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Abstract 

Most mechanistic-empirical methods for determining the remaining life of an existing pavement 
rely on the use of deflection-based non-destructive evaluation (NDE) devices. This report describes 
a methodology based on Artificial Neural Networks (ANN) techniques to estimate the remaining 
life of flexible pavements given the occurrence of two possible failure modes: rutting and fatigue 
cracking. The ANN techniques are also used to develop models that predict the critical strains at the 
interfaces of the pavement. The inputs to all the models are the best estimates of the thickness of 
each layer and the surface deflections obtained from a Falling Weight Deflectometer test. 
Uncertainty in these variables is accounted for by the proposed methodology. The report also 
describes an approach to the production of pavement performance curves using the results of the 
ANN models. 

v 



vi 



Executive Summary 

One of the most common Nondestructive Evaluation (NDE) methods to collect pavement 
performance data is the Falling Weight Deflectometer (FWD) test. The seven peak-deflections, 
otherwise referred to collectively as a deflection bowl, provide some of the input used to 
determine the pavement layers' moduli, usually through a backcalculation process. Once the 
layer moduli of the pavement have been computed, the pavement's remaining life, using one of 
the many available models, can be estimated. 

This report describes an alternative approach to the computation of the remaining life of a given 
section. The methodology is based on Artificial Neural Networks (ANN) techniques and statistical 
concepts. In the proposed approach the backcalculation process is omitted. In addition, it only uses 
data readily available to pavement engineers, such as the measured deflection bowls, the section 
layers thickness and the condition survey. No laboratory-derived properties are required. 

The objectives of this project were, 1) to develop ANN models to compute the remaining lives of 
flexible pavements associated with the rutting and fatigue cracking failure modes, 2) to develop 
ANN models to predict the critical strains at the interfaces of the layers, 3) to account for the 
uncertainty in the variables used for predicting remaining life, 4) to develop pavement performance 
curves and their confidence bounds, and 5) to create a software tool that integrates the models 
developed. 

The Artificial Neural Network theory is a branch of the more general field called Artificial 
Intelligence. The ANN theory aims at understanding the way the information is processed in the 
brain and to develop the mathematical relationships that would reproduce that process. To develop 
an ANN it is necessary to have a set of examples that show specific values of the independent 
variables and the corresponding values of the dependent variable(s). The examples are used to train 
and test the ANN model. In this work, each example consists of an input vector with nine elements 
that represent the thickness of the AC and base layers and the seven FWD readings and an output 
vector, whose only element defines the quantity that the model will predict. In this case, that 
quantity is any of the two critical strains at the interfaces of the layers or the remaining life of the 
pavement when it experiences either fatigue cracking or rutting. 

Optimally, the examples could be obtained from actual field data that has been collected and "fed" 
into a PMS database. Nevertheless, this type of information is limited at the present time. 
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Therefore, a synthetic and comprehensive database was generated to simulate and cover a wide 
range of possible pavement sections. FWD tests and dual tandem loading on the pavement were 
simulated to obtain the deflection basin and the critical strains in a number of pavement sections. 
Furthermore, the Asphalt Institute models, for predicting the remaining life for rutting and fatigue 
cracking, were used to associate remaining life values to each section. At the end, a database with 
360,000 exemplars was compiled. The data sets for training and testing the ANN models developed 
were sampled from this database. 

Four ANN models were developed for a three-layer flexible pavement. Two of the models predict 
the rutting and fatigue cracking remaining lives according to the Asphalt Institute equations. The 
other two models predict the maximum tensile and compressive strains at the layer interfaces. The 
models have proven to be accurate in their predictions. 

To describe the continuous performance of a pavement with time or alternatively with passing 
traffic, the pavement performance curve (PPC) has been proposed. In general, the development of a 
PPC is based on the widely accepted Weibull type curve. An approach that uses the predictions of 
the ANN models in the construction of PPCs has also been developed. The proposed approach also 
allows the definition of confidence bounds for the PPC. The bounds are obtained using a Monte 
Carlo simulation algorithm. 

All the models and algorithms developed have been integrated into a software tool. The beta version 
of the software is being developed under Windows 95, using C++ development-programming 
language. The software development follows a modular approach. 

The proposed methodology has been initially validated with data obtained from one of the Texas 
Mobile Load Simulator (TxMLS) test sites. Results of the measured and predicted degradation of 
the section match closely. 

Artificial Neural Network technology has proven to be a feasible and practical modeling approach 
in the development of models to assess the integrity of pavements using data that is readily available 
to the pavement engineer. This is particularly advantageous because other approaches require 
information from laboratory tests, making the assessment more tedious and time consuming. 
Another advantage of an ANN model over traditional approaches is that the remaining life can be 
calculated without having to backcalculate the elastic moduli of each pavement layer. 
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Implementation Statement 

The software developed is ready for limited implementation. We recommend that staff member of 
the Design Division utilizes this program along with the existing methodologies for evaluation 
purposes, and for providing recommendations for future improvements. 

We also recommend training courses for a few members ofthe districts to determine the ease of use 
and to recommend means to make it more accurate and more practical for their use. 
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Chapter 1 

Introduction 

Periodical assessment of the overall structural health of pavements is an integral factor in optimizing 
the maintenance and rehabilitation strategies of the highway networks around the country. For the 
past several years, many techniques have been developed to monitor pavement performance. Most 
of these techniques use non-destructive evaluation (NDE) procedures. Significant amount of effort 
has been placed to develop low cost simple non-destructive tests (NDT) for measuring pavement 
properties. These properties are collected and maintained in a Pavement Management System 
(PMS). The information contained in a PMS is frequently used by engineers to assess the integrity 
of the pavements and to determine their remaining (future useful) lives. This type of assessment is 
conducted at both the network and project level. Accurately predicting the integrity and remaining 
life of pavements is of utmost importance in planning short-term and long-term maintenance, 
rehabilitation and reconstruction strategies. 

One of the most common NDE methods to collect pavement performance data is the falling weight 
deflectometer (FWD). The seven peak deflections, otherwise referred to collectively as a deflection 
bowl, provide some of the input used to determine the pavement layers' moduli, usually through a 
backcalculation process. Once the layer moduli of the pavement have been computed, it is then 
possible to estimate the pavement's remaining life using one of the many available models (Huang, 
1993). 

Despite the straightforwardness of this approach, several concerns still exist over its rationality. 
Some of those concerns are: 1) the weaknesses in the existing backcalculation procedures, 2) the 
uncertainty in the assumed input parameters, such as the thickness and Poisson's ratio of paving 
layers and subgrade, and 3) the uncertainty in the measured responses, such as the magnitude of 
applied load and the resulting deflections. 

Another concern is the applicability of the current models developed to predict the performance of a 
pavement section. For instance, in the case of flexible pavements, the cracking of the pavement is 
related to the tangential strain level at the bottom of the AC. These critical strains are typically 
calculated using layered theory and backcalculated moduli. Small variations in moduli would 
significantly affect the predicted remaining life from these models. Vennalaganti et al. (1994a) 



performed extensive sensitivity studies on the effects of the variability of input pavement and traffic 
parameters on two popular models for computing the performance of a pavement subjected to 
fatigue (Finn et al., 1977) and to rutting (Shook et al., 1982). The main conclusion was that the 
remaining life of a pavement is more rationally modeled using a probabilistic model than using a 
single deterministic quantity. Deterministic models of pavement performance are being improved 
by many states and under federal programs. In general the existing remaining life models are 
functions of the backcalculated moduli and the computed strains at the interfaces of the pavement 
layers. 

In its simplest definition, backcalculation is an iterative process that requires varying a set of moduli 
until a best match between the measured FWD deflection bowl and calculated deflection bowl is 
obtained. The problem with the backcalculation process is the nonuniqueness of the results. A good 
match between the deflections does not guarantee that the backcalculated moduli are reasonable for 
that section and, as a consequence, the remaining life of the section could be grossly under or over 
estimated. 

This report presents an alternative approach to the computation of the remaining life of a given 
section. Our methodology is based on Artificial Neural Networks techniques and statistical 
concepts. In the proposed approach, the backcalculation process is omitted. In addition, it only uses 
data readily available to pavement engineers, such as the measured deflection bowls, the section 
layers thickness and the condition survey. No laboratory-derived properties are required. 

Objective 

The objective of this project were: 

1) to develop neural network models which will rapidly and reliably predict the remaining lives of 
flexible pavements, 

2) to develop neural network models that rapidly and reliably predict the critical strains which are 
used in existing remaining lives models. 

3) to improve and integrate an algorithm for estimating the uncertainty in the predicted remaining 
life from the uncertainty in the geometric and material variables of the section, 

4) to develop a pavement performance curve, which incorporates the results of the ANN models, 
condition survey and traffic, 

5) to develop a state of the art modular software that incorporates items 1 through 4 and provide 
results manifested with sophisticated graphical user interface (GUI) designed, specifically, to 
complement TXDOT decision-making practices. 

