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SUMMARY

Steel bridge girders are prone to buckling from construction loads during casting of the
concrete for the composite deck. The buckling capacity of the steel girders can be increased
by providing bracing at intermediate locations along the girder length. The intermediate
bracing typically takes the form of cross-frames or diaphragms. Skewed supports occur
when the supporting abutments for the girders are not normal to the girder line, but are
instead offset by a skew angle. The skew angle may be required due to characteristics of
intersecting roadways or due to the geological terrain. Fatigue cracks are commonly found
around locations of cross-frames and diaphragms during routine maintenance inspections.
These cracks form from large stress concentrations in the girder due to cross-frame and
diaphragm forces induced by truck traffic on the bridge. This is particularly true for bridges
with skewed supports.

The objective of the research outlined in this report is to improve the understanding of the
bracing behavior of cross frames and diaphragms in steel bridges with skewed supports.
General bracing requirements are developed and new cross-frame and diaphragm details to
minimize fatigue problems at bracing locations are proposed.

A variety of parameters were considered in the investigation, including skew angle and
girder geometry. The skew angles that were considered varied from 0 degrees (normal
supports) to 45 degrees. The geometry of the girder cross-sections ranged from doubly
symmetric rolled sections to singly symmetric plate girders. The number of intermediate
braces along the girder length was varied as well as the brace orientation relative to the
girder axes. Two brace orientations were considered for each skew angle: parallel to the
skewed supports and normal to the girder line.

In addition to determining the general bracing requirements, improved bracing details were
also considered in the study. Details are proposed that will reduce the brace forces induced
from truck traffic. In addition, bracing systems that will reduce the number of cross frames
or diaphragms are proposed. Reducing the number of braces will make the bridges easier to
inspect since there will be fewer fatigue-prone details.

Note to Designers

Although the entire report contains important information regai. - ¢ bracing
behavior in steel bridges, bridge designers should pay particular emphasis . napters 1, 2,
8, and 9. Two design examples are presented in Chapter 8 that illustrate the :ecommended
bracing provisions for cross-frames and diaphragms.
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Chapter 1

Introduction

1.1 General

The design of steel bridge girders is often controlled by lateral-torsional buckling. The
critical stage for buckling of the girders generally occurs during construction of the concrete
bridge deck when the steel section must support the entire construction load. The
construction load consists of the self-weight of the girders and concrete, the concrete
formwork, finishing equipment, as well as the construction personnel. Beam lateral torsional
buckling is illustrated in Figure 1.1, which shows that the buckling mode involves a lateral
translation of the compression flange accompanied by twisting of the girder cross-section.

Centerline deformation
involves both twist and
lateral movement

Figure 1.1 Lateral Torsional Buckling

The buckling capacity of the steel girders can be increased by providing bracing at
intermediate locations along the girder length. The intermediate bracing typically takes the
form of cross-frames or diaphragms. Fig. 1.2 shows a typical steel bridge superstructure
consisting of the concrete deck, steel girders and cross-frames for bracing. The braces
increase the buckling capacity by controlling the twist of the girder cross-section. In finished
bridges, the composite concrete deck provides continuous bracing along the girder length.
However, cross-frames and diaphragms provide lateral restraint to the bottom flange against
wind load and are still needed in the negative moment region for stability.

Past American Association of State Highway and Transportation Officials
specifications [AASHTO 1992] have limited the maximum spacing between cross-frames or
diaphragms to 25 feet. The AASHTO Load Resistance Factor Design (LRFD) [1996]
removed the 25-feet spacing requirement and instead vaguely requires that the cross-frames
or diaphragms be designed by a “rational analysis”. The reason for the removal of the



spacing limit in the LRFD specification is to minimize details that are prone to fatigue
damage in the bridges. Fatigue cracks are commonly found around locations of cross-frames
and diaphragms during routine maintenance inspections. These cracks form due to large
stress concentrations in the girder due to cross-frame and diaphragm forces induced by truck
traffic on the bridge. This is particularly true when the supporting abutments are not normal
to the girder lines but are instead offset by a skew angle.

Concrete Deck

I

Bracing System Steel Girder
Figure 1.2 Typical Steel Bridge Superstructure

The fatigue problems that occur around brace locations are often aggravated because
“typical sizes” and “typical details” are often used for cross-frames and diaphragms instead
of designing the braces for the specific application. The “typical sizes” that are used often
result in bracing members that are larger than necessary to satisfy the stability requirements.
The larger braces attract bigger live load forces due to truck traffic in the finished bridge.
The larger live load forces therefore magnify the fatigue problems around the brace
locations.

This chapter has been divided into five sections. Following this introduction, typical
bracing details currently used in the state of Texas will be presented and discussed. Skewed
supports will then be discussed, followed by an outline of previous research efforts pertinent
to this investigation. Finally the outline and scope of the research will be presented.



1.2 Standard Size of Cross-frames and Diaphragms

Current AASHTO specifications [1996] do not provide guidelines for the design
requirements of bracing for steel girders. In general practice, each state often utilizes its own
standard size for cross-frames and diaphragms. Figs. 1.3a and 1.3b illustrate the standard
braces currently used in the state of Texas. Fig. 1.3a shows the typical end support
diaphragms for plate girders, which depend on the girder web depth. The Type A
diaphragms are used for web depths less than or equal to 48 inches. For web depths greater
than 48 inches, Type B diaphragms are generally used. Fig. 1.3b shows the intermediate
(between supports) diaphragms for straight girders. Type C diaphragms are used for web
depths less than or equal to 48 inches, while type D diaphragms are generally used for web
depths greater than 48 inches.
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Locations around cross-frames and diaphragms are often regions of fatigue problems
during the bridge service life. Previous studies [Keating and Alan 1992] confirmed that the
fatigue cracks found in these regions during annual bridge inspections are often related to the
large cross-frame and diaphragm forces developed from truck live loads. Since standard
sizes are often employed for cross-frames and diaphragms, these braces are often much
stiffer than needed for stability requirements. The stiffer braces develop large localized



forces during truck loading. These large brace forces combined with complex connection
details to the girder webs usually lead to large stress concentrations that result in fatigue
problems.

Developing fatigue categories for the braces, such as those typically used in evaluating
the fatigue behavior of different details is not practical for cross frames and diaphragms since
the behavior is sensitive to a wide range of variables. Some of the factors that can effect the
fatigue performance of these braces include the relative stiffness of the brace and the girder,
the brace spacing, the connection detail between the brace and the girder, as well as the
bridge geometry, including the skew angle of the supporting piers.

A more pragmatic approach to mitigating the fatigue problems associated with cross-
frames and diaphragms is to develop a comprehensive design approach for these critical
braces. Sizing the bracing members for the actual design requirements will often lead to
smaller live load forces in the bracing members and therefore minimize fatigue damage. In
addition, improved connection details may also minimize these fatigue problems. Reducing
the total number of cross-frame and diaphragms on the bridge will also facilitate identifying
fatigue damage during periodic bridge inspections.

Therefore this report will focus on investigating the behavior of cross-frame and
diaphragms in bridges with skewed supports. A design approach will be developed for the
bracing systems as well as recommended bracing details that will minimize the number of
brace locations on the bridge as well as reducing brace forces induced by truck loading.

1.3 Bridges with Skewed Supports

Skewed supports occur when the supporting abutments for the girders are not normal to
the girder lines, but are instead offset by a skew angle. The skew angle may be required due
to characteristics of the intersecting roadways or due to the geological terrain. Fig. 1.4
illustrates a bridge with skewed supports. Most bridges have skewed supports due to
increased urban growth and the development of complex intersections with a lack of space in
congested areas.

Since skew angles increase the interaction between the steel girders and the braces, the
behavior of bridges with skewed supports becomes more complicated than that in bridges
with normal supports. The interaction between the girders and braces often results in large
live load forces in the cross-frames or diaphragms, which can lead to fatigue problems
around the brace locations. The severity of the fatigue problem is dependent on the details
that are used for the bracing. If the skew angle is less than 20 degrees, the AASHTO
specification [1996] allows the bracing to be parallel to the skew angle. For skew angles
greater than 20 degrees, the AASHTO specification requires the bracing to be perpendicular
to the longitudinal axis of the girder. Figure 1.5 illustrates the two different orientations of
braces for skewed bridges. For braces parallel to the supporting abutments, points A and B



at the ends of the brace will have similar vertical displacements during truck live load.
However, when braces are normal to the girder lines, the two ends of the braces will have
different vertical displacements during truck loading. This different vertical displacement
can result in large brace forces, which can lead to fatigue problems.
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Figure 1.4 Plan View of Bridge with Skewed Supports
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1.4 Stability Bracing Requirements

Since much of this report will focus on the stability bracing provided by cross-frames
and diaphragms, the fundamental requirements of stability bracing systems should be clearly
understood. The basic requirements can be best explained by considering the requirements
for a column with lateral braces along the member length. The basic principles established
for lateral bracing for a column will also be valid in the later development of the torsional
bracing requirements for beams.

An adequate bracing system requires both stiffness and strength [Winter 1958]. Simple
brace design formulations, such as designing the brace for 2% of the compressive member
force, addresses only the strength criterion. The actual strength requirements of a brace are
affected by the shape and magnitude of the initial imperfection and also by the brace stiffness
provided.

To study the effect of brace stiffness on the buckling behavior, eigenvalue analyses are
often conducted on perfectly straight elastic members. Fig. 1.6 illustrates the flexural
buckling behavior of two columns with different lengths and different numbers of lateral
braces with stiffness Br. Column A has a length of 2L; with a single lateral brace at mid-
height, while column B has a length of 4L with three lateral braces. The buckling capacity
of column A without bracing is P, = anI/(ZLL)z. The capacity of column A increases as
brace stiffness increases until the maximum strength P, = n°El/(LL)? is reached at the non-
dimensionalized ideal brace stiffness N; = BL;Li/Pg =2. Column B also reaches a maximum
buckling load of P, = n’EI/(LL)?, however the behavior of the bracing system for column B
is quite different from that of column A. The initial capacity of column B is P, =
n’EL/(4L,)?, which is 25% of the initial capacity of column A. At low values of the brace
stiffness the buckling load increases substantially with a single wave buckled shape until it
intersects the curve for column A. The two curves are coincident in shape until column B
buckles into three waves and additional brace stiffness becomes less effective. Full bracing
occurs at N; = 3.41. Winter presented a simple model for calculating the ideal brace stiffness
and showed that N; varies from 2.0 for one brace to 4.0 for a large number of braces. Yura
[1995] recommended the formula N; = 4-2/ny in which n, is the number of intermediate
lateral braces.
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Figure 1.6 Load vs. Lateral Brace Stiffness for Lateral Bracing System

The buckling behavior of columns depicted in Fig. 1.6 demonstrates the bracing
requirements for perfectly straight members. In practice all structural members have initial
imperfections. For members with initial imperfections, large displacement analyses are
conducted to evaluate the brace strength requirements. Winter’s simple model demonstrated
that imperfections in real columns cause brace stiffness requirements greater than f,,, the

ideal brace stiffness, to effectively control lateral deformations and brace forces. The graph
of the applied load versus the column lateral displacement illustrated in Fig. 1.7 shows the
behavior of an imperfect column with a lateral brace at mid-height. The applied load is
normalized by the Euler buckling capacity, Pg, while the total lateral displacement at mid-
height, Ar, is normalized by the initial imperfection, Ag. For columns with initial
imperfections, providing the ideal stiffness results in large lateral displacements and large
brace forces as the load approaches the buckling load and the Euler buckling capacity, Pg, is
actually never reached. On the other hand, providing a lateral brace stiffness with twice the
ideal value, results in the maximum column displacement equal to the magnitude of the
initial imperfection, A at an applied load equal to the Euler buckling capacity, Pz. The
magnitude of the brace force is the product of brace stiffness and the lateral displacement.
The brace strength requirement can be expressed as Fyr = BrreqAo, Where Fy, is the brace
force, Brreq 22PLi, and Ay is the magnitude of the initial imperfection. For columns, the initial
imperfection is often taken as L /500 in which L is the spacing between braces. The above
equation for Fy, will give conservative estimates of the brace force if a brace stiffness greater
than 2, is provided.
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Figure 1.7 Effect of Imperfections on Brace Strength Requirements

Cross frames and diaphragms for beams fit into a category referred to as torsional
bracing since they restrain the twist of the member. Although the behavior of torsional
bracing systems are generally more complicated than the lateral column bracing discussed
above, the basic principles are directly applicable. The bracing must possess adequate
strength and stiffness. The research presented in this report will focus on developing general
torsional bracing requirements for I-shaped girders.

1.5 Objective and Scope

This report will present results from a study sponsored by the Texas Department of
Transportation (TxDOT). The research was a three-year investigation that included both
computational and laboratory studies. The objective of this project was to improve the
understanding of the bracing behavior of bridges with skewed supports. The purpose of the
laboratory studies was to confirm the accuracy of the finite element model that was used to
conduct parametrical studies on cross-frame and diaphragm bracing systems. The results
from the laboratory studies are discussed by Deaver [2002] and Romero [2002]. This report
will focus on the computational studies. A design methodology will be developed for the
bracing systems that consider both the skew angle and the brace orientation. Details will be
suggested that reduce brace forces induced from truck traffic as well as minimizing the
number of fatigue sensitive regions on the bridge.



The computational studies were conducted using the finite element program ANSYS to
perform both eigenvalue and large displacement analyses. An eigenvalue buckling analysis
generally focuses on the behavior of the straight girder and does not reflect the effects of
imperfections. Eigenvalue buckling analyses can be used to investigate the brace stiffness
requirements. The stiffness requirements to reach full bracing (buckling between brace
points) from such an analysis are usually referred to as the “ideal stiffness requirements”.

A large displacement analysis is a nonlinear analysis that considers the effects of
imperfections on the girder deformation and the brace forces. Such an analysis can be used
to produce the brace strength requirements. Both eigenvalue buckling and large
displacement analyses were conducted to determine the stiffness and strength requirements
for bridges with skewed supports. The finite element results were compared with the design
equations that were developed to reflect the bracing requirements for bridges with skewed
supports.

This report has been divided into 9 chapters. Following this introductory chapter,
Chapter 2 presents a review of background material. The introductory material will include a
review of previous studies on torsional bracing of beams as well as a review of the factors
that affect the lateral torsional buckling behavior of beams. Chapter 3 describes the
development of the finite element model and the parameters investigated in this research.
Chapter 4 focuses on the effects of imperfections on the torsional bracing behavior of steel
girders. Finite element results will be presented on twin-girder systems that demonstrate the
effects of the shape and magnitude of the initial imperfections. Chapter 5 presents the
computational results for bridges with normal supports to verify existing equations and the
finite element model. Chapter 6 presents eigenvalue and large displacement analytical
results for bridges with braces parallel to the skew angle. The computational results are
compared with modified solutions that reflect the parallel bracing requirements for steel
girders with skewed supports. Chapter 7 will present computational results of eigenvalue
and large displacement analyses for skewed girders with normal braces. The results are
compared with the proposed equations that reflect the bracing requirements for skewed
girders with normal braces. Chapter 8 will discuss the simplified details for the design and
arrangement of cross-frames and diaphragms in bridges with skewed supports to minimize
fatigue problems. Analytical results are presented for the steel girders alone as well as truck
loading on the composite girders in the completed bridge. Two design examples are
presented that illustrate the bracing solutions for cross-frame and diaphragm design for
stability requirements during construction. The last chapter of the report will summarize the
findings of the research study and also present recommendations for future work.

Although the entire report contains important information regarding the bracing
behavior in steel bridges, bridge designers should pay particular emphasis to Chapters 1, 2, 8,
and 9.



Chapter 2
Background

2.1 Introduction

Background information is presented .in this chapter on lateral torsional buckling as
well as an outline of previous research results on torsional bracing systems for beams. The
background information that is presented provides a basis for the computational results and
design expressions for bridges with skewed supports that will be discussed in later chapters.

2.2 Lateral Torsional Buckling

Beams are structural members that primarily support transverse loads that cause
bending in the member. I-shaped sections consisting of two flanges and a web are frequently
used for flexural members to maximize the major axis moment of inertia I, which results in
a large in-plane stiffness. However, due to their low lateral stiffness the I-shaped sections
may be susceptible to lateral torsional buckling. The distribution of bending stresses on the
beam cross-section produces compression in one of the flanges and tension in the other. The
resulting mode of buckling typically involves a lateral translation of the compression flange
accompanied by twisting of the whole cross-section, which was shown in Fig. 1.1 in the
previous chapter. The buckling capacity can be increased by either increasing the size of the
flanges or by providing bracing that prevents twist at intermediate locations along the length.
Although bracing can also be achieved by preventing translation of the compression flange,
this bracing essentially stops twist of the section, which is the important feature of any
effective beam bracing system.

2.3 Doubly Symmetric Section for Constant Moment

Timoshenko [1961] derived a closed-form solution for the buckling capacity of
prismatic doubly symmetric beams. Timoshenko’s derivation applied to simply supported
beams subjected to uniform moment. He assumed that twist was prevented at the ends,
however the section was free to warp. The resulting expression is given in the following
equation:

P n*E*C,I,
M = | ELGI 4 ——== 2.1)
b b

where:
M., = beam buckling capacity
Ly = unbraced length
E = modulus of elasticity
I, = weak axis moment of inertia
G = shear modulus
J = St. Venant’s torsional constant
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C. = warping constant = [,d*/4
d = depth of beam

In Timoshenko’s original derivation, he also stated that lateral translation was
prevented at the ends of the beam, however this assumption was never used. The fact that
this assumption is not necessary in the derivation of the solution demonstrates that effective
beam bracing need only prevent twist. Therefore, the unbraced length Ly in Eq. 2.1 is the
spacing between points with zero twist. Bracing requirements will be discussed in detail
later in this chapter. The remainder of this section will focus on section properties that affect
the different terms in Eq. 2.1. The torsional stiffness of a member can generally be divided
into a uniform torsional component and a non-uniform torsional component. The first term
under the radical in Eq. 2.1 is referred to as the St. Venant term and it is related to the
uniform torsional stiffness. The second term under the radical is referred as to the warping
term and it is related to the non-uniform torsional stiffness. The St. Venant term reflects the
ability for a beam to resist the twist of the section and is related to the uniform torsional
stiffness of the cross section. The warping term reflects the ability of a beam to resist lateral
bending of the flanges and is related to the support conditions of the beam. Solutions such as
Eq. 2.1 are based upon the assumption that the ends of the unbraced length are free to warp.
For an I-shaped beam, both the St. Venant and warping terms contribute to the beam
buckling capacity.

The lateral torsional buckling equation in the American Institute of Steel Construction
(AISC) Load & Resistance Factor Design (LRFD) specification [2001] directly employs
Timoshenko’s equation for the elastic buckling of doubly symmetric I-sections.

2.4 Singly Symmetric Section for Constant Moment

Most bridge designs make use of composite action between the steel girder and the
concrete deck. Since the concrete slab contributes to the girder strength in the finished
bridge, the top flange of girder is usually smaller than the bottom flange. The resulting steel
cross-section has a single plane of symmetry about an axis through the web. Although the
concrete contributes to the strength in the finished bridge, during erection and construction
the steel section must support the entire construction load. Therefore, lateral torsional
buckling of the steel girder is often critical during construction. Eq. 2.1 is only applicable for
doubly symmetric sections. The exact solution for singly symmetric sections was presented
by Anderson and Trahair [1972] and given in the following expression:

2
M, == EI‘,GJ[B,Jr 1+£—f—+5’f} 2.2)
LV VL

EC
a= ht 2.3
e (2.3)

where;
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B, = %(sz ydd+ [ y'dd-2 ») (2.5)

Bx can be evaluated by the following equation:

1 _| bt - d-=-P)t bt Yt
= dd =N s bt (d - TV L | e f |l (2.6)
ﬁx {x{( y{ 12 t:( y) 4 12 ccy 4 yO

The variables in 2.6 are defined in Fig. 2.1.
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Figure 2.1 Definition of Singly Symmetric Section Variables

Kitipornchai & Trahair [1980] also presented an approximate expression for Py:

1 2
B. =0.9d(2p -1){1 —[I—yj } 2.7

For singly symmetric sections, the warping constant C,, is given by the
general expression:

C.=1,d*p(1-p) (2.8)
where:

7 (2.9)
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Iy = moment of inertia of the compression flange about the weak axis.
I, = moment of inertia of the entire section about the weak axis.
d = distance between centroids of the top and bottom flange.

Depending on the relative sizes of the two flanges, the value of p varies from0to 1. A
tee section with the flange in tension will have p = 0 while a tee section with the flange in
compression will have p = 1.0, For a doubly symmetric section, the flanges are the same size
and p=0.5.

The complexity of the exact solution for singly symmetric sections makes these
expressions difficult to use and impractical for design. Therefore, most design specifications
employ approximate solutions.

The AISC LRFD specification [2001] recommends the approximate expression shown
in Eq. 2.10 for elastic buckling of singly symmetric sections. It should be noted that Egs.
2.10 are slightly different from the equations presented in the specifications because
numerical values for n, E=29,000,000 psi, and G=11,200,000 psi have been substituted in the
specification’s equations. The variables in Eqgs. 2.10 to 2.12 have been previously defined.

M, = z’i EIGJ (}91 +1+ B, + Bf) (2.10)

b
_ NG Y
B, =2.25(2p I)Lb\/j 2.11)
L.YaY
B, =25(1- p)[TJ( Lj 2.12)

The AASHTO specifications [1996] employ an expressibn that is very similar to Eq.
2.1 except that I, has essentially been replaced with 2I,.. Again, numerical values for =, E,
and G have been substituted in the specification equations. The equation is valid for 0.1 < p
< 0.9 and is given in the following expression:

M, = xE[l‘“ )\/ﬁ(f—]m{-‘i—) (2.13)
L\ E I, L,

Sections with p values that are outside the range of 0.1 to 0.9 are essentially T-sections and
are not permitted for use as bridge girders.

The AASHTO equation is generally conservative if the compression flange is the small
flange and slightly unconservative if the compression flange is the large flange. Comparisons
of these buckling expressions and finite element results for several singly symmetric sections
with different unbraced lengths are presented in Chapter 3.



