffness 

of the plate over an area one increment wide and one increment long, centered 

at station i,j. 

Since a discontinuity, such as a joint or crack, creates a variable dis

tribution in the moment of inertia or stiffness (Fig 2), it can be simulated 

on the discrete model with one of the following methods. 

The first method requires a clear determination of stiffness variation in 

the crack region, which is then divided into increments sufficient to define 

accurately the effect of the discontinuity. A disadvantage of this method 

is that it may not be possible to define the stiffness variation in the cracked 

region accurately enough to yield reasonable results. Furthermore, as the 

number of increments in either the x or y-direction increases, computer time 

increases, making the solution impractical in some cases. 

The second method, which was used in this study, deals with an average 

value of stiffness that considers the discontinuity effect. The derivation 

of this average v~lue was solely based on basic moment-curvature relationships 

and is independent of increment length. Hence, the whole structure can be 

divided into about 15 increments in each direction and reasonable results can 

be obtained. 

Derivation of Average Moment of Inertia I 

For the determination of average moment of inertia I, the following 

assumptions are made: 

(1) A plane section remains plane before and after bending. 
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(2) A straight line neutral axis can be assumed to represent the aver
age of the actual variable position of the neutral axis. 

(3) At the fine crack locations, any curvature will bring the two 
parts of the slab in touch and hence allow the transfer of 
bending. 

With the above assumptions in mind, consider the l-foot-wide slab shown 

in Fig 6. Because of the cracks, the actual rigidity of the structure is 

variable along its length, being largest between cracks, where the tension of 

the concrete contributes to the rigidity, and smallest at the cracks. Using 

basic moment-curvature relationships for working stress analysis, 

where 

where 

1 

P 

p 

M w 

E 

I 

= 

= 

= 

= 

= 

M 
w 

EI 

average 

working 

modulus 

average 

(3.2 ) 

radius of curvature, 

moment, 

of elasticity of concrete, 

moment of inertia. 

Furthermore, from the strain diagram (Fig 7), the angle e is: 

1 
e f s = s (3.3) = 

d(1-K) E d (l-K) 
p s 

e = average strain in reinforcement, 
s 

f = average stress in reinforcement, 
s 

E = 
s 

modulus of elasticity of steel, 

d = distance from top compression fiber to the centroid of steel, 

p = longitudinal percentage reinforc~ent, 
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6. Cracked slab • 

+- • 

Fig 7. Strain distribution near crack location, 
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p = 

K = 

where 

n = 

area of steel A s 
gross area of concrete 

2 [YPn(l + Pn) - pn] 

E 
s 

E 

bxt X 100 • 

(3.4) 

In Eq 3.4, K is a fraction which when multiplied by d gives the distance to 

the neutral axis of the section (Appendix 1a). This is based on the cracked 

transformed section (Ref 35). It is worthwhile to note that the area of con

crete in the percentage reinforcement term is the gross area of the section, 

and not, as defined in the equations for reinforced concrete, the width of the 

section times the distance from extreme compression fiber to the centroid of the 

steel. In Eq 3.4, P should be expressed as a ratio rather than a percentage. 

Combining Eqs 3.2 and 3.3, and solving for I, gives 

I = 
M nd (l-K) 

w 

f 
s 

(3.5) 

For the determination of the average stress in the reinforcement, the 

contributing effect of the concrete in tension has to be considered. Let the 

average tensile stress of concrete between cracks be expressed as 

where 

f 
r 

= 

= 

= 

(3.6) 

flexural stress of concrete, 

a reduction factor based on experimental results (Appendix 1). 

The part of the resisting moment corresponding to the average tensile 

stress of concrete f ,as shown in Fig 8 (after Ref 5), is t . 
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M' = (3.7) 

where 

T the tensile force in the concrete. 
c 

Substituting the value of T 
c 

(Fig 8) in Eq 3.7, 

(3.8) 

Further development of the above equation is carried on in Appendix lb, where 

the modulus of rupture (flexural stress at cracking 

of the compressive strength of concrete 

M' O.1(f,)2/3bt (t - Kd) 
c 

f' 
c 

(Ref 5). 

f ) is expressed in terms 
r 
In fina 1 form 

(3.9) 

Hence, the stress in the reinforcement f' corresponding to M' can be corn
s 

puted by 

where 

f' 
s 

(3.10) 

f' = tensile stress in the steel due to flexural stress in con
s 

j 

crete at points away from crack, and 

K 
= 1 - -

3 

But at the cracked section, the steel stress f is 
s 
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f 
s 

(3.11) 

The value of the working moment M 
w 

depends on whether the steel or the 

concrete stress governs (Fig 9). If the former controls, then from Eq 3.11 

where 

M 
w 

f = the allowable stress in the steel. 
s 

On the other hand, if the concrete stress governs, then 

M = 
w 

f K'bd2 
c J 

2 
(3.12 ) 

where 

f = the working compressive stress in the concrete. 
c 

Substituting the controlling value of M in Eq 3.11, gives the value 
w 

of the steel stress at the crack, and the actual average steel stress f 
s 

the verge of cracking is 

f s 
= f' s 

Hence, the average moment of inertia is given by: 

at 

I = 
M nd(l - K) 

w 
f - fl (3.13 ) 

S S 
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In the above equation, the average moment of inertia I is expressed in 

terms of slab geometrical characteristics and material properties. Using the 

preceding analysis gives the variation of the percentage reduction in bending 

stiffness versus the percentage reinforcement for different concrete compres

sive strength values, as shown in Fig 10. Bending stiffness reduction ranged 

from 80 to 90 percent for the change encountered in the percentage reinforce

ment. However, it is important to note the minor influence of the concrete 

compressive strength on stiffness reduction. Appendix 2 includes a sample 

calculation for the determination of the average mo~ent of inertia and the 

corresponding stiffness reduction. 

In Fig 10 it is shown that for the same percentage reinforcement, stiff

ness reduction (which does not include the concrete modulus) increases very 

slightly as f' increases. 
c 

However, it is worth noting that the modulus of 

elasticity of concrete also increases with the increase in f' • This fact 
c 

implies that the remaining stiffness (i.e., percent remaining multiplied by 

concrete modulus) increases with the increase in f' • 
c 

In the development of the above curves, the allowable concrete compressive 

stress was 0.45f' , and the allowable tensile steel stress was 0.75 of yield, 
c 

which i~ equivalent to a safety factor of 1.33. 
Several values of the yield stress, ranging from 40 to 70 kSi, were tried. 

Fortunately, for the range and safety factor in the steel mentioned above, the 

variation of the percentage reduction in bending stiffness was independent of 

the yield stress. This is due to the fact that the working moment M ,the w 
lower of the values from Eqs 3.11 and 3.12, was governed by the latter equa-

tion where the concrete stress controls. If a lower allowable steel stress 

is desired, the above plot may need to be modified. 

Region Affected by the Crack 

Discontinuities in structural members not only cause severe localized 

bending stiffness reduction, but influence a certain amount of the area around 

them. Therefore, after determination of the average moment of inertia and the 

corresponding reduction in bending stiffness, one more step is required before 

the discrete-element model of the problem is performed. The length over which 

the original bending stiffness should be reduced to simulate the effect of the 

discontinuity must be determined. 



94 

92 

90 
V'I 
V'I 
Q) 
C -~ 88 -(f) 

01 
C 
"0 86 c 
Q) 

CD 

c 84 
c 
0 -u 
~ 82 "0 
Q) 

0:: 
Q) 

~ 80 -c 
Q) 
u 
'-
Q) 78 

0... 

76 

74 

Note: Plot is based on an allowable 
concrete compressive stress 

of 0.45 f~ and allowable 
tensile steel stress of 0.75 f y. 

% reduction in bending Stiffness = (1- lG) 100 

IG = gross moment of inertia 

bt3 
=12 

I=Average moment of inertia (Eq. 3.13) 

I I 
0.2 0.3 0.4 0.5 0.7 0.8 0.9 1.0 

As 
Longitudinal Percentage Reinforcement, P = -b-t x 100 

0.6 
I .. 

1.1 

Fig 10. Variation of the percentage reduction in bending stiffness at 
crack location with longitudinal percentage reinforcement. 

25 



26 

A slab portion under the effect of transverse loading (Fig ll(a)) is 

considered. Since the concrete does not resist any tension stresses at the 

crack, the compression force in the upper concrete fibers has to be balanced 

by a tensile steel force to maintain equilibrium at that section. In actuality, 

concrete fails to resist tension stresses only at a crack. Between cracks, the 

concrete does resist moderate amounts of tension stress; this reduces the 

tension force in the steel (Fig l1{b)),'which creates 11 variable force in the 

bar. Since the bar must be in equilibrium, this change in bar force is re

sisted at the contact surface between steel and concrete by an equal and op

posite force produced by the bond between steel and concrete. Figure ll(c) 

shows a schematic distribution of the bond stress in the cracked region; it 

should be remembered that the bond is nothing but the rate of change of ten

sion. For the free-body of a bar segment shown in Fig ll(d), if U is the 

magnitude of the average bond force per unit length of bar, then 

yields 

Udx + T - (T + dT) = 0 

:. Udx = dT 

Integrating over the required length, a 

where 

Hence: 

a ,... T2 

U S dx = 
o 

\ dT 
.... T 

1 

Tl = tension in steel at some point 

T2 = tension in steel at crack. 

Ua = T2 - Tl = A f - 0 
s s 

between cracks, 

L:F = 0 
x 

(3.14 ) 

and 
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(a) Cracked slab portioIl. 

~I: -0 --*+.~ 44-----0 ~:I 

~ 
(b) Longitudinal tensile stress in the steel (schematic). 

(c) Bond stress (schematic). 

U T ....... .L-.....-. 

-.:-1 1 ------ T + dT ----
I'" dx ·1 

(d) Free-body of a bar segment. 

Fig 11. Region affected by the discontinuity. 
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Therefore, 

a = 
A f 

s s 
U (3.15 ) 

Assuming that the bond force per unit length U is the resultant of 

shear type bond stresses u uniformly distributed over the contact area, 

then 

U = up (3.16 ) 

where 

p :::: the perimeter of the bar(s). 

By substituting the value of U in Eq 3.15 

a = 
A f 

s s 
up 

Hence, total affected length 

L = 2a 

L :::: 2 
A f 

s s 
up 

(3.17) 

(3.18) 

For the determination of the allowable bond stress u, as well as 

the ACI 1963 code (Section 1301) specifies the following: 

f 
s 

(1) For tension bars, the allowable bond stress u is governed by 

u = 3.4 ~ < 0 ¢ 35 psi (3.19) 



where 

¢ = the bar diameter; 

(2) The allowable stress in the steel shall not exceed 24,000 psi. 

Discrete-Element Modeling of the Crack Effect 

By the previous analysis, the amount of reduction in bending stiffness, 

as well as the length over which it should be applied, has been determined. 