In this report, the results from the efforts made during the past two years of the project are 
summarized. The ongoing success of this project has been due to the cooperative effort between 
UTEP and TXDOT personneL TXDOT personnel have provided valuable input at several stages of 
the project to keep the methodology practical. 
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Organization 

Chapter 2, of this report introduces the background information on FWD, ANN models, and 
remaining life models. In chapter 3, the process of generating a database of pavement sections is 
discussed. Chapter 4 shows the process of creating artificial neural networks models that estimate 
the remaining life of flexible pavements as well as the critical strains at the interfaces of a pavement 
section. Chapter 4 also contains a methodology to incorporate ANN model results in the definition 
of pavement performance curves. It also discusses the effect of uncertainty of the input variables on 
the uncertainty of the estimated variables. Chapter 5 describes the software under development 
Finally, Chapter 6 includes a case study that demonstrates the use of the methodology presented in 
this report. The last chapter contains the conclusions of the research effort in this project. An 
extensive literature review of neural network applications to pavements is included in Appendix A 
Appendix B shows a typical run of the software under development. 
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Chapter 2 

Background 

Falling Weight Deflectometer 

The Falling Weight Deflectometer, as shown in Figure 2.1 , is a pavement evaluation instnunent 
designed to monitor its conditions. The FWD produces a transient impulse loading force on the 
pavement and seven seismic deflection transducers, usually placed 305 mm (12 in.) apart on the 
surface of the pavement, to measure the resulting pavement deflections. 

The impulse load is produced by dropping a mass from various heights. The seven seismic 
transducers (geophones), which are controlled by the data acquisition equipment that is integrated 
with the FWD, measure the time histories of deflections. Extracted from the time histories are 
seven peak deflections that defme the deflection basin (Stokoe et al. , 1991 ). These deflections 
provide part of the input to the methodology developed under this project. 

Figure 2.1- Schematic of Falling Weight Deflectometer 
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Artificial Neural Networks in Pavement Engineering 

The Artificial Neural Network (ANN) theory is a branch of the more general field called Artificial 
Intelligence. The ANN theory aims at understanding the way the information is processed in the 
brain and to develop the mathematical relationships that would reproduce that process (Smith, 
1993). An artificial neural network is modeled to resemble the human's brain capability to think 
and learn through perception, reasoning and interpretation. A brain is composed of networks of 
neurons that receive input signals from other neurons. When a certain level of excitation is reached, 
a neuron "fires" an output signal that acts as an input to other connecting neurons. The type of 
relationship between the input and the output of a neuron can be described mathematically using a 
number of algorithms (Freeman and Skapura, 1991 ). 

Figure 2.2 graphically shows a model for an ANN and its main components. In an analogy to a 
biological neural network, the neurons are replaced by artificial neurons also called processing 
elements (PEs). In general, an ANN consists of at least three layers of interconnected PEs: the input, 
hidden, and output layers. The number of PEs in the input layer is the same as the number of input 
variables that are used to predict the desired output (independent variables). The PEs in the output 
layer represent the variables to be predicted (dependent variables). The input and output layers are 
connected through one or several intermediate layers of PEs, also called hidden layers. The number 
of hidden PEs within these layers is decided by trial and error depending on the complexity of the 
problem. 

Output I 
··:::::::::::::::.·.·.·.·.·:.·.~ ........... ···· ·:: .. 

Output 2 ,/ Output 3···,~::: ·• · ·· ·. 

{ ·~ 
}Output lAyer 
.· 

One or more Hidden lAyers 

Weighted Connections 

Input 
From 
Other 
PE 's 

'' '' Input Layer 

Output = Transfer 

Figure 2.2 - Components of an Artificial Neural Network 

Output 

n 

(" x .w ) k.J I 1 

i= l 

In most types of ANN, the PEs between two adjacent layers are usually interconnected. The 
strength of each connection is expressed by a numerical value called a weight. The weights are 
determined through a "training" process that consists of presenting input and output examples to 
the network. The ANN is supposed to learn the relationship between the input and the output by 
adapting the weights of the connections. A number of algorithms have been developed to conduct 
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the training process (NeuralWare, 1993). In this work the commonly used "backpropagation" model 
was implemented. 

During the training of a backpropagation neural network, information is transferred in two phases: 
the forward phase and the backward phase. In the forward phase, the input is presented and 
propagated forward through the network to compute an output value for each PE. In the backward 
phase, for each PE in the network, the current output is compared to the desired output and the 
difference or error is computed. Starting at the output layer and ending at the input layer, the error is 
gradually propagated back through each node in the network using a predefined learning rule. 
During this process, the weights of the connections are also modified until the error is minimized 
(NeuralWare, 1993). Once the network is trained, the development process is completed. 

The use of ANN is not new in pavement engineering. Several applications have already been 
published in the specialized literature. Some of those applications include: 1) parameter 
determination, such as the pavement section moduli; 2) assessment of the condition of the pavement 
and 3) selection of maintenance strategies. Appendix A gives a summary of publications on the 
subject. It shows the type of application for the ANN models, the input variables used, the predicted 
variables, and the size of the databases used to generate training (input examples) and testing files. 

Remaining Life Models 

A pavement, either flexible or rigid, may develop several modes of failure during its service life. 
Therefore, its integrity at a given point in time depends on the type of failure it is exhibiting. When 
no distress is visible, the prediction of the remaining life of a pavement requires a priori 
identification of its possible failure modes. The most common structural failure types observed in 
flexible pavements are rutting and fatigue cracking. 

In most design and evaluation methodologies of flexible pavements, loads on the surface of the 
pavements are considered to produce two critical strains (tensile and compressive). Figure 2.3 
below shows the location of the critical strains for a three-layer flexible pavement. 

AC, EAC 

Base, EBase 

Su bgrade, Esubgrade · 

Figure 2.3- Three-Layer Flexible Pavement Section 
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The first critical strain, horizontal tensile strain, s~, develops at the bottom of the asphalt layer and it 
has been shown to be a measure of the fatigue cracking of a pavement. The second critical strain, 
the vertical compressive strain, E>c, develops at the top of the subgrade layer and has direct relation to 
the permanent deformation or rutting that results on top of the surface of the pavement. 

Two general mathematical distress models are used to determine the remaining life of flexible 
pavements. These models take the following general forms (Huang, 1993): For the fatigue 
cracking failure mode, 

N - r (c )-h (E )-J, 
f - J 1 t AC 

(2.1) 

and for the rutting failure mode, 

(2.2) 

where Nr is the number of repeated. 80-KN (18-kip) equivalent single axle load (ESAL) the 
pavement can stand before fatigue cracking failure occurs. Parameter Nr is a similar quantity 
associated with the rutting of the pavement. 

The constants f1. f2, f3, f4, and fs in Equations 2.1 and 2.2 are usually determined from field 
performance data, road tests, or laboratory tests. Table 2.1 gives the values developed by various 
institutions. 

Table 2.1 -Fatigue Cracking Model and Rutting Model Parameters Used to 
Determine Remaining Life of a Flexible Pavement (from Huang, 1993) 

Nr = ft ( Et) -n (EAc)-fJ Nr = f4 ( Ec) -1'5 

fl f2 6 f4 fs 

Asphalt Institute 0.0796 3.291 0.854 NA NA 
Shell 0.0685 5.671 2.363 NA NA 
Shell (50% reliability) NA NA NA 6.15E-7 4 

Shell (85% reliability) NA NA NA 1.94E-7 4 

Shell (95% reliability) NA NA NA 1.05E-7 4 

Illinois Dept. of Transportation 5E-6 3 NA 3 NA 

Transport and Road Research Laboratory 1.66E-10 4.32 NA 4.32 NA 
U .K Research & Road Research NA NA NA 6.18E-8 3.95 
Laboratory (85% reliability) 

University of Nottingham NA NA NA 1.13E-6 3.571 

Belgian Road Research Center 4.92E-14 4.76 NA 3.05E-9 4.35 
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Chapter 3 

Data Base of Pavement Section Parameters 

To develop an ANN it is necessary to have a set of examples that show specific values of the 
independent variables and the corresponding values of the dependent variable(s). These examples 
are used to train and test the ANN model. In this work, each example consists of an input vector 
with nine elements that represent the thickness of the AC and base layers (t1, t2) and the seven FWD 
readings (do ... d6), and an output vector, whose only element defines the quantity that the model will 
predict. In this case, that quantity is any of the two critical strains at the interfaces of the layers ( E1 

or Ec) or the remaining life of the pavement when it experiences either fatigue cracking (Nr) or 
rutting (Nr). 

Optimally, the examples could be obtained from actual field data that has been collected and "fed" 
into a PMS database. Nevertheless, this type of information is limited at the present time. 
Therefore, a synthetic and comprehensive database was generated to simulate and cover a wide 
range of possible pavement sections. 

Data Base Generation 

The overall process employed to generate a synthetic data base is graphically depicted in Figure 3.1. 
First, a simulation was conducted to generate a number of pavement sections [STEP I]. The 
thickness of the AC and base layers and their corresponding elastic moduli defined each section. 
Wide ranges of possible thickness and moduli were initially established to cover most types of 
pavement sections. To generate these variables a Monte Carlo simulation approach was conducted 
(Ang and Tang, 1984) using the following assumptions: 1) the variables were not correlated, 2) the 
thickness of the subgrade was fixed at 610 em (240 in.) to simulate a semi-rigid layer, and 3) the 
pavement section variables were simulated using a discrete uniform distribution. Some of these 
assumptions could be reviewed in the future as more evidence of the statistical relationships of the 
pavement section variables become available. 
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Figure 3.1 - Synthetic Database Generation Process 
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Once a section was defined, a FWD test on the section was simulated using the five-layer linear 
elastic program WESLEA [STEP 2a]. The seven FWD readings were computed under a static load 
of 40 KN (9000 lb) acting over a 152 mm (6 in.) radius and with a uniform 305 mm (12 in.) spacing 
for the seven sensors. The thickness and seven deflections constituted the input vector for the 
ANNs. 