2.5 Effect of Moment Gradient and Load Height on Buckling Capacity

The equations to estimate the buckling capacity that have been presented in Sections
2.3 and 2.4 were developed for uniform moment loading. However, in most situations the
moment varies along the length of the beam. The variable distribution of stress along the
beam length may result in a higher buckling capacity than that predicted by the equations
developed for uniform moment. To account for the benefits of variable moment, a Cy, factor
is applied to the expressions developed for uniform moment. Although there are published
Cyp values for several typical load cases, many specifications provide expressions that can be
used to approximate C, values for general load cases [SSRC 1988]. The AISC LRFD
specification [2001] recommends the following expression for estimating the Cy, factor:
12.5M

T 25M_ +3M, +4M, +3M,

o (2.14)
where:

Mmax = absolute value of the maximum moment in the unbraced segment

Ma = absolute value of the moment at the quarter point of the unbraced segment

Mg = absolute value of the moment at the midpoint of the unbraced segment

Mc = absolute value of the moment at the three quarter point of the unbraced segment

Eq. 2.14 has also been adopted by the AASHTO LRFD Specifications. For cantilevers
or overhangs where the free end is unbraced, Both of the AISC LRFD specifications and
AASHTO LRFD specifications conservatively recommend C, = 1.0. Fig. 2.2 shows typical
Cy values from Eq. 2.14 for some typical load cases.

The C, factors that are published and given by Eq. 2.14 are directly applicable for
doubly symmetric sections with transverse loads applied at mid-height. Helwig et al. [1997]
demonstrated that the C, factors were also applicable for singly symmetric sections with
single curvature bending provided that transverse loads were applied at mid-height. For
reverse curvature bending on singly symmetric sections, Helwig et al. found that a modifier

of (0.5+ 2p§0p) applied to Eq. 2.14 provided reasonable estimates of the Cy in which prop =

Iytop/ly.

The C, values given by Eq. 2.14 are applicable for transverse loads applied at mid-
height of the cross-section. When transverse loads are applied below or above mid-height,
the buckling load may be substantially different than that predicted by the buckling equations
with the C, factors. If transverse loads are applied higher on the cross-section, such as at the
top flange, the buckling capacity can be significantly lower than for mid-height loading
because of an overtuming torque that develops at the point of load application when the
section twists. A restoring torque develops when loads are applied lower on the cross-
section, which increases the buckling capacity relative to mid-height loading.
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Effects of load height become more significant with increasing warping stiffness. Since
the warping stiffness is an inverse function of the beam span, shorter beams will be more
affected by load height effects than longer beams. This is demonstrated in Fig. 2.3 for
transverse loads applied at the bottom flange, mid-height and the top flange.
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Figure 2.2 Cy, factors for Common Load Cases
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Figure 2.3 Effect of Load Height on Girder Buckling Capacity
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Although neither the AASHTO or AISC specifications address the load height issue,
solutions are available [SSRC 1988] for estimating the effects of load height. Effects of load
height may be approximated with the following solution:

. 74
C,=C,(B) " (2.15)
where:
C, = the modified moment gradient factor with consideration of load height effect

Cyp = the original moment gradient factor without consideration of load height effect
B is defined in the following expressions:

Point Load at Mid-span: B = 1 — 0.180W? + 0.649W

Uniform Distributed Load: B = 1 — 0.154W?> + 0.535W

n |EC,,

L,V GJ

y = the distance between point of load application and mid-height. Sign convention is
defined as negative if load is applied above mid-height and positive is load is
applied below the mid-height

h = depth of beam

W is the beam parameter defined as: W =

Helwig et al. [1997] also found that reasonable estimates of load height could be
obtained by simply using B = 1.4. Although the AASHTO and AISC specifications
generally neglect the effects of top flange loading, there are a number of mitigating factors
that reduce the detrimental effects of top flange loading. The first of these is the presence of
intermediate (between supports) bracing such as cross-frames and diaphragms. The effects
of top flange loading become less severe with the presence of intermediate bracing. Another
mitigating factor is the presence of warping restraint at the ends of the unbraced length that
are conservatively neglected in the expressions that are used to estimate the buckling
capacity. The sections were generally assumed to be free to warp at the ends of the unbraced
length in the derivation of the uniform moment buckling expressions. When the moment
varies along the unbraced length, restraints to warping will generally be present at the ends
of the unbraced length. Therefore although neglecting top flange loading is unconservative,
the mitigating factors reduce the negative effects on the buckling behavior.

2.6 Beam Bracing

Beam bracing can generally be divided into one of two classifications: lateral bracing
or torsional bracing. As their names imply, lateral bracing retrains the lateral movement of
the girder, whereas torsional bracing restrains twisting of the cross section. Effective beam
bracing can be achieved by providing either lateral or torsional bracing. Most bridges make
use of cross frames or diaphragms for bracing. These braces fit into the category of torsional
braces since they restrain twist of the cross-sections of the two girders that they span
between. Cross-frames are truss type systems in which the members resist axial forces.
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Diaphragms are beam type systems, in which braces develop bending moments to restrain
girder twist.

As outlined in Chapter 1, an adequate bracing system must satisfy both stiffness and
strength requirements. The remainder of this section will outline previous research studies
on torsional bracing systems.

2.6.1 Beam Bracing Stiffness

Lateral and torsional bracing of simply supported beams was investigated by Flint in
the 1940’s and 1950’s [Flint 1951]. The loading conditions that were considered consisted
of both uniform moment and a concentrated load applied at midspan. He considered both
lateral and torsional bracing systems. The location of the lateral bracing was varied in the
study including midspan bracing located at the top flange, the bottom flange, and at the shear
center. He also studied torsional bracing located at mid-span. The beams in Flint’s studies
were free to warp at the supports. He demonstrated that effective beam bracing could be
provided by only restraining twist of the section. Therefore systems such as cross-frames
and diaphragms that resist twist are effective bracing systems even though they still allow the
cross-section to displace laterally.

Winter investigated the brace stiffness and strength requirements for columns and
beams using laboratory experiments as well as simple analytical models. Both discrete and
continuous bracing systems were considered. Winter’s rigid link column model was
discussed briefly in Chapter 1. Winter was the first to demonstrate the dual criteria of both
strength and stiffness that is necessary for effective stability bracing. He also demonstrated
the effects of initial imperfections on the brace stiffness requirements.

In the 1960’s, Taylor and Ojalvo [1966] investigated the behavior of torsional bracing
of beams. They considered the effects of both continuous and discrete torsional braces. The
loading conditions that were considered consisted of uniform moment, a point load at mid-
span and a uniform distributed load. Theoretical equations were derived for uniform moment
loading for the beam buckling capacity of doubly-symmetric beams as a function of the
continuous brace stiffness. Their study resulted in the following expression:

M, = M2+ BEI (2.16)

where My is the beam buckling moment without any bracing, 73: 1s the continuous torsional
brace stiffness in kip-inch per radian per inch along the beam length.

Mutton and Trahair [1973] studied the stiffness requirements for lateral bracing while
studying the buckling behavior of columns and beams with midspan braces. They adapted
column-bracing solutions to be applicable for beams with equal and opposite end moments
with both translational and rotational restraints. Numerical solutions of the critical buckling
loads of elastically restrained beams with central concentrated loads were obtained. Their
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study considered the effects of the location of the bracing on the cross-section as well as load
height.

Trahair and Nethercot [1982] provided a summary of lateral and torsional bracing
requirements for I-shaped beams. Solutions were shown graphically for beams with
continuous bracing or discrete bracing for common loading conditions such as uniform
moment, a concentrated load at mid-span and a uniformly distributed load. They evaluated
the effect of the lateral brace location on the cross section and concluded that the most
effective position for lateral bracing was at the compression flange. The brace stiffness
requirements considering the effects of load height, web distortion and the connection
stiffness were also considered. The following expression was presented to estimate the
overall stiffness, ou.:

+— 2.17)

where
o = reduced torsional stiffness
o, = brace stiffness
a; = connection stiffness
Cwep = Web stiffness = Et*/2

Bishara and Elmir [1990] studied the interaction between cross frames and I-shaped
girders in the completed bridge. The authors employed a three-dimensional finite element
model to study the forces induced in intermediate and end cross frames of multi-beam
composite steel bridges. Four simply supported multi-girder bridges were investigated. One
of the four bridges had normal supports while the other three had skewed supports with
angles of 20, 40, and 60 degrees. Their results showed that the maximum forces in the cross-
frame members were slightly higher in the bridge with a 20° skew angle than those in the
bridge with normal supports. With larger skew angles the maximum forces in the cross-
frames increased significantly. The study did not address any of the stability requirements
for the bracing members.

Yura et al. [1992] conducted a detailed investigation on the lateral and torsional brace
requirements for beams. In addition to laboratory tests, a 2-dimensional finite element
analytical (FEA) model [BASP 1987] was utilized to study the bracing behavior. The study
considered the effects of the type of bracing, brace stiffness, brace location, and the number
of braces on the beam buckling behavior. A variety of loading conditions were considered in
the study ranging from uniform moment to transverse loading applied at different locations
on the cross-section. Torsional braces were placed on the compression flange, the tension
flange, as well as at the centroid. Effects of cross-sectional distortion were studied in detail,
including unstiffened and stiffened webs (including partial depth stiffeners). The study
showed that cross section distortion has a significant effect on the behavior of torsional
braces and can be controlled by properly attached stiffeners. They adapted the continuous
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bracing expression in Eq. 2.16 from Taylor and Oljavo to include the effects of cross section
distortion, top flange loading and moment gradient for beams with normal supports. The
resulting expression is given in the following expression:

CZ B EI
CubrEl, <M, or M, (2.18)

M, = \/ CoM; +
H
where:
M, = buckling capacity of unbraced beam with uniform moment loading
Cuu = Cy factor corresponding to the unbraced beam
Cuwb = Gy, factor corresponding to the fully braced beam

B = continuous torsional bracing system stiffness

C. = top flange loading factor = 1.2 (equals to 1.0 for loading at centroid)
M; = moment corresponding to beam buckling between braces
M, = beam yield moment -

Although Eq. 2.18 was adapted from an expression derived for beams with continuous
torsional braces, the expression can also be utilized for discrete braces by using the following
expression:

by

Br= T

(2.19)

where
n = number of intermediate braces
L = span length
r = intermediate torsional bracing system stiffness

For the case of a single intermediate torsional brace, Eq. 2.19 provides overly-conservative
results. Therefore for the case of a single torsional brace at mid-span, the following equation
was recommended:

= _ Pr
br = 0.75L (2:20)

For design, the required beam buckling capacity can be obtained by setting Eq. 2.18 equal to
the maximum moment and solving for the required brace system stiffness.

For singly-symmetric sections, I, in Eq. 2.18 should be replaced by L., which is given
in the following expression:

t
ly=I,+-1, (2.21)

where
I,c = weak axis moment of inertia of compression flange at weak axis
I, = weak axis moment of inertia of tension flange at weak axis
¢ = distance between cross section centroid and centroid of compression flange
t = distance between cross section centroid and centroid of tension flange
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Although Eq. 2.18 can be used to solve for the required torsional brace stiffness, the
effectiveness of a given brace is affected by a number of factors. Helwig et al. [1993]
investigated the stiffness requirements for torsional braces using a three-dimensional finite
element model. Their study concluded that the in-plane flexibility of the girders reduces the
effectiveness of the torsional braces and therefore the in-plane girder stiffness should be
considered when evaluating the system brace stiffness. The effect of the in-plane girder
stiffness is demonstrated in Fig. 2.4. When internal moments develop in the torsional brace,
vertical shears also develop at the ends of the brace. These shears are transferred to the
girders as an upward load on one girder and a downward load on the other girder. These
forces cause one of the girders to displace upward while the other girder displaces
downward, therefore resulting in a rigid body rotation of the brace. The rotation of the
girders reduces the effectiveness of the cross-frame or diaphragm.

- |

Figure 2.4 Brace Forces Cause Girder Overturning

For a twin-girder system the girder stiffness can be approximated with the following
expression:
_128°EI,

By 7 (2.22)

where
S = girder spacing
I, = strong axis moment of inertia of girder
L = girder length

For a system with more than two girders, all of the girders will twist as a unit since they
are generally connected across the width of the bridge by cross-frames or diaphragms. The
resulting effect on the brace stiffness is substantially less and can be approximated with the
following expression [Yura et al. 1992]:
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_24(n, -1)" S?EI,
g ng L3
Where ng is the number of the girders. The in-plane girder stiffness has much more of an
effect on the bracing system stiffness for a twin-girder system than for systems with more
than two girders.

(2.23)

Another factor that has a significant effect on B is cross section distortion. Web
distortion significantly reduces the effectiveness of torsional braces, however properly sized
stiffeners can be provided to control the distortion. The required details for the stiffeners
depend on the web slenderness of the beam or girder. For rolled sections, Yura and Phillips
[1992] recommended that transverse stiffeners extend at least % of the beam depth to
effectively control local web distortion. However rolled sections have relatively stocky webs
with slenderness values (ratio of web height to thickness) less than 60. The webs of most
plate girders have substantially higher values of the web slendemess and the stiffeners often
must extend nearly the full depth of the web to adequately control web distortion. Yura and
Phillips suggested using the following equations to estimate the cross section stiffness:

1 1 1 1

=—t—t+— 2.24
B. BB B @29
Where
Bsec = cross-section stiffness
B. = stiffness of web section adjacent to compression flange
Bs = stiffness of web section at stiffener
B = stiffness of web section adjacent to tension flange
Be, Bs, Brs B.> B, , B, can be determined using the following equation:
3 3
g 35215 1)
h, A, 12 12

where j is ¢, s or t respectively. The definitions are shown in Fig. 2.5. Design examples are
presented in Chapter 7 that demonstrate the use of Egs. 2.24 and 2.25.
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Although determination of the effects of web distortion on the cross sectional stiffness may
seem complicated, the concept is relatively simple. The web is separated into stiffened and
unstiffened regions and the overall cross sectional stiffness is simply the summation of the
individual elements of the cross-section. The equation is given in general terms for
completeness, however transverse stiffeners often extend close to the flanges and the whole
web can simply be treated as one stiffened region. When a solid diaphragm is used, the
portion of the web that coincides with the depth of the diaphragm is extremely stiff and can
usually be treated as rigid. For cross-frames the portion of the web within the depth of the
cross-frame (hy, in Fig. 2.5) does not affect web distortion since the cross-frames control the
relative lateral movement of the flanges. Therefore, a girder with cross-frames near the
flanges will not experience significant web distortion.

C— —1
hc tw . bs
h
h T
ht
1
1
he bs
hs
h hm tw ——]
hs
ht
1

Figure 2.5 Definitions of Web Distortion
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The derivation of expressions for evaluating the stiffness of a given cross-frame or
diaphragm simply requires a knowledge of the relationship between the moment versus
rotation behavior of the brace at the ends. This derivation therefore requires an
understanding of how the brace will bend due to girder rotation at the braced location. Fig.
2.6 shows the stiffness formulations for a variety of commonly used torsional bracing
systems. The three most common forms of cross frame systems include tension systems,
compression systems and k-brace systems.

The bracing requirements of a typical torsional bracing system will often result in equal
and opposite moments at the ends of the cross-frame or diaphragm. In a cross-frame with
two diagonals, the moment will result in compression in one diagonal and tension in the
other. In a tension system, the compression diagonal is conservatively neglected since these
members are often relatively slender and may buckle. The tension diagonal will therefore be
designed to provide proper strength and stiffness to satisfy the bracing requirements. In a
compression system, both diagonals are designed to be effective at resisting the stability
moments.

When a diaphragm type brace is used, the brace stiffness depends on the location of the
diaphragm on the girder cross-section. If the centroid of the diaphragm is positioned above
midheight of the girders (in the positive moment region), the lateral movement of the
compression flanges of the two girders will generally be in the same direction and the
diaphragm will be subjected to reverse curvature bending thereby resulting in 6El/S stiffness.
If the centroid of the diaphragm is located near the tension flange, such as in the case with a
through-girder system, the compression flanges generally translate in opposite directions and
the diaphragm will bend in single curvature with 2EI/S stiffness.

The total stiffness of the torsional bracing system is a function of the cross-frame or
diaphragm stiffness, the cross-sectional stiffness, as well as the in-plane stiffness of the
girder. These individual stiffness components are related by the classic equations for springs
in series. Therefore the total system stiffness can be predicted using the following
expression:

LS S S (2.30)
ﬂT ﬁb ﬂscc ﬂg

where
Br= total torsional bracing system stiffness
B,= brace stiffness
Bsec = cross-sectional stiffness
¢ = in-plane girder stiffness
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Figure 2.6 Brace Forces and Stiffness Formulas for Cross Frames and Diaphragms
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Yura et al. [1992] also showed that the location of the torsional bracing on the cross-
section did not have a significant effect on the brace stiffness or strength requirements.
Therefore, the torsional brace can be placed anywhere on the cross-section with the same
effectiveness. The placement of the bracing may affect the cross-sectional stiffness or the
brace stiffness (6EL/S or 2EVUS), however these effects can be accounted for using the
equations presented in this section.

2.6.2 Beam Brace Strength

Brace strength requirements have been discussed in detail by Yura et al. [1992]. The
brace strength requirements are a function of the brace stiffness and the magnitude and shape
of the beam initial imperfection. The magnitude of brace moment is a linear function of the
magnitude of the initial imperfection. The following expressions can be used to determine
the magnitude of the twist at the brace point, ¢, as well as the resulting brace moments, My,
(Yura et al. [1992] and Helwig et al. [1993]):

- 2.26

¢T I__/z&‘ll{:_ ( - )
187' Mcr

M, =B (¢ -¢,) (2.27)

where:

¢, = initial twist angle in radians

Br. = ideal brace stiffness based on the stiffness requirement, Eqgs. 2.18 and
2.19

Bt = actual brace system stiffness

M’ = actual girder moment

M., =maximum moment corresponding to the girder buckling between brace
points

Helwig et al. [1993] presented FEA results to demonstrate the accuracy of the brace
strength provisions. A variety of parameters were considered in the study including the
number of braces, the brace stiffness, and also the shape and magnitude of initial
imperfections. The study concluded that Eqs 2.26 and 2.27 show good correlation with
computational results when the initial imperfection has the same basic shape as the final
buckled shape. The critical imperfection for beams usually involves a girder twist consisting
of a lateral movement of one of the flanges while the other flange remains straight. As a
general rule, the shape of the imperfection that produces the largest brace moment usually
has one less “wave” than the number of waves in the buckled shape corresponding to
buckling between brace points. For example, with one intermediate brace the critical
imperfection should be a half sine curve; for two intermediate braces the critical imperfection
would be a sine curve, etc.
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A review of Egs. 2.26 and 2.27 shows that the brace moment developed is linearly
related to the initial imperfection. These equations use the same concepts presented by
Winter [1958] in his rigid link model. Eq. 2.26 shows that if only the ideal stiffness is
provided, the total twist angle will increase to infinity when the applied load reaches the
critical buckling moment, therefore resulting in very large brace moments. The AISC LRFD
Specification [2001] has incorporated the bracing recommendations from Yura et al. [1992]
and recommends providing at least twice the ideal stiffness. The design recommendations
that are presented in the AISC LRFD Specification are based upon Egs. 2.18 to 2.27,
however the beam unbraced moment capacity in Eq. 2.18 was conservatively neglected,
which results in the following expression:

2.4LM}

ﬂr = 3
¢nC,EI o
where M, is the maximum factored design moment.

(2.28)

For the strength requirement, an initial imperfection of 6y = Ly/(500d) radians was
assumed with Ly equal to the spacing between braces and d equal to the beam depth. The
resulting brace strength is then given in the expression:

_0.024LM,

= 2.29
br ncbb Lb ( )

where L is the total beam length.

Egs. 2.26 to 2.29 are fundamental equations for the strength requirements for beam
bracing. While the equations have been developed using finite element models, there has
been no experimental testing to verify these strength expressions for torsional bracing
systems. Although, as mentioned in Chapter 1, this research study has included experimental
testing to measure the brace moments, this report will focus on the FEA results. A difficult
aspect of experimental verification of the strength equations presented above revolves around
the “worst-case” imperfection that has been assumed in their derivation. As outlined above,
the assumed imperfection consisted of a lateral movement of one of the flanges while the
other flange remained straight. The imperfections of beams typically encountered in the
laboratory will usually have both a sweep and a twist. Comparing the bracing equations with
experimental data requires an assessment of the effective imperfection/twist of the test
beams. Results will be presented in Chapter 4 that were used to help in the selection of an
effective twist of the cross-section.

The remainder of this report will focus on the behavior of torsional bracing systems of
bridge girders with both normal and skewed supports. The finite element model will be
presented in Chapter 3. Finite element results documenting the effects of a variety of
imperfections on the torsional brace forces will be presented in Chapter 4. The brace
stiffness and strength equations for girders with normal supports that have been presented in
this chapter will be compared with FEA results in Chapter 5. Chapters 6, 7, and 8 will focus
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on the behavior of bridges with skewed supports. These chapters will include comparisons
between the FEA results and brace stiffness and strength equations modified to account for
the skew angle so that general bracing provisions can be developed.
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Chapter 3
Finite Element Model

3.1 Introduction

The three-dimensional finite element program ANSYS [1996] was used to perform
computational studies on the torsional bracing behavior of steel girders with skewed
supports. Both eigenvalue buckling and large displacement analyses were conducted. An
eigenvalue buckling analysis is a linear-elastic analysis that can be utilized to study the
effects of the brace stiffness on the buckling behavior of a structural system. Since an
eigenvalue analysis generally doesn’t reflect the effects of imperfections on the buckling
behavior, the analysis is used to establish the ideal stiffness requirements for the bracing. To
study the effects of imperfections, a large displacement analysis is necessary. A large
displacement analysis is a non-linear analysis of an imperfect system that can be used to
establish the strength requirements of the bracing. The load is gradually incremented with
smaller substeps as the buckling load is approached. Although a variety of solution
algorithms are available, Newton-Raphson equilibrium iterations are often used to drive the
solution to equilibrium convergence based upon a given tolerance limit at the end of each
load increment. Large displacement analyses were used to develop curves of the brace
moment versus the applied load for a particular initial imperfection. As discussed in the
previous chapter, the critical initial imperfection for beams generally involves an initial twist
of the cross-section. Additional FEA analyses directed at the shape and magnitude of the
initial imperfection were conducted and the results are presented in Chapter 4.