In this section, a method for modeling the effect is discussed. 

29 

In this method there are two cases to be considered. In the first case, 

the region affected by the discontinuity extends over an even number of incre

ments (Fig l2(a)). Assuming for example that this region is two increments 

long (L = 2h) , it is defined by three stations: two edge stations (i-l,j 

and i+l,j) and a middle station where the crack is located (i,j). Be-

cause the stiffness in the discrete-element model, (Fig 4) is lumped at the 

elastic joints or station locations, in order to simulate the effect described 

above, it is necessary to apply the total amount of the previously determined 

bending stiffness reduction at each middle station (in this case only one, 

i,j), and half of that amount at each of the boundary or edge stations, namely 

i-l,j and i+l,j As an example, if the amount of reduction in bending 

stiffness is 90 percent of the original full value, 90 percent of the stiff

ness should be reduced at station i,j , and 45 percent at each of the edge 

stations, i-l,j and i+l,j • 

In the second case, the area influenced by the crack extends over an odd 

number of increments; for example, three (L = 3h), as in Fig l2(b). The main 

difference between the two cases is the relative position of the ends of the 

reduced stiffness region and station locations. When the number of incre

ments is even, a station is located at each of the boundaries or edges 

of the concerned region, which requires the half-value refinement discussed 

previously. When there is an odd number of increments, the edges of the re

duced stiffness region lie midway between stations, and for modeling, the 

total reduction in bending stiffness is applied at each station (i-l,j ; 

i,j and i+l,j), with no exception. 

For the case where the number of increments is even, it was mentioned that 

a half-value of the stiffness reduction should be applied at the edge stations. 

To test the sensitivity of the half reduction, several examples were studied. 
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(a) Even numbe~ of increments in the region of the crack. 
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(b) Odd number of increments in the region of the crack. 

Fig 12. Discrete-element modeling of crack effect. 
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These covered a wide range of thicknesses, moduli of elasticity, crack spacings, 

and moduli of subgrade reaction. Without exception, neglecting the half-value 

reduction at the edge stations produced only negligible changes in deflections 

and principal stresses. 

To validate the above observation, a problem involving a 20 X 40-foot 

pavement loaded with a 12-kip concentrated load placed 4 feet from the edge 

(Fig 13) was considered. The thickness of the pavement was 8 inches, and 

the modulus of subgrade reaction was 100 1b/in3 • The reduction in bending 

stiffness was applied over a length of 12 inches at each transverse crack 

location. Figure 13 illustrates the change in deflection with the increase 

of the percent reduction in bending stiffness; as shown, the rate of change 

in deflection was almost negligible up to about 50 percent of the stiffness 

reduction, and then a significant increase was observed. Thus, applying a 

half value of stiffness reduction at the edge stations produced almost neg

ligible changes in stresses and deflections. 

Therefore, it is recommended that when there is an even number of incre

ments, the subgrade is not very weak, i.e., k ~ > 40 1b/in3 , and there is 

no loss in subgrade support, the half bending stiffness reduction at the edge 

stations be neglected. 

Suggested Method and Sample Problem 

A step-by-step method has been suggested for the application of SLAB 

programs in the analysis of discontinuities in continuously reinforced con

crete pavements. 

The method consists of the following steps: 

(1) Determine the physical characteristics of the concerned pavement, 
such as modulus of elasticity, thickness, and percentage reinforce
ment. 

(2) Determine the percentage reduction in bending stiffness to be ap
plied at crack locations (from Eq 3.13 or Fig 10). 

(3) Determine the length affected by the discontinuity (from Eq 3.18). 

(4) Decide on the increment length which best matches the slab geometry 
as well as the length determined from step (3). 

(5) Apply the percent stiffness reduction determined in step (2) at each 
crack location over the length from step (3). 

The use of the method on a specific problem is demonstrated in Appendix 3, 

with the corresponding coded data required for the program. A 24-by-40-foot slab, 
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loaded with two 9,000-pound wheel loads located at 2 and 8 feet from the edge 

was considered (Fig 14), and the percent reduction in bending stiffness de

termined was 90 percent over a length of 12 inches. 

Besides the condition with 90 percent stiffness reduction at the crack 

location, two other conditions were studied: the hinged condition, where there 

is zero stiffness at the discontinuity, and the uncracked condition, where the 

full slab is treated as one piece. The variation in deflections for each of 

these cases is shown in Fig 14. The effect of the hairline cracks is clearly 

illustrated by the 30 percent increase in deflection of the 90 percent reduc

tion case over the uncracked case. Furthermore, comparing the hinge and the 

uncracked cases, the percent deflection increase was doubled (60 percent). 

The results which also show that the percentage increase in deflections will 

drop for high values of stiffness and modulus of subgrade reaction, are dis

cussed in more detail in Chapter 4. 

Effect of Edge Restraints 

Ideally, for discrete-element modeling of a continuously reinforced con

crete pavement with no transverse joints except construction joints, as much 

length from the slab as possible should be considered to approximate the con

tinuity effect. In a two-dimensional problem, such as the one encountered, 

isolating a certain portion of interest, for example that delineated by e-f-g

h in Fig l5(a), requires the following boundary conditions: a transverse 

spring S ,and two rotational restraints 
z 

Rand R ,in the x and y-
x y 

directions, respectively (Fig l5(b». These boundary conditions have to be 

applied at the end and edge stations of the slab. A rotational restraint in 

the discrete-element model (Fig 16) is nothing but a differential spring 

system which provides a force couple system that resists a change in slope but 

does not restrain deflections. 

Practically, in most pavement problems, th~ most critical areas are those 

in the vicinity of the loads, where maximum deflections and stresses occur. 

From the analysis of plates on elastic supports, it can be shown that the part 

of the slab beyond a certain distance from the loaded area does not contribute 

much to the stiffness of the structure. Also, this observation is partially 

substantiated by field measurements (Ref 30). In other words, boundary restraints 

are not significant. In this section, the effect of these restraints ~ ,R 

R ) 
Y on different-sized portions of the pavement is studied. 

z x 
Results indicate 
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Fig 16. Rotational restraint R acting on the 
mechanical model (after Ref 7). 
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that beyond 15 to 18 feet from load locations, boundary restraints do not need 

to be precisely defined or even used. 

This observation was investigated over a wide range of pavement character

istics, including thickness, modulus of elasticity, crack spacing, and modulus 

of subgrade reaction. In each combination of these factors, SLAB solutions of 

the following pavements were performed: 

(1) a 24-by-80-foot slab with free edges (a-b-c-d in Fig 17) and 

(2) a 24-by-40-foot partition (e-f-g-h) with two extreme conditions 

(a) 

(b) 

free edge condition and 

full fixity condition, where high va lues of S ,R 
30 z x 

(10 was used) were applied at each edge station. 

and R 
Y 

Table 3 shows the results for the SLAB solutions for a pavement posses

sing the following characteristics: thickness of 8 inches, concrete modulus 

of 3.5 X 10
6 

psi, modulus of subgrade reaction of 100 lb/in3 , crack spacing 

of 4 feet, Poisson's ratio of 0.2, and loading arrangement as shown in Fig 17. 

It is obvious from the tabulated results that the percent of change in either 

deflection or principal moment was almost zero. Hence, whether a 24-by-80 or 

24-by-40-foot slab, with or without restraints, is chosen, differences in re

sults are quite negligible and of no practical importance. However, it should 

be recognjzed that this may vary with larger wheel loads. 

Performing the same analysis on a 24-by-20-foot slab section (i-j-k-l in 

Fig 17) under the free edge condition resulted in an increase of 3 to 10 per

cent in deflections and 12 to 15 percent in principal moments, depending on 

the relative magnitude of the stiffness of the slab to that of the subgrade. 

Therefore, the 24-by-40-foot section with free edges was adopted as being more 

representative of the real problem. 

Tension in the Longitudinal Reinforcement 

Several analyses have been made for the determination of the longitudinal 

steel required in continuously reinforced concrete pavements (Refs 12 and 13). 

The purpose of this steel is to insure that the cracks in the concrete are small 

enough to prevent passage of surface water downward into the underlying material 

and to provide adequate aggregate interlock for load transfer across the crack. 

In contrast to the thickness of the pavement which is determined by the wheel 

loads, Vetter (Ref 12) showed that the amount of 'reinforcing steel necessary 
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TABLE 3. VALUES OF MAXIMlW DEFLECTIONS AND PRINCIPAL MOMENTS 
FOR DIFFERENT SLAB SIZES AND EDGE CONDITIONS 

Maximum 
Size Principal 
of Condition Maximum Moment, 

Slab, of Deflection, Ib-in per 
feet Edges inches unit width 

24 by 80 Free 0.03279 2285 

Free 0.03279 2285 

24 by 40 

Fixed 0.03277 2284 



in pavements is based on such changes in the pavement as concrete shrinkage, 

moisture, and temperature induced variations. 

For the determinat10n of the longitudinal reinforcement and hence the 

corresponding tension, Vetter suggested the following equation: 
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p = 
f - nS 

x 100 (3.20) 

where 

p = 

St = 

f = 
s 

n = 

E = 

s t 

ratio of area of longitudinal steel to area of concrete, 
percent; 

tensile strength of concrete, psi (about 0.4 f ). 
r ' 

allowable working stress in steel, psi; 

E s 
E 

modulus of elasticity of concrete; 

E = modulus of elasticity of steel. 
s 

This formula is based on the following assumptions: 

(1) that there is sufficient bond area to develop the full working stress 
in the steel, and 

(2) that adequate load transfer is provided at transverse construction 
joints. 

Further development of Eq 3.20 was carried on to include the coefficient 

of friction F between the pavement and subbase (Ref 13), and hence 

p = 
St 

(1.3 - 0.2F) -f--....,.';;.,.n-S- X 100 
s t 

(3.21) 

The frictional factor F depends on the surface smoothness of the subbase im

mediately beneath the rigid pavement. Recommended values of the friction fac

tor can be obtained from Ref 2. 
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The formula given above will generally govern the percentage of longi

tudinal steel required in a continuously reinforced pavement. Under severe 

temperature variations or when unusual material properties are encountered, a 

formula which considers the thermal coefficient may be required (Ref 13), such 

as 

where 

P = (1.3 - 0.2F) 2 (f 
s - 6T€E ) 

s 

"T . of w = temperature range 1n ; 

x 100 

€ = thermal coefficient of concrete and steel, per of. 

For the determination of tension in the steel, first solve for fs 

From Eq 3.21 

f = (1.3 - 0.2F) 
St 

100 + nSt -x s P 

From Eq 3.22 

S 
(1.3 

t 100 + f = - 0.2F) 2P x T€E 
s s 

Therefore, 

T = f A s s s 

= f Pbt 
s 

where 

T = tension in the steel, 
s 

(3.22) 

(3.23 ) 

(3.24 ) 

(3.25) 

(3.26) 
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f 
s 

allowable stress in the steel calculated using Eqs 3.21 and 
3.22 and taking the higher value (f < 0.75 f ) , 

s - y 

t = thickness of the pavement, 

b = width of the pavement. 