As stated earlier, the variables that defme the output vector could be the critical strains or the 
remaining life associated with each failure mode. Using WESLEA, the critical strains, for each of 
the sections generated, were evaluated under a simulated dual tandem loading (DTL) of 80 KN 
(18000 lb) [STEP 2b]. These computed strains were then used in Equations 2.1 and 2.2 to 
determine the rutting or fatigue cracking remaining life of the pavement section [STEP 3]. This 
process was repeated for every pavement section until a comprehensive database was built [STEP 
4]. Finally, training and testing files were selected from this comprehensive database to develop the 
ANN models [STEP 5]. Through this process a synthetic database with 360,000 examples was 
produced. Training and testing files were extracted using random sampling. 

Data Processing 

A very important step in developing ANN models is data pre-processing. In many engineering 
applications, raw data should be preprocessed to ensure that the ANN learning process is not 
inhibited. Thus, the data extracted from the database was subjected to mathematical transformations 
before being used in the training of ANN models. 

A combinatorial analysis was conducted to select a suitable set of transformations for each of the 
input and output variables. The analysis involved replacing each of the raw input and output 
variables with one or more transformed variables, during the ANN training process. The final 
transformations were selected from a pool of candidate transformation chosen priori. A genetic 
algorithm was implemented to choose the best set of transformations. The criteria used to select the 
transformations, was the minimization of the root mean square (RMS) error of the output. Table 3.1 
shows the pool of candidate transformations and those selected by our algorithm for training the 
ANN model that predicts the rutting remaining life. A different set of transformations was used for 
each of the ANN models developed. 

Results of two Artificial Neural Network models, one trained with the raw data and the other trained 
with pre-processed data are shown in Figure 3.2. The accuracy gained by pre-processing of the data 
is evident. 
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iN arne Function 

Identity function * X 
Natural logarithm function * ln(x) 
Log of Log lo_1;(log(x)) 
Exponential function exp(x) 
Exp ofExp exp(exp(x)) 
.Square function XL 

Fourth Power function x4 

Square root function * X U.S 

Fourth root function XU . .l:l 

Inverse function (1/x) x·I 

1 I (Square function) * x·L 

1 I (Fourth Power function) X -4 

1 I (Square root function) x·U.5 

1 I (Fourth root function) x·u.L~ 

Hyperbolic tangent function * tanh(x) 
Log (x/(1-x)) * ln(x/(1-x)) 

* Transformations apphed to data used for developmg 
the ANN model that predicts the rutting remaining life 

a) trained with raw data 

' ' 
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pre-processed data 
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Figure 3.2 - Results of Two ANN Models 

12 



Chapter 4 

Artificial Neural Networks Models 

ANN Development 

All the ANN models developed during this project have been based on a multi-layer feed-forward 
backpropagation algorithm. A Kalman filter (Puskorius and Feldkamp, 1991) was selected as the 
learning rule, to estimate the weights for the links that join the processing elements between two 
adjacent layers. The sigmoid function was selected as the transfer function of the processing 
elements. The sigmoid transfer function is used in the output layer to transfer the weighted sum, as 
shown in Figure 2.2, to fit within certain specified bounds (Smith, 1993). The architecture (number 
of hidden layers and their corresponding number of PEs in each of them) was chosen based on the 
RMS error of the output. The model with the best architecture was then tested and validated with a 
testing data file. The architectures for the final models consisted of three layers. However, the 
number ofPE's in the input and hidden layers were different for each model. The number ofPE's 
in the input layer depended on the data transformations used for the model. Likewise, the number 
ofPE's in the hidden layer depended on the model's performance. In the development of the ANN 
architecture, it is always desirable to keep the number of PE's to a minimum. The smaller the 
architecture is, the more robust the ANN model will be (NeuralWare, 1993). 

ANN Models 

Four ANN models were developed for a three-layer flexible pavement. Two of the models predict 
the rutting and fatigue cracking remaining lives according to the Asphalt Institute Equations (see 
Table 2.1 ). The other two models predict the maximum tensile and compressive strains at the layer 
interfaces. As mentioned earlier, the result from these two ANN models can be used with any of the 
failure models in Table 2.1 to estimate remaining life. All four models are based on the ranges of 
pavement sections shown in Table 4.1. These ranges were based on surveys conducted by TXDOT 
Personnel. 
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Table 4.1- Ranges ofPavement Section Variables Used in ANN Model Development 

Pavement Variables Units 
Value 

Minimum ; Maximum 

Asphalt Thickness (tJ) mm(in.) 25.4 (1) 254 (10) 

Base Thickness (tz) mm (in.) 102 (4) 457 (18) 

Asphalt Modulus (EAc) MPa(ksi) 2067 (300) J 6900 (1000) 

· Base Modulus (EBASE) MPa (ksi) 207 (30) 759 (150) 

Subgrade Modulus (EsuBGRADE) I MPa(ksi) 35 (5) ! 167 (25) i J 

The ANN models developed during this project are summarized in Table 4.2. The table contains 
the best and final architecture, the limitation or bounds of the prediction range, and the performance 
of each modeL These models are valid for pavement sections listed in Table 4.1, and should not be 
used to predict values outside those ranges. 

Table 4.2 - Specifications and Architectures of the Three-Layer ANN Models 

Number of PEs 
Prediction Bounds 

Performance 
ANN Model 

( input /hidden /output ) (%error) 
Upper Lower 

Fatigue Cracking 9/30/1 
25 million 2000 

+/- 20% 
ESALS ESALS 

Rutting 13/28/1 
25 million 2000 

+/- 10% 
ESALS ESALS 

Tensile Strain 1111811 350E-6 75E-6 +/- 10% 

Vertical Strain 7 I 24 I 1 950E-6 225E-6 +I- 10% 

Remaining Life for Fatigue Cracking 

Figure 4.1 shows the results for the ANN model that predicts the remaining life associated with 
fatigue cracking of a pavement. The figure shows 500 cases. The upper limit for valid predictions of 
this model is twenty-five million ESALS. The range of pavement properties covered by this model 
is listed in Table 4.1 except for the minimum AC thickness, is 75 mm (3 in.) instead of 25 mm (1 
in.). The model's architecture is comprised of 9 PE's in the input layer and 30 PE's in the hidden 
layer. The fatigue cracking ANN model predicts 86% ofthe desired values within a +I- 20% error. 
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Figure 4.1 - Results of the Fatigue Cracking (Nr} ANN Model 

Remaining Life for Rutting 

25 

Figure 4.2 shows the results for the ANN model that predicts the remaining life associated with 
rutting of a pavement. The model is applicable to the entire range listed in Table 4.1. Results for 
500 cases are plotted. The maximum number of ESALS is limited to twenty-five million. The 
model predicts a remaining life of about twenty-five million ESALS for any section that has a 
remaining life beyond this value. The model's architecture is comprised of 13 PE's in the input 
·layer and 28 PE's in the hidden layer. This ANN model was trained with a database consisting of 
5000 examples. The trained model predicts 95% of the desired values within a 20% margin of 
error. 
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Figure 4.2 -Results of the Rutting (Nr) ANN Model 

Tensile and Compressive Strains 

Figures 4.3 and 4.4 show the results for the ANN models that predict the tensile and compressive 
strains at the layer interfaces of a pavement, respectively. These ANN models were developed 
primarily because various institutions such as the Asphalt Institute, Shell, Illinois Department of 
Transportation, Transport Research Laboratory, and Belgian Road Research Center assign 
different values to the coefficients of Equations 2.1 and 2.2. Figure 4.3 compares the predicted 
tensile strain with the desired strain. The model's architecture is comprised of 11 PE's in the 
input layer and 18 PE's in the hidden layer. For the 500 cases shown, this ANN model predicts 
90% of the desired values with+/- 10% error. 

Figure 4.4 illustrate the performance of the ANN model that predicts the compressive strain. The 
model's architecture is comprised of7 PE's in the input layer and 24 PE's in the hidden layer. The 
performance of this ANN model indicates that 96% of the desired values are predicted with+/- 10% 
error. 
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Pavement Performance Curves 

To describe the continuous performance of a pavement with time or alternatively with passing 
traffic, the pavement performance curve (PPC) has been proposed (Garcia-Diaz et al., 1984; Vepa 
et. al., 1996). In general, a PPC is a monotonically non-decreasing curve. A popular model used 
for this curve is the Weibull fimction. The Weibull fimction is a two-parameter curve that is 
commonly used to describe the "life" of a system. Mathematically, the Weibull fimction is 
expressed as: 

(4.1) 

where: 
D = level of damage 
T = number of accumulated traffic to reach D in ESALS, 
a, p =site dependent parameters. 

A PPC can be generated for failure mode of the pavement Figure 4.5 graphically shows a 
pavement performance curve that is based on Equation 4.1. The graph represents the damage 
accumulation in the pavement plotted against traffic or time. The actual shape of the curve is a 
fimction ofthe parameters used in the equation. The figure also shows the concept of remaining life 
used in this project: the extra time/traffic (from the day the NDT was performed) that it will take for 
a section to reach a failure limit. The failure limit shown in the figure represents the maximum 
damage level that can be tolerated before the pavement is repaired. This limit is different for each 
failure mode of the pavement. For example, in this project the failure limits considered were: for 
rutting 12.7mm (0.5 in.) and for fatigue cracking 45% of the wheel path. 