Although the majority of the analyses were conducted on a twin-girder system, systems
with more than two girders were also studied. The girders were I-shaped with torsional
braces interconnected between adjacent girders. For beams with skewed supports, there are
two possible orientations for the torsional braces: parallel bracing where the braces are
parallel to the skew angle, and normal bracing in which the braces are perpendicular to the
longitudinal axis of the girders. Results of both eigenvalue and large displacement analyses
for girders with normal supports are presented in Chapter 5 to verify existing equations.
Results of eigenvalue and large displacement analyses of bridges with skewed supports and
parallel bracing are presented in Chapter 6. The FEA results are compared to expressions
previously outlined in Chapter 2 with modifications to account for the skew angle. Results
of eigenvalue and large displacement analyses of bridges with skewed supports and normal
bracing are presented in Chapter 7.

3.2 Finite Element Model
The purpose of the finite element modeling in this study was to investigate the effect of

skewed supports on the behavior of the torsional braces. The 3-D finite element model used
to study the bracing behavior modeled the construction stage when the steel girders resist the
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entire load. Additional features that include the concrete slab in the FEA model to account
for the composite bridge behavior are presented in Chapter 7.

A combination of shell, beam, and truss elements was used to model the structural
components of the bridge, which included the girders and the cross frames or diaphragms.
The cross-section of the girders and the transverse stiffeners were modeled using shell
elements. The shell elements used in the model were 8-node quadrilateral shell elements that
can model both out-of plane bending and in-plane membrane deformations. The shell
clements have a total of 6 degrees of freedom (DOF) at each node, including three linear
translations and three rotational DOF’s. Displacements are produced at all 8 nodes while
stresses are available at the four comner nodes. Input for the shell elements consists of the
thickness of the element and the material properties. Two shell elements were used to model
the flanges as shown in Fig. 3.1. The number of shell elements in the web varied, however
care was taken in selecting the number of elements to avoid aspect ratios much greater than
one. In some analyses, shell elements were also used to model solid I-shaped diaphragms
framing between adjacent girders.

7

8 node shell element

W\

Figure 3.1 Finite Element Model of Girder Cross-Section

Beam elements were used in some analyses to model torsional braces spanning between
adjacent girders. These beam elements were used to model the experimental test setup,
which consisted of braces that were connected to the top flange of the test beams. The beam
elements used in the model were 2-node uniaxial elements with tension, compression, torsion
and bending capabilities. Since the element was used to model the beam behavior in three-
dimensional space, the general input consists of cross sectional properties such as the area
and the moment of inertia about the x-x and y-y axes. The line element that was used does
not account for the warping stiffness of thin-walled beams.

Three-dimensional truss elements were used to model cross frames spanning between
adjacent girders. These elements have two nodes with three translational degrees of freedom
per node. Truss elements cannot model bending or torsional deformation of the individual
members. The input for the truss elements simply consisted of the cross sectional area.
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Fig. 3.2 illustrates the boundary conditions that were used on a typical twin-girder
system with skewed supports and a brace at mid-span. The brace is oriented parallel to the
skew angle, and the member was simply supported in-plane. The out-of-plane translation
was restrained at the top and bottom of the web at both ends. These out-of-plane restraints
prevented girder twist, however the section was free to warp.

Girder Center Line

8 8

At Ends:
Pins Out-of-plane

@] Q Free to Warp

O (o]

Girder Center Line

Top View of Twin-Girder System
At Ends:
Simply Supported In-plane

Elevation View of Twin-Girder System

Figure 3.2 Boundary Conditions of FEA Model

Fig. 3.3a shows an illustration of the FEA model of a typical twin-girder system with a
cross-frame at midspan. Cross-frames in the study were typically modeled with only three
members as shown in the figure. This type of a cross-frame would be typical of a tension-
only system in which the compression diagonal is conservatively neglected since the slender
members usually have a low buckling strength. Fig. 3.3b shows the model for a twin-girder
system with beam elements connected to the top flange of adjacent girders. Analyses were
also conducted by modeling the diaphragms and I-shaped beams at the top flange with shell
elements. Since identical results were obtained with the line element and shell element
models, line element models such as those shown in Figs. 3.3a and 3.3b were mainly used in
the study.
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ANSYS

Figure 3.3a Finite Element Model of Twin-Girder System with Tension Only Cross-

Frame at Midspan

NANSYS

Figure 3.3b Finite Element Model of Twin-Girder System with Top Flange Braces

Modeled using Beam Elements
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Fig. 3.4 illustrates the two possible buckled shapes from an eigenvalue analysis of a twin-
girder system. For brace stiffness as less than “full bracing”, the buckled shape corresponded
to a half sine curve as shown in Fig. 3.4a. For brace stiffness as greater than or equal to the
ideal stiffness, full bracing was achieved and the beam generally buckled between the brace
points as shown in Fig. 3.4b. Although the two beams have exactly the same applied load,
the buckled shape of the twin-girder system in Fig. 3.4b typically shows that one beam
buckles between the brace points and the other beam remains straight. The reason that one
girder buckles and the other remains straight is related to the shears that develop at the ends
of the braces as equal and opposite bracing moments are developed at the ends of the cross-
frame. The end shears are generally equal in magnitude, however they are opposite in
direction with one directed upwards and the other directed downwards. This results in a
slightly larger load on one of the girders compared to the other, which is why only one girder
buckles (the more heavily loaded girder). This effect was explained in Chapter 2 when
explaining the effect of the in-plane stiffness of the girder on the brace stiffness
requirements.

There were several considerations in the development of the finite element model to
ensure the model best represents the actual structure. Details about these considerations are
presented in the reminder of this section.

3.2.1 Stiffeners and Cross-Frames

Transverse stiffeners were provided at the brace locations to control cross-sectional
distortion. The stiffeners extended from the top of the web to the bottom of the web and
generally had the same number of elements as provided through the depth of the girder web.
The width of the transverse stiffeners was slightly less than half the width of the flange to
avoid the outside stiffener nodes merging with the flange nodes, which would provide extra
warping restraint to the beam. The cross-frames were modeled by 3-D truss elements and
were framed into the top and bottom of the web. Therefore cross-sectional distortion was not
a concern for this bracing system.

3.2.2 I-Shaped Bracing Beams Connected to Top Flanges of Girders

In some instances, details were used with small I-shaped bracing members connected to
the top flange of the adjacent girders as shown in Fig. 3.3b. Distortion between the flange
and the web was controlled by connecting the transverse stiffener to the flange. Since the
stiffener was usually not as wide as the flange, the connection to the web was usually made
with an additional corner stiffener as shown in Fig. 3.5.
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Figure 3.4a Twin-Girder System Buckling Shape with Inadequate Bracing

-Girder System Buckling Shape with Full Bracing

Figure 3.4b Twin

34



a) Regular Stiffener Modeling

b) Excessive Top Flange Distortion

¢) Top Flange Distortion Controlled
by Corner Stiffener

Figure 3.5 Finite Element Modeling Details for Stiffeners

To avoid warping restraint from the top flange braces, the translational DOF’s of the
flange and brace were rigidly coupled in the vertical and lateral direction at selected nodes.
For example, Fig. 3.6a shows a plan view of two buckled girders that demonstrate the
warping restraint that may develop due to out-of-plane bending of the brace. Allowing
relative moment in the x-direction while rigidly coupling the brace and girder flange nodes in
the y and z direction eliminates this warping restraint. Fig. 3.6b illustrates that the nodes at
the flange tips were typically coupled in the vertical direction to the corresponding brace
nodes, while the node at the middle of the top flange was then coupled to the corresponding
brace node in the lateral direction. The corresponding buckled shape is shown in Fig. 3.6c¢.
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Figure 3.6 Coupling Details between Braces and Girders of FEA Model

3.2.3 Short Segment Warping Restraint of Bridges with Skewed Supports

When bridges have normal supports the braces can usually be positioned so that the
girders have a uniform unbraced length between the cross-frame or diaphragm locations. For
bridges with skewed supports and braces perpendicular to the longitudinal axis of the girders,
it is often not possible to position the intermediate braces and maintain an equal unbraced
length for all of the segments. For the analyses conducted in this study, when the braces
were oriented perpendicular to the longitudinal axis of the girders with skewed supports, one
end segment was always shorter than the other segments as illustrated in Fig. 3.7. The
unbraced segments in Fig. 3.7 are labeled either Segment A and B respectively. The regions
labeled Segment A all have the same unbraced length, while the Segment B regions adjacent
to the skewed support have shorter unbraced lengths. The buckling capacity of the beam will
typically be controlled by one of the Segment A regions.
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Figure 3.7 Warping Restraints in FEA Models due to Segments with Smaller
Unbraced Lengths

The equations for lateral torsional buckling generally assume the beams are free to
warp at ends of the unbraced length. In the FEA model, however, the capacity of the regions
labeled Segment B will have a higher buckling capacity than the those labeled Segment A
due to the shorter unbraced lengths. The shorter segments will therefore provide some
warping restraint to the critical segment A. Depending on the bracing provided, the warping
restraint in these cases can lead to higher buckling capacities from the FEA models than
those predicted using equations that assume there is no warping restraint. However the
amount of bracing necessary to reach the moment ievels corresponding to the presence of
end warping restraint is very large and is generally not practical for design. Therefore, the
stiffness requirements for the bracing are based upon the moment levels neglecting end
warping restraint. The presence of end warping restraint will have a small effect for the
stiffness requirements, however the benefit is relatively minor and is generally neglected in
design. Therefore, for girders with skewed supports, the buckling capacity was defined as
the applied moment for the girders to reach a load level corresponding to buckling between
brace points using Eqgs. 2.1 and 2.2 from Chapter 2. These equations assume no warping
restraint at the ends of the unbraced length. The ideal stiffness can be obtained based on this
defined buckling capacity. Shi [1997] eliminated the warping stiffness at the ends of the
unbraced length in the FEA models by making the compression flange discontinuous at the
brace locations. Modifying the model in this manner essentially provided the same buckling
capacity that was obtained by defining the load levels by Eqgs. 2.1 and 2.2. ‘
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3.3 Computational Scope

There were a number of parameters that were considered in the computational study.
These parameters include the following:

1) Girder System (two to four girder systems were considered)

2) Girder Span (40 feet to 120 feet)

3) Girder Cross Section (Singly and Doubly Symmetric)

4) Skew Angle (0, 15, 25, 35, and 45 degrees)

5) Brace Orientation (Parallel to Skewed Support or Normal to girders)

6) Loading Condition (Uniform Moment, Concentrated Load, Uniformly distributed
Load)

7) Number of intermediate braces

The girder cross sections that were studied are shown in Fig. 3.8. The sections
consisted of three doubly-symmetric rolled sections (W14x22, W30x99 and W36x160) and
three singly-symmetric plate girders labeled Sections #4, #5, and #6. The degree of
monosymmetry of the singly-symmetric sections can be obtained by considering the ratio of
I,/I, of the sections, in which Iy, is the weak axis moment of inertia of the compression
flange and I, is weak axis moment of inertia of the entire girder. The AASHTO
Specification requires the ratio for flexural members fall within the following limits:

0.1< 1,/1, <0.9.

The respective I,c/I, ratios for Sections #4, #5, and #6 are: 0.28, 0.27, and 0.18. Doubly-
symmetric sections have ratios of I,./Iy of 0.5.

Although the W14x22 section is relatively small for many bridge applications, this is
the section used in the laboratory tests and was consequently included in the finite element
modeling. The other five sections were selected from the short span simply supported steel
bridge plans recommended by the American Iron and Steel Institute [1994]. Table 3.1
illustrates key parameters for the selected sections such as span, span depth, number of
intermediate braces, and maximum unbraced length.

The remainder of this section will focus on comparisons between the FEA results for
single girders and predictions from equations outlined in Chapter 2. The results presented
are for uniform moment loading on simply supported beams with a variety of unbraced
lengths. For doubly symmetrical sections, Timoshenko’s solution given in Eq. 2.1 was used
in the comparison. For singly symmetrical sections, Eqs. 2.10 and 2.13 were employed as
recommended by the AISC LRFD and the AASHTO Specifications.

Tables 3.2 to 3.4 present comparisons of results from Eq. 2.1 and FEA for the doubly-
symmetric sections: W14x22, W30x99, and W36x160. The tables show that the buckling
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capacities predicted by Eq. 2.1 are generally within 1 to 3% of the FEA solutions. Although
the accuracy of Eq. 2.1 does change slightly with increasing unbraced length and varies with
the cross-section, the expression provides good estimates of the buckling capacity.
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Figure 3.8 Cross Sections Considered in Computational Study
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Table 3.1 Parameters for Cross-Sections Studied

Sections Span L/d Ratio No. of Unbraced Length
(feet) Braces (feet)
W14X22 33 28.8 1 16.5
W30X90 40 16.3 1 20
W36X160 60 20 2 20
Section #4 80 18.1 3 20
Section #5 100 22.6 3 25
Section #6 120 24 4 24
Table 3.2 W14X22 Section
Unbraced L/d Ratio Eq. 2.1 FEM Results | % Difference
Length (ft.) (k-ft) (k-ft)
10 8.7 89.12 89.55 +0.48%
15 13.1 45.21 44.60 -1.36%
20 17.5 29.28 28.78° -1.72%
25 21.8 21.49 21.09 -1.90%
30 26.2 16.97 16.65 -1.95%
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Table 3.3 W30X99 Section

Unbraced L/d Ratio Eq. 2.1 FEM Results | % Difference
Length (ft.) (k-ft) - (k-ft)
30 12.1 437.12 434.50 -0.60%
40 16.2 280.97 278.59 -0.85%
50 20.2 205.11 203.10 -0.99%
60 243 161.33 159.65 -1.05%
70 283 133.08 131.68 -1.06%
Table 3.4 W36X160 Section
Unbraced L/d Ratio Eq. 2.1 FEM Results | % Difference
Length (ft.) (k-ft) (k-ft)
30 10.0 1219.28 1193.31 -2.18%
40 13.3 784.15 764.40 -2.58%
50 16.7 572.68 557.25 -2.77%
60 20.0 450.57 438.27 -2.81%
70 233 371.75 361.75 -2.76%
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Tables 3.5 to 3.7 show comparisons of the buckling capacities from the FEA result and
the expressions in the AISC LRFD and AASHTO specifications for the singly-symmetric
sections #4, #5, and #6. Within each cell in the third and fourth column, the value on the top
line is the prediction using the AISC or AASHTO expression, while the value on the second
line is the percent difference with respect to the FEA results. A positive value of the percent
difference indicates that the equation was conservative with respect to the FEA solution.

Table 3.5 Singly-Symmetric Section #4
Unbraced | L/d Ratio| AISC LRFD AASHTO FEM Results
Length (ft.) Eq. 2.10 Eq. 2.13

40 9.1 733.66 k-ft 708.92 k-ft 735.64 k-ft
(+0.27%) (+3.63%)

50 11.3 508.43 k-t 488.20 k-ft 510.11 k-ft
(+0.33%) (+4.30%)

60 13.6 384.35 k-ft 366.18 k-ft 385.53 k-ft
(+0.30%) (+5.02%)

70 15.8 308.01 k-ft 290.85 k-ft 308.88 k-ft
(+0.28%) (+5.84%)

80 18.1 257.14 k-ft 240.52 k-ft 257.79 k-ft
(+0.26%) (+6.70%)
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Table 3.6 Singly-Symmetric Sectic 45

Unbraced | L/d Ratio | AISC LRFD AASHTO FEM Results
Length (ft.) Eq. 2.10 Eq. 2.13
40 9.1 1300.03 k-ft 1245.07 k-ft 1265.76 k-ft
(-2.71%) (+1.63%)
50 11.3 933.57 k-ft 883.10 k-ft 905.75 k-ft
(-3.07%) (+2.50%)
60 13.6 728.12 k-ft 679.34 k-ft 705.78 k-ft
(-3.16%) (+3.75%)
70 15.8 598.97 k-ft 550.99 k-ft 578.81 k-ft
(-3.48%) (+4.81%)
80 18.1 510.86 k-ft 463.48 k-ft 493.64 k-ft
(-3.49%) (+6.11%)
Table 3.7 Singly-Symmetric Section #6
Unbraced | L/d Ratio| AISC LRFD AASHTO FEM Results
Length (ft.) Eq. 2.10 Eq. 2.13
50 10 1071.37 k-ft 975.19 k-fi 1040.68 k-ft
(-2.95%) (+6.29%)
60 12 849.31 k-ft 755.59 k-ft 822.03 k-ft
(-3.32%) (+8.08%)
70 14 709.14 k-ft 616.29 k-ft 684.87 k-ft
(-3.54%) (+10.01%)
80 16 612.95 k-ft 520.66 k-ft 590.08 k-ft
(-3.87%) (+11.76%)
90 18 542.69 k-ft 451.13 k-ft 521.49 k-ft
(-4.06%) (+13.49%)
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The results shown in Tables 3.5 through 3.7 show that the lateral torsional buckling
equation in the AASHTO Specification provides reasonable estimates of the buckling
capacity of the steel girders, though it is somewhat conservative for the plate girders studied.
Although the LRFD expression shows closer agreement with the FEA solution, this
expression is substantially more complex than the AASHTO expression.

In addition to the finite element analyses of the steel sections, three dimensional FEA
studies of the completed bridges were also conducted. The FEA model of the completed
bridge is discussed in Section 7.4.1. The FEA results of the completed bridge are presented
in Chapter 7.



Chapter 4
Effects of Imperfections on Stability Brace Forces

4.1 Introduction

Although there are a number of factors that affect the magnitude and distribution of
stability brace forces, the two primary factors are the brace stiffness and the magnitude and
shape of the initial imperfection. Providing a brace stiffness equal to twice the ideal stiffness
is generally recommended to control brace forces and deformations. By providing twice the
ideal stiffness, deformations at the brace are generally limited to a value approximately equal
to the initial imperfection. The critical imperfection for beams involves a twist of the cross-
section that is often denoted as ¢,. Therefore if at least twice the ideal stiffness is provided,
the maximum brace moment can be estimated using the following expression:

M, =54, 4.1

where Br is the provided brace system stiffness and ¢y is the initial imperfection.

Equation 4.1 shows that the brace moment is directly related to the magnitude of the
initial imperfection. Therefore, if the initial imperfection is doubled then the brace moment
is also doubled. A key aspect of developing bracing provisions is to establish a
recommended value of the initial imperfection, ¢,. In addition, to appropriately conduct
studies on the bracing behavior of torsional bracing systems, the shape of the critical initial
imperfection must also be established. The following section will present FEA results that
established the critical imperfections used in the bracing studies presented in this
dissertation, and results are summarized in Chapter 4.3.

4.2 Critical Imperfections for Torsional Bracing of Beams

As outlined in Chapter 3, this study included both eigenvalue buckling and large
displacement analyses to study the behavior of torsional bracing systems. The large
displacement analyses were conducted on imperfect systems to determine the strength
requirements for the braces. To conduct such an analysis, the critical imperfection must first
be determined. The critical imperfection is an initial out-of-straightness and/or twist that can
reasonably occur in practice and will generally result in the maximum brace forces.
Establishing the critical imperfection for torsional bracing systems requires appropriate
selection of the magnitude and distribution of the initial imperfection, which can be a
complicated problem. The complexity of selecting an imperfection occurs in determining
how the cross-section should be twisted as well as how the twist should vary along the girder
length. The determination of how the imperfection should be distributed along the girder
length is often complicated by systems with multiple intermediate braces and moment
gradient. The critical imperfection will be established in this chapter by first considering
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systems with only one intermediate brace followed by systems with multiple intermediate
braces.

Finite element results on the W14x22 section that was studied in the laboratory
investigations were used to help define the critical twist on the cross-section. The initial
imperfection of the two beams used in the twin girder experimental setup varied slightly
from one another. One beam essentially had a pure lateral sweep of both flanges in a half
sine curve shape of equal magnitude along the length. The second beam also had an
imperfection with both flanges swept laterally in the same direction, however the top flange
had a larger lateral sweep than the bottom flange. The maximum sweep for both beams was
approximately 0.25 in. Although pure lateral sweep of the cross-section is generally not as
critical as imperfections with twist, the sweep of the section can still produce significant
brace moments. In these cases the girder essentially behaves like a “curved girder” with a
relatively large radius of curvature. However, the difficulty associated with beams such as
those in the experimental study that have such a pure sweep is trying to determine the
“effective initial twist,” ¢,, for use in an expression such as Eq. 4.1. A beam with a pure
sweep does not have an initial twist. The problem is further complicated because the two
beams of a twin girder system usually have different imperfections as was the case in the
experimental studies conducted during this project. The purpose of the experimental
program was to investigate the behavior of steel beams with skewed supports and also to
validate design expressions established in the FEA studies. Although an equivalent twist was
derived or back calculated from the experimental test data, FEA studies were also conducted
on the test beams focusing on variations in the initial imperfection and the effect on the brace
moment.

The W14x22 beams had a span of 33 ft. and were simply supported with twist
prevented at the supports. A midspan point load was applied at the top flange. A torsional
brace with a stiffness approximately equal to twice the ideal value was provided at midspan
of the beams. Figure 4.1 shows graphs of the brace moment versus the applied load from the
FEA analyses. A variety of initial imperfections were considered to evaluate the effects on
the brace moment with the different imperfections labeled in the figure as Cases A-G.