Assuming the tension is uniform across the slab, the tension per unit width is 

T s 
b 

= f Pt 
s 

(3.27) 

One of the important concrete properties that enters into rigid pavement 

design is modulus of rupture. Different values are obtained from experimental 

results, depending on the kind of test, but in this study, the following em-

pirica1 formulas were used to determine modulus of rupture f 
r 

where 

According to the 1963 ACI Code, Section 2609(c) (Ref 23), 

f' = the 28-day concrete compressive strength in psi. 
c 

From Ref 14, 

f 
r = 3.000 

3 + 12.000 
f' 

c 

(3.28) 

(3.29) 

The modulus of rupture can be calculated by either Eq 3.28 or 3.29. The 

value obtained from either of these two equations (values will be nearly iden

tical) can be used to calculate the allowable tensile strength of concrete 

St (St ~0.4 f r )· 

Referring to the above equations, we find that the value of the tension 

varies over a fairly wide range, depending on the particular conditions studied. 

However, it is worthwhile to note that this tension value depends to a considerable 
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degree on the allowable tensile strength of concrete, which is evaluated 

by dividing the modulus of rupture by a factor of safety. In this study, a 

factor of safety of 2.5 was used. A numerical example for the determination 

of tension in the longitudinal steel is solved in Appendix 4. 

Poisson's Ratio Effect 

One of the concrete properties involved in pavement design analysis be

sides the modulus of elasticity and flexural strength is Poisson's ratio, ~. 

Previous investigations have shown that variations in ~ have little effect 

on changes in deflections a~d stresses (Ref 6). This observation was also 

validated in this research, by discrete-element theory. 

For this study, a real, typical problem was selected. Figure 18 shows 

a concrete slab loaded with two concentrated loads of 9,000 pounds each and 

with the follow:ng pavement properties: 40 feet long, 24 feet wide, 8 inches 

thick, concrete modulus of 5.5 X 106 psi, and modulus of subgrade reaction of 

100 lb!in
2
/in. The variation in Poisson's ratio covered the range from 0.1 to 

0.3 inclusive. 

Figure 19 illustrates the variation of maximum deflection and stress, 

which occurred directly under the edge load, with Poisson's ratio. As noticed, 

a change in Poisson's ratio from 0.1 to 0.3 increases the deflection by 4 per

cent and stress by 6 percent (Fig 19). In the factorial analysis performed, 

a ~ value of 0.2 was chosen. 

Load Position 

During the service life of a pavement, many different kinds and sizes of 

loads are applied. These loads vary not only in magnitude, but also in number 

and point of application on the roadway itself. Present pavement design methods, 

however, usually involve the selection of one particular load position in 

calculating stresses. These stresses are then taken as critical and a pave

ment thickness is selected to give an appropriate safety factor. 

Historically, particular load positions have been closely associated in 

design with a given type of rigid pavement. Corner loadings have been used 

for jointed concrete pavements and interior loads have been used for contin

uously reinforced concrete pavement. 
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Fig 18. Example problem for the study of Poisson's ratio effect. 
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deflections and stresses. 
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Analyses have been made by Treybig, Hudson, and McCullough (Ref 22) using 

discrete-element theory to evaluate the relative merits of interior, corner, 

and edge loading conditions. The physical situation analyzed above was a 20-

by-SO-foot pavement loaded with 12,000 pounds concentrated at the three con

cerned positions (Fig 20). The influence of load placement and slab thick-

ness on stress in pavement with different modulus subgrade values is illustrated 

in Fig 21. Obviously, the most critical case is the corner one. However, 

in the sensitivity study, two 9,OOO-pound wheel loads were placed at 2 and S 

feet from the edge of the slab to simulate an edge loading condition. The 

corner load position was not considered because the continuously reinforced 

pavement structure does not have any free corners which are characteristic of 

a true corner load condition. 
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Fig 21. Influence of load placement and slab thickness on stress for 
different values of modulus of subgrade reaction k (after 
Ref 22). 



CHAPTER 4. RESULTS AND ANALYSIS 

Various slab characteristics to model a real problem are presented in 

Chapter 3. Conclusions were drawn on their effects, based on changes in de

flections and principal moments. The characteristics analyzed included reduc

tion in the bending rigidity of the slab due to discontinuities, boundary 

restraints, tension in the longitudinal steel, Poisson's ratio, and load posi

tion. 

The variable factors for the intended sensitivity study of CRCP design 

parameters and their corresponding levels are presented in Table 1. SLAB 

solutions were obtained for each level combination (Table 2) of these pave

ment parameters, namely, slab bending stiffness, modulus of subgrade reaction, 

and crack spacing. These solutions were repeated for two load positions: 

loads directly on the crack and loads midway between cracks. 

SLAB Input Parameters 

Percentage Reduction in Bending Stiffness. The percentage reduction in 

bending stiffness was determined from Fig 10. A value of 0.55 percent of 

longitudinal reinforcement corresponds to a 90 ~ercent reduction in bending 

stiffness at each transverse crack location. The length over which this re

duction was applied was 12 inches, determined from Eq 3.18 for a No.4 bar. 

Poisson's Ratio. According to Ref 6 and the analysis of the effect of 

Poisson's ratio of concrete, reported in Chapter 3, changes in deflections and 

stresses due to Poisson's ratio variations were insignificant. For this study, 

a value of 0.20 was used in calculating the bending and twisting stiffness 

slab terms. 

Tension in the Longitudinal Reinforcement. Equations 3.21 and 3.22 show 

that the tension in the longitudinal steel depends on the compressive stress 

of concrete fl , percentage reinforcement P, range in temperature, and 
c 

pavement thickness. The variation of the tension with concrete compressive 

stress and the percentage reinforcement were not so high when compared with 
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the variation due to thickness. A value of 4,000 psi was taken for 

as assumed before, 0.55 for percent of longitudinal reinforcement. 

f' 
c ' 

and 

From 

Eq 3.27 it is seen that the tension is directly proportional to the thickness 

of the pavement. From the three levels of the slab bending stiffness, one 

level of the modulus of elasticity yields three values of thickness, from which 

the tension values are obtained. For the 12-inch increment length in the 

transverse direction, the tension values were 12,000, 19,000, and 28,500 pounds 

per station. 

Slab Plan Dimensions and the Corresponding Boundary Restraints. As pre

viously shown (Chapter 3), no significant changes in stresses and deflections 

resulted, whether the 24-by-40 foot or 24-by-80 foot grid was solved with or 

without edge restraints. The slab size chosen for the sensitivity analysis 

was 24-by-40 feet with free edges. 

Increment Length. A 12-inch increment length was used in both the longi

tudinal and transverse directions. This resulted in a 24-by-40 increment net

work, which was used in the analysis. 

Case 1 - Loads on the Crack - SLAB Program Results 

Maximum values of slab downward deflections and principal moments are 

shown in Tables 4 and 5, respectively. 

The location of the maximum deflection was dependent on the relative 

magnitudes of the slab stiffness and the subgrade modulus. For the low level 

of stiffness, maximum deflection occurred 2 feet from the pavement edge, i.e., 

directly under the exterior 9,000-pound load. As stiffness increased, the 

maximum deflection was at the edge of the slab for low values of subgrade modu

lus. The effect of the subgrade was even more significant on high values of 

stiffness, as shown in Table 4, where the maximum deflection occurred at the 

pavement edge for the low and medium levels of the subgrade modulus. As far 

as the principal moments are concerned, the maximum value was always under the 

interior load, which was 8 feet from the pavement edge. 

Effect of Crack Spacing. Transverse cracks in continuously reinforced 

concrete pavements occur randomly, and in most cases they extend the whole 

width of the pavement. One of the principles of the design of this pavement 

type is to provide sufficient reinforcement to keep the cracks tightly closed. 



TABLE 4. MAXIMUM VALUES OF DOWNWARD DEFLECTION, INCHES 
(for 90 percent reduction in bending stiff
ness at cracks when loads are on the crack) 

4 

6 

40 
8 

10 

4 

6 
200 

8 

10 

4 

6 
1000 

8 

10 

0.0934 

0.0886 

0.0864 

0.0859 

0.0330 

0.0321 

0.0320 

0.0320 

0.0131 

0.0131 

0.0131 

0.0131 

150 X 106 

* 0.0490 

* 0.0485 

0.0475* 

0.0464 * 

0.0166 

0.0158 

0.0153 

0.0151 

0.0057 

0.0055 

0.0054 

0.0054 

1125 X 106 

* 0.0248 

* 0.0246 

0.0245 

0.0245* 

* 0.0086 

* 0.0085 

* 0.0084 

0.0083* 

0.0029 

0.0028 

0.0027 

0.0026 

* Maximum deflection was at the pavement edge; otherwise 
it was under the load, 2 feet from the edge. 
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TABLE 5. MAXIMUM VALUES OF PRINCIPAL MOMENT, 
LB-IN. PER UNIT WIDTH (for 90 per
cent reduction in bending stiffness 
at cracks when loads are on crack) 

* 

20 x 106 150 x 106 1125 x 106 

2117 2384 2587 

6 2103 2374 2583 

40 
8 2099 2364 2582 

10 2099 2357 2578 

4 1839 2182 2430 

6 1835 2165 2423 
200 

8 1835 2159 2413 

10 1835 2158 2406 

4 1436 1920 2240 

6 1436 1914 2223 
1000 

8 1'36 1914 2215 

10 1436 1914 2213 

* All values occurred 8 feet from the pavement edge. 



In this work, as mentioned previously, it was assumed that a very slight 

curvature is needed to bring the two parts of the slab in touch and hence 

allow the transfer of bending. 

51 

In light of this behavior, the variation in maximum deflection with crack 

spacing and slab bending stiffness for a subgrade modulus of 40 pci is illus

trated in Fig 22. A similar plot for maximum principal moment is shown in 

Fig 23. As noted, there is a slight change in both responses as the crack 

spacing increases over the range studied. However, it is worthwhile to note 

that these results were based on the same value of bending stiffness reduction 

at the crack location. As is demonstrated later in this study, as crack width 

increases, and hence the reduction in stiffness increases, the influence of 

crack spacing becomes more important. Similar results were obtained for the 

other levels of the modulus of subgrade reaction. 

Effect of Modulus of Subgrade Reaction. Modulus of subgrade reaction, as 

defined by Westergaard and others, plays an important role in the evaluation 

of deflections and stresses in pavement slabs and plates resting on soils. In 

light of the very small effect of crack spacing, nine deflection values were 

determined by averaging the deflection values corresponding to the three levels 

of stiffness and the three levels of subgrade modulus. In other words, an 

average value of deflection was obtained corresponding to an average value of 

crack spacing. 