To obtain the parameters of a PPC, it is necessary to know at least two points on the curve. The first 
point may be obtained from the results of an ANN remaining life model, or from one of the 
remaining life regression models in Table 2.1, and the corresponding failure limit. The second 
required point is obtained from available information about the past performance of the pavement. 
The following two cases present two scenarios in which different amount of information is used to 
generate the PPC. 
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Figure 4.5 - Pavement Performance Curve 

Case 1: This scenario asswnes that: 1) no damage existed when the pavement section was 
new, 2) the accwnulated traffic of the pavement section at the time of the NDE is known, and 3) 
at the time of the NDE no record of the level of distress is available. Based on this assumption, 
the PPC of a pavement section can be generated using two points. One point is when the 
pavement was constructed (no traffic, no damage). The other point is obtained by adding the 
predicted remaining life to the traffic at the NDE test time. The result is the time/cwnulative 
traffic at which the pavement reaches the failure limit. 

Case 2: The second scenario is similar to the first with the exception of the third 
asswnption. In this case, a condition survey is carried out during the field test. Based on this new 
asswnption, the PPC of the pavement section can be generated using three points. The first point 
is when the pavement was constructed (no traffic, no damage). The second point is obtained 
from the damage measured and the accumulated traffic at the time of the test. The third point is 
obtained from the results of the ANN model. 

The parameters in· equation 4.1 can be obtained with a closed form solution for Case I and using 
linear regression for Case 2. 

From FWD Test to PPC 

Figure 4.6 summarizes the steps required to construct a · pavement performance curve. Step 1 
illustrates how the thickness and FWD data is collected and used as input to the ANN model. Step 
2 indicates how the ANN model uses the pre-processed data to estimate the output. Step 3 shows 
that the output of the ANN model is post-processed. Finally, the performance curve is obtained in 
Step 4. Once the FWD data is collected the rest of the process is almost instantaneous. 
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Figure 4.6 - OveraiJ Process of Estimating the Integrity of a Pavement 

Confidence Bounds for Remaining Life and Pavement Performance Curve 

The approaches to predict the remaining life of a pavement and to produce its PPC, described in the 
foregoing sections, assume that all the required input variables are known with certainty. However, 
it is well acknowledged that the actual thicknesses of the layers of a given section may not 
correspond to those specified, and that there are experimental errors in the FWD tests. In addition, 
the cumulative traffic passing through a section can only be known with a given level of confidence. 
The impact of uncertainty in the layer thicknesses and in the deflection basin on the predicted 
remaining life of a pavement is shown in Figure 4.7. If the input variables are accepted as random 
variables with given probability density functions, then the output variable (remaining life) is also a 
random variable defined by a probability density function. Once this distribution is known, upper 
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and lower confidence bounds for the predicted remaining life can be established as shown in the 
figure. Due to the highly nonlinear relationship, between the pavement section variables and the 
predicted remaining life variable, finding the probability density function of the remaining life can 
only be practically done through a Monte Carlo simulation (Ang and Tang, 1984). 

COV = 11.2 °/o mean = 8.6 million ESALS based on Rutting Model 
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Figure 4.7- Uncertainty in the Remaining Life of a Pavement 

QJ = ;;.. <::) ·- ·--­= = == a .: = .~ UQ 

To conduct the simulation, the statistics and the type of distribution of each of the input variables 
should be known. In our approach we assume that the mean values of the variables are: for the 
section parameters, the specified values; and for the deflections, the measured values. The 
variability of each parameter is a function of construction practices and the conditions under which 
the NDT is performed. The level of variability is commonly quantified by the coefficient of 
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variation (ratio of standard deviation and the mean value of a variable). Some data on suitable 
coefficients of variation for the variables used by the ANN models have been reported in the 
literature and summarized by Vennalaganti et al ( 1994b ). In our simulation, all input variables are 
assumed to have normal or truncated normal distribution. 

After analyzing the deflection data in the synthetic data base, it was determined that the FWD 
deflections are correlated. Tables 4.3 and 4.4 show the correlation matrixes used for simulating 
deflections. The matrices are different because they were obtained using separate samples. However 
the trend in the correlation coefficients is basically the same. 

i 

I 

i 

I 

I 
:I 

Table 4.3- Correlation Matrix of the Deflections Used in Developing 
Fatigue Cracking ANN Models 

i 
dO dl d2 d3 d4 d5 d6 

dO 1 0.90 0.75 0.68 0.64 0.63 0.64 

dl 1 0.95 0.89 0.86 0.85 0.85 

d2 1 0.99 0.97 0.96 0.95 

d3 1 0.99 0.99 0.99 

d4 i Symmetric 1 0.99 0.99 

dS 1 0.99 

d6 1 

Table 4.4 .: Correlation Matrix of the Deflections Used in Developing 
Rutting ANN Models 

dO dl d2 d3 d4 I d5 d6 I 
dO 1 0.85 0.62 0.51 0.48 0.48 0.49 

dl 1 0.92 0.85 0.82 0.81 0.81 

d2 1 0.99 0.97 0.96 0.96 

d3 1 0.99 0.99 0.99 

d4 Symmetric 1 0.99 0.99 

dS 1 0.99 

d6 1 j 

Once the Monte Carlo simulation is performed, the results can be used to define confidence bounds 
for the predicted remaining life. Figure 4.7 shows a histogram built with the results of one such a 
simulation and the upper and lower bounds defined by plus/minus two standard deviations from the 
mean value. A pavement performance curve can be obtained using each of the bounds thus defined. 
These curves in tum define a region for the possible location of the PPC. Figure 4.8 shows a 

22 



schematic representation of these concepts. It also shows a pavement performance curve generated 
using the mean value of the predicted remaining life. 

A numerical example of the methodology described in this chapter is given in Chapter 6. 

Bounds 

Time 

Figure 4.8 · PCC with the Upper and Lower Confidence Bounds 

23 



24 



Chapter 5 

Description of Software 

This chapter contains a description of the prototype software developed to predict the remaining life 
of flexible pavements. The software is the product of integrating the various methodologies 
described in the previous chapters. 

Presently, the software contains two ANN models that predict the remaining life of a three-layer 
pavement section for both the rutting and fatigue cracking failure modes. The ANN models are 
based on the Asphalt Institute equations. The software also contains the uncertainty-processing 
algorithm based on the Monte Carlo simulation methods. An option to obtain the pavement 
performance curve based on the cumulative Weibull distribution has also been incorporated. Efforts 
are being made to develop a stand-alone end product that will be user-friendly and complimentary 
to procedures used by TXDOT pavement engineers. 

Software Architecture: Main Modules and Sub-Modules. 

The beta version of the software to compute the remaining life of pavements, hereinafter the 
software, is being developed under Windows 95, using C++ development-programming language, 
which allows object oriented programming. The major benefit of object oriented programming is 
the capability of developing programs with a modular architecture. 

The software was designed to have three main modules: a) Input and Project Information module; 
b) the Artificial Neural Network (ANN) and Uncertainty processing module; and c) the Reliability 
and Results module (see Figure 5.1). 

Each module is comprised of additional sub-modules organized in three levels. The first level sub­
modules are classified according to the "pavement types" to be analyzed. Two pavement types were 
originally considered, a) Flexible and b) Rigid. Currently, the software only handles flexible 
pavements (see Figure 5.2). 
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Figure 5.1 - Software Architecture: Main Modules 

Each first level sub-module is comprised of a second level of sub-modules that are classified under 
the "performance models" criteria. Any available performance model can be incorporated at this 
level. So far, the models that predict the remaining life according to the Asphalt Institute are the 
only ones incorporated. 

The third and fmal level consists of the "failure mode" for which the remaining life is to be 
determined. Two failure modes are currently incorporated for flexible pavements: rutting and 
fatigue cracking. 
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The failure mode sub-modules that contain the ANN models are further comprised of three sections 
that perform specific data processing tasks. An ANN per pavement type per performance model per 
failure mode is integrated into the software to determine the corresponding remaining life (see 
Figure 5.3). 

For each ANN, the input data (comprised of pavement thickness and FWD deflections) is read from 
a file and passed to the pre-processing section, where a set of mathematical functions transform the 
data before it is processed by the corresponding ANN. Immediately after, the transformed inputs 
are passed through the ANN and the corresponding remaining life is determined in a transformed 
space. To be able to interpret the results in real space, the transformed ANN output is passed 
through the post-processing section where another set of mathematical functions are used. 

I 
I 

Processing ) 
ANN Model 

Post-processing 
output transformations 

1---------------------

Remaining 
Life 

Figure 5.3 - Software Architecture: ANN Processing Sections 

In the uncertainty analysis module, 250 Monte Carlo simulations per pavement case are conducted 
to determine the statistical parameters of the predicted remaining life. These parameters are later 
used to determine the remaining life's confidence intervals, and to establish confidence bounds on 
tile PPC. 

The C++ programming language proved to be suitable for the integration of the different 
methodologies used to determine the remaining life of a pavement, providing the framework to 
develop a modular and windows based application, without sacrificing user-friendliness. A typical 
program execution is described in Appendix B. 
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Chapter 6 

Case Study 

A case study is included in this chapter to demonstrate how the ANN-based methodology to predict 
the remaining life of pavements is applied. Information collected from one of the Texas Mobile 
Load Simulator (TxMLS) test sites is used to illustrate the process. 

Description of Site 

The site, located in Victoria, TX, is designated as Pad F5. The section is a four-layer asphalt­
concrete pavement with the following nominal features: 

• Asphalt layer of75 mm (3 in.) 
• Lime-treated base of300 mm (12 in.) 
• Lime-treated subbase of 150 mm (6 in.) 
• Clayey subgrade 

The test section was 3m (10ft) wide by 12m (40ft) long. To facilitate data collection, the test area 
was divided into a grid, as shown in Figure 6.1. FWD deflections were measured at each point on 
the grid. Only data from the middle of the section, shaded in the figure, were used in this case 
study. 