The graph shows brace moments are relatively sensitive to the imperfection that is
input to the analysis. The largest brace moment occurred with the Case A imperfection, in
which the top flange was displaced an amount equal to 0.25 in. in one direction while the
bottom flange had an initial out-of-straightness of 0.08 in. in the opposite direction. In Case
B, the top flange had an initial out-of-straightness of 0.25 in. while the bottom flange was
straight. The resulting brace moment is smaller than that observed for Case A, however the
reason for this is probably because the Case A imperfection has a larger initial twist. For
Case C the initial twist is the same as in Case B, however the flanges are displaced in
opposite directions similar to Case A. The resulting brace moments in Case C are slightly
smaller than those obtained in Case B. The similar behavior of the two cases labeled B and
C indicates that the brace moment response is the most sensitive to the magnitude of the
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initial twist. Case G shows the resulting brace moments for a section with a pure lateral
sweep. The brace moments are substantially smaller than those from Cases A, B, and C.
Cases D, E, and F were conducted to try to establish an equivalent twist for the laboratory
tests by comparing the measured brace moments to those from the FEA analyses. The Case
D imperfection produced brace moments that were very close the measured values.
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Figure 4.1: Effects of Imperfections on Brace Moments

Although the maximum sweep in the test beams was measured at 0.25 in., for design it
is important to select an initial twist magnitude that is practical for the variety of
imperfections that may be encountered in practice. The provisions in the AISC LRFD
Specifications (2001) are based upon an initial imperfection such as that shown in Fig. 4.2,
where Ly is the spacing between brace points. The top flange has an initial sweep of Ly/500
while the bottomn flange is straight as in the Case B imperfection in Fig. 4.1. The Ly/500
lateral sweep of the top flange is consistent with the sweep tolerances for rolled beams.
Utilizing the sweep tolerance of L,/500, based upon the results shown in Fig. 4.1, the worst-
case scenario with regard to the maximum brace moments would probably occur if both
flanges had initial sweeps of L,/500 in opposite directions. However, the likelihood of both
flanges sweeping in opposite directions by magnitudes equal to the maximum sweep
tolerances is relatively unlikely. Therefore the initial imperfection that will be assumed in
this study will take the form of that shown in Fig. 4.2.
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Figure 4.2: Assumed Initial Imperfection

Another concern with regard to the brace strength requirements from a large
displacement analysis is the distribution of the initial imperfection along the girder length.
This is particularly true for cases with multiple intermediate braces. Previous studies
[Helwig et al. 1993] have demonstrated that the shape of the initial imperfection should
generally contain one less wave than the buckled shape between brace points to produce the
largest possible brace moment. Therefore for the W14x22 section with one intermediate
brace as discussed above the shape of the critical imperfection would be similar to that of a
half sine curve with the maximum twist occurring at midspan where the bending moment is
the largest. However, for cases with more than one intermediate brace the shape of the
critical imperfection can be somewhat more complicated since it isn’t clear where the
maximum twist should occur to produce the largest brace moment.

Figure 4.3 shows graphs of the brace moments from the FEA results for a W36x160
with two intermediate braces and a maximum unbraced length of 20 ft. The value of Ly/500
for the beam is therefore equal to 0.48 in. In the finite element model the bottom flange was
kept straight while the top flange was displaced to twist the section along the girder length.
The girders have zero twist at the supports and initial imperfections with four different
distributions of twist along the length were analyzed. Results are shown for three different
loading conditions in Figures 4.3a, 4.3b, and 4.3c¢ for the respective cases of uniform moment
loading, a distributed load applied at the top flange, and a midspan point load applied at the
top flange. For all three load cases, twisting the section so that the maximum initial twist
occurred at one of the brace points while the initial twist at the other brace was zero
produced the worst case with regards to maximizing the brace forces. The graphs show the
brace moment on the vertical axis versus the moment applied on beams on the horizontal axis
for the different distributions of twist. The brace moment has been normalized by the
maximum brace moment corresponding to the critical moment applied on the beam for the
initial imperfection of Case 1, while the applied beam moment has been normalized by the
beam buckling capacity that corresponds to the beam buckling between the brace points.
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Figure 4.3 (b) Brace Moment versus Applied Moment for W36x160 with Uniform
Distributed Load — Effect of Shape of Imperfection
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Figure 4.3 (c) Brace Moment versus Applied Moment for W36x160 with Point Load at
Midspan — Effect of Shape of Imperfection

Results from the FEA analysis indicate that the maximum twist generally occurred at
the brace closest to the point of maximum bending moment on the beam. The change in
twist between the brace point nearest the point of maximum bending moment and the
adjacent braces should be equal to ¢, which is given in the following expression:

L,

%=300a

(4.2)

where: d is the depth of the section, and Ly is the spacing between brace points.

A number of girder cross-sections with a variety of geometrical layouts that were
considered in this study. The number of intermediate brace locations was varied from one to
five with several different bracing orientations. Figure 4.4 shows the critical imperfections
that were used for the variety of twin girder systems. The maximum twists of all of the
beams were established using Eq. 4.2. The magnitudes of the twist at the adjacent cross-
frames were essentially zero. The imperfections shown in Fig. 4.4 were used throughout the
majority of the studies that will be presented in Chapters 5 and 6. The imperfections that
were used in Chapter 7 differed slightly, since the braces in these cases were oriented
perpendicular to the longitudinal axis of the girders with skewed supports. In these
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instances, for girders with only one intermediate brace, the unbraced lengths of the beam
sections adjacent to the brace are different. The initial twist used in these cases was based on
the value given by Eq. 4.2 with the largest L,. Results will be presented in Chapter 8 for a
four-girder bridge. The imperfections that were used for these girders will be discussed in

that chapter.
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Figure 4.4 Shape and Magnitude of the Imperfections in FEA Studies
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Figure 4.4 Shape and Magnitude of Imperfections in FEA Studies - continued

4.3 Summary

This chapter has focused on the selection of critical imperfections for torsional bracing
systems. The critical imperfection that can be reasonably expected to occur in practice
generally consists of a cross-sectional twist resulting from a lateral displacement of one
flange while the other flange remains straight. A practical value for the maximum lateral
flange displacement for both plate girders and rolled sections can be obtained using a value
of Ly/500. This maximum lateral displacement is consistent with the sweep tolerances for
rolled sections and results in the same imperfection that is assumed in the torsional bracing
provisions in the AISC LRFD (2001) Specifications. Several different distributions of the
twist were investigated. To maximize the brace forces, the maximum initial twist should
generally occur near the brace closest to the point of maximum beam moment with zero twist
at adjacent brace points.
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Chapter 5
Bracing Requirements for Bridges with Normal Supports

5.1 Intreduction

The lateral torsional buckling behavior of girders with normal supports was reviewed in
Chapter 2 and equations were discussed for the brace stiffness and strength requirements.
Finite element results are presented in this chapter for girders with normal supports. The
different loading conditions that were considered in the analyses include uniform moment, a
uniformly distributed load applied at the top flange, and a concentrated top flange load at
mid-span. The FEA results are compared with the solutions previously outlined in Chapter
2. Results are shown for both the rolled beam sections and singly symmetric girder sections
that were shown in Fig. 3.7. Analyses were conducted on two, three, and four-girder
systems.

Results from eigenvalue buckling analyses of twin-girder systems are compared with
the brace stiffness requirements in Section 5.2. The girder span-to-depth ratios studied
varied from 16 to 29 with one or multiple braces. Tension-only cross frames were used for
the braces. Finite element results from the large displacement analyses of twin-girder
systems will be presented in Section 5.3. These results will be compared to the strength
requirements previously outlined in Chapter 2. The strength solutions are also shown with a
slight modification to improve the prediction of the brace strength for a variety of moment
levels. Eigenvalue and large displacement analytical results for three and four girder systems
are presented in Section 5.4. Finally, the computational results for the bracing behavior of
girders with normal supports are summarized in Section 5.5.

For many of the girder cross-sections that were considered in this investigation,
comparisons between the FEA results and the equations showed similar trends. In these
cases, representative results are presented and discussed, while redundant results for sections
with similar behavior are presented in the appendix.

5.2 Comparison of Normal Girder Stiffness Requirements with FEA Results

The equations for the normal girder brace stiffness requirements were presented in
Chapter 2. The solution presented included the effects of moment gradient and load height
on the bracing behavior. In this section, results for twin-girder systems with single or
multiple braces are presented. A variety of loading cases were considered in the analyses,
including uniform moment, uniformly distributed loads and concentrated loads at mid-span.
All transverse loads were applied at the top flange. Moment gradient factors for hand
calculations were evaluated using the formula from the AISC and AASHTO LRFD
specifications that was given in Eq. 2.15. Since full-depth cross-frames were used in the
FEA models, the bracing members framed into the girders at the top and bottom flange
locations, and cross sectional distortion had no effect on the overall bracing stiffness. The
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equation for bracing stiffness for the systems considered can therefore be simplified to the
following expression:

=t — (3.1)

where: PBr is the bracing system stiffness, B, is the girder in-plane stiffness, and By is the
brace stiffness.

Figure 5.1 shows a comparison of results from the equations presented in Chapter 2
with the FEA results for a W14x22 section. The two members in the twin-girder system were
spaced 78 inches apart and had a span of 33 feet. Since one midspan brace was used, the
unbraced length was 16.5 feet. Figures 5.1 (a), (b) and (c) illustrate the respective systems
under loading conditions of uniform moment, uniformly distributed loads applied at the top
flange, and a concentrated top-flange load at midspan. The beam buckling capacity is
graphed on the vertical axis while the brace stiffness is graphed on the horizontal axis. The
buckling moment has been normalized by the moment corresponding to buckling between
the brace points. The brace stiffness has been normalized by the ideal brace stiffness
calculated from Eqs. 2.18 and 2.19. Each of the figures shows a profile of the girders and
depicts the type of loading and the layout of the intermediate braces. A plan view is also
shown that clearly shows the orientation of the bracing. Since the girders presented in this
chapter all had normal supports, the braces were perpendicular to the longitudinal axis of the
girders. In Chapters 6, 7, and 8, which focus on bridges with skewed supports, these plan

views will help indicate the orientation and layout of the braces relative to the skew angle.
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The graphs show good agreement between the computational results and the equations
introduced in Chapter 2 in prediction of the ideal brace stiffness. The equations are the most
accurate at predicting the ideal stiffness for the case with uniform moment loading which
makes sense since they were developed for this loading case. For the cases with transverse
loads applied at the top flange, the equation results are slightly unconservative with respect
to the FEA results. The primary source for this difference between the equation and the FEA
results is due to load height effects. Although the factor C; is used in Eq. 2.18 to account for
top flange loading, the C, factors don’t reflect effects of top flange loading on the buckling
capacity. As a result, for distributed loads at the top flange shown in Fig. 5.1(b), the equation
overestimates the buckling capacity by about 6% compared to the FEA results. For the case
with a midspan point load at the top flange, load height has very little effect on the buckling
capacity since the point loads are applied directly at the brace location. The difference
between the FEA solution and equations in Fig. 5.1(c) is due to the value of the Cy;, factor
that results from using Eq. 2.14, which often provides conservative estimates of the C,
factors. As outlined in Chapter 2, the bracing expressions are often a function of the moment
gradient factor corresponding to buckling between brace points, which is denoted by Cy.
Although constant Cy, values are often used for particular load cases, the actual C, values are
a function of the warping stiffness of a section. For example, the estimated value of Cyp, =
1.67 for the case in Fig. 5.1c differs from the actual value of Cy, = 1.76 for the W14x22 with
a ratio of L/d of 29. The actual value of Cy, = 1.76 was determined from an FEA analysis.
The C,, factor is used to evaluate both M,; and Bigear.

Eigenvalue buckling analyses were also performed on a W30x99 section, which had a
40 ft. span (L/d =16) and a girder spacing of 100 in. With one brace at midspan, the
unbraced length was 20 feet. The comparison of the FEA results and equation results for the
W30x99 section is very similar to that of the W14x22 section and is shown in Appendix A.

Figure 5.2 shows the comparison of the results from the equations and the FEA analysis
for the W36x160 section. This twin-girder system had a 60 ft. span and a girder spacing of
120 inches. Intermediate braces were placed at the third points to provide an unbraced length
of 20 feet. Figures 5.2 (a), (b), and (c) illustrate the system under loading conditions of
uniform moment, uniformly distributed loads applied at the top flange, and a concentrated
top-flange load at midspan, respectively.

The graphs show that the computational results have good agreement with the
equations, particularly for the case of uniform moment loading. For cases of uniformly
distributed loads and midspan point loads, the equations generally provide conservative
estimates of moment with respect to the FEA solutions for most B/B;gea ratios. The primary
reason for the large difference between the two solutions is because the equation
conservatively neglects the warping restraint provided to the middle third of the beam by the
exterior thirds. For lower values of the brace stiffness, some of the conservative nature of the
equations with respect to the FEA results is probably due to the relatively stocky nature of
the W36x160.
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Effects of top flange loading are not as significant with two intermediate braces when
compared to cases with only one intermediate brace. This is demonstrated in Fig. 5.2b by the
relatively small difference between the equations and the FEA results for B/Bigea > 1.0
compared to the respective case shown previously in Fig. 5.1b. Load height effects for the
case with a top flange point load at midspan shown in Fig. 5.2¢ are noticeable since the
equation slightly overestimates the capacity relative to the FEA results (for B/Bigea > 1.0),
however the effects are less than was observed in Fig. 5.1c.

Figure 5.3 shows the comparison of results from the equations and the FEA solutions
for the singly-symmetric Section #4. The twin-girder system had a span of 80 feet and a
girder spacing of 120 inches. Three intermediate braces were employed to give an unbraced
length of 20 feet. Figures 5.3 (a), (b) and (¢) illustrate the system under loading conditions of
uniform moment, uniformly distributed loads applied at the top flange, and concentrated top-
flange loads at midspan, respectively.

The graphs show good agreement between the computational results and the equations,
particularly for the uniform moment loading case. The AISC LRFD equation for singly-
symmetric sections (Eq. 2.10) was used to estimate the critical capacity for buckling between
brace points. The equation overestimates the buckling capacity by approximately 3% with
respect to the FEA results when the girder buckles between the brace points. Use of the
AASHTO expression for lateral torsional buckling would lead to additional conservatism
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since the compression flange (top flange) of the singly-symmetric sections is the smaller
flange, however the amount of conservatism would generally be less than 10%.
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Figure 5.3 (b) M/M,; versus B/Bigeal for Section #4 with Distributed Loads on Top Flange
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Midspan

As discussed for the graphs previously shown in Figs. 5.2b and 5.2c, the cases with a
moment gradient, the buckling capacity from the FEA results are approximately 10% higher
than the equations due to the warping restraint provided by the outside quarters of the beams.
With three intermediate braces, the effects of load height have a minimal effect on the
buckling capacity. The results for the other singly-symmetric Sections #5 and #6 are similar
to the results of Section #4 and are presented in Appendix A.

Overall, Figs. 5.1 to 5.3 (as well as the corresponding results shown in the Appendix)
show that the solutions presented in Chapter 2 provide good estimates of the ideal brace
stiffness. Most of the differences between the graphs of the FEA solution and the equations
were primarily caused by differences in evaluating the buckling capacity of the girder once
full bracing was achieved and the beam buckled between brace points. These differences
were mainly due to either warping restraint or load height effects, both of which are usually
neglected in hand solutions.

For the cases with moment gradient and multiple braces along the girder length, the
middle segment is usually more critical than the segments close to the ends. When the girder
buckles between the brace points, the outside segments provide extra warping restraint to the
middle segment, which results in a higher buckling capacity. The warping restraint is
generally neglected in hand calculations, which leads to conservative estimates of the
buckling capacity and brace stiffness requirements. Top flange loading has an effect on the
critical buckling capacity for the systems, however these effects were most predominant with
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only one intermediate brace at midspan. Load height effects become less significant for
systems with more than one intermediate brace.

5.3 Comparison of Normal Girder Strength Requirements with FEA Results

The equations for the brace strength requirements for girders with normal supports
were presented in Chapter 2. This section will present and compare results on the brace
strength requirements from FEA analyses and the previously presented equations. As
mentioned in Chapter 3, large displacement analyses are required to investigate the brace
strength requirements. The magnitudes of the brace forces are directly related to the shape
and magnitude of the initial imperfection as discussed in the previously chapter. Therefore,
the critical imperfection discussed in Chapter 4 was utilized to maximize the potential brace
forces.

The brace strength requirements presented in Chapter 2 use the following equation to
predict the total twist angle for a beam with an initial twist angle, ¢y.

¢Q
¢ = ——t 2
d 1 :BT;‘ M‘ (5 )

ﬁ?' Mcr

where: Br; is the ideal torsional brace stiffness, Pr is the brace stiffness provided, M is the
maximum applied moment, and M, is the critical moment corresponding to buckling
between braces. The brace moment can then be estimated using Hooke’s law:

M, = B (¢ - &,) (5.3)

The total twist angle ¢t that results from Eq. 5.2 for a beam with an initial imperfection ¢,
and a brace stiffness of twice the ideal value is equal to twice the initial twist angle at a
moment level of M.,. Equations 5.2 and 5.3 were developed in previous studies [Yura and
Phillips 1992] on torsional bracing behavior for beams. A comparison of results from the
solution and FEA analyses is illustrated in Fig. 5.4 for a W14x22 scction. The solution is
conservative for loads less than approximately 90% of the critical load. However, the
solution shows good agreement with the FEA results for loads at or near the critical load,
albeit slightly unconservative for the case shown. The slight unconservative nature of the
solution comes from the assumption that the total twist is equal to twice the initial twist, ¢,,
when a stiffness of twice the ideal value is provided. In reality, the twist is slightly larger
than twice the initial imperfection, however the difference is not too significant.
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Based upon the FEA results in this study, Eq. 5.2 was modified as shown in Eq. 5.4 to
provide better estimates of the brace moments. The change consists of simply squaring the
moment term.

gy =—P 5.4)
1_&(9_@}
36 T M cr
Figure 5.5 shows a comparison between the FEA results and the predicted brace moment

utilizing Eq. 5.4 for ¢r in Eq. 5.3 for the W14x22 section with uniform moment loading. The
accuracy of the prediction for the W14x22 section with uniform moment loading is
substantially better for all brace moments than that previously shown in Fig. 5.4.

Figures 5.6a, b, and ¢ show good agreement was also obtained with Section #5 for the
respective load cases of uniform moment, uniform distributed loads at the top flange, and a
midspan point load applied at the top flange. Graphs for the other sections also showed good
agreement between the predicted brace moment and the FEA analyses and are presented in
the Appendix.
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The behavior of the W36x160 differed from the other four sections because the
maximum moment occurred between brace points instead of directly at a brace. The twin
girder system had two intermediate braces located at the third points. Figure 5.7 shows the
comparison of Eq. 5.4 with the FEA results for the W36x160 section. The graphs show that
Eq. 5.4 has good agreement with the FEA results for uniform moment loading (Fig. 5.7a).
However, for cases with a moment gradient, the solution is relatively conservative with
respect to the FEA results. The conservative nature of the equations for cases with moment
gradient is due to the location of the maximum applied moment relative to the brace location.
The maximum applied moment occurs at midspan, while the intermediate braces are located
at the third points. When the maximum moment occurs between brace points, adjacent braces
share the brace moment instead of a single brace providing the majority of the restraint,
which is the case when the maximum moment occurs at the brace location. Although the
equations were conservative for the W36x160, the graphs shown in this section as well as in
the appendix demonstrate that the equations do a reasonable job of predicting the brace
moments.
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5.4 Brace Stiffness and Strength Requirements for Systems with Several Girders

The results presented thus far have focused on twin girder systems. Since most systems
consist of several girders through the width of the bridge, three- and four- girder systems
were also considered to study the effect of girder interaction. Little research has been
published on the brace stiffness requirements for systems with more than two-girders. One
of the major differences in bracing behavior in systems with several girders is the effect of
the in-plane girder stiffness, since the girders are often tied together through the width of the
bridge. The original development of the brace stiffness component of the in-plane stiffness
by Helwig et al. [1993] considered a twin girder system. Yura [1994] modified this twin-
girder solution to yield the following expression:

_24(n, -1)" S?EI,
T on L

g

(5.6)

4

where:
S = girder spacing
I, = moment of inertia of girder at strong axis
L = girder length
ng = the number of the girders

For systems with several girders, the in-plane girder stiffness becomes relatively large and
has significantly less effect on the overall brace stiffness than was observed with twin-girder
systems.

The equations for the brace stiffness requirements for three- and four-girder systems
are presented in this section and are compared with results from the FEA solutions. The
equations used to calculate the total stiffness for each individual brace are presented in
Chapter 2. The expression to convert the discrete torsional brace stiffness to the equivalent
continuous torsional brace stiffness were modified using the following equation:

7, = il 57

an, L
where a = (.75 for a single torsional brace at midspan; a = 1.0 for cases with more than one
intermediate brace; n; is the number of intermediate brace locations along the girder length;
n. is the number of braces at a single brace location (across the width of the bridge); and ng is
the number of the girders. For example, n. = 2 for a 3-girder system and n. = 3 for a 4-girder

system.
Although FEA analyses were performed on three- and four-girder systems with all five

sections shown previously in Fig. 3.7, the sections exhibited similar behavior with respect to
the bracing equations. Therefore, typical results for a few of the sections are shown in this
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section, while the remainder of the results are presented in the Appendix. Equations 5.6 and
5.7 were used to evaluate the brace stiffness requirements. Figures 5.8 and 5.9 show the
respective results for a three-girder system with W30x99 sections and a four-girder system
using Section #5. The comparisons between the equations and the FEA results that are
presented in this chapter are similar to the results for the other sections presented in the
Appendix.

The graphs show that Eq. 5.7 does a good job of estimating the ideal brace stiffness for
three- and four-girder systems, particularly for the uniform moment loading. For cases with
moment gradient the results are either conservative or unconservative, depending on which
case is considered. For example, in Fig. 5.8, the equations are approximately 8%
unconservative with respect to the FEA results for the W30x99 section. The unconservative
nature of the predicted results is primarily due to the effects of load height as outlined
previously. For cases with multiple braces and moment gradient, warping restraints in
segments with lower moment levels and these restraints lead to conservative estimates of the
buckling behavior. This effect is demonstrated in Figs. 5.9b and ¢ for Section #5. The FEA
results are approximately 10 % higher than the equations due to the warping restraint
provided by the outside segments of the beams.

The remainder of this section will present FEA large displacement analysis results for
multi-girder system. The comparison of the FEA results with results from the bracing
equations are shown in Fig. 5.10 and Figure 5.11. The graphs show that good agreement
between the equation and the FEA results for multi-girder system.
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Moment
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5.5 Summary

This chapter has presented finite element results for several different sections with a
variety of loading conditions. The results have demonstrated the torsional bracing behavior
of two-, three-, and four-girder systems.