Determining on the same basis the average values of maximum principal 

moment, the logarithmic influence of subgrade modulus on deflections and 

moments is illustrated in Figs 24 and 25. As shown, the effect of the sub

grade modulus on deflection is higher than on principal moments. Slab deflec

tion experiences an important and significant drop as subgrade modulus in

creases from low to medium levels. However, this deflection decrease tends to 

level off as the subgrade reaction exceeds the medium level and approaches the 

high side. This implies that for most purposes moderate values of subgrade 

modulus are quite satisfactory. Furthermore, there is about a 10 percent drop 

in the value of the principal moment as k varies from one level to another. 

From this brief analysis and the variation in deflection with the radius 

* of relative stiffness ~ (Fig 25), it can be shown that the contribution of 

* Tabulated values of radius of relative stiffness ~ for different pavement 
parameters are found in Appendix 5. 
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subgrade modulus to changes in deflection is higher than the contribution of 

stiffness. This illustrates the important role that the subgrade modulus plays 

in the determination of slab deflection. 

Effect of Slab Bending Stiffness. As mentioned previously, the slab bend-

ing stiffness per unit width is defined by Et
3 

Obviously the contri-

but ion of the thickness t to the magnitude of the stiffness term is more 

than the concrete modulus E. 

The effect of bending stiffness on deflections and principal moments is 

illustrated in Figs 24 and 25. For the whole range of subgrade modulus, it 

can be seen that the influence of stiffness on principal moment is greater 

than on deflection. It is worthwhile to note that for low values of subgrade 

modulus, the decrease in deflection as stiffness increases is highly signifi

cant, and that as the subgrade modulus increases, the influence of stiffness 

levels off. The logarithmic effect of the stiffness term is shown in a way 

similar to that for subgrade modulus. 

Case 2 - Loads Between Cracks - SLAB Program Results 

In the case when the loads acted between cracks, the effect of crack 

spacing was higher than when the loads were on the crack. Except for this, 

results for these two load placements were quite similar. As expected, de

flection values were lower for the case when the loads were between cracks, 

while higher values were obtained for principal moments. 

Tables 6 and 7 show the maximum values of deflections and principal 

moments, respectively. Values of principal moment were 2 feet from the pave

ment edge for all ranges in the pavement design variables encountered. As was 

the case when the loads were on the crack, maximum deflection occurred either 

under the exterior load or at the pavement edge, depending on the relative 

values of the slab stiffness and the subgrade modulus. The effect of the 

subgrade modulus was more significant for the high values of stiffness. 

Effect of Crack Spacing. The influence of slab stiffness and crack 

spacing on maxUnum deflections and principal moments for subgrade moduli of 

40 and 200 pci is illustrated in Figs 26 and 27. The effect of crack spac

ing on deflections is slight or practically negligible, while changes in prin

cipal moment for the low and medium levels of k are quite considerable. 



TABLE 6. MAXIMUM VALUES OF DOWNWARD DEFLECTION, INCHES 
(for 90 percent bending stiffness reduction 
at cracks when loads are between cracks) 

6 

40 
8 

10 

4 

6 
200 

8 

10 

4 

6 

0.0606 

0.0589 

0.0600 

0.0604 

0.0220 

0.0225 

0.0223 

0.0220 

0.0098 

0.0097 

150 X 106 

* 0.0383 

* 0.0354 

* 0.0344 

* 0.0345 

0.0109 

0.0104 

0.0105 

0.0106 

0.0038 

0.0038 

1125 X 10
6 

* 0.0223 

* 0.0203 

* 0.0198 

0.0064* 

* 0.0062 

* 0.0020 

* 0.0019 
1000 

* 

8 0.0096 

10 0.0096 

0.0038 

0.0037 

* 0.0019 

* 0.0019 

Maximum deflection was at the pavement edge; otherwise 
it was under the load, 2 feet from the edge. 
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* TABLE 7. MAXIMUM VALUES OF PRINCIPAL MOMENT, 

6 

40 
8 

10 

4 

6 
200 

8 

10 

4 

6 

LB-IN. PER UNIT WIDTH (for 90 per
cent bending stiffness reduction at 
cracks when loads are between cracks) 

150 X 10
6 1125 X 106 

2239 2791 3585 

2406 3049 3901 

2427 3226 4130 

2391 3320 4297 

1826 2338 2940 

1898 2541 3206 

1853 2603 3398 

1835 2581 3518 

1444 1993 2441 

1401 2037 2666 
1000 

8 1395 1992 2767 

10 1396 1962 2771 

* All values occurred 2 feet from pavement edge. 
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Furthermore, this change in principal moment due to the spacing of the 

cracks increases with an increase in stiffness. The percent increase in the 

maximum moment between the 10 and 4-foot crack spacing (based on the 10-foot 

value) is about 18 percent. By comparing Figs 26 and 27, it can be seen that 

this percentage increase in the moment drops as k increases. 

For both load placements studied (loads on and between cracks), the gen

eral trend in the magnitude of deflection is a decrease as crack spacing in

creases over the range studied (4 to 10 feet). This agrees fairly well with 

deflections measured by the Texas Highway Department. Figure 28 (after Ref 

25) shows the variation of measured deflection with crack spacing. Up to the 

range in crack spacing investigated in this research, calculated and measured 

deflections agree closely. Obviously, as crack spacing increases there is a 

greater loss of load transfer across the discontinuities since crack width in

creases. This, in some cases, will cause an increase in deflection, as shown 

in Fig 28. 

Effect of Subgrade Modulus and Bending Stiffness. For the purpose of 

demonstrating the effect of bending stiffness and subgrade modulus, average 

values of deflections and principal moments are shown in Fig 29. A similar 

plot (Fig 30) shows deflection variation with the radius of relative stiff-

ness. 

The essential importance of the subgrade modulus in determining the amount 

of slab deflection is very well illustrated. Similar to the case where the 

loads are on the crack, the rate of change in deflections decreases as the sub

grade modulus increases. About a 20 percent drop is experienced in the magni

tude of the principal moment as k increases from one level to the next. 

While the subgrade modulus shows a higher contribution in the determina

tion of deflection than principal moment, slab bending stiffness possesses a 

contrasting effect except for its effect on deflections for low values of sub

grade modulus. Again, the logarithmic effect of stiffness as well as subgrade 

modulus is demonstrated. 

Analysis of Variance (ANOVA) 

To determine the sensitivity of the rigid pavement design variables, an 

analysis of variance was made on the maximum values of deflections and princi

pal moments for both load positions. The analysis of variance considered the 
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three design variables encountered, namely, slab bending stiffness, crack 

spacing, and subgrade modulus. 
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Tables 8(a) and (b) show the average contribution of the main effects of 

each variable and their interactions on deflections and principal moments for 

the loads on the crack. For the levels given to subgrade modulus, slab bending 

stiffness, and crack spacing, the highest average contribution in the variation 

in deflections (58.88 percent) was due to the main effect of the subgrade modu

lus. Next were bending stiffness, which accounted for 27.74 percent of the 

variation, and interaction of subgrade modulus and stiffness (k X D), which ac

counted for 13.26 percent. The amount that the crack spacing contributed was 

negligible. 

For the variation of principal moment, the main effect of slab stiffness 

was the largest (59.35 percent), and the main effect of the subgrade modulus 

was next. The effect of crack spacing was slight. 

Results of the analysis of variance for the loads between cracks were 

similar to the case when loads were on the crack (Table 9). It is worthwhile 

to note that the effect of crack spacing was higher when loads were between 

cracks. However, over the whole range of the variables studied, neither the 

main effect of crack spacing nor its interaction with either k and/or D 

was highly significant. 

ANOVA - Orthogonal Polynomial Breakdown 

In a design experiment where the levels of factors are quantitative, it 

is often possible to extract more information on how the response variable 

might vary with the changing levels of the quantitative factor; e.g., how de

flection varies with the modulus of subgrade reaction and whether or not there 

is a linear relationship between subgrade modulus and deflection. 

The use of orthogonal polynomials makes the analysis rather simple, pro

vided the experiment is designed with equispaced quantitative levels. In the 

design experiment studied (Table 2), the levels of slab stiffness, as well 

as subgrade modulus, are equispaced logarithmically. That is, each level is 

obtained from the preceding one by a constant multiplier, which means that the 

levels progress geometrically. The multiplier was 7.5 for slab stiffness, and 

5.0 for subgrade modulus. The levels of crack spacing are also equispaced but 

constitute an arithmatic progression. 
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TABLE 8. GENERAL ANALYSIS OF VARIANCE FOR LOADS ON CRACK 

(a) Maximum Deflections 

Sum of Mean of 
Source of Degrees of Squares Squares 
Variation Freedom X 103 X 103 

Log (subgrade modulus), log k 2 14.089 7.045 

Crack spacing, CS 3 0.012 0.004 

Log (bending stiffness), log D 2 6.637 3.318 

Log k X CS interaction 6 0.010 0.001 

Log k X log D interaction 4 3.173 0.793 

CS X log D interaction 6 0.007 0.001 

Log k X CS X log D interaction 12 

Total 35 23.930 

(b) Maximum Principal Moments 

Log 

Source of 
Variation 

(subgrade modulus), 

Crack spacing, CS 

Log (bending stiffness), 

Log k X CS interaction 

log k 

log D 

Log k X log D interaction 

cs X log D interaction 

Log k X CS X log D interaction 

Total 

* Based on sum of squares. 

Degrees of 
Freedom 

2 

3 

2 

6 

4 

6 

12 

35 

Sum of 
Squares 
X 1O-j 

1459.43 

1.16 

2288.75 

0.20 

105.68 

0.28 

0.59 

3856.03 

Mean of 
Squares 
X 10-3 

729.71 

0.39 

1144.38 

0.03 

26.42 

0.04 

0.04 

Average 
* Contribution 

in percent 

58.88 

0.05 

27.74 

0.04 

13.26 

0.03 

100.00 

Average * 
Contribution 
in percent 

37.84 

0.03 

59.35 

2.74 

99.96 
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TABLE 9. GENERAL ANALYSIS OF VARIANCE FOR LOADS BETWEEN CRACKS 

(a) Maximum Deflections 

Sum of Mean of 
Source of Degrees of Squares Squar1s 
Variation Freedom X 103 X 10 

Log (subgrade modulus), log k 2 7.473 3.736 

Crack spacing, CS 3 0.004 0.001 

Log (bending stiffness), log D 2 2.705 1.352 

Log k X CS interaction 6 0.006 0.001 

Log k X log D interaction 4 1.069 0.267 

CS X log D interaction 6 0.002 

Log k X CS X log D interaction 12 

Total 35 11.259 

(b) Maximum Principal Moments 

Log 

Source of 
Variation 

(subgrade modulus), 

Crack spacing, CS 

Log (bending stiffness), 

Log k X CS interaction 

log k 

log D 

Log k X log D interaction 

CS X log D interaction 

Log k X CS X log D interaction 

Total 

'i( 
Based on sum of squares. 