Testing and Data Collection 

The TxMLS personnel performed condition survey at predetermined load applications. The 
progression of rutting and fatigue are documented in Tables 6.1. This table contains the average rut, 
and percent fatigue cracking about the 6-m mark in the longitudinal direction (see Figure 6.1 ). The 
results from the FWD tests are included in Table 6.2. 
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Table 6.1 - Percent Cracking and Rutting Measured for Pad FS at the 6-m Mark 

MLS Percent Cracking Ruttine, (mm) 
Axles Left Right Average 

0 0 0 0.0 
2500 0 I 0 0.5 
5000 0 0 0.7 
10000 0 ! 0 1.0 
20000 0 0 1.3 
40000 0 0 1.9 

···-

80000 42 16 i 3.7 
160000 43 16 4.7 
320000 66 50 7.5 
640000 69 60 9.8 

Table 6.2 -FWD Data Collected for Pad F5 

MLSAxles Location dO dl d2 d3 d4 d5 d6 
(mm) (mm) (mm) (mm) (mm) (mm) (mm) 

0 b 0.473 0.196 0.098 0.062 0.044 0.033 0.025 
c 0.448 0.201 0.101 0.064 0.043 0.031 0.022 
d 0.389 0.182 0.095 0.061 0.044 0.032 0.024 
b 0.471 0.209 0.103 0.064 0.044 0.031 0.023 

2500 c 0.449 0.208 0.108 0.068 0.044 0.031 0.022 
d 0.404 0.196 0.102 0.064 0.045 0.033 0.024 
b 0.544 0.238 0.106 0.065 0.044 0.031 0.023 

5000 c 0.457 0.211 0.108 0.068 0.044 0.029 0.023 
d 0.408 0.198 0.099 0.063 0.043 0.032 0.023 
b 0.533 0.227 0.108 0.066 0.044 0.032 0.023 

10000 c 0.463 0.213 0.109 0.070 0.044 0.030 0.021 
d 0.430 0.207 0.105 0.064 0.043 0.031 0.021 
b 0.559 0.242 0.111 0.068 0.043 0.031 0.021 

20000 c 0.484 0.222 0.114 0.070 0.047 0.032 0.023 
d 0.468 0.218 0.108 0.066 0.045 0.032 0.022 
b 0.561 0.250 0.111 0.067 0.043 0.031 0.020 

40000 c 0.474 0.221 0.113 0.071 0.047 0.033 0.024 
d 0.460 0.227 0.109 0.065 0.044 0.033 0.023 
b 0.626 0.256 0.115 0.068 0.046 0.033 0.024 

80000 c 0.480 0.220 0.117 0.073 0.048 0.033 0.024 
d 0.445 0.219 0.111 0.068 0.047 0.034 0.025 
b 0.610 0.259 0.103 0.062 0.043 0.032 0.023 

160000 ·c 0.477 0.220 0.106 0.065 0.044 0.032 0.023 
d 0.446 0.209 0.097 0.059 0.043 0.031 0.022 
b 0.814 0.303 0.113 0.064 0.040 0.028 0.019 

320000 c 0.503 0.230 0.118 0.072 0.045 0.031 0.021 
d 0.549 0.259 0.112 0.069 0.046 0.033 0.023 
b 0.769 0.284 0.128 0.073 0.046 0.034 0.025 

640000 c 0.506 0.247 0.124 0.076 0.049 0.035 0.025 
d 0.570 0.251 0.122 0.072 0.050 0.037 0.027 
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ANN Models 

Since pad F5 was a four-layer system, and the ANN models developed up to this phase of the 
project were for a three-layer system, three new ANN models had to be developed. These models 
consisted of: 1) an ANN to estimate the remaining life associated with rutting using the Asphalt 
Institute criterion, 2) an ANN to estimate remaining life associated with fatigue cracking using the 
Asphalt Institute criterion, and 3) an ANN to predict vertical compressive stress under the asphalt 
layer. 

Chen et al. ( 1999) demonstrated that the rutting model that is based on calculating the rate of rut is 
reasonable for estimating the remaining life at the validation site used in this study. The general 
fonn of the equation is: 

log( RR ) C 1 + C 2 log( d 0 ) + C 3 log( N 18 ) + C 4 log( a c ) (6.1) 

where RR = rate of rutting in micro inches per axle load repetition, do = surface deflection under the 
load plate in mils (obtained from the FWD test), N1s =equivalent 18-kip (80-KN) single-axle load, 
and crc = vertical compressive stress under the asphalt layer in psi. 

The constants proposed by Finn et al. (1986), specifically for conventional construction with hot 
mix asphalt (HMA) less than 150 mm (6in.), are appropriate for this site. The constants are C1 
Log (RT)- 5.617, c2 = 4.343, c3 = -0.167 and c4 = -1.118. Parameter RT is the ratio of the 
observed rutting to the estimated rutting, and can be determined from: 

(6.2) 

where t1 and t2 are the AC thickness and base thickness in inches, respectively. Equation 6.2 was 
proposed by Finn et al. (1986) as a calibration or a shift factor to adjust the estimated rutting based 
on field observations. Therefore, the ANN model that predicts the compressive stress was used in 
conjunction with the Finn et al. model. 

To develop the ANN model, a database containing the thickness, modulus and remaining lives was 
created following the methodology explained in Chapter 3. The ranges of pavement properties 
considered in generating the database are reflected in Table 6.3. The values reported in the table 
were selected based on the available infonnation from a trenching operation at the site and 
backcalculated moduli reported by Chen et al. (1998). As before, to execute any of the three ANN 
models, the only information needed is the thickness of the layers and the deflections from the FWD 
tests. 

The remaining lives due to fatigue cracking from the conventional approach and the ANN models 
are included in Table 6.4. The conventional approach corresponds to backcalculating moduli from 
the deflection basin, calculating the tensile strain at the bottom of the AC layer, and using Equation 
2.1 to estimate the remaining life. From Table 6.4, the conventional method and the ANN models 
provide reasonably close results given the shortcomings of the conventional method and the 
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approximations involved in the ANN modeL This statement is true for all FWD measurements 
reported in the table. The advantage of the ANN model, as indicated before, is that the results are 
provided instantaneously, without any need for backcalculation. 

Table 6.3 - Pavement Sections used in ANN Model Development for this Case Study 

Pavement Designs 
Value 

Minimum· Maximum 
As halt Thickness mm t,) 51 (2 102 (4 

Base Thickness mm (in.) (t2) 254 (10) 356 (1 

bbase Thickness 76 229 (9) 
halt Modulus 690 6900 1000) 

Base Modulus 69 690 (100) 
Subbase Modulus 69 2067 (300) 
Sub ade Modulus 69 5 (50) 

Table 6.4 -Remaining Life due to Fatigue Cracking 

Methods Location 
Axles 

0 5000 20000 80 320000 

ANN Left 498 336 332 228 109 
(million ESALS) Right 1,008 889 600 750 344 

Conventional* Left 661 405 378 256 192 
(million ESALS) Right 1,276 986 758 859 406 

* Asphalt Institute Equation 

Similar results for the remaining life due to rutting are given in Table 6.5. The Asphalt Institute 
model (Equation 2.2) using the conventional approach yields remaining lives in the ranges of 4 
million to 12 million ESALS. The ANN model reports a value of2.8 million ESALS for all FWD 
test results. This value is the upper limit of the remaining life introduced to the ANN model. Since 
ANN models cannot extrapolate results outside the range of outputs that they are trained for, they 
return the upper limit as the response. Therefore, from the ANN models one can only deduce that 
the remaining life is in the excess of 2.8 million ESALS. One thing is clear from the results of both 
methods: Equation 2.2 is not appropriate for this site. These results clearly show that if the 
fundamental model is not accurately describing a phenomenon, the ANN models will not yield 
reasonable results. 

As indicated before, the Finn et al. (1986) model for predicting the remaining life based on rutting is 
appropriate for this site. The rate of rut from the Finn model using the ANN and conventional 
methods are also compared in Table 6.5. The two methods yield fairly close results for the amount 
of approximation involved in the ANN model and the FWD backcalculated moduli. 
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Table 6.5- Remaining Life due to Rutting 

Model Methods 
Axles 

0 5000 20000 80000 320000 
'Asphalt Institute ANN 2.8* 2.8* 2.8* 2.8* 2.8* 
(million ESALS) Conventional 12.9 10.0 6.70 5.6 4.1 
Finn et al. ANN 4.09 1.69 1.34 0.99 0.70 
(log (RR)) Conventional 4.32 1.84 1.49 1.11 0.80 

*Upper bound of the tramed ANN model 

From the results sho\Vll in both Tables 6.4 and 6.5, it can be concluded that the ANN models are 
quite satisfactory, and can readily replace the conventional methods within the limitations they are 
trained for. 

To demonstrate the strengths and the weaknesses of the pavement performance curves developed by 
the algorithm described in Chapter 5, the case study is expanded one more step. The observed 
pavement performance from condition survey is sho\Vll in Figure 6.2. Up to 40,000 repetitions, the 
section does not exhibit any cracking. At about 80,000 repetitions, the section can be considered as 
failed. As such, this case may not be as typical as those encountered under actual traffic. 