Equations for the brace stiffness requirements presented in Chapter 2 show good
agreement with the FEA results. The modified Eq. 5.4 together with Eq. 5.3 can be used to
estimate strength requirements that show good comparison with the large displacement
analysis results.

For the multi-girder systems, Eq. 5.7 can be used to estimate the total brace stiffness,

which is a function of the number of girders and the number of braces per brace location. The
results show a good agreement with the FEA results.
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Chapter 6
Bracing Requirements for Bridges with Skewed Supports and Parallel Braces

6.1 Introduction

The brace stiffness and strength requirements for normal girders were discussed in
Chapter 5. This chapter will focus on bridges with skewed supports and braces that are
parallel to the skew angle. Both stiffness and strength requirements for the braces were
investigated. The five cross sections outlined in Chapter 3 were utilized in the FEA studies
with a variety of loading conditions including: uniform moment, uniformly distributed loads
applied at the top flange, and midspan concentrated loads applied at the top flange.
Comparisons are made in this chapter between the FEA results and expressions for the brace
stiffness and strength requirements. The brace requirements for girders with skewed
supports have been obtained by modifying the previous solutions that were developed for
girders with normal supports. Two-, three, and four-girder systems were considered with
skew angles ranging from 10° to 45°.

Following this introductory subsection, the stiffness requirements for braces parallel to
the skew angle are presented in Section 6.2. The bracing system utilized in the FEA
analytical results presented in this chapter consisted of tension-only cross frames. The skew
angles that were considered were 10, 20, 30 and 45 degrees. Although the results presented
in the main text focus on selected skew angles, such as 20 and 45 degrees, in many situations
results for the other skew angles that were considered will be presented in the Appendix.
Brace strength requirements for bridges with braces parallel to the skew angle will be
presented in Section 6.3. The girder systems considered in sections 6.2 and 6.3 consist of
two-, three-, and four-girder bridges. The results will be summarized in Section 6.4.

Similarities were observed between many of the comparisons of the FEA analyses and
the modified solutions for the variety of girder systems that were studied. In these instances,
representative results will be presented and discussed in this chapter while graphs of the
other sections will be presented in the Appendix.

6.2 Brace Stiffness Requirements for Girders with Skewed Supports and Parallel
Braces

When a brace is oriented parallel to the skewed supports, the effectiveness of the brace
can be significantly reduced by a reduction in the stiffness component that resists girder
twist. The stiffness reduction is due to the fact that the full stiffness of the brace is not
engaged in resisting twist of the girder cross-section due to the angled orientation of the
brace. Figure 6.1 illustrates the derivation of the stiffness of a tension-only system for a
parallel brace. The component stiffness of the parallel brace that resists girder twist can be
derived by utilizing the geometrical dimensions in the skewed orientation (i.e. the member
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lengths will be longer in the skewed orientation) and can be expressed by the following
expression:

Bisiow = By cos’d 6.1)

where: B, is the brace stiffness given by the expressions shown previously in Fig. 2.7 and 0 is
the skew angle. The cos’0 term in Eq. 6.1 accounts for the reduction in brace stiffness when
the brace is oriented parallel to the skew angle. Expressions for the cross-section distortion
and the in-plane girder stiffness are the same as given in Chapter 2. For a given stiffness of
parallel brace, Buskew, the following expression can be used to estimate the total stiffness of
the bracing system:

1 1 1
+

1 L
ﬂ?‘ ﬁbskew ﬁscc ﬂg

(6.2)

The overall stiffness behavior of the parallel brace decreases significantly with the skew

angle since the cos’@ term reduces the stiffness. The effectiveness of the brace for a given

member area is also reduced due to the increase in brace length due to the orientation of the
brace.
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Figure 6.1 Derivation of Brace Stiffness for Parallel Brace
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Figures 6.2, 6.3, and 6.4 show comparisons of Egs. 6.1 and 6.2 with FEA results for a
W14x22 section. The results are from an eigenvalue buckling analysis for a twin-girder
system with a 33-foot span and a single brace at midspan. Results are shown for skew angles
of 26.5° and 45°, which are the angles that were used for the test beam supports in the
experimental study. Figs 6.2, 6.3, and 6.4 illustrate the systems under the respective loading
conditions of uniform moment, uniformly distributed loads applied at the top flange, and
concentrated top-flange loads at midspan. The beam buckling capacity is graphed on the
vertical axis while the brace stiffness is graphed on the horizontal axis. The buckling
moment has been normalized by the moment corresponding to girders buckling between the
brace points. The brace stiffness has been normalized by the ideal brace stiffness calculated
from Egs. 6.1 and 6.2. The results graphed in Fig. 6.2 show good agreement between the
equations and the FEA results for the W14x22 beams with uniform moment loading. Graphs
are shown for skew angles of 26.5° and 45° in the separate figures labeled a and b,
respectively. Figs. 6.3 and 6.4 show the skewed twin-girder system for the respective cases
of a uniformly distributed load and a concentrated load applied at the top flange. The graphs
show that for the uniform moment loading case, Eqgs. 6.1 and 6.2 have good agreement with
the FEA results. For cases with moment gradient, the equations are slightly unconservative
for stiffness at or near the ideal value, however, this is due to effects of load height and
underestimating the actual C, factor as discussed in Chapter 5.

Eigenvalue buckling analyses were also performed on a W30x99 section, which had a
40 ft. span (span to depth ratio, L/d =16) and a single parallel brace at midspan. Skew angles
of 10° and 30° were considered for these the beams. The comparisons of the FEA and
equation results for the W30x99 section are similar to that of the W14x22 section and are
presented in Appendix B.

Figs. 6.5, 6.6, and 6.7 show the comparisons of the results from the equations and the
FEA analyses for the W36x160 section. The twin-girder system had a 60 ft. span (L/d = 20)
and a girder spacing of 120 inches. Skew angles of 20° or 45° were considered. Parallel
intermediate braces were placed at the third points to provide an unbraced length of 20 feet.
Figs. 6.5, 6.6, and 6.7 illustrate the system under the respective loading conditions of uniform
moment, uniformly distributed loads applied at the top flange, and concentrated top-flange
loads at midspan. The graphs show that Egs. 6.1 and 6.2 have good agreement with the FEA
results, particularly for the uniform loading case. For cases with moment gradient, the
equations provide conservative estimates with respect to the FEA solutions, however, this is
because the hand calculations conservatively neglect the warping restraint provided to the
middle third of the beam by the exterior thirds as was discussed in Chapter 5. This warping
restraint as well as the presence of intermediate bracing tends to negate the effects of top
flange loading.
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Figures 6.8, 6.9, and 6.10 show the comparisons of the equation and FEA results for the
singly-symmetric Section #5. The twin-girder system had a span of 100 feet and a girder
spacing of 120 inches. Skew angles of 20° and 45° were considered. Three intermediate
parallel braces were employed yielding an unbraced length of 25 feet. Figs 6.8, 6.9, and 6.10
illustrate the system under the respective loading conditions of uniform moment, uniformly
distributed loads applied at the top flange, and concentrated top-flange loads at midspan.
The graphs show good agreement between the computational results and the equations,
particularly for the uniform moment loading case. For cases with moment gradient, the
buckling capacities from the FEA results are approximately 10% higher than the Egs. 6.1 and
6.2 due to the warping restraint provided by the outside quarters of the beams as discussed in
Chapter 5. The effects of load height have a minimal effect on the buckling capacity with
three intermediate braces.

Results for the other singly-symmetric section #4 are similar to results of section #5
and are presented in Appendix B. The twin-girder system had an 80 ft span (L/d = 18) and a
girder spacing of 120 inches with skew angles of 20° or 30°. Three intermediate braces were
employed to give an unbraced length of 20 feet.

The graphical comparisons of the FEA results and Eqgs. 6.1 and 6.2 presented in this
section and the Appendix show that the expressions provide good estimates of the brace
stiffness requirements for girders with braces parallel to skewed supports. The expressions
are the most accurate for the cases with uniform moment loading. Although the solutions
had good agreement with the FEA results for cases with moment gradient, the expressions
were either slightly conservative or unconservative depending on the distribution of bracing
along the girder length. These slight differences between the analytical results and the
predicted solutions were due to either load height effects or warping restraints that are
generally neglected in the hand calculations.
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6.3 Brace Strength Requirements for Girders with Skewed Supports and Parallel
Braces

In addition to altering the effectiveness of the braces from a stiffness perspective, the
parallel brace orientation also affects the forces that develop in the braces. The strength
requirements for the parallel braces can be simply modified by the following expression:

Mbr

brskew ~

M —
cos@

(6.3)

where: My, is the recommended value of the brace moment for girders with normal supports,
and 0 is the skew angle.

The strength requirements for the braces were determined using large displacement
analyses. The accuracy of Eq. 6.3 was checked with a variety of values of the brace stiffness
relative to the ideal value. As outlined in Chapter 2, the magnitudes of the brace moments
are a function of the brace stiffness that is provided. Although a brace stiffness of twice the
ideal value is often recommended, the strength requirements can be adjusted to account for
cases in which larger or smaller stiffness are provided. Figs. 6.11, 6.12, and 6.13 show
comparisons of the FEA results and the equations for the W14x22 section with values of the
brace stiffness of Br = 1.5Bideat, Pt = 2Pideat, and Pr = 3Pigear,. Large displacement analyses
were conducted on this twin girder system, which had a 33 ft. span and a girder spacing of 78
inches with a 26.5° skew angle. The loading cases included uniform moment, uniformly
distributed loads and concentrated loads at midspan. The transverse loads were applied at
the top flange. The graphs show the brace moment on the vertical axis versus the moment
applied on the beams on the horizontal axis. The brace moment has been normalized by the
maximum brace moment corresponding to the critical moment applied on the beam, while
the applied beam moment has been normalized by the beam buckling capacity that
corresponds to the beam buckling between the brace points. The graphs show that the
strength equations with the modification to account for the skew angle (Eq. 6.3) have good
agreement with the FEA results along the entire range of loading. The expressions are
slightly unconservative for a few cases as the applied moment approaches the load
corresponding to buckling between the brace points. The slight unconservative nature of the
solution comes from the assumption that the total twist is equal to twice the initial twist, ¢,
when a stiffness of twice the ideal value is provided. In reality, the twist is slightly larger
than twice the initial imperfection, however the assumption provides reasonable estimates of
the brace moments. Results for the singly-symmetric section #4 are similar to the results of
the W14x22 section and are presented in Appendix B. The twin-girder system had an 80 ft
span (L/d = 18) and a girder spacing of 120 inches with 30° skew angle. Three intermediate
parallel braces were employed to give an unbraced length of 20 feet.
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6.4 Summary

Comparisons between the FEA results and expression for the strength and stiffness
requirements of braces parallel to the skew angle have been presented in this chapter. A
variety of parameters were considered in the study including skew angle, loading conditions,
and the cross-sectional shape. The expressions that were modified to account for the skew
angle had good agreement with the FEA results in estimating both the strength and stiffness
requirements of torsional braces.
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Chapter 7
Bracing Requirements for Bridges with Skewed Supports and Normal Braces

7.1 Introduction

The bracing requirements for normal girders and skewed girders with parallel braces
were discussed in Chapters 5 and 6. When the skew angle is greater than 20° the AASHTO
Specifications require braces to be oriented normal to the girder lines. This chapter will
investigate the bracing requirements for bridges with skewed supports and braces that are
normal to the longitudinal axis of the girders (normal braces). The solutions for bracing
requirements in girders with skewed supports and normal braces will be investigated and
compared with FEA results. The girder systems studied only include twin-girder systems.
The skew angles of the bridges that were studied range from 10° to 45°. Similar to the
loading conditions studied in the previous chapters, load cases consisting of uniform
moment, uniformly distributed loads applied at the top flange, and concentrated top flange
loads at mid-span were considered. The chapter is divided into four sub-sections. Following
this introduction, the brace stiffness requirements for bridges with skewed supports and
normal braces are discussed in Section 7.2. The effect of the skew angle on the brace
stiffness requirements was investigated. The bracing systems utilized in the FEA analysis for
the results presented in this chapter consisted of tension-only cross frames. Brace strength
requirements for bridges with skewed supports and normal braces are discussed in Section
7.3. Finally, the results are summarized in Section 7.4.

As mentioned in the previous chapters, in many situations, comparisons of the FEA
results and the equations were similar for a variety of the girder cross-sections and the skew
angles that were considered. In these cases, representative results are presented and
discussed in this chapter, while redundant results for sections with similar behavior are
presented in the Appendix.

7.2 Brace Stiffness Requirements for Girders with Skewed Supports and Normal
Braces

When a brace is oriented normal to the girder line for bridges with skewed supports, the
skew angle can affect the bracing behavior, however the effect on the stiffness is not as
significant as was observed for braces oriented parallel to skewed supports. Figure 7.1
illustrates the effect of the skew angle on the brace stiffness-for girders with skewed supports
and normal braces. Skew angles of 0°, 20°, and 30° were considered. The girders were
subjected to uniform moment loading. Figure 7.1a shows the comparison of FEA results for
a twin girder system with W30x99 girders and a 40-foot span. There is only one
intermediate brace between the supports. With one intermediate brace, changes in the skew
angle affect the unbraced length of the longer beam segment. The unbraced length of the
longer beam segment ranged from 20 ft. with normal supports to 22.5 ft. with a 30° skew.
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The longer unbraced length for the beams with the larger skew angles leads to lower
buckling capacities corresponding to full bracing (buckling between the brace points).

The buckling capacity is graphed on the vertical axis versus the area of the cross frame
members on the horizontal axis. For all three skew angles, the buckling capacity of the
girders has been normalized by the moment, M, ¢oskew, cOITEsponding to buckling between
the brace points for the case with zero skew (normal supports). Therefore, the ratios of M/
M: ooskew corresponding to buckling between the braced points (full bracing) for the cases
with 20° and 30° skew angles are less than 1.0 since the girders in these cases have a larger
unbraced length than the case with normal supports.

In addition to a lower buckling capacity corresponding to full bracing, the bracing is
also less effective for beams with skewed supports compared to the cases with normal
supports. This is reflected by the lower buckling moment for a given brace stiffness for the
cases with skewed supports in Fig. 7.1a. Therefore the expressions used for determining the
stiffness required should be modified to account for this effect.

The expressions for the torsional brace stiffness required that was presented in Chapters
2 and 5 were based upon an equivalent “continuous brace stiffness” given in the following
expression:

ﬁr = (7.1)

where: n is the number of intermediate brace locations along bridge length.

For beams with only one intermediate brace, it was recommended to divide Br by 0.75L
in Eq. 7.1. Results presented in Chapter 5 showed good agreement between the FEA results
and the equations for this recommendation. However to avoid unconservative estimates of
the bracing required for beams with skewed supports and normal supports, it is
recommended to use Eq. 7.1 (with the full L) for all beams regardless of the number of
intermediate braces. Doing so will generally be conservative for beams with skewed
supports and normal supports; subsequent graphs presented in this chapter will show good
agreement for members with skewed supports and only a single brace.

Figure 7.1b shows the corresponding graph for the singly-symmetric Section #4 with an
80 ft. span. Three intermediate cross-frames were provided. For the three cases considered,
the largest unbraced lengths ranged from 20 feet for normal supports to 21.5 feet for a skew
angle of 30°. The vertical axis of the graph has again been normalized by the buckling
capacity, M oeskew, corresponding to full bracing for the case with normal supports.
Although the buckling capacity corresponding to full bracing does differ for the three
different skew angles (due to the larger unbraced length for the cases with skewed supports)
the curves nearly coincident for much of the graph. This indicates that for multiple
intermediate braces that are perpendicular to the longitudinal axis of the girders, the skew
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angle does not affect the bracing requirements. Therefore, the definition for E; given in Eq.
7.1 is recommended for all beams, regardless of the number of intermediate braces.
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The expressions for cross-section distortion, and in-plane girder stiffness are not
changed, and the system stiffness is given by the following expression:

—1—=-1—+—-1——+-L | (7.2)
ﬂT 18.{) ﬂsec ﬁg

where: Pr is the system stiffness
By is the stiffness of the brace
Bsec is the effect of cross-sectional distortion
Bg is the effect of the in-plane stiffness

The parameters in Eq. 7.2 were discussed in Chapter 2.

Figures 7.2, 7.3 and 7.4 show the comparisons of Eqgs. 7.1 and 7.2 and the FEA results
from eigenvalue buckling analyses for a W14x22 section. The results shown are for a twin-
girder system with a 33 ft. span and a single normal brace close to midspan. Figs. 7.2, 7.3
and 7.4 illustrate the respective systems under loading conditions of uniform moment,
uniformly distributed loads applied at the top flange, and concentrated top-flange loads at
midspan. Graphs are shown for skew angles of 26.5° and 45° in the separate figures labeled
(a) and (b), respectively. The graphs show that for the uniform moment case, Egs. 7.1 and 7.2
have good agreement with the FEA results. For the cases with moment gradient, the
equations are slightly unconservative for stiffness at or near the ideal value, however, this is
due to effects of load height and underestimating the actual Cy factor as was discussed in
Chapter 5.

Eigenvalue buckling analyses were also performed on 2 W30x99 section, which had a
40 ft. span (L/d =16) and a 100 in. girder spacing with 10° and 30° skew angles and a single
normal brace close to midspan. The comparison of the FEA results and the equation results
for the W30x99 section were very similar to that of the W14x22 section and are presented in
Appendix C.
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Figures 7.5, 7.6, and 7.7 show the comparisons of the results from Eqs. 7.1 and 7.2 and
the FEA analyses for the W36x160 section for the respective load cases of uniform moment,
a distributed load applied at the top flange, and a midspan point load applied at the top
flange. The twin-girder system had a 60 ft. span and a girder spacing of 120 inches with 20°
and 45° skew angles. Two intermediate braces were placed normal to the girder longitudinal
axis. The graphs show good agreement between Eqgs. 7.1 and 7.2 and the FEA results,
particularly for the uniform moment case. For cases with moment gradient, the equations
provide conservative estimates with respect to the FEA solutions. As was discussed in
previous chapters, the slight conservatism in the equations is caused by neglecting the
warping restraint provided to the middle third of the beam by the exterior thirds of the beam.
Effects of top flange loading on the buckling capacity are not as significant with two
intermediate braces as was observed with a single intermediate brace.

A comparison of the FEA results and Eqs. 7.1 and 7.2 for the singly-symmetric Section
#4 are shown in Figs. 7.8, 7.9, and 7.10 for the respective loading cases of uniform moment,
a distributed load applied at the top flange, and a midspan point load applied at the top
flange. The twin-girder system had an 80 ft. span and a girder spacing of 120 inches with
skew angles of 20° and 30°. Three intermediate parallel braces were employed normal to the
longitudinal axes of the girders. The graphs show good agreement between computational
results and the equations, particularly for the uniform moment loading case. For cases with
moment gradient, the buckling capacity from the FEA results are approximately 10% higher
compared to the equations due to the warping restraint provided by the outside quarters of
the beams as was discussed in Chapter 5. As discussed earlier, for beams with multiple
intermediate braces load height does not have too significant of an effect on the buckling
capacity. Results for the singly-symmetric Section #5 are similar to results for Section #4
and are presented in Appendix C.
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The results presented in Figures 7.2 to 7.10, as well as those presented in the Appendix,
show that the equations provide good estimates of brace stiffness requirements for girders
with braces oriented perpendicular to the skewed supports. Equations 7.1 and 7.2 provide
good estimates of the brace stiffness requirements for cases with both uniform moment
loading as well as cases with moment gradient. For the cases with moment gradient, the
solutions provide slightly unconservative or conservative estimates for the girders depending
on the number of intermediate braces. For cases with a single intermediate brace, the
solutions were slightly unconservative due to effects of load height that are generally not
considered in hand solutions. Although beams with multiple intermediate braces are also
affected by load height, these effects are not as significant as for the case with a single
intermediate brace. However, beams with multiple intermediate braces do conservatively
neglect the warping restraint provided to the critical unbraced length by the other beam
segments that have smaller moments and/or smaller unbraced lengths. As a result, the
stiffness equations are slightly conservative with respect to the FEA results.

7.3 Brace Strength Requirements for Girders with Skewed Supports and Normal
Braces

When the skewed bridges have braces oriented normal to the girder line, the skew angle
has less of an effect on the brace moment than it did on the cases observed in Chapter 6 with
braces parallel to the skew angle. Consequently, the basic strength requirements discussed in
Chapters 2 and 5 can be applied directly to the cases with bracing oriented normal to the
girder lines.

Comparisons of equations with the FEA large displacement analysis results are
presented for several of the girder cross-sections that were studied. Graphs are presented for
the girders with different skew angles for the different loading conditions that were
considered. For the sections W14x22, W30x99, Section #4, and Section #5 the maximum
moment occurred at or close to the middle cross-frame and the comparisons between the
brace moment predicted by the equations and the FEA results were very similar. Therefore
results for one section, Section #5, are presented in this chapter as a representative sample
while the graphs for the other sections are provided in Appendix C. Figures 7.11, 7.12, and
7.13 show the graphs of the equations and the FEA results for Section #5 with the three load
cases that were considered. The brace moment is graphed on the vertical axis while the
applied moment is on the horizontal axis. The brace moment has been normalized by the
maximum brace moment, while the applied moment has been normalized by the moment
corresponding to buckling between the brace points.
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The behavior of the W36x160 differed from the other four sections due to differences
in the distribution of the moments and the intermediate cross-frame locations. Comparisons
of the equations and FEA results are shown in Figs. 7.14, 7.15, and 7.16 for the three
different load cases that were considered.  Results are shown for skew angles of 20° and
45°. Reasonable agreement between the equations and the FEA solution was obtained for
the case with uniform moment loading as shown in Fig. 7.14. However for the cases with
moment gradient shown in Figs. 7.15 and 7.16, the equations were relatively conservative
with respect to the FEA solutions. The conservative nature of the equations for cases with
moment gradient is because the maximum applied moment occurs at midspan, while the
intermediate braces are located at the third points. When the maximum moment occurs
between brace points, adjacent braces share the brace moment instead of a single brace
providing the majority of the restraint, which is the case when the maximum moment occurs
at the brace location. Although the equations were conservative for the W36x160, the graphs
shown in this section as well as in the appendix demonstrate that the equations do a
reasonable job of predicting the brace moments.