Degrees of 
Freedom 

2 

3 

2 

6 

4 

6 

12 

35 

Sum of 
Squares 
X 10- 3 

7599.56 

384.46 

12121.70 

123.98 

133.45 

239.32 

36.02 

20638.52 

Mean of 
Squares 
X 10- 3 

3799.78 

128.15 

6060.87 

20.66 

33.36 

39.87 

3.00 

Average 
* Contribution 

in percent 

66.37 

0.03 

24.04 

0.05 

9.50 

0.01 

100.00 

Average * 
Contribution 
in percent 

36.82 

1.86 

58.73 

0.60 

0.65 

1.16 

0.18 

100.00 
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Loads on the Crack. Table 10(a) shows the ANOVA orthogonal breakdown for 

for the deflection response for loads on the crack. In tabulating the orthog

onal breakdown, effects which contributed less than 1 percent in response var

iation were neglected. 

It is worthwhile to note that the levels of subgrade modulus are equispaced 

in the logarithm and that the linear effect refers to the deflection variation 

associated with log k and not k. Likewise, the quadratic effect is associated 

with (log k)2. Similar statements can be made concerning the stiffness term. 

General ANOVA in Table 8(a) shows that the average contribution of 

subgrade modulus to deflection was 58.88 percent. When this total effect 

is broken into its linear and quadratic log portions, it is seen that 54.40 

percent of the deflection variation was due to the log linear effect and 

only 4.48 percent to the quadratic effect. In addition, the log linear effect 

of stiffness and the log linear interaction of k and D explain a substan

tial amount of the deflection response. 

In the case of principal moments shown in Table lOeb), the logarithmic 

linear effects of stiffness and subgrade modulus contributed around 97 percent. 

None of the quadratic log effects entered into the picture, and the first order 

interaction of D and k was not so high as in the deflection case. 

Loads Between Cracks. Similar results were obtained for the case with 

loads between cracks. Table 11 illustrates the orthogonal breakdown of the 

Davement variables for deflections and principal moments. In both deflection 

and principal moment responses for loads on the crack, the effect of crack 

spacing was less than 1 percent, but this was true only for the deflection 

response when the loads were between cracks; on principal moments, the linear 

effect of crack spacing was 1.68 percent of the total contribution, which still 

is not highly significant. 

Comparison of Deflections for Loads at and Between Cracks 

For the range of CRC pavement variables investigated in this study, de

flections resulting from loads on the crack were higher than those from loads 

between cracks. Figures 31 and 32 show measured deflections (after Ref 16) 

and those calculated by the discrete-element method. In most cases, the mea

sured value of the cracked sections was higher than that for the uncracked, 

which agrees fairly well with the calculated deflection. It is worthwhile to 
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TABLE 10. AN OVA ORTHOGONAL POLYNOMIAL BREAKDOWN FOR LOADS ON CRACK 

(a) Maximum Deflections 

Sum of Mean of Contri-
Source of Degrees of Squares Squares bution 
Variation Freedom X 103 X 103 in percent 

Log (subgrade modulus), log k 2 14.089 

Linear 1 13.016 13.016 54.40 

Quadratic 1 1. 073 1.073 4.48 

Log (bending stiffness) , log D 2 6.637 

Linear 1 6.415 6.415 26.77 

Log k X log D interaction 4 3.173 

Linear X Linear 1 2.881 2.881 12.02 

Linear X Quadratic 1 0.238 0.238 1.00 

Residual 30 0.319 0.011 1. 33 

Total 35 23.942 23.634 100.00 

(b) Maximum Principal Moments 

Sum of Mean of Contri-
Source of Degrees of Squares Squares bution 
Variation Freedom X 10- 3 X 10- 3 in percent 

Log (subgrade modulus), log k 2 1459.43 

Linear 1 1448.94 1448.94 37.57 

Log (bending stiffness), log D 2 2288.75 

Linear 1 2269.96 2269.96 58.87 

Log k X log D interaction 4 105.68 

Linear X Linear 1 96.25 96.25 2.50 

Residual 32 40.88 1.28 1.06 

Total 35 3856.03 3816.43 100.00 
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TABLE 11. ANOVA ORTHOGONAL POLYNOMIAL BREAKDOWN FOR LOADS BETWEEN CRACKS 

(a) Maximum Deflections 

Sum of Mean of Contri-
Source of Degrees of Squares Squares bution 
Variation Freedom X 103 X 103 in percent 

Log (subgrade modulus), log k 2 7.473 

Linear 1 6.837 6.837 60.72 

Quadratic 1 0.636 0.636 5.60 

Log (bending stiffness), log D 2 2.705 

Linear 1 2.606 2.606 23.17 

Log k X log D interaction 4 1.069 

Linear X Linear 1 0.981 0.981 8.70 

Residual 31 0.203 0.006 1.81 

Total 35 11.263 11.066 100.00 

(b) Maximum Principal Moments 

Sum of Mean of Contri-
Source of Degrees of Squares Squares but ion 
Variation Freedom X 10- 3 X 10-3 in percent 

Log (subgrade modulus), log k 2 7599.56 

Linear 1 7590.38 7590.38 36.77 

Crack spacing, CS 4 384.46 

Linear 1 346.55 346.55 1.68 

Log (bending stiffness), log D 2 12121. 70 

Linear 1 12096.98 12096.98 58.62 

Residual 32 604.61 18.89 2.93 

Total 35 20638.52 20052.80 100.00 
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note that due to seasonal variations, load transfer across the joints varies, 

while the calculated values were obtained for a constant value of bending 

stiffness reduction at crack locations. 

Comparison Between 90 Percent Stiffness Reduction and Full Slab 

The effect of crack formation on structural members is an increase in the 

flexibility of the system. Generally this will produce an increase in deflec

tions and a decrease in moments or stresses. Since no contraction joints are 

provided in continuously reinforced concrete pavements, volume-change stresses 

will cause random transverse cracks to develop. The influence of these trans

verse cracks on maximum deflection and princip~l moments is demonstrated in 

Figs 33 and 34. 

Values of maximum deflections and principal moments for the full slab 

case are shown in Table 12. These results were compared with those of the 

90 percent reduction in bending stiffness at the cracks for the two load place

ments. For low and medium levels of subgrade modulus, the increase in deflec

tion when loads are on cracks is quite significant. This indicates the detri

mental effect of these transverse discontinuities on the pavement slab. It is 

worthwhile to note that the difference in principal moments between the cracked 

and uncracked slab increases as the relative stiffness of the slah to that of 

the subgrade increases. 

Comparison Between 90 and 100 Percent Reduction (Hinge) in Bending Stiffness 

In this study the cracks were analyzed as if they were completely closed. 

Deformations in the slab are thus resisted by some degree of moment transfer 

across the cracks as is customary in normal structural concrete analYSis 

(Fig 7). In practice, however, slabs have crack openings of a finite width 

which varies primarily due to volume changes. Considering these finite crack 

widths would thus involve the nonlinear relationship of no bending resistance 

until the crack closes at the top at which ttme some bending resistance would 

then be felt. In this section, however, comparisons of deflections and princi

pal moments are made between the two extreme cases: partial (closed crack) and 

zero (open crack) bending transfer across the transverse discontinuities. 

Values of deflections and principal moments for the hinge case when the 

loads are on the crack are shown in Tables 13 and 14, respectively. A graphic 



10.0 

9.0 

8.0 

-II) 
Q) 7.0 ~ 
u 
.5 

C\I 
'0 6.0 
)( 

c 
0 5.0 '.0:: 
U 
Q) -Q) 

0 4.0 
E 
::J 
E 

3.0 )( 

0 
~ 

2.0 

I. 

0.0 
I 

-------------
. --
=--'::--'- ------.-- --':--.--. ----

--- Loads on Crack 
_.-.- Loads Between Cracks 

Full Slab (no cracks) 

~
:::--.=-- ----

--.-:--. ----:---__ ._...;;;;;:-::::.:..:. =::::...:.:=:::..:..:-==--::~-:;;;;;;~;;;;~} =-.=--.._._. -- k= 200 pci 

2 4 6 8 10 20 40 

Slab Bending Stiffness x 107 (lb.-in2) 
In 

60 80 100 

Fig 33. Influence of bending stiffness and subgrade modulus on deflection for the 
cracked and full (uncracked) slab. 

200 



- 4000 
.t::. --g 
'j -'2 
J 
100 c» 
Q. 

,5 3000 
I 

..Q 

1: c» 
E 
0 
~ 

0 
Q. 2000 "u c: 

"C 
a.. 

E 
J 
E 
"x 
0 
~ 1000 

0 
0 

loads Between 
Cracks 

D = Slab Bending 
loads on Stiffness 

Cracks 
Et 3 (lb-in2 ) = 12(1-,u2) in 

k = Subgrade 
Modulus (pci) 

1 = .wf (inches) 

10 20 30 40 50 60 70 

t ,Radius of Relative Stiffness (inches) 

Fig 34. Influence of radius of relative stiffness on principal moments for cracked 
and uncracked slab for loading as shown in Fig 3, 

80 



TABLE 12. MAXIMUM VALUES OF DOWNWARD. DEFLECTIONS 
AND PRINCIPAL MOMENTS (for the un
cracked slab) 

20 X 10
6 

150 X 10
6 

1125 X 10
6 

* 0.0582 0.0340 0.0196 
40 - - --- - - - -- -- --

** 2336 3233 4491 

0.0217 0.0103 0.0612 
200 ----- - -- -- - - - --

1836 2501 3462 

0.0096 0.0036 0.0018 
1000 - - - - - - -

1397 1956 2671 

* Deflection, inches 

~b~ 
Principal moments, 1b-in per unit width 
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TABLE 13. VALUES OF MAXIMUM DEFLECTION, INCHES 
(for 100 percent bending stiffness 
reduction at cracks when loads are 
on the crack) 

0.1277 

6 0.1087 
40 

8 0.1036 

10 0.1030 

4 0.0380 

6 0.0362 

* 0.0905 

* 0.0741 

* 0.0671 

0.0598* 

0.0246 

0.0202 

0.0515* 

* 0.0438 

* 0.0388 

0.0176* 

0.0141* 
200 

* 0.0121 8 0.0362 0.0188 

10 0.0362 0.0185 

4 0.0139 0.0068 0.0046 

6 0.0139 0.0063 0.0037 
1000 

8 0.0139 0.0063 0.0034 

10 0.0139 0.0063 0.0033 

* Maximum deflection was at the pavement edge; otherwise 
it was under the load, 2 feet from the edge. 