80 80000 MLS Axles 

20000 MLS Axles 
t)J) 
c ·- 5000 MLS Axles ~ 60 c.; 

= - 0 MLS Axles u 
45%: failure limit -c 

<lol 
40 • c.; -<lol 

~ 

20 
• Measured Data 

1 10 100 1000 10000 100000 

Traffic, (KESALS) 

Figure 6.2- Comparison of Percent Cracking for Pavement Performance Curves from ANN 
Models and InSitu Condition Survey (Condition Survey not Considered) 
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The pavement performance curves related to fatigue cracking from FWD tests at several load 
repetitions are also included in the figure. The procedure defined in Chapter 4 (Case 1) was used; 
that is only the data corresponding to remaining life from the ANN and the origin were used to 
develop the Weibull curves. From the figure, when the FWD deflection basin is used along with the 
Asphalt Institute failure model before the application of load, the PPC curve does not follow the 
observed results well. However, as the FWD data from greater load repetitions are used, the PPC 
becomes more representative of the observed progression of failure. The FWD results past 160,000 
repetitions are not used because, by definition, the section can be considered as failed. 

The same case study is repeated again with one difference. The condition of the pavement, in terms 
of cracking or rutting at the time of FWD test, is also considered. When the percent cracking is 
more than zero, the Weibull curve is fitted to three points (consisting of origin, the result from the 
ANN model, and a point corresponding to the condition of the pavement at the time of FWD test). 
On the other hand, when no cracks are evident at the site, the Weibull curve is fitted to two points 
(the results from the ANN model and the point corresponding to the condition of the pavement at 
the time of FWD test). The results are included in Figure 6.3. The PPC from the FWD tests before 
applying the load is identical to that shown in Figure 6.2. The PPC's from FWD data and condition 
surveys after 5,000 and 20,000 load repetitions predict fmal failure better. However, the pattern to 
final failure is not very accurate. Finally, from NDT and condition survey at 80,000 repetitions, the 
performance curve is quite realistic. 

80 ~ 80000 MLS Axles 

I 
~ 

= -· - 0 MLS Axles ·- 60 ~ .::a:: 
c.l 
CIS ' 

""' i u 45~ failure limit ..... 
' = Cl.l 40 c.l 

""' 
• 

Cl.l 
~ 

20000 MLS Axles 

20 
,----- 5000 MLS Axles 

10 100 1000 10000 100000 

Traffic, (KESALS) 

Figure 6.3 - Comparison of Percent Cracking for Pavement Performance Curves from ANN 
Models and InSitu Condition Survey (Condition Survey Considered) 
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The impact of combining the structural and functional results in determining the remaining life is 
reflected in Figure 6.4. Three performance curves are shown in Figures 6.4a and 6.4b. One 
performance curve corresponds to when only the condition survey is used to predict the remaining 
life. At 20,000 axle repetitions, that PPC is not representative of the behavior of the pavement (the 
curve is superimposed on the x-axis); whereas for 80,000 repetitions, the performance curve is more 
representative of the in situ condition, but still underestimates the behavior of the pavement. The 
same trend is also applicable when only structural condition is considered, except that the 
performance is over-estimated. When both the condition survey and FWD data are considered, the 
performance curves for both 20,000 and 80,000 repetitions are more representative of the actual 
pavement condition. However, for 20,000 repetitions, the intermediate cracking is not predicted 
well because the actual field condition resembles a step function. 
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Figure 6.4 -Comparison of Different Models used in Predicting Pavement Performance 
due to Fatigue Cracking 
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This case study shows that in order to better predict the future behavior of a pavement section, the 
structural and functional conditions of the pavement should be combined. 

As indicated before, the predictions of the Asphalt Institute model for rutting was unrealistically 
high. This occurred because the AI model is not appropriate for this site. It is impossible to obtain 
realistic results from an inappropriate model, independent of the method used. However, the Finn 
model seems to be appropriate for the site. 

The same process used to illustrate the PPC for fatigue cracking is used for rutting. Figure 6.5 
compares variations in rut depth based on results of the Finn et al. model with measured rutting. 
The pavement performance curves were constructed by fitting a Weibull curve using Case 1 and 
Case 2 as defmed in Chapter 4. Figure 6.5a shows the PPC based on two points (Case 1). Figure 2 
shows the PPC when the condition survey is used to develop the curve (Case 2). Since the Finn 
model is based on the rate of rutting, the FWD data from before the application of the load carmot 
be used. Figure 6.5, the short-term rutting of the pavement is reasonably accurately predicted in all 
cases. However, as expected, the fmal rut depth is more accurately estimated when the condition 
survey is considered and for FWD data at higher axle repetitions. 
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Figure 6.5 - Comparison of Rut Depth for Pavement Performance Curves 
from ANN Models and lnSitu Condition Survey 
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Figure 6.6 shows the actual variations in rut depth with the number of ESALs as well as estimated 
PPC from the three strategies: 1) only the condition survey considered, 2) only ANN results 
considered, and 3) both condition survey and ANN results are considered. Once again, the results 
show that the most realistic PPCs are determined when the structural and functional conditions of 
the pavement are combined. 
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Chapter 7 

Summary and Conclusions 

This report summarizes the efforts to develop a methodology based on the Artificial Neural 
Networks to process data from NDE tests, such as the Falling Weight Deflectometer, to estimate the 
remaining life of a pavement. The project has progressed with close cooperation between TxDOT 
and UTEP. 

The following items summarize the achievements during the period covered by this report. 

1. Artificial neural network models were developed which rapidly and reliably predict the 
remaining lives of flexible pavements. Other models were developed to predict the critical 
strains at the interfaces of the layers. 

2. An algorithm has been developed to assess the influence that uncertainty (variability) in the 
input variables has on the predicted remaining life and critical strains. 

3. An algorithm to produce a pavement performance curve that incorporates the results of the 
ANN models, condition survey and traffic has been developed. 

4. A modular software that incorporates all methodologies and algorithms described in this report, 
is being developed. 

The following is a detailed assessment of the status of this project: 

1. Four general ANN models have been developed, two models to predict the remaining life of 
flexible pavements, based on two possible failure modes of the pavement; and two models to 
predict the critical strains which can be used in existing remaining life models. The models are 
based on a three-layer system and a constant depth to bedrock. Based on discussions between 
TXDOT and UTEP, and on the success of the ANN models, a set of ANN models is being 
developed to predict critical stresses, critical strains, and remaining lives of pavements for three­
layer and four-layer systems with varying depth to bedrock. 
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2. The software includes 
- ANN models, 
- algorithms for estimating the uncertainty in the predicted remaining life and critical strains, 
- methodology to establish upper and lower bounds for the pavement performance curve, and 

graphical results module. 

3. A case study has been conducted on an MLS site. This allowed for both UTEP researchers and 
TXDOT personnel to initially verify the methodology, proposed in this report, using real data. 
Although the output for this case study shows promising results, further studies will be 
conducted when new data become available. 

Artificial Neural Network technology has proven to be a feasible and practical approach in the 
development of models to assess the integrity of pavements using data that is readily available to the 
pavement engineer. This is particularly advantageous because other approaches require information 
from laboratory tests, making the assessment more tedious and time consuming. Another advantage 
of an ANN model over traditional approaches is that the remaining life can be calculated without 
having to backcalculate the elastic moduli of each pavement layer. 

40 



References 

• Ang, A.H-S. and W.H. Tang, (1984), "Probability Concepts in Engineering, Planning and 
Design", Vol.2, John Wiley & Sons, Inc., New York, NY. 

• Chen, D.H. and Lin, H-H, (1999) "Development of an Equation to Predict Permanent 
Deformation", Accelerated Pavement Testing Conference. 

• Chen, D.H., (1998) "Pavement Distress Under Accelerated Testing, "Paper 980319, Texas 
Research Record no1639, pp120-129. 

• Finn F., Saraf C., Kulkarini R., Nair K., Smith W., and Addullah A. (1986), "Development of 
Pavement Structural Subsystems," NCHRP Report 291, National Research Council, 
Washington D.C., December 1996. 

• Finn F., Saraf C., Kulkarini R., Nair K., Smith W., and Addullah A. (1977), "The Use of 
Distress Prediction Subsystems for the Design of Pavement Structures," Proceedings the 
International Conference on the Structural Design of Asphalt Pavements. 

• Freeman, J.A. and Skapura, M.D. (1991), "Neural Networks: Algorithms, Applications, and 
Programming Techniques", Addison-Wesley Publishers Company, Massachusetts. 

• Garcia-Diaz, A., Riggins, M. and Liu S.J., (1984), "Development of Performance Equations and 
Survivor Curves for Flexible Pavements", Research Report 284-5, Texas Transportation 
Institute, Texas A&M University, pp. 15-47. 

• Huang, Y. H., (1993), "Pavement Analysis and Design", Prentice Hall, Englewood Cliffs, New 
Jersey 07632. 

• Neural Ware Inc., (1993), "Neural Computing", Technical Publications Group, Pittsburgh, PA. 

• Puskorius, G. and Feldkamp, L., (1991), "Decoupled Extended Kalman Filter Training of 
Feedforward Layered Networks", Proceedings of the International Joint Conference on Neural 
Networks, IEEE. 

41 



• Shook J.F., Finn F.N., Witczak M.W., and Monismith, C.L. (1982), "Thickness Design of 
Asphalt Pavements- The Asphalt Institute Method," Proceedings, 5th International Conference 
on the Structural Design of Asphalt Pavements. 

• Smith, M., (1993), "Neural Networks for Statistical Modeling", Van Nostrand Reinhold, 115 
Fifth Ave., New York, NY, 10003. 