7.4 Summary

This chapter has presented finite element results for girders with skewed supports and
normal braces. The analyses are conducted on several different sections with different skew
angles and a variety of loading conditions. The results have demonstrated the normal
bracing behavior of twin-girder systems .

The previous recommendation of using 0.75L in Eq. 7.1 for girders with only one
intermediate brace was generally found to be unconservative for girders with skewed
supports. Simply using the full girder length, L, in Eq. 7.1 had good agreement with the FEA
results in obtaining the ideal stiffness. For skewed girders with more than one normal brace,
the equations presented in Chapter 5 show good agreement with the FEA results in predicting
the ideal stiffness, and these solutions can therefore be directly applied to girders with
skewed supports provided the braces are oriented normal to the girder lines. The equations
to estimate the strength requirement presented in Chapter S can be directly used to estimate
the brace moment for skewed girders with normal braces.
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Chapter 8
Bracing Details for Bridges with Skewed Supports

8.1 Introduction

The bracing requirements for steel girders with skewed supports were discussed in
Chapters 6 and 7, which presented the respective results for brace orientations that were
parallel to the skewed supports and normal to the longitudinal axes of the girders. The
analyses that were presented in these previous chapters mainly focused on twin-girder
systems. This chapter will investigate the bracing behavior for steel bridge systems with four
girders that have skewed supports. A number of different bracing details were investigated
in these analyses. As outlined in Chapter 1, in addition to developing bracing requirements
for bridges with skewed supports, a primary goal of this research is to develop new details to
reduce the fatigue sensitivity of the cross-frame and diaphragm regions as well as to reduce
the total number of braces on the bridge. Since many of the typical details that are currently
employed are often stiffer and stronger than necessary, a number of cross-frames could
potentially be eliminated by employing lateral struts positioned near the top and bottom
flanges and leaning several girders on a single brace. The braces can therefore be positioned
to minimize the brace forces that would be induced by truck traffic, thereby reducing the
sensitivity of these brace regions to fatigue damage. In addition, with fewer braces the
bridge may be easier to inspect for potential fatigue damage since it can be difficult to locate
fatigue cracks in the regions around cross-frames and diaphragms.

This chapter has been divided into five subsections. Following the introductory
material presented in this section, analytical results for a four-girder bridge with cross-frames
extending across the full width of the bridge will be presented in Section 8.2. Both
eigenvalue buckling and large displacement analyses were performed, and the FEA results
are compared to the equations discussed in the previous chapters. In Section 8.3, results are
presented in which braces are removed and several girders across the width of the bridge lean
on a single cross-frame. The analytical results presented in Sections 8.2 and 8.3 focus on the
behavior of the non-composite steel girder with top flange loading. In Section 8.4, the forces
induced in the cross frames due to truck loading on the composite girders in the finished
bridge are studied. The FEA model of the steel girders and the concrete bridge deck are
discussed in Section 8.4, along with the model of the truck loading. FEA results are
compared using both existing and proposed bracing details. Finally, the results are
summarized in Section 8.5.

8.2 Bracing Behavior for a Four-Girder Bridge with Skewed Supports
Finite element results are presented in this section demonstrating the bracing behavior
of the cross-frames in a four-girder bridge with skewed supports. A plan view of the four-

girder bridge system is shown in Fig. 8.1. The bridge has a 124 ft. span with five
intermediate cross-frame lines, which produces an unbraced length of 24 ft. At each brace
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location, cross frames extend across the entire width of the bridge and are numbered from 1
to 15. The cross-frames numbered 3 and 13 frame into the fascia girder 4 feet from the
skewed support. Many current details for such a condition often have the bracing framing
directly into the support. Doing so however results in relatively large live load forces
induced in the braces when the truck traffic passes over the bridge. This will be
demonstrated later in this chapter. Much better behavior is achieved by offsetting the
bracing from the support by a relatively small amount such as the 4 ft. offset shown for this
particular bridge.

The singly symmetric girder labeled Section #6 from the sections presented in Fig. 3.8

was used in the analyses. The bridge modeled has a skew angle of 33.7° and uniformly
distributed loads applied at the top flange to simulate the construction loads.

124 ft.

241 24 1. 24 ft. 24 f1. 24 fr.

OO T
SIS
ClICIN
SlCIEIN

®®|®
|~

1\

T~

—— - pd g p—

| o

‘ 5 intermediate cross-frame lines x 3/line = 15 cross-frames

Figure 8.1 Four-Girder Bridge Layout

Figure 8.2 shows a comparison of the results from the eigenvalue buckling analyses and
the equations presented in Chapters 5 and 7. The graph shows good agreement between the
equation results and the FEA results in obtaining the ideal stiffness and are approximately
5% conservative at the point of full bracing.
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The process for selecting the critical imperfections that were utilized in the FEA studies
on the brace strength requirements for Chapters 5, 6, and 7 were outlined in Chapter 4.
Similar criteria were utilized in the selection of the imperfection for the 4-girder system
shown in Fig. 8.1. The resulting imperfection is shown in Fig. 8.3. The maximum lateral
displacement in the imperfection of the top flange was 0.576 inches, which corresponds to
Ly/500. The bottom flange was straight.

A graph of the FEA results and the equation results for the brace moment is given in
Fig. 8.4. The brace moment is graphed on the vertical axis versus the applied beam moment.
The brace moments have been normalized by the maximum moment predicted by the
strength equations, while the applied beam moment has been normalized by the maximum
moment. A brace stiffness corresponding to twice the ideal value was used. The brace force
that is graphed corresponds to the moment in cross-frame number 9, which was the
maximum brace moment that was encountered throughout the bridge. The graph shows that
the equations have good agreement with the FEA results, although the equation prediction is
slightly conservative as the applied loads approach the buckling capacity. The reason for the
conservative estimates is due to the interaction between the cross-frames at the brace line.
Each brace line has three cross-frames which connect the four girders together. When all the
girders displace laterally and twist, the middle two girders will experience more restraint
than the two edge girders. Considering the brace line located near midspan of the bridge, the
middle cross-frame (cross frame #8 in Fig. 8.1) will generally have less force than the cross-
frames located near the edges (cross-frames #7 and #9). Therefore, the resulting maximum
force in the cross-frame is lower than would be predicted using the brace strength
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requirements, which assume all the cross-frames are equally critical. In addition, since the
braces across the bridge width do not all frame into the girders at the exact same point along
the bridge length, the girder moments at the ends of the cross-frames are different. Results
will be presented later in this chapter that will show that the forces in braces that are not at
the point of maximum moment are often substantially lower than those positioned at or near
the region of maximum bending moment.

124 f1.

24 ft.

—t

24ft. o 24 ft. 11, 24Kt 24ft. 4

Figure 8.3 Critical Imperfection Utilized in Four Girder Bridge
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Figure 8.4 My/My, versus M/M,; for Section #6 with Distributed Loads on Top Flange
(Cross-Frame A)
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Equation 2.18 that was given in Chapter 2 can be slightly modified and used to solve
for the required brace stiffness. Equation 2.18 is based upon the ideal stiffness and is given
in the following expression:

MCI' = JcbzuMg +

CL B EI
Y <M or M, (8.1)

!

The first term under the radical in Eq. 8.1 is the buckling capacity of the girder with no
intermediate bracing while the second term accounts for the contribution of the bracing.
Following the simplification applied in the AISC LRFD (2001) Specification, the initial
capacity of the girder can be conservatively neglected. Equation 8.1 can then be set equal to
the maximum design moment and reorganized to solve for the ideal brace stiffness.
Assuming top flange loading with a C, = 1.2, Eq. 8.1 reduces to the following expression:

_12LM}

'Bn_CfbnEIy

(8.2)

As mentioned earlier, the ideal stiffness should be doubled to control initial imperfections
and brace forces. If the allowable stress design (ASD) method is used, a factor of safety of
2.0 should be used on the stiffness requirement. Doubling the ideal stiffness and applying
the factor of safety therefore yields the following expression:

48LM;

Service Load (Allowable Stress Design): ead = 2285) = ——
( gn ﬂTqu (2Br) CbzbnEIy

(8.3)

If ultimate strength design approaches such as the Load Factor Design (LFD) or the Load
and Resistance Factor Design (LRFD) methods are used, a resistance factor of 0.75 should be
used on the stiffness. Doubling the ideal stiffness and applying the resistance factor to the
denominator therefore leads to the following expression for the required brace stiffness:

2
Ultimate Strength (LFD or LRFD): B¢ .0 = 2B = 32LM, (8.4)

075 CpnEl,

Equation 8.4 is essentially identical to the expression in the AISC LRFD Specification
(2001). For an initial twist ¢, = Ly/(500h), where Ly is the girder unbraced length and h is
the girder depth, the strength requirements be obtained by multiplying twice the ideal
stiffness by the initial twist, ¢,. This therefore results in the following expression:

24LM} L

M, =280 =
o =2bnty CamEI, 500h

(8.5)
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For a design based upon ASD, M, in Egs. 8.3 and 8.5 is the maximum moment from service
loads; while the maximum moment from factored loads is used in either LFD or LFRD based
designs in Egs. 8.4 and 8.5. In checking the strength of a bracing member using Eq. 8.5, the
appropriate ASD, LFD, or LFRD strength equation (with factors of safety or resistance
factors) will apply. My, is the brace moment based upon the provided brace stiffness equal to
the required brace stiffness, Br reqd, Which equals to twice the ideal stiffness. For cases
where the provided brace stiffness, Bac, is larger than the required brace stiffness, the brace
moment can be reduced by the following expression:

Mc
M -—Mbr

act 2
2 ﬂTReq'd (M_,,_]
| B \M

cr

(8.6)

A derivation of Eq. 8.6 is presented in Appendix D.

The example presented in Fig. 8.5 for the design of the bridge girders shown previously in
Fig. 8.1 demonstrates the application of the brace stiffness and strength requirements that
were outlined in Chapters 2 and 6.

TORSIONAL BRACING EXAMPLE - CROSSFRAMES

Girder Properties

S,=1,120 in? 7/8 x 13
1,=890 in*

1, =160 in* 9/16 x 60
p=0.180 o

J=26.7 in®

h=H1200 s 218

Span = 124 ft.; 8 in. concrete slab; 4 girders @ 10 ft spacing,
Gr 50 steel. Design a torsional bracing cross-frame system to
stabilize the girders during the deck cast.

Figure 8.5 Cross-Frame Torsional Bracing Design Example (1/4)
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Use a Load Factor = 1.3 for the construction condition

Steel girder: A =72.11in?, wt =240 Ib/ft
Concrete slab: 10'x 8/12 x 150 Ib/ft3 = 1000 lb/ft
w=1,240 Ib/ft = 1.24 k/ft

C,=1.0
M, = 1.3 (1.24 ¥®) (124%)2 /8 = 3,100 k-ft -y

L= L=
Check Lateral Buckling — use 24 ft unbraced length (AASHTO 10.48.4 10-103c)

2
M, =91,000x 160 0.772x126—'7-+ 9.87 61.2
4x1 160 24x12

. Note: Eqn. in AISC-LRFD
= 38,300 k-in = 3,190 k-ft > 3,100 k-ft Table A-F1.1 yields:

M, =3370 K-ft

CROSS FRAME LAYOUT

124 ft.
24 ft. } 24ft.4|| 24ft.4I 24ft.4l 24&.4{4‘

335:}& \

~

L =59

5 intermediate cross-frame lines x 3/line = 15 cross-frames

Figure 8.5 Cross-Frame Torsional Bracing Design Example (2/4)
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TORSIONAL BRACE DESIGN — STIFFENESS
Girder Properties:

L E h=612in  ¢=372in t=228in
: —=_ 1,=41,650 in* 1 =890 in* I, =160 in*
 1,;=609 in® J=26.7 in
Three cross-frames stabilize the four girders. Use a tension-only cross-frame system
with one size of single angle members. A 1/2x6 in. stiffener from top to bottom

flange is used to control web distortion — the stiffener should be welded to both
flanges.

) . 24(4-1)*29,000x 120 x 41,650
Girder Stiffness: B, = ) 2124x12)
Eqn. 2.23

=285,000in-k/rad

Cross-section

: _ 13.3(29,000) ,60,, 1.5x5x0.5625" 0.5x6°, ,
St}lafﬁlezsg:s Beee =5 5 (—5-) ( = + = )=12,560,000 in—k/rad
qn. 2.
. 272 2 2
Brace Stiffness: B, = ESJ By Ag L 1320 XS03 A _ 170,5004, in — k/rad
See Fig. 2.6 2L +S 2(130)" +(120)

Eqn. 8.2 (Ideal Torsional Stiffness):
12LM!  1.2x124x12x(3,100x12)?
bn = nCLEL,  5x1.0°x29,000%609
Eqgn. 8.4 (LFD Design):

2B, 2(28,100) .
,BTReq.d i 0E 74,900 in -k /rad

=28,100in—-k/rad

Eqn. 2.30
1 1 1 1 1 1 1 1

=—t =—4 -
Brrsa Bo By Bue 74900 B, 285,000 12,560,000

B, =102,400 =170,5004, in — k/rad === | A, = 0.60 in?

Figure 8.5 Cross-Frame Torsional Bracing Design Example (3/4)
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TORSIONAL BRACE DESIGN — STRENGTH

L, 24x12
Assumed Initial Twist: \ ¢ = 500h - 500%61.2

=0.0094 rad

M, =F, x50=2p; x4, =2(28,100)x0.0094 = 528 in—k

F,, =10.6 kips See Fig. 2.6 for member forces

Max. Horz. Force = 10.6 kips (compression)

Max. Diagonal Force = = 120
S

Try an L 3x3x 5/16 : A =1.78 in2. > 0.60 in? (stiffness requirement) ,
r,=0.589in.,1,=0.617 in.
Strength : Tension - P, =0.9(36)1.78 = 57.6 kips > 22.9 kips
Compression: (AASHTO LFD 10-154)

2 2
KL, _ 1.0x10xl2=204>\/27r E =\/2><3.14 x 29,000

= 22.9 kips (tension)

=126

r 0.589 36

z Y

(AASHTO LFD 10-153)
2 Very close

F,=————=68%ksi == p = = ] '
= KLy ! P, =0.854F, =10.4kips <10.6kips

Although the above capacity seems very close to the force, since the
L 3x3x5/16 provides a stiffness larger than the required brace stiffness
the design brace moment can be reduced as follows:

A=1.78 in? B, = 170,500A, = 303,500 in-k/rad

L _ 1. 1 1 1 1 1 1
— = +
Bi By B, Pu B.. 303,500 285000 @ 12,560,000

Boe =145,300 in—k [rad =1.42

TReq'd
1 1

M, =M, x————=528x

9 ﬂTReq'd P

B 1.42

=407 in-k

_ : Cross-frames and Lateral Struts
Fy =81 kips <10.4 kips| OK | Fina Size : L3x3x5/16 Angle

Figure 8.5 Cross-Frame Torsional Bracing Design Example (4/4)
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8.3 Bracing Behavior for Girders with Skewed Supports and Lean-On Cross-Frames

As shown in the design example in the previous section, the cross section area of 0.60
in? that was required based on the stiffness requirements for the cross-frame members is
relatively small. The strength requirements controlled the design and an L3x3x5/16 was
required, which has a cross sectional area of 1.78 in®. As a result, the provided stiffness is
larger than twice the ideal stiffness value and the required design forces would actually be
reduced from 10.6 kips to 8.1 kips as shown in the calculations at the end of the example
problem. The strength requirements were reworked to account for the larger stiffness, which
results in a lower design force. In practice, “typical sizes” are usually used for the cross-
frame members. As shown in the details depicted in Chapter 1 the typical size for cross-
frame members in the state of Texas often consist of an L4x4x3/8 angle, which has a cross
sectional area of 2.86 in’.

Since the typical sizes of the cross-frames are often larger than required for strength
and stiffness, it may be possible in several instances to eliminate a number of cross-frames
throughout the bridge. In doing so, the top and bottom struts would be provided to “lean”
several girders on a single cross-frame. An attractive feature of eliminating selected cross-
frames is that braces that are more likely to result in potential future fatigue problems can be
eliminated. A possible bracing layout is illustrated in Fig. 8.6 in which a number of cross-
frames have been eliminated. The five intermediate brace lines have been labeled A, B, C,
D, and E. The cross-frames near the skewed supports have been eliminated because the
relative difference of the vertical displacement between adjacent girders is larger in those
locations. Larger relative vertical displacements generally lead to larger forces being
developed in the brace members during truck loading. In addition to minimizing the live
load induced forces in the braces, the layout of the cross-frames over the length of the bridge
have been arranged so as to tie the four girders together across the width of the bridge.
Tying all four girders together in this way provides better integrity to the bracing system as
well as increasing the in-plane girder stiffness.
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Ccnventional Bracing would have
5 intermediate cross-frame lines x 3 cross frames per line = 15 total cross-frames.

10 of these cross-frames have been eliminated with the lean-on system.

O—0

Figure 8.6 Proposed Cross-frame Layout to Minimize Fatigue Damage

Since several girders lean on a single cross-frame, the cross-frame stiffness and
strength requirements need to be modified to account for the increased demand on the braces.
Figures 8.7 and 8.8 illustrate the lean-on brace forces and deformations when the cross-
frames are located at the edge of the girders and in the middle of the girders, respectively.
Derivations of the general brace stiffness and strength requirements are presented in
Appendix D. The stiffness derivation is based upon the “critical girder” based upon the
maximum deformations. Although placing the cross-frame in the middle of the girders
would generally result in an increased stiffness from the deformational perspective, locating
the bracing near one edge at locations near the supports will probably lcad to better fatigue
behavior since this placement gets the brace further away from the skewed support. The
derivations assume that the same size members will be used for all of the horizontal struts.
For strength considerations, the horizontal struts need to be checked for buckling based upon
the maximum compression force (ie. —3F for the case in Fig. 8.7).
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BRACE FORCES AND DEFORMATIONS

Brace Forces:

Ay A, By*+Ay Bp+As*hg
N > < n =>{ [~ (o) = ==
: U ' &) g 5 5
' Girder D
is Critical
for Stiffness
Ot
> < > < >
A3 Ag+As Ag+Ag+A,

CROSS-FRAME STIFFNESS AND STRENGTH REQUIREMENTS

Define ny, as the number of girders per cross-frame.

Brace Strength:

ng, FL, hy
F, =
S Yy
F,=(n, ~1F

Brace Stiffness:

ES*h}
Po = n L §3 b
L= (n, - 1)’
A, A

Figure 8.7 Equations for Stiffness and Strength Requirements for Lean-On Braces -
Cross-Frame Located at Edge of Bridge
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BRACE FORCES AND DEFORMATIONS

Brace Forces:

F F : £ F

== -F == -2F e F —1

»uvi LT s ) e i
& S
A Bkl e c kli D
B F o= -2F = -F =
F F F F

Brace Deformations:

Ag+h,

; \&/ —Z/ ;

Girder D
is Critical
for Stiffness

—>{ —¥ =
Ay Ag+hy;

CROSS-FRAME STIFFNESS AND STRENGTH REQUIREMENTS

Define ny, as the number of girders per cross-frame.

Brace Strength:
P n, FL,

d

S
F — Mbr
hb
F,=(n,/2)F

Brace Stiffness:

ES*h;

'Bbzn L

Figure 8.8 Equations for Stiffness and Strength Requirements for Lean-On Braces -
Cross-Frame Located at Middle of Bridge
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The stiffness of a cross-frame with ng girders leaning on the cross frame is given by
the following expression:

ES’h}
B=—— (8.7)
nchd S 2
i BN
Ad Ac

The stiffness of a diaphragm with ng girders leaning on the diaphragms is given by the
following expression:

E
T AP, ®8)
n, . — n,_—
61, Ach: & B

Derivations of Egs. 8.5 and 8.6 are provided in Appendix D.

The terms in Egs. 8.5 and 8.6 have been previously defined in Chapter 2. When lean-
on bracing is used with the cross-frames, the effect of the in-plane stiffness of the girders
needs to be reevaluated. The following expression for evaluating the in-plane stiffness of the
girders was given in Chapter 2:

24(n, -1)* S2EI,

= 8.9
B, . I (8.9)
For a twin-girder system (ng = 2), the above expression reduces to the following:
12S8*EI,
B, = 7 (8.10)

For a four-girder system with cross-frames extending across the full bridge width at each
brace line, Eq. 8.9 would produce,
_ 548 ’EI

ﬁg L3

which is 4.5 times the twin-girder stiffness. When the lean-on braces are provided as shown
in Figure 8.6, the effect on the in-plane girder stiffness is not clear. The actual in-plane
girder stiffness would probably be between the case of a twin girder system and the case
where braces are used across the full bridge width. Comparisons with FEA solutions showed
that simply reducing the expression in Eq. 8.9 by 50% provides reasonable estimates of the
girder in-plane stiffness component when lean-on bracing is utilized. This leads to the
following expression for systems with lean-on bracing:
12(n, -1)* S2EI.
4 ng L3
For the four-girder system in this chapter this leads to the following expression for the in-
plane girder component:

(8.11)

(8.12)

_ 275°El,

B, = (8.13)
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A comparison of the results of the eigenvalue analyses and the equations for the bridge
with lean-on braces is shown in Fig. 8.9. The graph shows that although Egs. 8.5 and 8.11
are conservative with respect to the FEA results, the expressions provide reasonable
estimates of the ideal stiffness requirements. The conservative nature of the equations may
result from a number of possible sources. One of these sources may be the expression used
for the in-plane stiffness of the girders. Other possible sources for the conservatism are that
the cross-frame near midspan of the bridge has a higher stiffness than the other cross-frames
near the edge of the bridge, however the design equations assume that all of the cross-frames
have the same stiffness. The other potential source is that when deriving Eq. 8.5 as shown in
Fig. 8.7, girder D is the most critical with respect to the required stiffness. However, when
the girders buckle in the FEA studies, they all buckle at the same time. Therefore, there may
be an interaction between the girders through the width of the bridge thereby raising the
effectiveness of the bracing.