* TABLE 14. VALUES OF MAXIMUM PRINCIPAL MOMENT, 

6 

40 
8 

10 

4 

6 
200 

8 

10 

4 

6 
1000 

8 

10 

* 

LB-IN PER UNIT WIDTH (for 100 per
cent bending stiffness reduction at 
cracks when loads are on the crack) 

150 X 10
6 1125 X 106 

2096 2354 2554 

2083 2331 2543 

2079 2318 2535 

2078 2312 2532 

1838 2156 2402 

1834 2138 2380 

1834 2132 2365 

1834 2131 2358 

1438 1916 2211 

1438 1909 2190 

1438 1909 2182 

1438 1909 2180 

All values occurred 8 feet from pavement edge. 
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representation is used to compare the ratios of deflections and principal 

moments in the hinge case with those in the 90 percent reduction case. 

Figure 35 demonstrates the change in deflections (expressed as a ratio 

of the values for the 100 to the 90 percent reductions) with the change in 

radius of relative stiffness for different crack spac1ng patterns for loads on 

the crack. It is seen that for high values of the radius of relative stiffness, 

as crack spacing decreases, changes in maximum deflections are highly signifi

cant. Obviously, this will emphasize the effect of the width of the crack on 

the behavior of the pavement structure. Deflections increase at a significant 

rate as the crack width increases. Hence, crack width should be given special 

consideration and narrow cracks are indeed the desirable objective for success

ful performance of a continuously reinforced concrete pavement. 

No significant difference in principal moments was evident between the 

100 and 90 percent reductions when the loads were acting on the cracks. The 

same thing applies to deflections when loads were acting between cracks 

(Tables 6 and 15). Comparing the values of principal moment for the loads 

between cracks (Tables 7 and 16), certain differences resulted for high 

values of radius of relative stiffness (Fig 36). The ratio of the two moment 

values approaches unity as crack spacing increases, and practically no differ

ence is encountered in the range of 8 to 10 feet. 

Therefore, the structural behavior of CRC pavement shows that crack width 

has a very important effect on the performance of such pavement. Due to the 

volume changes in the concrete mix, there is a direct relationship between the 

crack width and crack spacing. As crack spacing increases, crack width in

creases, and in turn causes significant changes in the pavement structure. 

Deflections increase at a high rate as crack width increases, causing several 

modes of distress. Furthermore, as illustrated in Fig 36, no significant 

drop is encountered in the principal moments between the partial and hinge 

cases for the 8 and 10-foot crack spacing. 

Discussion of Results 

Transverse cracks are characteristic of continuously reinforced concrete 

pavements and significantly influence the behavior and performance of this 

pavement type. Comparison between the cracked and uncracked slab (Figs 33 

and 34) indicates that when loads were on the crack, there was a substantial 

increase in slab deflections, while the drop in principal moment that occurred 
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TABLE 15. VALUES OF MAXIMUM DEFLECTION, INCHES 
(for 100 percent bending stiffness 
reduction at cracks when loads are 
between cracks) 

0.0626 

6 0.0594 
40 

8 0.0613 

10 0.0619 

4 0.0221 

6 0.0228 

150 X 10
6 

* 0.0457 

* 0.0375 

* 0.0349 

0.0350* 

0.0116 

0.0105 

1125 X 106 

* 0.0330 

0.0261* 

* 0.0225 

0.0207* 

* 0.0087 

200 
8 

10 

4 

6 
1000 

8 

10 

* 

0.0226 0.0107 

0.0221 0.0109 

0.0099 0.0037 

0.0097 0.0038 

0.0096 0.0038 

0.0096 0.0038 

0.0064* 

* 0.0063 

* 0.0022 

* 0.0019 

* 0.0020 

Maximum deflection was at the pavement edge; otherwise 
it was under the load, 2 feet from the edge. 



* TABLE 16. VALUES OF MAXIMUM PRINCIPAL MOMENT, 

4 

6 

40 
8 

10 

4 

6 
200 

8 

10 

4 

6 
1000 

8 

1(\ 

LB-IN PER UNIT WIDTH (for 100 per
cent bending stiffness reduction at 
cracks when loads are between cracks) 

150 X 106 1125 X 106 

2159 2311 2430 

2446 2828 3042 

2487 3198 3558 

2427 3398 3971 

1919 2196 2332 

1925 2561 2876 

1861 2676 3294 

1834 2641 3560 

1458 2005 2226 

1402 2077 2647 

1394 2010 2840 

1396 1964 2852 

* All values occurred 2 feet from the pavement edge. 
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for loads between cracks was not highly significant. This illustrates the 

detrimental effects of these transverse discontinuities on the pavement struc

ture. 

According to SLAB program results, the modulus of subgrade reaction, as 

defined by Westergaard and others, plays an important role in the determination 

of deflections and principal moments (Figs 24 through 30). Pavement deflec

tions decrease at a significant rate as subgrade modulus increases. Further

more, there is about a 10 percent decrease in the value of principal moment as 

k varies from one level to the next when loads are on the crack, and about a 

20 percent decrease for the case when loads are between cracks. 

While the subgrade modulus showed a higher contribution in the determina

tion of deflections than principal moments, slab bending stiffness possessed a 

contrasting effect (Figs 24, 26, 27, and 29). Hence, if the most important 

design criteria are pavement stresses, the thickness of the slab is the factor 

which requires the greatest consideration, and it is followed in importance by 

the modulus of subgrade reaction. 

For the case when loads were on the crack, as crack spacing varied over 

the range studied (4 to 10 feet) a small change was encountered in deflections 

and principal moments (Figs 22 and 23). For the second load placement investi

gated (i.e., loads between cracks), the effect of crack spacing on deflections 

was also slight or practically negligible, while changes in principal moments 

for the low and medium levels of k were significant (Figs 26 and 27). 

The analysis of variance performed on the SLAB results has indicated that 

the main effects of slab bending stiffness and subgrade modulus contributed 

around 90 percent to the variation in each of the deflection and principal 

moment responses (Tables 8 and 9). It also showed the minor effect of crack 

spacing on the pavement behavior. 

The polynomial orthogonal breakdown yielded similar results for the two 

load placements. The logarithmic linear effect of subgrade modulus and bending 

stiffness was highly significant, and explained most of the variations in the 

pavement responses, deflections, and principal moments. 

The comparison between the 90 percent (closed crack) and 100 percent (open 

crack) reduction in bending stiffness at the crack location indicated the im

portance of crack width on the behavior of continuously reinforced concrete 

pavements. Slab deflections increase at a high rate as crack width increases 
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(Fig 35), while no significant drop is encountered in the principal moments 

(Fig 36). 

Use of Results 

In the previous discussion, the graphical representation of results and 

the analysis of variance results were used to explain the behavior of contin

uously reinforced concrete pavements under transverse static loading. Other 

important uses of these results can be in the design and analysis of such pave

ments. Figure 34 gives the maximum principal moment, based on average values 

of crack spacing, for different combinations of slab stiffness and subgrade 

modulus. If a particular crack spacing pattern is of interest, tabulated 

values of principal moments (Tables 4 through 7) or Figs 26 and 27 can be 

used. Besides principal moments, maximum slab deflection can be obtained, 

depending on the load position and pavement characteristics (Figs 24 through 

30). 

It is worthwhile to note that the reported deflections and moments are 

due to two 9,000-pound wheel loads located 2 and 8 feet from the edge of the 

pavement. Pavement responses for the same loading pattern and different load 

magnitudes can be calculated from those presented in this study, simply by 

linear interpolation. 

Since the range of pavement design variables considered in this study is 

likely to exist in design practice, another use of these results can be in 

developing regression equations to predict the maximum deflections and princi

pal moments or stresses for both loading arrangements. These equations may be 

used in the development of design charts or nomographs, or they may be a part 

of a pavement systems analysis model that requires stress or deflection values 

for certain pavement design parameters. 



CHAPrER 5. CONCLUSIONS, RECOMMENDATIONS, AND IMPLEMENTATION 

Conclusions 

The problem of transverse cracking in continuously reinforced concrete 

pavement (CRCP) and its influence on the bending rigidity of the slab in the 

longitudinal direction have been studied using basic moment-curvature rela

tionships. A procedure to simulate this effect using the discrete-element 

methods is outlined. Besides the crack effect, other slab characteristics 

have been investigated for use in modeling the real problem. These included 

slab partitioning with the corresponding boundary conditions and tension in 

the longitudinal reinforcement. 

This investigation was conducted to determine by use of the discrete

element slab model, the sensitivity of pavement deflection and principal moment 

(or stress) to changes in design parameters. The conclusions are limited to 

the range of variables studied in this experiment. These findings however, 

can provide reasonable information to use in design, for selecting those vari

ables which require the most intensive consideration and those which will 

yield the best results. 

Based on changes in deflections and principal moments, the following con

clusions have been drawn. 

(1) The effect of transverse cracks in CRCP on the longitudinal bending 
rigidity of the slab is highly important. 

(2) The effect of variations in Poisson's ratio is negligible. 

(3) When a CRC pavement is analyzed (considering no loss in subgrade 
support), it is reasonable to consider only the partition or area 
extending 15 to 20 feet on each side of the loaded area. No bound
ary restraints are needed at the edges of the partition of this size. 

(4) Higher principal moments or stresses are produced when loads are 
located between cracks than when loads are at the cracks. The re
verse is true for the deflection response. 

(5) The effect of crack spacing on deflections and principal moments was 
greater for the case of 100 percent reduction in bending stiffness 
at crack location that it was for the 90 percent case. 
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(6) As crack spacing increases, principal moment values for the loads 
placed between cracks approach those of the full slab case. 

(7) The modulus of subgrade reaction is important in determining the 
amount of deflection. 

(8) Principal moments or stresses are mainly dependent on, first, the 
stiffness of the slab and, second, the subgrade modulus. 

(9) The width of the crack has a big influence on the performance of 
continuously reinforced concrete pavements. The reduction of the 
bending rigidity of the slab and the consequent increase in the slab 
deflection as a result of an increase in crack width are important. 
Perhaps the requirement most necessary to the success of continuously 
reinforced concrete pavement is that the steel reinforcement hold 
transverse cracks as tight as possible. 

(10) For the increments given to subgrade modulus, slab bending stiffness, 
and crack spacing, the analysis of variance and its orthogonal poly
nomial breakdown showed that: 

(a) a definite logarithmic linear trend of subgrade modulus with 
deflection is observed, as well as a tendency toward a loga
rithmic quadratic relationship; 

(b) the linear effect of the log of bending stiffness on principal 
moments and deflections is quite significant; and 

(c) interactions do occur between design variables indicating the 
effect of anyone design variable on deflections and principal 
moments is dependent on levels of the other two design variables. 

Recommendations 

Based on this investigation, it is recommended that 

(1) Pavement design procedures include greater consideration of the 
modulus of subgrade reaction, because of its influence on deflections 
and stresses. 

(2) Stress criteria in present design procedures be coupled with deflec
tion criteria which will enable the designer to insure a pavement 
deflection less than the desired maximum. 