• Stokoe K.H., II, Hudson, W.R. and Miner, B.F. (1991), "The Falling Weight Deflectometer and 
Spectral Analysis of Surface Waves Test for Characterizing Pavement Moduli: A Case Study," 
Research Report 1123-7F, Center for Transportation Research, the University of Texas at 
Austin, pp. 3-25. 

• Vennalaganti, K.M., Ferregut, C., and Nazarian, S. (1994a), "Stochastic Analysis of Errors in 
Remaining Life Due to Misestimation of Pavement Parameters in NDT," Nondestructive 
Testing of Pavement and Backcalculation of Moduli (Second Volume), ASTM STP 1198, H.L. 
Von Quintas et al. (Eds.), American Society ofTesting Materials, Philadelphia. 

• Vennalaganti, K.M., Nazarian, S. and Ferregut, C. (1994b) "Uncertainty Modelling of 
Remaining Life of Pavements Due to Misestimation of Pavement Parameters in NOT," 
Structural Safety and Reliability Schueller, Shinozuka, & Yao (eds.), A.A. Balkema, pp.l825-
1832. 

• Vepa, T.S., George, K.P. and Shekharam, A.R. (1996), "Prediction of Pavement Remaining 
Life", Transportation Research Record no1524, September 1996, pp. 137-144. 

42 



Appendix A 

Summary of Available Literature on ANN Applications in 
Pavement Engineering 
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Table Al - Neural Network Applications to Pavements 

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF No. OF No. OF COMMENTS 
TYPE/ WARE HIDDEN NODES PER TRAINING TESTING 
(TRANSFER LAYERS HIDDEN EXAMPLES EXAMPLES 
FUNCTION) LAYER 

Classification of types B Neural (17) (7) (l) (17) (36-135) (6-27) Data provided by NCHRP 
of cracks from video Ware Moment Different 1-27; 
images invariants types of (2000 epochs) Neural network classified I 00% 
[Chou eta!. 1995] 4 Bamiek cracks. of the cases. The largest output 
[Chou eta!. 1994] 7 Hu value determines type of distress. 

6Zemike 
Determination of B N/A ( 15) (l) (I) (6) 298 3902 Data provided by ODOT; 
condition rating (CR) of Distress CR w/ 60% of noise w/60% of Neural Networks were able to 

(Sigmoid) severity noise identify CR even with high noise 
levels and levels with a 95% confidence 

RIC pavements. density. level. 
(Eldin and Senouci 
1995] 
Jointed concrete 22 (a) 1202 (a) 6812(a) 
pavements. 
(Eldin and Senouci 
1995a] 
Flexible pavements 17 (b) 774 (b) 1736 (b) 
[Eldin and Senouci 
1995b 
Automated inversion of B Neuro (6 ?) (6) (I) (70) 152 patterns 36 patterns Data collected from state of New 
SASW test data to Shell2 Dispersion 3 layer Jersey roads; 
evaluate elastic moduli Window curve and thicknesses Training was over when both 
and layer thickness s ver. associated and 3 neural networks showed the 
[Gucunski eta!. 1995] profile with shearwave same mean squarred error; 

5 parameters velocities The 5 layer neural network was 
based on the best of both, it predicted 
shearwave everything except the thickness 
velocity and of the subbase layer. 
thickness of 
AC layer 

(3) (total of66) 

• B: Backpropagation; F-F: Feed-forward; GA: Genetic Algorithm; GANNT: Genetic Adaptive Neural Network Training; N/A: Not available; Tj:learning coefficient 
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Table Al -Neural Network Applications to Pavements Cont ..... 

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF NODES No. OF No. OF COMMENTS 
TYPE/ WARE HIDDEN PER HIDDEN TRAINING TESTING 
(TRANSFER LAYERS LAYER EXAMPLES EXAMPLES 
FUNCTION 

Interpretation of raw B Neural (N/A) (N/A) N/A N/A 186 UPE 30 UPE signals Data provided by USACE: 
data from ultrasonic Network UPEsignals Ultrasonic signals Neural network was able to rank 
pulse echo (UPE) for Toolbox Pulse concrete specimens in correct 
NDT of concrete for Velocity order of deterioration. 
structures Matlab signals as 
[Haskins and target 
Alexander 1995 values 
Select maintenance Bwith GA Brain (16) [binary] (7) {I) {16) 235 100 Data previously used (?); 
strategy for pavements. using Maker Distress type, [binary] Ten networks are created over 50 
[Taha and Hana, 1995] mutation and with density, Mainte- (I 00 epochs) generations; 

crossover genetic severity, nance The best network is selected 
training riding comfort strategy after training; 

LO option index, traffic Six out of I 00 cases were 
vol.,climate, misclassified. 
crack t e. 

Recommended M & R B N/A (57) (13) (I) (40) 55 30 Data collected by visual 
actions based on 19 distress Different M observation of Egyptian road 
pavement condition types with &R network; 
[Aisugair and Sharaf 3 severity actions. Some sets were obtained with 
1994] levels. PAVER; 

Accuracy of network was 66 %; 
No exam les are iven. 

Automated pavement MLF-F N/A (3-12) (I) (I) (6) 60 images 23 images Data collected from Conn DOT: 
condition evaluation features of Type of Neural network had a success 
system (SQP distress distress rate of over 90 % 
[Garrick et.al. 1994] algorithm) (3 pixel recognized 

densities and 
of 

* B: Backpropagation; N/ A: Not available 
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Table Al- Neural Network Applications to Pavements Cont ... 

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF NODES No. OF No. OF COMMENTS 
TYPE/ WARE HIDDEN PER HIDDEN TRAINING TESTING 
(TRANSFER LAYERS LAYER. EXAMPLES EXAMPLES 
FUNCTION 

Back calculate B N/A (9) (3) (2} (11-8) 9750 250 Data generated; 
pavement moduli 2 thicknesses Layer Both networks give robust 
[Meier and Rix 1994] 7 deflections Moduli estimates of moduli w/noise and 

are faster than other searching 
techniques. 

(5-15} 9750 w/noise 250 

Priority assessment of B Neural (6) (I) (I) (I) ( 128-12500) 300 Data generated; 
Highway pavements Works Indices for Priority SET 1: linear Network can learn regardless of 
maintenance needs (Sigmoid) highway rating and non-linear data generation methodology and 
[Fwa and Chan, 1993] functional score. data with up to a 50% level of noise. 

class, skid - structured 
resistance, -random 
crack width, 
crack length, 
pavement 
serviceability, 
rut depth. 

SET II: data 
w/several noise 
levels 
SET III: 
empirical data 

Automatic process B Neural (N/A) (N/A) (!) (10) 500 and 3000 N/A Sensitivity accuracy and 
and analysis of moire Ware Binarized Reproduc efficiency of the NN was 
fringes of pavement ML pattern of ed image compared to results from other 
surface pavement of the fringe thinning algorithms; 
[Guralnick et.al. image surface Reproduced surface resembles 
1993] actual surface with 2% error. 
Conditions B Neural (30) (I) (I) (10) 721 311 Data collected in Cincinnati; 
assessment of utility Works Type and Utility Utility Cut Condition Index 
cuts (Sigmoid) Profess severity of Cut determined w/ Delphi method: 
[Pant et. al. 1993] distress (data Condition Network accurately predicted 92 

II Plus (!re[!rocessed}. Index % of the OUt(!Uis. 

* F-F: Feed-forward; ML: Multi-layered; N/A: Not available 
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APPLICATION 

Prediction of pavement 
condition rating 
(PCR) 
[Shekharan and George 
1997} 

Predict skid resistance 
to assess future 
rehabilitation needs on 
flexible pavements. 
(Owusu-Ababio 1995] 

Crack type pattern 
classification from 
pavement images. 
[Kaseko et.al.l994 J 

NETWORK 
TYPE/ 
(TRANSFER 
FUNCTION) 

Modular 
GANNT 
F-F 

Adaptive 
modeling 
procedure 

(quadratic 
function) 

B 
MLF-F 
(sigmoid?) 
a=0.7 
TJ=O.I 

2PWL 
i)competitive 
learning 
ii) Kohonen 
LVQ2 rule 
(TJ=decaying 
function) 

Table A2- Neural Network Applications to Pavements: Comparison Studies 

SOFT fNPUT 
WARE 

N/A (?) 
Pavement 
structure, age, 
traffic, route 
classification. 

Auto (4) 
Net Pavement age, 

AADT, speed 
limits, 
pavement 
regional 
location. 

"C" (5) 
progrm Parameters 
.lang. extracted from 

h istograrn of 
distressed 
pixels in binary 
image, such as: 
distressed pixel 
density, 
variances of 
distressed 
pixels in 
several 
orientations. 

OUTPUT 

(I) 
PCR 

(I) 
Skid 
number. 

(5) 
Crack 
types. 

No. OF 
HIDDEN 
LAYERS 

(I) 

(2) 

(I) 

No. of 
modules 
(?) 

No. OF NODES 
PER HIDDEN 
LAYER. 

(8) 

(total of 5) 

(5) 

No.of nodes per 
module 
(3) 

No. OF 
TRAINING 
EXAMPLES 

N/A 

45 

230 

No. OF 
TESTING 
EXAMPLES 

N/A 

15 

230 

COMMENTS 

Data provided by ODOT; 
Results compared to those of 
regression models are similar; 
Network is a viable alternative. 

Data provided by ConnDOT; 
Compared to Linear Regression 
LR model using the mean error 
(E) and the coeff. of 
determination (R2

); 

Network gives lower (E) and 
higher (R2

); Network fits better 
than LR. 

Data provided by NCHRP 1-27; 
Both neural networks perform 
slightly better than Baye's 
classifiers and k-NN classifiers 
on the test data set. 