12 1
i —— Equation (8.3)
—&— FEA Results
08 r
S
= 06
= Section #6 L/d = 24
04 r
w @ Top
0.2 Vol N
gol = = s
0
0 0.2 0.4 0.6 0.8 1 12
B/Bideal

Figure 8.9 M/M, versus B/Bigeal for Section #6 Four-Girder System with Lean-On Braces and
Distributed Loads on Top Flange

Figure 8.10 illustrates the shape and the magnitude of the initial imperfections used in
the FEA large displacement analyses to determine the strength requirements. The
imperfection is identical to that shown in Fig. 8.3. The analysis results confirm that the
behavior of the bracing members is very close to that using when deriving the stiffness
equation shown in Figure 8.8. The horizontal members of the two outside lean-on cross-
frames have a positive and a negative force F. The horizontal members of the middle cross-
frame have forces 2F in compression and the diagonal member has a tensile force equal to
4FL,

, where L is the length of the diagonal member and S is the girder spacing.
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Figure 8.10 Imperfections for the Four-Girder Bridge with Lean-On Braces

The same equations presented in Chapter 5 were used to predict the brace moments.
Figure 8.11 illustrates the comparison of the FEA results and the equation results for the 4-
girder bridge with lean-on braces. The graph shows good agreement between the equation
and the FEA results, although the equations predict slightly unconservative results when the
applied loads approach the critical load. A design example for a lean on cross-frame system
is illustrated in Fig. 8.12.

17 w @ Top ‘
i 4.4 b b v b ) —*— Equation (5.4)
A %%, | ™ FEA Results

—

0 0.2 0.4 0.6 0.8 1

M/Mcr
Figure 8.11 My/My, versus M/M,, for Section #6 Four-Girder System with Lean-On Braces
and Distributed Loads on Top Flange
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TORSIONAL BRACING EXAMPLE — LEAN-ON SYSTEM

Same problem as cross-frame example previously shown in Fig. 8.5, except
A lean-on bracing system is used to stabilize the four girders.

2 2
Girder Stiffness: B, = 12(4-1) 249(1‘;(20 "1‘22)? x 41,650
X

=142,500 in—k/rad

Cross-section Stiffness:

ﬂm

3.3(29,000) (@)2 (1.5x5x0.56253 N 0.5x6°

A )=12,560,000 in—k/rad
K 5 12 12

TORSIONAL BRACE DESIGN — STIFFNESS

Brace Stiffness: (conservatively)

212 2 2
X X
=t - 22000x120 X0 4, _ 45 8904, in—k /rad
nL, §° . 4(130) +9(120)
4= (. -1)
Ad Ac

From the cross-frame example: Fig.8.5 (3/4) 'qu'd =74,900 in—k/rad

1 1 | 1 1 1 1 1
=—+t—4— =—d3 +
Breya B By Bu 74900 B, 142,500 12,560,000

B, =159,900 = 42,8904, in—k/rad =—> |4, =3.73 in’

Corresponds to twice the ideal stiffness
==

Figure 8.12 Torsional Bracing Design Example — Lean on System (1/2)
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TORSIONAL BRACE DESIGN — STRENGTH

L, =0.0094 rad

~ 5007

Assumed Initial Twist: Po

M, =F, x50 = B, x¢, = 74,900x0.0094 =704 in—k |F, =14.1 kips

: 4FL, 4(14.1)130
Max. Diagonal Force = =
- ) 120

Max. Horz. Force = 2x14.1 =28.2 kips (compression )

= 61.0kips (tension)

Tryan L 4x4x 1/2: 1r,=0.776 in., A =3.75 in%. > 3.73 in? (stiffness)

Strength : Tension - P, =0.9(36)3.75 = 121.5 kips > 61.0 kips
Compression: (AASHTO LFD 10-154)L_=s

2 2
KL, _10x10x12 _ o [27°E =\/2x3.14 x29,000 _ .
r, 0.776 i 36
(AASHTO LFD 10-153)
OK

% E

Cross-frames and Lateral Struts
Final Size : L4x4x1/2 Angle

Figure 8.12 Torsional Bracing Design Example — Lean on System (2/2)

When the cross-frame is located at the middle of the line of girders, the maximum
compression force, which generally controls the design, is equal to 2F as shown in Fig. 8.8.
However, when the cross-frame is located at the edge of the girders shown in Fig. 8.7, the
maximum compression force increases to 3F, where F is related to the maximum brace
moments developed at the individual brace line (F=M/h).
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For practicality, most designers will use the same size cross-frames throughout the
bridge. Therefore the engineer will generally select the cross-frame that results in the largest
forces due to the applied loading. In instances where a number of girders may lean on a
single cross-frame, identifying the critical brace can sometimes be difficult due to the
distribution of brace forces. For example, in Fig. 8.6 brace line C is located at the maximum
moment region when the distributed loads are applied on the girders, which is generally the
region where the largest brace moment will be developed. However, since the cross-frame is
located in the middle, only 2F compression forces are generated in the top and bottom cross-
frame struts. Brace lines B and D, on the other hand, are located in regions with applied
moments that are lower than the maximum midspan moment. However, since the cross-
frames along these lines are located at the edge of the bridge, a compression force of 3F is
developed and may create larger compression forces that may control the design. An
additional FEA analysis was therefore conducted to locate the critical brace member for
design.

Figure 8.13 illustrates the shape and the magnitude of the imperfection used to
maximize the brace moment at the brace line B. The imperfection is very similar to that
shown in Fig. 8.10, however the maximum twist occurs at line B instead of line C.

124 ft.

24ft | 24R | 24ft . 24ft. o, 24ft. 4
1 1 1 1 1
N\ ""/ \
Nelo 5 o o [\
33.7° \ 0,576 in. \

;o 0.576 in.

—— o e d o w—— xpd o —— —— . g e

~ ~ -~

i = ke - * = o - Ld L

Figure 8.13 Imperfections for the Four-Girder Bridge with Lean-On Braces

Figure 8.14 illustrates the comparison of the FEA and equation results. The graph shows
that the equation is very conservative with respect to the FEA results. The reason for the
conservatism is that brace line B is not located at the maximum applied moment region
(midspan). The brace moment developed for this case is significantly smaller than that
generated by the cross-frame located at midspan, for which there was very good agreement
between the FEA and equation solutions shown previously in Fig. 8.11. Similar situations
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were previously observed in Figs. 5.7b and 5.7c. In most situations, the cross-frame located
nearest the maximum girder moment will result in the largest brace forces, regardless of the
cross-frame location along the bridge width.

121 w @Top
[TiLah ) | owmeos
LI A EOR —#FEA Resuits
08 t Section #6 L/d =24
N\ 1A AN
R < » \
% 06 N\
=
04 | \ /?‘ t \
szali-ﬁn e =
02}
0
0 0.2 0.4 0.6 0.8 1
MM,
Figure 8.14 My/M,,, Versus M/M, for Section #6 with Distributed Loads on the Top
Flange

8.4 Analyses for the Completed Bridge with the Concrete Deck

Several FEA analyses were performed on the bridge with the completed concrete deck.
Once the concrete hardens, the deck provides continuous lateral and torsional restraint to the
top flange along the bridge length. The bracing from the concrete bridge deck is generally
substantial enough so as to provide full bracing to the top flange along the bridge length.
Therefore, in the positive moment region, the intermediate cross-frames are essentially
unnecessary for stability bracing once the concrete deck hardens. However, the braces do
help to distribute the lateral wind load up to the concrete bridge deck as well as providing
stability in the negative moment region.

The FEA model of the steel girders is essentially identical to the models discussed in
Chapter 3, however in the completed bridge the concrete bridge deck must also be modeled.
Direct approaches for modeling the slab can employ brick elements such as isotropic eight-
node brick elements shown in Fig. 8.15a, however utilizing brick elements leads to extremely
large numbers of degrees of freedom [Tarhini and Frederick 1992]. Shell elements have also
been proposed to model the concrete slab. The difficulty of this method, however is to deal
with the eccentricity between the deck and steel girder top flanges. Idealizing the concrete
deck by shell elements comprises a 2-D surface in the FEA model that would typically be
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located at the middle of the thickness of the slab. The location of this surface relative to the
steel girder must be accurately reflected in the FEA model so as to correctly model the in-
plane stiffness of the composite girder. The resulting model will generally have an
eccentricity between the plane of shell elements and the top flange of the steel girder.
Therefore it is necessary to provide a structural link between the two structural components
that will maintain compatibility and accurately model the composite stiffness. One method
that has been employed is to provide rigid links between the girder flanges and the slab
[Brockenbrough 1987, Tabsh and Sahajwani 1997]. The slab nodes are connected to the
girder by the rigid links, which are typically beam elements with a very large stiffness (Fig.
8.15b). This method is effective in modeling the bending behavior in the girder in the
longitudinal direction, however the shear capacity of the cross-section may be overestimated.
Many FEA programs also provide the capacity of coupling the degrees of freedom for
separated nodes without physical modeling the constraints. The coupled nodes are essentially
connected by a link with infinite stiffness in the coupled degrees of freedom, however this
requires assumptions about the constraints and compatibility between the slab and the girders
that can be difficult to formulate.

A method proposed by Fan [1999] that utilized a combination of shell and brick
elements for the slab model was employed in this study. In this method, 8-node quadrilateral
shell elements are used to model the concrete slab as well as the steel girders. The shell
elements for the concrete slab are located at the mid-thickness of the slab. A 20-node brick
element was then used to connect the top flange of the steel girder and the concrete slab. Fig.
8.15¢ illustrates the modeling technique. There is no pre-assumed coupling condition
introduced in the method. The top and bottom surfaces of the brick element overlap the shell
elements for the slab and the top girder flange thereby providing a direct connection by
shared nodes.

Elastic analyses were performed on the completed bridge to investigate the forces
induced in the cross-frames due to truck loading. The purpose of these analyses was to
compare and investigate the behavior of different bracing layouts in an effort to reduce
potential fatigue damage from in-service loading due to truck traffic. Comparisons were
made of the cross-frame forces induced for different bracing details consisting of
conventional bracing layouts in which the cross frames are located continuously across the
bracing lines versus systems in which several girders lean on a single cross-frame. The area
of the diagonal and the struts of the cross-frame were 1.88 in?, which corresponds to an
L3x3x3/8 angle. This area provided a stiffness that was equal to twice the ideal stiffness for
the lean on system. The truck loading that was employed consisted of the HS20-44 truck live
load. The HS20-44 truck is shown in Figure 8.16. The two back wheels of the design truck
have a variable spacing ranging from 14 feet to 30 feet. To produce the maximum stresses in
the analysis a spacing of 14 feet was utilized.

Once the concrete deck cures, forces in the top horizontals of the cross-frames are
generally small from truck traffic due to the relatively large stiffness of the cured concrete
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that joins adjacent girders. However large forces can still be induced in the bottom
horizontal member and the diagonal member of the cross-frame due to the truck traffic.
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(c) Shell Element for Slab and Brick Element Connection
Figure 8.15 FEA Model for Completed Bridges
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Figure 8.1 showed the locations of the braces labeled from No.1 to No. 15 that will be
used in the following discussion. Conventional bracing details in bridges with skewed
supports often have the cross-frame lines framing directly into the skewed support such as
the case depicted in the plan view of a bridge in Fig. 8.17. One end of cross-frame #3 in this
figure frames directly into the support region. For the first series of analyses the lateral
position of the truck was as shown in Fig. 8.17. The truck was then incrementally moved
across the bridge and the cross-frame forces were recorded for each truck position.

yd

-

Y direction

[
-

Figure 8.17 Truck Live Loading — Case A

Figures 8.18a, 8.18b, and 8.18c show comparisons of the FEA results of the brace
forces induced from the HS-20-44 truck at different brace locations for the cases with cross-
frames across the entire bridge width (herein referred to as the “conventional bracing detail’”)
and lean-on cross-frames. The force induced in the respective cross-frame members is
graphed on the vertical axis versus the longitudinal truck location on the bridge. The
position of the truck is indicated on the figures. Figure 8.18a shows the forces in the cross-
frame #1 members and demonstrates that there is essentially no difference in the magnitudes
of the cross-frame forces between the lean-on and conventional bracing layout. Both the
diagonals and the bottom horizontals of the cross frames have maximum member forces of
approximately 3000 lbs. for both bracing layouts. As mentioned above, the forces in the top
horizontals were relatively small due to the large stiffness of the concrete deck and therefore
forces in the top members are not graphed.
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Figure 8.18 (a) Brace Force Response Envelope at Brace Location #1 with Edge Truck
Loading - Conventional vs. Lean On Bracing
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Figure 8.18 (b) Brace Force Response Envelope at Brace Location #2 with Edge Truck
Loading - Conventional vs. Lean On Bracing
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Figure 8.18 (c) Brace Force Response Envelope at Brace Location #3 with Edge Truck
Loading - Conventional vs. Lean On Bracing

Although the lean-on system did show a benefit over the conventional bracing layout
for member forces for cross-frame #2, the revised layout actually resulted in larger forces in
the bottom horizontal for cross-frame #3. These trends are shown in Figs. 8.18b and 8.18c.
The reason that there was very little benefit in the induced forces for the lean-on bracing
system versus the conventional layout shown in Fig. 8.18a, 8.18b, and 8.18¢ is because the
horizontal members frame directly into the support. The rigid support restrains the adjacent
girders from relative horizontal deflections, which therefore leads to large member forces.

In an attempt to reduce the magnitude of the brace forces, analyses were conducted in
which the cross-frame lines did not frame directly into the supports, but instead were slightly
offset. Figure 8.19 shows the plan view of one such layout. The bridge is essentially
identical to that shown in Fig. 8.17, however the total length is 4 feet longer so as to keep the
geometry of the braces essentially the same. These bridges have the same basic geometry
and cross-frame layouts that were considered earlier in the chapter for stability bracing of the
steel section. Comparing the layout to that previously shown in Fig. 8.17, the two bridges
have the same maximum spacing between cross-frames of 24 feet, however the cross-frame
lines near the supports in Fig. 8.19 frame into the fascia girders at cross-frames #3 and #13
locations at a distance of 4 feet from the support. Two different truck locations are also
indicated in the figure, Case A and Case B. The Case A location is the same truck location
that was presented for the bridge in Fig. 8.17. The Case B location consisted of a truck line
passing down the middle of the bridge.
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Figure 8.19 Truck Live Loading Cases

Figures 8.20a, 8.20b, and 8.20c show comparisons of some of the resulting cross-frame
member forces for the two bracing orientations with the Case A truck position. Figure 8.20a
shows the resulting forces in Cross-frame #1 for the two bracing layouts. Comparing the
cross-frame forces between Fig. 8.18a and 8.20a for the conventional bracing layout, the
maximum member forces for both bridge geometries were approximately 3000 Ilbs.
Although there was very little change in the member forces for the conventional bracing
layout for the two bridge geometries, the lean-on bracing performed much better than
previously observed in Fig. 8.18a. The magnitudes of the diagonal and bottom chord forces
for the lean-on bracing were approximately half the values when the cross-frames extended
the full width of the bridge.

Figure 8.20b shows the member forces in Cross-frame #3 for the two bracing layouts.
The force in the bottom horizontal is significantly lower than was previously observed in Fig.
8.18c. Figure 8.20c shows the resulting force in Cross-frame #8, which is located near the
middle of the bridge. The comparison between the two different bracing layouts is similar to
that observed for Cross-frame #1 with the member forces in the lean-on system
approximately half of those from the conventional bracing layout. The forces in the lean-on
system in the line of bracing labeled 13, 14, and 15 were somewhat larger than observed in
the first line (1, 2, and 3). Figure 8.20d shows the forces in Cross-frame #15. With the
exception of the last line of cross-frames (13, 14, and 15), the forces in the lean-on bracing
system were substantially lower than those in the conventional bracing layout with the edge
truck loading. The response envelopes for all of the cross-frames are presented in App. D.
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Figure 8.21 shows some of the cross-frame member forces that resulted with the Case B
truck location. For the cross-frames located near midspan, the Case B truck location was the
critical truck position with regards to the maximum member forces in the conventional
bracing layout. For the cross-frames located near the supports, the Case A truck location was
the critical layout. Figure 8.21a shows the resulting forces in Cross-frame #1 with the Case
B loading. The member forces are smaller than were observed for the Case A loading. The
maximum force values of the lean-on bracing were only approximately 50% of the
corresponding values from the conventional layout. Figures 8.21b and 8.21c show the
resulting forces for Cross-frames #7 and #8 for the two bracing layouts. The member forces
for the conventional layout in these two cross-frames were larger with the Case B truck
location than for the Case A location. The corresponding lean-on forces for these two brace
locations were substantially lower than with the conventional layout.

In addition to the conventional bracing layout that was shown in Fig. 8.1, additional
analyses were also conducted on other layouts that are currently used. Although the parallel
layout that was studied in Chapter 6 can be employed for some skewed bridges, the layout is
currently limited by the AASHTO Specification for skew angles less than 20 degrees. A
cross-frame layout similar to the parallel layout that is sometimes employed consists of
staggering the cross-frames along a parallel line. The individual cross-frames are normal to
the longitudinal axis of the individual girders, however they are offset along a line parallel to
the skew. Figure 8.22 shows a potential staggered cross-frame layout for the 4-girder bridge
that has been studied. As with the previous layouts, the cross-frame locations have been
numbered from S1 to S15.
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Figure 8.23 shows a comparison of the brace force response envelopes for the staggered
and lean-on cross-frame layouts for some of the cross-frames with edge truck loading. For
the first line of cross-frames (1, 2, and 3), there is very little difference between the staggered
layout and the lean-on system with edge truck loading. This is demonstrated in Fig. 8.23a,
which shows that the lean-on system has slightly higher brace forces for Cross-frame #1
compared to the staggered layout. The envelopes for Cross-frames #2 and #3 are nearly
identical with respect to the maximum brace force as illustrated in Fig. 8.23b for Cross-frame
#3. At the other support, the lean-on system had higher brace forces than the conventional
staggered layout as shown in Fig. 8.23c for edge truck loading. However, aside from the
cross-frame lines near the supports, the forces in the lean-on system drop substantially and
are considerably smaller than the staggered layout at the other brace lines. The conventional
staggered layout still has significant forces at these other cross-frame locations. This is
shown in Figs. 8.23d and 8.23e for the respective cross-frames #4 and #8.
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As previously observed, the critical loading for the cross-frame lines near the middle of
the bridge was obtained with the center truck position. Figure 8.24 presents some of the
comparisons between the conventional staggered layout and the lean-on layout for the cases
with center truck loading. The forces in the cross-frame lines near the supports were
generally smaller than those near midspan. However with center truck loading, the staggered
layout generally experienced larger forces than the lean-on system. This is shown in Figs.
8.24a, 8.24b, and 8.24c for the respective Cross-frame locations #1, #3, and #15. For the
cross-frame lines away from the supports, the staggered layout had significantly larger forces
than the lean-on system. This is shown or Cross-frames #4 and #8 in Figs. 8.24d and 8.24e,
respectively.
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The graphs that have been presented have shown the response envelopes when the
truck is moving across the bridge. The results presented in this chapter have focused on a
few cross-frame locations. The brace force response envelops for all of the cross-frame
locations are presented in Appendix D for all three brace layouts. The results presented in
this chapter as well as those in the Appendix show that positioning the truck close to the edge
of the bridge results in larger brace forces near the supports. Positioning the truck close to
the center of the bridge generally leads to larger cross-frame forces near midspan. For most
truck positions, the figures show that the forces of the brace members can be significantly
reduced at most cross-frame locations when the lean-on bracing system is used, provided that
the cross-frame lines do not frame directly into the support. A relatively small offset of 4 or
5 feet will significantly reduce the brace forces when the lean-on system is used.

For conventional normal braces that extend the full width of the bridge, the maximum
cross-frame forces for the lean-on system were substantially lower for both truck positions
that were considered (edge and center loading). For the conventional staggered layout, with
edge truck loading, the lean-on system resulted in similar brace forces for the cross-frame
lines near the supports. The cross-frame forces for the lean-on system were actually larger
than the staggered layout for a few of the locations. For center truck loading, the staggered
layout resulted in significantly larger forces than the lean-on system at all of the cross-frame
locations.

Comparisons of the lean-on bracing with the conventional normal and staggered
layouts generally show lower forces develop in many of .the cross-frames for both truck
positions. Therefore, based on the force magnitudes, a ranking of the recommended details
would proceed in the following order: 1) lean-on layout, 2) conventional staggered layout,
and 3) conventional normal layout. Although this study has not focused on the localized
stress concentrations that may occur around the cross-frame to girder connections, the lower
forces induced in the cross-frames based upon the recommended details should result in a
reduction of potential fatigue damage in the girders due to long-term service truck traffic. In
addition, these bridges with fewer cross-frame locations should be easier to inspect than
bridges with the conventional layout of cross-frames.

8.5 Summary

This chapter has presented finite element results for girders with skewed supports and
different bracing systems. The results have demonstrated the bracing behavior of simplified
bracing system during the construction stage and during the truck loading on the completed
bridges.

For the lean-on bracing system, expressions for the brace stiffness and girder in-plane
stiffness shown in Egs. 8.5 and 8.8 had good agreement with the FEA results in obtaining the
ideal stiffness. Equations presented in Figs. 8.7 and 8.8 can be used to estimate the brace
moment for the lean-on cross-frames. FEA analyses showed that the lean-on bracing system
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led to significant reductions in the cross-frame member forces induced to by truck loading.
Therefore, the use of these details should lead to improved fatigue behavior around cross-
frame and diaphragm locations as well as making the bridges easier to inspect.
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Chapter 9
Conclusions and Future Work

9.1 Conclusions

The objective of the research outlined in this dissertation is to improve the
understanding of the bracing behavior of cross frames and diaphragms in steel bridges with
skewed supports. General bracing requirements were developed and new cross-frame and
diaphragm details to minimize fatigue problems at bracing locations were proposed.
Although the research investigation included both experimental and computational studies,
this dissertation has focused on results from the computational studies. In the process of
developing a design approach for bracing requirements of bridge girders with skewed
supports, the following parameters were considered:

1) Girder System (two to four girder systems were considered)

2) Girder Span (40 feet to 120 feet)

3) Girder Cross Section (Singly and Doubly Symmetric Cross-Sections)
4) Skew Angle (0, 15, 25, 35, and 45 degrees)

5) Brace Orientation (Parallel to Skewed Support or Normal to girders)

6) Loading Condition (Uniform Moment, Concentrated Load, and Uniformly
Distributed Load)

7 Number of intermediate braces

8) Shape of Imperfection

A number of conclusions can be made based upon the results presented in this
investigation. The conclusions have been categorized based upon the applicable parameters
and the bracing systems that were studied. These conclusions will be presented in the
subsequent subsections of this chapter.