(3) Transverse cracks be maintained very narrow in order to: 

(a) prevent progressive infiltration of incompressible materials, 
such as soil, which eventually might cause excessive compres
sive stress to develop in the pavement and thus produce blow
ups; 

(b) prevent appreciable amounts of surface water from reaching the 
subgrade and, by the same token, if the pavement happens to be 
built directly on soils which are of the potentially pumping 
types, the cracks must be maintained tightly closed so that 
pumpable material cannot be ejected through them; and 

(c) maintain effective aggregate interlock between the crack inter
faces. 
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Implementation 

The research study reported herein was an analytical look at the param

eters affecting the structural behavior of continuously reinforced concrete 

pavements. The results of the study can be made even more useful by correla

ting them with work from Research Project 1-8-69-123, entitled "A System Analy

sis of Pavement Design and Research Implementation." The findings of the study 

are quite useful for evaluating the importance of CRC pavement parameters and 

should ultimately lead to improved pavement design methods. 
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APPENDIX 1 

DETERMINATION OF THE LOCATION OF THE NEUTRAL AXIS OF 
THE CRACKED TRANSFORMED SECTION 

DERIVATION OF RESISTING MOMENT M' DUE TO 
THE TENSILE STRESS OF CONCRETE 
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APPENDIX la. DETERMINATION OF THE LOCATION OF THE NEUTRAL AXIS OF 
THE CRACKED TRANSFORMED SECTION 

t 
Fig AI. Cracked transformed section. 

d 

nA s 

To determine the location of the neutral axis, the moment of the compres

sion area about the axis is set equal to the moment of the tension area, which 

gives 

IKd\2 
b ~ - nA s (d - Kd) = 0 

Substituting p = 
A 

s 
bt ' and 

t d =-
2 

in the above equation, one gets: 

2 
b ~ - npbt (! - K!) = 0 
822 

Dividing through by 

K2 
-- - pn(l - K) = 0 4 

95 

(Ala.l) 

(Ala.2) 

(Ala.3) 
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from which 

K = 2 [./pn(1+Pn) - PnJ (Ala.4) 



APPENDIX lb. DERIVATION OF RESISTING MOMENT MI DUE TO THE 
TENSILE STRESS OF CONCRETE (After Ref 5) 

Determination of Resisting Moment M' 

From Eq 3.8 

(Alb .1) 

where M' is the part of the resisting moment corresponding to the average 

tensile stress of concrete f
t 

(klf
r
). Many attempts have been made to ex-

press the modulus of rupture of concrete as a simple fraction of 

equation 

f 
r 

An 

(Alb .2) 

has been suggested as a better function by Guralnick (Ref 8) and also in a 

Russian text (Ref 9) (k2 is a constant which depends on aggregate type, 

cement, etc.). Thus, 

k1k2 (f~)2/3bt (t - Kd) 
M' 

3 
(Alb.3) 

or 

MI k3(f~)2/3bt(t - Kd) (Alb .4) 

where 

k3 

(k
l 
k

2
) 

= 
3 

(A1b.S) 

97 
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Sixty-eight short-time load beam tests were evaluated to determine k3 , 

and the average value was found to be 0.097 (Ref 5), but for simplicity 

k3 0.1 can be used without noticeable error. Thus, 

M' 0.1(f,)2/3bt (t - Kd) (Alb .6) c 



APPENDIX 2 

SAMPLE CALCULATION FOR THE DETERMINATION 
OF THE AVERAGE MOMENT OF INERTIA AND 

THE CORRESPONDING REDUCTION IN 
BENDING STIFFNESS 



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
"#$%!&'()!*)&+',)%!'-!$-.)-.$/-'++0!1+'-2!&'()!$-!.#)!/*$($-'+3!

44!5"6!7$1*'*0!8$($.$9'.$/-!")':!



APPENDIX 2. SAMPLE CALCUIATION FOR THE DETERMINATION OF THE AVERAGE 
MOMENT OF INERTIA AND THE CORRESPONDING REDUCTION IN 
BENDING STIFFNESS 

Given 

Material properties. 

Concrete compressive strength f' ; 4,000 psi 
c 

Yield stress of steel f = 60,000 psi 
y 

Ratio of the modulus of elasticity of steel to that of concrete n = 8.0 

Slab section properties. 

Total thickness t = 8.00 inches 

Width (l-foot strip) b ; 12.00 inches 

Longitudinal percentage reinforcement P = 0.60 

Calculations 

From Eq 3. 13 , 

I 
M nd(l-K) 

w 
f -f' 
s s 

For this particular problem, 

n 8 

d 
t = 
2 

From Eq 3.4, 

8.0 
2 

= 4.0 

K = 2 [V Pn (1 + Pn) - Pn J 

101 

(A2.1) 

(A2.2) 

(A2.3 ) 

(A2.4) 
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for 

Pn = 0.6 
100 X 8 = 0.048 

K = 0.353 

Detennine f' 

where 

f' s 

A s 

j 

f' 
s 

s 

= 

= 

= 1 

= 

M' = A "d sJ 

P x bt = 

K = 
3 

0.1(f,)2/3bt (t-Kd) 
c 
A "d sJ 

0.6 12 x 8 100 x 

1 _ 0.353 ;::: 
3 

;::: 

0.882 

0.576 

0.1(4.000)2/3 12 x 8(8 - 0.353 A 4) 
0.576 x 0.882 A 4 

To determine M , two cases should be considered: 
w 

(1) Assuming steel stress controls, 

M = A f jd 
w s s 

;::: 0.576(0.75 x 60,000)0.882 x 4 

;::: 91,500 inch-pounds 

(2) Assuming concrete stress controls, 

M 
w 

= 1. f K"bd2 
2 c J 

(A2.5) 

(A2.6) 

(A2.7) 

in 
2 (A2.8) 

(A2.9) 

;::: 7,850 psi (A2.10) 

(A2.11) 



= i(0.45 x 4,000)0.353 x 0.882 x 12(4)2 

= 53,800 inch-pounds 

Here, the second case governs, and M = 53,800 inch-pounds. 
w 

Then 

Determine f by 
s 

f s = = 53,800 
0.576 x 0.882 x 4 

I 
= 53,800 x 8 x 4(1 - 0.353) 

26,450 - 7,850 

= 59.9 in4 

and gross moment of inertia 

I =..L bt3 
G 12 

= i2 x 12 (8)3 

= 

Therefore 

= 26,450 psi 

Percent stiffness reduction = ( 1 - .!.... \ 100 = 
IG / 

( 1 _ 59.9 ) 
512 

= 88.3 

103 

(A2 .12) 

(A2.13) 

(A2 .14) 

(A2 .15) 

(A2 .16) 
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APPENDIX 3 

EXAMPLE PROBLEM AND CODED DATA INPUT 
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APPENDIX 3. EXAMPLE PROBLEM AND CODED DATA INPUT 

Modeling Crack Effect 

(1) Pavement physical characteristics: 

Length of slab 40 feet 

Width of slab 24 feet 

Pavement thickness t = 8.0 inches 

Longitudinal percentage reinforcement P = 0.50 

Compressive strength of concrete f' = 4,000 psi 
c 

Modulus of elasticity of concrete E = 3.5 X 106 psi 

Modulus of subgrade reaction k = 40 lb/in2/in 

Poisson's ratio = 0.20 

(2) Percentage reduction in bending stiffness: 

Assume that the allowable concrete compressive strength is 0.45 f' 
c 

The plot in Fig 10 is used, and with P = 0.50 percent, the per-

centage reduction in bending stiffness is 89.5 (use 90.0). 

(3) Length along which to apply the stiffness reduction: 

From Eq 3.18 

L = 2 
A f s s 

up 

For most practical cases, No.4 or 5 bars are generally used. For a 

No. 4 bar 

¢ 

A s 

p 

= 

= 

= 

0.50 inch 

0.20 in2 

1.57 inch 

107 
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u 
3.4 W'C 350 psi = < 

D 

= 3.4 1/4 l 000 = 430, hence 0.50 
u 

u = 350 psi 

= 2 0 .20 X 20 2000 
1.57 X 350 

L 

= 14.5 inches 

(4) Increment length h 

A 12-inch increment length is taken in each direction. The 

bending stiffness in the y-direction was reduced by 90 percent 

(since cracks ran transversely) over one increment length, 

which is quite satisfactory. 

Computations for Coded Data Input 

h = h = 12 inches 
x y 

Slab bending stiffness per unit length D 

(3.5 X 106 )(8)3 

12 [1 - (0.2) 2 ] 

= 1.60 X 10
8 

inch-pounds 

DY 
= = 

4 
4.0 X 107 inch-pounds 

= 2 
12 (1 - ~ ) 

Since the cracks are in the x-direction, DY should be reduced. 

:. Reduction in nY = 0.9 DY 

= 0.9 (1.60 X 108) = (1.44 X 10
8

) inch-pounds 



Elastic spring constant S 

S 
4 

Twisting stiffness C = 

= 

= 

= kh h x y 

= 40 x 12 x 

= 5.76 x 103 

= 1.44 x 103 

12 (1 + fJ.) 

(3.5 x 106)(8)3 
12 (1 + 0.2) 

12 

pounds per inch 

1.280 x 108 in-pounds 

109 
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APPENDIX 4 

SAMPLE CALCULATION FOR DETERMINATION OF TENSION 
IN THE LONG ITUD INAL STEEL 
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APPENDIX 4. SAMPLE CALCULATION FOR DETERMINATION OF TENSION IN THE 
LONGITUDINAL STEEL 

Given 

Concrete compressive strength f' 
c 

Modulus ratio n = 
E 

s 
E = 7.00 

= 5,000 psi 

Yield stress of steel f = 60,000 psi 
y 

Longitudinal percentage reinforcement P = 0.60 

Pavement thickness t = 8 in 
o Temperature range DT = 30 F 

Thermal coefficient of concrete and steel -6 0 
€ = 5 x 10 per F 

Calculations 

Modulus of rupture f r 

From Eq 3.28 

f = 7.5 1ff'c r 

= 7.5 -V5,000 = 530 psi 

From Eq 3.29 

f 
r = 3,000 = 555 psi 

the allowable tensile strength 

0.4 f 
r 

= 0.4(530) = 212 psi 

115 
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S tress in the s tee 1 f 
s 

Neglecting temperature effects (Eq 3.23) 

f 
s 

212 
(1.3 - 0.2 X 1.5) 0.60 X 100 + (7 X 212) 

~ 36,840 psi < 0.75 f 
y 

Considering the temperature range encountered (Eq 3.24) 

f (1.3 - 0.2 X 1.5) 2 212 X 100 + (30 X 5 X 10-6 
X 29 X 106) 

s X 0.60 

= 22,027 psi < 0.75 f 
y 

Hence, allowable steel stress ~ 36,840 psi. 

Tension per inch width 

T 
s 

b 
f Pt 

s 

= 36,840 X 0.006 X 8 

== 1768 lb/in 

Assuming that the increment length in the longitudinal direction is 

12 inches, then 

Ts 1768 X 12 

= 21,200 1b/station 

Actually, this is the lumped value over one increment length. 