9.1.1 Imperfections for Torsional Bracing Systems

The magnitudes of the brace moments for torsional bracing of beams are sensitive to
the magnitude and distribution of the initial twist of the section. Although pure lateral sweep
of the beam or girder can cause moments in the torsional braces, the magnitudes of the
resulting moments are much smaller than those caused by initial twist in the beams. The
initial imperfection that was utilized in this study consisted of a twist of the cross-section in
which the top flange was displaced an amount equal to Ly/500, while the bottom flange
remained straight. For girder systems with several braces along the girder length and
subjected to loads with moment gradient, the forces that develop in the different braces along
the girder length are relatively sensitive to the girder moment at the brace location. The
imperfection that will generally cause the largest brace force is one in which the maximum
initial twist occurs near the brace closest to the point of maximum beam moment with zero
twist at adjacent brace points.
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9.1.2 Bracing Behavior for Girders with Normal Supports

Several analyses were conducted on girder systems with normal supports.
Comparisons between FEA results and solutions that were presented in previous studies for
the brace stiffness requirements for steel girders with normal supports showed good
agreement. Comparisons between the FEA results and previous equations for the strength
requirements showed good agreement for the case when the girders were at moment levels
corresponding to buckling between braced points. However these solutions were generally
conservative for smaller values of the applied moment. Modifications to these previous
solutions provided good agreement with the FEA solutions for the full range of moments up
to buckling between the brace points. The modification consisted of simply squaring the
moment term, which results in the following expression for the total twist in the girder:

4,
by = , ©.1)
T 1— ﬁﬁ [ J2 R
B\ M,

where: ¢ is the total girder twist, ¢, is the initial twist of the girder (often taken as Ly/(500d),
Bri is the ideal brace stiffness, Br is the actual brace stiffness that was provided, M" is the
maximum applied bending moment, and M, is the buckling capacity of the girder
corresponding to buckling between brace points. The resulting brace moment was then
found using the following expression:

M, =P (¢.-4,) (9.2)

where: My, is the resulting torsional brace moment, PBr is the torsional brace stiffness, ¢r is
the total twist given by Eq. 9.1, and ¢, is the initial twist of the girder.

The required brace stiffness is based upon twice the ideal stiffness, which can be
evaluated using the following equation:

; _24LM 2

TRead C2nEI )
For an initial twist ¢, = Ly/(500h), where L; is the girder unbraced length and h is the girder
depth, Eq. 9.3 can be expressed as follows:

(9.3)

_24LM; L,
CynEI, 500k
My is the brace moment based upon providing a brace stiffness corresponding to twice the

ideal value (Brreqa). For cases when the actual provided brace stiffness, Baq, is larger than
twice the ideal value (Brreqq), the brace moment can be reduced by the following expression:

My, = Briega®o 9.4)
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where: My, is the brace moment resulting from Eq. 9.4, M, is the maximum factored
moment, M., is the moment corresponding to buckling between the brace points, Brreqq
corresponds to twice the ideal value, and B, is the actual brace stiffness provided.

Most of the previous bracing solutions were developed for twin-girder systems. For
systems with several girders, the bracing is generally more efficient since the effective
number of girders that each cross-frame must brace decreases. A simple modification that
accounts for the number of cross-frames along the length and width as well as the number of
girders across the width was recommended in Chapter 5. The modification had good
agreement with the FEA results. Neglecting the modification results in conservative
estimates of the bracing requirements.

9.1.3 Bracing Behavior for Girders with Skewed Supports and Parallel Braces

The effectiveness of a brace that is oriented parallel to skewed supports can be
substantially reduced compared to normal braces. The reduction in the effectiveness is
generally due to the fact that the full stiffness of the brace is not engaged at resisting twist of
the girder cross-section due to the angled orientation of the brace. For a skew angle of 6,
applying a modification cos’0 to the cross-frame stiffness in the plane of the brace had good
agreement with the FEA results. Good agreement was also achieved between the FEA
results and the brace moment expressions by simply modifying the strength requirement of
the brace by 1/cosf.

9.1.4 Bracing Behavior for Girders with Skewed Supports and Normal Braces

The skew angle had very little effect on the bracing behavior when the bracing was
oriented normal to the girders. For cases with more than one intermediate brace, the bracing
requirements for girders with normal supports generally showed good agreement with the
results for girders with skewed supports when the bracing was oriented perpendicular to the
longitudinal axis of the girders. However for the case of one brace, modifications were
required to the original brace requirements that were developed for the case with normal
supports. The bracing requirements are based on an equivalent continuous brace stiffness

B =np, /L. However for the case of a single brace, the length L in the expression for ;87 ,

is replaced by 0.75L. For beams with skewed supports, however, better agreement was
achieved by using the same expression that is used for cases with multiple intermediate
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braces. Therefore for all cases the definition for E; =nf, /L. Using this expression for
normal supports or cases with small skew angles will generally be conservative.

9.1.5 Proposed Details for Cross-Frames and Diaphragms

The investigations of the stability bracing behavior of torsional bracing systems has led
to an improved understanding of the bracing requirements for girders with relatively general
support conditions. Expressions that were originally developed for girders with normal
supports were modified to account for the skew angle as outlined in the previous subsections.
Therefore, design engineers can effectively design the cross-frames and diaphragms for the
actual application. In many situations these provisions will lead to smaller cross-frame
members than typically employed. Utilizing smaller cross-frame members will generally
lead to smaller brace forces induced by truck loading, thereby reducing the potential for
fatigue damage.

In addition to designing the cross-frames for the actual application, one of the goals of
this study was to develop recommended details to further minimize fatigue damage. Since
relatively small member sizes can satisfy the bracing requirements for several design
applications, a number of cross-frames can potentially be eliminated and top and bottom
horizontal struts can be provided to lean several girders on a single cross-frame along a brace
line. Eliminating cross-frames should make the girders easier to inspect since there are fewer
regions complicated by the cross-frame to girder interaction from the truck loading. Finite
element studies were done on the girders to investigate the impact on the stability behavior of
the lean-on bracing system. Since the demand on each cross-frame is increased by the
leaning girders, modifications to the strength and stiffness expressions were necessary. Both
the cross-frame stiffness and the in-plane stiffness of the girders needed to be modified to
account for the in-plane girders. The modified expressions show good agreement with the
FEA results.

In addition to studying the stability behavior of the bracing systems with the steel
girders during the construction stage, studies were also conducted on the behavior of the
bracing systems and girders with a composite concrete deck. Finite element studies were
conducted on the composite girders under truck loading. The behavior of both conventional
cross-frame layouts and lean-on systems were studied with HS20-44 truck loading. The
conventional cross-frame systems that were considered consisted of cases with cross-frames
extending across the full bridge width as well as cases in which normal cross-frames were
staggered along a line parallel to the skewed supports. The lean-on systems generally had
substantially lower brace forces than observed for many of the conventional bracing systems.
Although there were isolated braces in which the lean-on system brace forces were close to
the conventional systems, the brace forces in the lean-on system were substantially lower for
the majority of the braces in the bridges that were studied.
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The results presented show that positioning the truck close to the edge of the bridge
results in larger brace forces near the supports. Positioning the truck close to the center of
the bridge generally leads to larger cross-frame forces near midspan. For truck positions, the
results show that the forces of the brace members can be significantly reduced at most cross-
frame locations when the lean-on bracing system is used, provided that the proposed
recommendations are followed with respect to the geometrical layout:

1) The first normal line of braces adjacent to the support should not frame directly
into the support but should be offset by a small distance. A distance of four feet
was used in the FEA studies as shown in Fig. 9.1 for brace lines A and E.

2) In brace lines adjacent to the support, the cross-frame should be placed so as to
maximize the distance from the support. Based upon the skewed supports in Fig.
9.1, the cross-frame should be put between the top two girders along brace lines
A and B and between the bottom two girders at girder lines D and E.

3) Although each brace line only has one cross-frame, the layout of these cross-
frame should be spread out across the width of the bridge as indicated in Fig. 9.1.
This provides better overall stability as well as engaging all of the girders in the
calculation of the in-plane girder stiffness. With lean-on systems, the effect of
the in-plane girder stiffness was reduced by a factor of 2.

9.2 Future Work

In addition to improving the design and detailing procedures for conventional bracing
systems such as cross-frame and diaphragm systems for steel bridge girders, other potential
bracing systems should also be investigated. A likely bracing element is the permanent
metal deck forms (PMDF) that are often used to support the concrete bridge deck during
construction. These forms have substantial in-plane stiffness that can help restrain the lateral
movement of the top flange of the girders during casting of the concrete deck. Although
PMDF in the building industry are routinely relied upon for bracing, these forms are not
currently permitted to be relied upon for bracing in the bridge industry. The forms that are
used in the bridge industry are actually stronger and stiffer than those used in the building
industry, however the method of connecting the forms to the girders substantially reduces the
in-plane stiffness of the PMDEF. Research is currently underway at the University of Houston
to improve the method of connection between the formwork and the girders. The study is
also focused on improving the understanding of the behavior of the metal formwork as a
bracing element. The resulting bracing system would probably consist of cross-frames and
diaphragms provided to support the weight of the steel girders, while the metal deck forms
would be used to brace the girders during construction and the placement of the concrete
bridge deck.
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Appendix A
Supplemental Results for Girders with Normal Supports

As discussed in Chapter 5, for many of the girder cross-sections that were considered in
this investigation, comparisons between the FEA results and the equations showed similar
trends. In these cases, representative results were presented and discussed in Chapter 5,
while additional results for sections with similar behavior are presented in this appendix.
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Appendix B
Supplemental Results for Girders with Skewed Supports
and Parallel Braces

As discussed in Chapter 6, for many of the girder cross-sections that were considered in
this investigation of girders with skewed supports and braces oriented paralleled to skewed
supports, comparisons between the FEA results and the equations showed similar trends. In
these cases, representative results were presented and discussed in Chapter 6, while
additional results for sections with similar behavior are presented in this appendix.
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Appendix C
Supplemental Results for Girders with Skewed Supports
and Normal Braces

As discussed in Chapter 7, for many of the girder cross-sections that were considered in
this investigation of girders with skewed supports and braces oriented perpendicular to the
girder longitudinal direction, comparisons between the FEA results and the equations showed
similar trends. In these cases, representative results were presented and discussed in Chapter
7, while additional results for sections with similar behavior are presented in this appendix.
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Figure C.13 My/M,, versus M/M,, for Section #4 Twin-Girder System with Uniform
Moment, BT = 2Bideal
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Figure C.14 My/My, versus M/M,, for Section #4 Twin-Girder System with Distributed
Loads on Top Flange, Bt = 2Bidcat
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Figure C.15 My/My,; versus M/M,; for Section #4 Twin-Girder System with Concentrated
Load at Midspan, Br = 2Bigeal

202



Appendix D
Supplemental Results for Bracing Details for Bridges
with Skewed Supports

In addition to the derivation of the stiffness and strength equations for cross-frames and
diaphragms presented in Chapter 8, complete results of the brace force response envelops for
the truck loading is presented in this appendix. The results include three types of brace
layouts: conventional brace layout, conventional stagger brace layout, and lean-on brace
layout. :
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Equation for Predicting Brace Moment, 31 = Br geqrq

The required brace stiffness that corresponds to twice the ideal brace stiffness
1s given by the expression:
_ 24LM :
Proega = m Equation (8.2)
- Lb
~ 500h

Assuming an initial twist: 9

The brace moment for girders with brace stiffness equal to Sy, gd "
1s therefore equal to:
_24LM, L,

nCLEI g 900h

Mbr = ﬁTReq'd¢0

'Equation for Predicting Brace Moment, Br > Brrega

The brace moment for girders with a brace stiffness larger than £, -, :
is can be calculated as follows:

[
Mo = Boc (b7 = ) where: ¢r = :
ror | B (MY
ﬁacl M(‘l‘
«\2 .« \2
ﬁideaf __A_'{___ M
ﬁacl Mcr Mmr
Macf = ac:¢0 x o N2 = 2ﬂidea1¢0 X N
1~ ﬂidea[ __A_l__ . 2ﬂ1dca? i‘{,
act Mcr ﬁacf 'ﬂfcr
~ M' ) -
=M, N Equation (8.4)
2 _ TRegd m
L ﬁaa [MC?‘] n

Figure D.1 Brace Moment for Girders with Brace Stiffness Larger than the Required Brace
Stiffness
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Lean-on System — Cross-Frame Located at Edge

Brace Forces:

ng. : Number of Girders per Cross-frame
Ay: Area of Diagonal Member of Cross-frame
A.: Area of Horizontal Struts

Al AT AT

Nge-1

A3

CROSS-FRAME STIFFNESS AND STRENGTH REQUIREMENTS

Brace Stiffness: Girder n is Critical for Stiffness

AR NPT, RO &
2 /L EA,S> ' EA,

N =N+ (ngc . Z)FS N (n‘gc —2)FS
EA EA,

¢

A +(ngc-2)FS +(ngc—3)1’S . TS

A: =8,
ke EA, EA, EA

Number of terms =(n,-2)

A =Ry n,—2)FS * (n =3)FS )
- EA, EA4 EA

c <

Figure D.2 Equations for Stiffness and Strength Requirements for Lean-on Braces —Cross-
Frame (1/2)
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CRbSS-FRAME STIFFNESS AND STRENGTH REQUIREMENTS

o el FS (1, —2)n,. ~ 1) o (. ~1)Fs ,FS (n,.—2)n,. 1)
" EA,S® EA, 2 " EA EA

Relative Displacement between Top and Bottom Flanges:

FL, FS FS
Mg Rge + Rge r;A S2 EA ( - 1)+ (ngc - ZX”gc - 1)

n, FL
— i—;.*.i:sv_(ngc — 1)2
EA,S®  EA,

<

ﬂ_M_Fh,,_Fh,f_ X
b o T = = 3
6 Alh, A "chdz +—S—(n 1y
EA,S® A ¢
_ ES’h}
L S 2
Td““A—c(ﬂgc—l)
SUMMARY:
Brace Stiffness: Brace Strength:
ES°H? F, = tel L
B, = S
L3 3
P g 1) A
Ad Ac b
F,=(n, -1)F

Figure D.2 Equations for Stiffness and Strength Requirements for Lean-on Braces —Cross-
Frame (2/2)
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 Lean-on System — Diaphragm Located at Edge

Brace Forces:

ng. : Number of Girders per Cross-frame

Ay: Area of Diagonal Member of Cross-frame
A.: Area of Horizontal Struts

Brace Deformations:
6, 8

CCROSS-FRAME STIFFNESS AND STRENGTH REQUIREMENTS

Moment Diagrams of the Diaphragm :

(ngc'z)Mbr

M, . (ng. —2M,, (2n, -3)M,S

*T6EL/S  3ELJS 6K,

—-2)FS -2)FS 2(n,, —2)F.
6,=0,+ (g ~2)FS  (n,.=2) b =6, + (n, —2)FS h
EA4 EA EA

(4 c (4

Figure D.3 Equations for Stiffness and Strength Requirements for Lean-on Braces —
Diaphragm (1/2)
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..CROSS-FRAME STIFFNESS AND STRENGTH REQUIREMENTé

Brace Stiffness: Girder ny is Critical for Stiffness

2FS
o =0 e [ =D+ =D+t 1] e ot terms =(ny-2)
2n, -3M, S 2FS (n,-2+1)
= + (ngc - 2)
6EI, EAR, 2
2n._-3)F, h S
_( n,. —3)F,h, & FS (ngc_lxnc_z)
6EI, EAh, ¢
5 - M, _Fh, 1
9 68 (n,.-3)S . (g, —D(n, -2)S
(s s 6EI, EA R}
_ E
T (@n.-3S s
6, AR Ve =Dl =2) B
SUMMARY:
Brace Stiffness: Brace Strength:
L E F =(n - 2 F
ﬁb - (2ngc _3)S . S ( 1)(n 2) h ( gc )
n - _
6Ib Ach: gc gc F = M%
b

M =(n,~1M,,

Figure D.3 Equations for Stiffness and Strength Requirements for Lean-on Braces -
Diaphragm (2/2)
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Figure D.4 (a) Brace Force Response Envelope at Brace Location #1, Edge Truck Loading-
Conventional vs. Lean On Bracing
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Figure D.4 (b) Brace Force Response Envelope at Brace Location #2, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (c) Brace Force Response Envelope at Brace Location #3, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (d) Brace Force Response Envelope at Brace Location #4 Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D .4 (e) Brace Force Response Envelope at Brace Location #5 Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (f) Brace Force Response Envelope at Brace Location #6 Edge Truck Loading-
Conventional vs. Lean On Brace

210



4000
3000 |
2000 |
1000 |

0
10008 200 400 600 800 1000 1200 1400

-2000 |

Brace Response Force (Lb)

-3000 [ —a-a- Bottom Horizontal Member -a-8- Diagonal Member
-4000

Truck Location (inch)

Figure D.4 (g) Brace Force Response Envelope at Brace Location #7, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (h) Brace Force Response Envelope at Brace Location #8Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (i) Brace Force Response Envelope at Brace Location #9Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (j) Brace Force Response Envelope at Brace Location #10, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (k) Brace Force Response Envelope at Brace Location #11, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (1) Brace Force Response Envelope at Brace Location #12, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (m) Brace Force Response Envelope at Brace Location #13, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.4 (n) Brace Force Response Envelope at Brace Location #14, Edge Truck Loading -
Conventional vs. Lean On Brace
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Figure D.4 (o) Brace Force Response Envelope at Brace Location #15, Edge Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (a) Brace Force Response Envelope at Brace Location #1, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (b) Brace Force Response Envelope at Brace Location #2, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (c) Brace Force Response Envelope at Brace Location #3, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (d) Brace Force Response Envelope at Brace Location #4, Center Truck Loading-
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Figure D.5 (e) Brace Force Response Envelope at Brace Location #5, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (f) Brace Force Response Envelope at Brace Location #6, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (g) Brace Force Response Envelope at Brace Location #7, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (h) Brace Force Response Envelope at Brace Location #8, Center Truck Loading-
Conventional vs. Lean On Brace

6000
5000
4000
3000
2000
1000 }

0 A A i
-1000 200 400 600 800 1000 1200 1400
-2000
-3000
:;ggg r -4 Bottom Horizontal Member -a-8- Diagonal Member

-6000

Brace Response Force (Lb)

Truck Location (inch)

Figure D.5 (i) Brace Force Response Envelope at Brace Location #9, Center Truck Loading-
Conventional vs. Lean On Brace
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Figure D.5 (j) Brace Force Response Envelope at Brace Location #10, Center Truck
Loading- Conventional vs. Lean On Brace
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Figure D.5 (k) Brace Force Response Envelope at Brace Location #11, Center Truck
Loading- Conventional vs. Lean On Brace
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Figure D.5 (1) Brace Force Response Envelope at Brace Location #12, Center Truck
Loading- Conventional vs. Lean On Brace
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Figure D.5 (m) Brace Force Response Envelope at Brace Location #13, Center Truck
Loading - Conventional vs. Lean On Brace
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Figure D.5 (n) Brace Force Response Envelope at Brace Location #14, Center Truck
Loading- Conventional vs. Lean On Brace
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Figure D.5 (o) Brace Force Response Envelope at Brace Location #15, Center Truck
Loading- Conventional vs. Lean On Brace
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Figure D.6 (a) Brace Force Response Envelope at Brace Location #1, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (b) Brace Force Response Envelope at Brace Location #2, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (c) Brace Force Response Envelope at Brace Location #3, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (d) Brace Force Response Envelope at Brace Location #4, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (e) Brace Force Response Envelope at Brace Location #5, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (f) Brace Force Response Envelope at Brace Location #6, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (g) Brace Force Response Envelope at Brace Location #7, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (h) Brace Force Response Envelope at Brace Location #8, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (i) Brace Force Response Envelope at Brace Location #9, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (j) Brace Force Response Envelope at Brace Location #10, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (k) Brace Force Response Envelope at Brace Location #11, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (1) Brace Force Response Envelope at Brace Location #12, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (m) Brace Force Response Envelope at Brace Location #13, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (n) Brace Force Response Envelope at Brace Location #14, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.6 (0) Brace Force Response Envelope at Brace Location #15, Edge Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (a) Brace Force Response Envelope at Brace Location #1, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (b) Brace Force Response Envelope at Brace Location #2, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (c) Brace Force Response Envelope at Brace Location #3, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (d) Brace Force Response Envelope at Brace Location #4, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (e) Brace Force Response Envelope at Brace Location #5, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (f) Brace Force Response Envelope at Brace Location #6, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (g) Brace Force Response Envelope at Brace Location #7, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (h) Brace Force Response Envelope at Brace Location #8, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (i) Brace Force Response Envelope at Brace Location #9, Center Truck Loading-
Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (j) Brace Force Response Envelope at Brace Location #10, Center Truck
Loading- Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (k) Brace Force Response Envelope at Brace Location #11, Center Truck
Loading- Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (1) Brace Force Response Envelope at Brace Location #12, Center Truck
Loading- Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (m) Brace Force Response Envelope at Brace Location #13, Center Truck
Loading - Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (n) Brace Force Response Envelope at Brace Location #14, Center Truck
Loading- Conventional Stagger Brace vs. Lean On Brace
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Figure D.7 (o) Brace Force Response Envelope at Brace Location #15, Center Truck
Loading- Conventional Stagger Brace vs. Lean On Brace
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