APPENDIX 5 

TABULATED VALUES OF RADIUS 
OF RELATIVE STIFFNESS 1 
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TABLE A5.1. VALUES OF RADIUS OF RELATIVE STIFFNESS ~,INCHES 

(Poisson's Ratio ~ = 0.15) 

Modulus of Modulus of 
Elasticity Sub grade Pavement Thickness t, inches 

of Concrete E, Reaction k, 
lb/sq in. lb/cu in. t=5 t=6 t=7 t=S t=9 t=10 t=ll t=12 t=13 

50 2S.3 32.4 36.4 40.2 43.9 47.6 51.1 54.5 57.9 

100 23.S 27.3 30.6 33.S 37.0 40.0 43.0 45.9 4S.7 

200 20.0 22.9 25.7 2S.4 31.1 33.6 36.1 3S.6 40.9 

3 X 10
6 300 lS.l 20.7 23.3 25.7 2S.1 30.4 32.6 34.S 37.0 

500 15.9 lS.2 20.5 22.6 24.7 26.7 2S.7 30.7 32.6 

700 14.6 16.S lS.S 20.S 22.7 24.6 26.4 2S.2 29.9 

1000 13.4 15.3 17.2 19.0 20.S 22.5 24.2 25.S 27.4 

50 30.4 34.S 39.1 43.2 47.2 51.1 54.9 5S.6 62.2 

100 25.6 29.3 32.9 36.4 39.7 43.0 46.2 49.3 52.3 

200 21. 5 24.6 27.7 30.6 33.4 36.1 3S.S 41.4 44.0 

4 X 106 300 19.4 22.3 25.0 27.6 30.2 32.7 35.1 37.4 39.S 

500 17.1 19.6 22.0 24.3 26.6 2S.7 30.9 32.9 35.0 

700 15.7 lS.0 20.2 22.3 24.4 26.4 2S.4 30.3 32.2 

1000 14.4 16.5 lS.5 20.4 22.3 24.2 26.0 27.7 29.4 

(Continued) 



Modulus of Modulus of 
Elasticity Subgrade 

of Concrete E, Reaction k, 
1b/sq in. 1b/cu in. t=5 t=6 

50 32.1 36.8 

100 27 .0 31.0 

200 22.7 26.0 

5 X 10
6 300 20.5 23.5 

500 18.1 20.7 

700 16.6 19.0 

1000 15.2 17.4 

50 33.6 38.6 

100 28.3 32.4 

200 23.8 27 .3 

6 X 10
6 300 21.5 24.6 

500 18.9 21.7 

700 17.4 19.9 

1000 15.9 18.2 

TABLE A5.1. (Continued) 

Pavement Thickness t, 

t=7 t=8 t=9 t=10 

41.4 45.7 49.9 54.0 

34.8 38.4 42.0 45.4 

29.2 32.3 35.3 38.2 

26.4 29.2 31. 9 34.5 

23.3 25.7 28.1 30.4 

21.4 23.6 25.8 27.9 

19.6 21.6 23.6 25.6 

43.3 47.8 52.3 56.6 

36.4 40.2 43.9 47.6 

30.6 33.8 37.0 40.0 

27.7 30.6 33.4 36.1 

24.3 26.9 29.4 31.8 

22.4 24.7 27.0 29.2 

20.5 22.6 24.7 26.7 

inches 

t=l1 t=12 

58.0 62.0 

48.8 52.1 

41.0 43.8 

37.1 39.6 

32.6 34.8 

30.0 32.0 

27.4 29.3 

60.7 64.8 

51.1 54.5 

43.0 45.9 

38.8 4.14 

34.2 36.5 

31.4 33.5 

28.7 30.7 

t=13 

65.8 

55.3 

46.5 

42.0 

37.0 

34.0 

31.1 

68.9 

57.9 

48.7 

44.0 

38.7 

35.6 

32.6 

...... 
N 
o 



TABLE A5.2. VALUES OF RADIUS OF RELATIVE STIFFNESS t, INCHES 

(Poisson I S Ratio !-L = 0.20) 

Modulus of Modulus of 
E1astici ty Subgrade Pavement Thickness t, inches 

of Concrete E, Reaction k, 
1b/sq in. 1b/cu in. t=5 t=6 t=7 t=8 t=9 t=10 t=l1 

50 28.4 32.6 36.6 40.4 44.1 47.8 51. 3 

100 23.9 27 .4 30.7 34.0 37.1 40.2 43.1 

200 20.1 23.0 25.9 28.6 31.2 33.8 36.3 

3 X 106 300 18.1 20.8 23.4 25.8 28.2 30.5 32.8 

500 16.0 18.3 20.6 22.7 24.8 26.9 28.9 

700 14.7 16.8 18.9 20.9 22.8 24.7 26.5 

1000 13.4 15.4 17.3 19.1 20.9 22.6 24.3 

50 30.5 35.0 39.3 43.4 47.4 51.3 55.1 

100 25.7 29.4 33.0 36.5 39.9 43.2 46.4 

200 21.6 24.7 27 .8 30.7 33.5 36.3 39.0 

4 X 10
6 300 19.5 22.4 25.1 27.7 30.3 32.8 35.2 

500 17.2 19.7 22.1 24.4 26.7 28.9 31.0 

700 15.8 18.1 20.3 22.4 24.5 26.5 28.5 

1000 14.4 16.5 18.6 20.5 22.4 24.3 26.1 

t=12 t=13 

54.8 58.2 

46.1 48.9 

38.7 41.1 

35.0 37.2 

30.8 32.7 

28.3 30.1 

25.9 27.5 

58.9 62.5 

49.5 52.6 

41.6 44.2 

37.6 39.9 

33.1 35.1 

30.4 32.3 

27.8 29.6 

(Contl.nued) 
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TABLE A5.2. (Continued) 

Modulus of Modulus of 
Elasticity Subgrade Pavement Thickness t, inches 

of Concrete E, Reaction k, 
lb/sq in. 1b/cu in. t=5 t=6 t=7 t=8 t==9 t=10 t=l1 t=12 t=13 

50 32.3 37.0 41.5 45.9 50.2 54.3 58.3 62.2 66.1 

100 27.1 31.1 34.9 38.6 42.2 45.6 49.0 52.3 55.6 

200 22.8 26.2 29.4 32.5 35.5 38.4 41.2 44.0 46.7 

5 X 10
6 300 20.6 23.6 26.5 29.3 32.0 34.7 37.3 39.8 42.2 

500 18.1 20.8 23.4 25.8 28.2 30.5 32.8 35.0 37.2 

700 16.7 19.1 21.5 23.7 25.9 28.1 30.1 32.2 34.2 

1000 15.3 17.5 19.6 21.7 23.7 25.7 27.6 29.4 31.2 

50 33.8 38.7 43.5 48.1 52.5 56.8 61.0 65.1 69.2 

100 28.4 32.6 36.6 40.4 44.1 47.8 51.3 54.8 58.2 

200 23.9 27.4 30.7 34.0 37.1 40.2 43.1 46.1 48.9 

6 X 10
6 300 21.6 24.7 27.8 30.7 33.5 36.3 39.0 41.6 44.2 

500 19.0 21.8 24.4 27.0 29.5 31.9 34.3 36.6 38.9 

700 17.5 20.0 22.5 24.8 27.1 29.4 31. 5 33.7 35.8 

1000 16.0 18.3 20.6 22.7 24.8 26.9 28.9 30.8 32.7 



TABLE A5.3. VALUES OF RADIUS OF RELATIVE STIFFNESS ~, INCHES 

(Poisson's Ratio ~ = 0.25) 

Modulus of Modulus of 
Elasticity Subgrade Pavement Thickness t, inches 

of Concrete E, Reaction k, 
1b/sq in. 1b/cu in. t=5 t=6 t=7 t=8 t=9 t=10 t=l1 t=12 t=13 

50 28.6 32.8 36.8 40.7 44.4 48.1 51.6 55.1 58.5 

100 24.0 27.5 30.9 34.2 37.3 40.4 43.4 46.3 49.2 

200 20.2 23.2 26.0 28.7 31.4 34.0 36.5 39.0 41.4 

3 X 10
6 300 18.3 20.9 23.5 26.0 28.4 30.7 33.0 35.2 37.4 

500 16.1 18.4 20.7 22.9 25.0 27 .0 29.0 31.0 32.9 

700 14.8 16.9 19.0 21.0 23.0 24.8 26.7 28.5 30.2 

1000 13 .5 15.5 17.4 19.2 21.0 22.7 24.4 26.1 27.7 

50 30.7 35.2 39.5 43.7 47.7 51. 6 55.5 59.2 62.9 

100 25.8 29.6 33.2 36.7 40.1 43.4 46.6 49.8 52.9 

200 21.7 24.9 27 .9 30.9 33.7 36.5 39.2 41.9 44.5 

4 X 106 300 19.6 22.5 25.3 27 .9 30.5 33.0 35.4 37.8 40.2 

500 17.3 19.8 22.2 24.6 26.8 29.0 31.2 33.3 35.4 

700 15.9 18.2 20.4 22.6 24.7 26.7 28.7 30.6 32.5 

1000 14.5 16.6 18.7 20.7 22.6 24.4 26.2 28.0 29.7 

(Continued) 



TABLE A5.3. (Continued) 

Modulus of Modulus of 
Elasticity Subgrade Pavement Thickness t, inches 

of Concrete E, Reaction k, 
1b/sq in. Ib/cu in. t=6 t=7 t=8 t=9 t=10 t=l1 t=12 t=13 

50 32.5 37.2 41.8 46.2 50.5 54.6 58.6 62.6 66.5 

100 27.3 31.3 35.1 38.8 42.4 45.9 49.3 52.6 55.9 

200 23.0 26.3 29.5 32.7 35.7 38.6 41.5 44.3 47.0 

5 X 10
6 300 20.7 23.8 26.7 29.5 32.2 34.9 37.5 40.0 42.5 

500 18.3 20.9 23.5 26.0 28.4 30.7 33.0 35.2 37.4 

700 16.8 19.2 21.6 23.9 26.1 28.2 30.3 32.4 34.4 

1000 15.4 17.6 19.8 21.8 23.9 25.8 27.7 29.6 31.4 

50 34.0 39.0 43.7 48.3 52.8 57.1 61.4 65.5 69.6 

100 28.6 32.8 36.8 40.7 44.4 48.1 51.6 55.1 58.5 

200 24.0 27.5 30.9 34.2 37.3 40.4 43.4 46.3 49.2 

6 X 10
6 

300 21.7 24.9 27.9 30.9 33.7 36.5 39.2 41.9 44.5 

500 19.1 21.9 24.6 27.2 29.7 32.1 34.5 36.8 39.1 

700 17,6 20.1 22.6 25.0 27 .3 29.5 31.7 33.9 36.0 

1000 16.1 18.4 20.7 22.9 25.0 27.0 29.0 31.0 32.9 
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