* AADT: Annual average daily traffic; B: Backpropagation; F-F: Feed-forward; GANNT: Genetic Adaptive Neural Network Training; LVQ2: Learning vector quantization 2; ML: Multi-layered: N/A 
Not available; 2PWL: two-stage piecewise linear; a:momentum gain; 11:learning coefficient 
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Table A2 - Neural Network Applications to Pavements: Comparison Studies Cont ... 

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF NODES No. OF No. OF COMMENTS 
TYPE/ WARE HrDDEN PER HIDDEN TRAINING TESTING 
(TRANSFER LAYERS LAYER. EXAMPLES EXAMPLES 
FUNCTION) 

Selection of pavement B Brain (40) (I) N/A N/A 148 pavement 20 pavement Neural network is compared 
sections for routing Maker sections sections against a rule-based expert 
and sealing (R&S) (sigmoid) Profess 15 pavement Desirabi- system ROSE; Input-output 
maintenance II Plus surface defects lity of Set to automatic Provided b training sets were determined by 
treatment. learning R&S neuron selection MTO ROSE; Network yields 
[Hajek and Hurdal rate""! to 30 severity and comparable results to ROSE's for 
1993) guarantee density of (scale higher desirabilities (range from 

convergence defects from 6-1 0); Network is faster and 
if possible 0-10) easier to develop, has greater 

generalization ability and can 
include uncertainty implicitly as 
part of training; Network does 
not explain reasoning. 

Automated MLF-F N/A (3) (I) (I) (3) 130 image 125 image Data provided by NCHRP 1-27: 
thresholding of 25 5 Mean and std. Threshold vectors vectors Neural network compared to 
asphalt concrete dev. of gray value linear regression model; 
pavement images. level histogram Neural network unnecessary due 
[Kaseko et.a!.l993] and co- to strong linear relationship 

occurrence between input and output. 
parameter 

Prediction of a N/A N/A (?) (I) N/A N/A N/A N/A None 
pavement condition Pavement age, PCI 
index (PCI). traffic, 
(Schwartz 1993] sub grade 

strength and 
other variables 

• B: Backpropagation; F-F: Feed-forward; ML: Multi-layered; N/A: Not available 
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Appendix B 

Software Overview 

Opening and Running the Program 

Once the software has been completely installed and run, the main menu appears on the screen. 

Four menu items show in the menu bar: 1) Project Information, 2) Life & Uncertainty, 3) Results 
and Reliability and 4) Help. The first three correspond to the main modules integrated in the 
software. In addition to the main menu items, a Help menu item is included, for later incorporation 
of a Help file. 

Under each menu item a list of submenus are "nested" or associated to the main menu items. These 
submenus correspond to the different levels of sub-modules described in Chapter 6 (Figure B.l ). 
The general flow of execution is from left to right, starting with the project information definition. 

Project !nfonnalion 

.!::ieader Info 
ll'llUt File • 

fieporl • 
Ep 

ble and uncertainty c_-= 

.Efexible P av.ements 

fiigid Pavement$ 

-

.. ····· . . ....... ........ .... . 

I
I Bexible Pavement . 

fiigid Pavemeht • 1.::::::=== 
Figure B.l - Typical Menu Items and Nested Menus 
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Project Information 

The first main menu item to choose is the Project Information/ Header Info. A window frame will 
appear on the screen with several edit boxes prompting for executive information that describes the 
project under analysis (see Figure B.2). 

ii Project headet information · 1!!1~ EJ 
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Project Name: jEI Paso 
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l-lig~ : jLoop 375 

Control : J2552 

Pavement_Engineer : 
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Sto!!tion/Mi(epost: jo+OOl .5 

Section : 1o2 Lane: JNB 

Figure B.2 - Project Header Information Window 
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The information may be entered and then saved into a text file, or an existing file can be opened and 
modified for ease of use. Typical information entered includes project location, test date, pavement 
description, and a section for additional comments and other pertinent information. 

The above information is not required to process the remaining life, yet it will be used to customize 
the final report. 

Data Management within the Software 

The program requires that all the project data including the input and output data be stored in a 
dBase table, hereinafter the "project file", throughout the execution of the program. This particular 
feature of the program is justified under the following reasons: 
1. dBase is a universal format, allowing portability among software programs, 
2. data management, data manipulation and program maintenance is easier and faster, 
3. allows faster and safer access to the data, 
4. the C++ developer software has several built-in functions to access and manipulate database 

tables allowing easier programming, as opposed to accessing and manipulating text files, 
5. all of the above comply with the initial criteria of developing a modular architecture program. 

When using the software, the user does not require to be experienced in using or programming 
databases. The manipulation of the dBase table is "invisible" to the user, since it is an internal 
process within the program. The user only sees a grid displaying the data values. 
The "project file" is generated using the corresponding template file (e.g. F3Al.dbf). This file is 
chosen when the user selects the pavement type, layer system and analysis model under the Project 
Information/ Input file menu items (see Figure 8.3). 

li:i Flexible Pavements (System definition. Model seledmnJ 8~£! 

Figure B.3- Layer System/Analysis Model Window for Flexible Pavements 
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Currently, the software defaults to a three-layer system and the Asphalt Institute model. As different 
layer systems and performance models become available, they will be incorporated in the software 
and this window will be updated accordingly. 

Once the pavement type and layer system options are defined and the performance model is chosen, 
the Create/Edit Project File window shows on the screen. This window might be slightly different 
for other pavement types. The window shown in Figure 8.4 corresponds to the typical input format 
for a three-layer flexible pavement. 

ii'Create/Eort Project File fFlet<ible/3-layer/ Asphalt Institute model) •. I!I~Ei 
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Figure B.4 - Create/Edit Project File Window for a 3-Layer Flexible Pavement 



The user has three options to generate the "project file", listed as follows: 
a) User Defined Input: by clicking on this button, the user creates a new project file. First a new 

file name must be entered in the Open dialog box shown in Figure B.S. Currently, the user must 
choose the "system folder" and type the name of the new file. The user must type a file name 
that is not currently existent in the selected folder. The dialog box displays the existing database 
table files in the current folder for this purpose. 

Open DE! 

Lookjm IS Remlife 

- El Paso 

temp 

xtra 
z_cht_fx 

Faename: 

D z-trash 

~ 24072_061398 
~ Copy of F _AI_inp_template 

~F3AI 
~ template_F3AI 

~ test_F3AI 

Files of !vpe: t Existing Project file 

-----------------r Open as !ead-only 

Figure B.S - Typical Open Dialog Box to Choose a New Project File or Open an Existing One 

b) Open Text File: By clicking on this button the user is allowed to open a text file (*.txt) from a 
similar open dialog box as in Figure B.5 and edit the data if necessary. 

c) Open Existing Project: The user can also open an existing project file in dBase format (*.db f) if 
desired. Figure B.4 shows the data retrieved from an existing project file and displayed in the 
datagrid. 

The dBase and Text formats are commonly used file formats, and are also compliant with TxDOT 
standards. Therefore, the reason for having only these formats incorporated. 

Once the new file name is entered or an existing one is chosen, the template file is used to generate 
the new database table. The control is returned to the Create/Input File window to start entering or 
editing the input parameters in the data grid. 

The user must always click on the "Save as Project File" button to insure that the database table is 
generated. When saving the project file, a suffix is appended to the file name(* _F3AI.dbf) with the 
name of the template that generated the project file. This featUre allows easy identification of project 
files since it contains the minimum information regarding pavement type, number of layers and 
analysis model. 
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In this window the user is allowed to scroll over the data, by use of the record control buttons and 
scroll bars. The buttons can scroll the database and position the cursor on a certain record (e.g. the 
first record, the next, the previous or the last record), and allow the user to add entire new records, 
delete or edit existing ones and refresh and update the database. Help hints are available under each 
control button for easy identification. Likewise, the scroll bars allow similar tasks except for 
database editing. 

Once the project file has been saved, the following task is to process the inputs through the ANN 
models to determine the expected remaining life. 

Remaining Life Processing with Uncertainty Analysis 

At this point the "project file" should contain the necessary input parameters, namely the pavement' 
layer thickness and the FWD deflections. 
To process the remaining life through the corresponding ANN models, the second main module 
must be accessed by choosing under the second main menu item Life and Uncertainty the 
corresponding pavement type and subsequently the layer system and performance model (e.g. 
Flexible Pavement/ 3 layer/ AI model). 

iii Remwninglilc/~Uncertamty Proces~m (FleKiblel 3-ldycr/ A~phalt lnshlutel I!I!I~EJ 

Figure B.6 - ANN Model Selection and Uncertainty Analysis Parameters 
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When accessing this module, the window depicted in Figure B.6 is displayed on the screen. In this 
window the user must do the following: 
a) first select the ANN model(s) under which the remaining life is to be determined. For a flexible 

pavement, rutting and fatigue cracking are currently available; 
b) choose the project file that contains the input data; 
c) enter coefficients of variation for each input parameter. These values are assigned empirically or 

can be obtained from published references. 

Once these options are set, the processing starts after clicking the "Run" button. The processing 
will take anywhere from several seconds to several minutes, depending on the number of cases to be 
analyzed. During the run, the status of the processing is displayed at the bar located at the bottom of 
the window. 

Both the deterministic remammg life values and the corresponding statistical parameters are 
determined. These values are stored in the "project file" and for practical purposes, separate text 
files are also created containing the input and output values. · 

When the processing is finished, the output text filenames are displayed in the edit boxes located in 
the middle portion of the window. The window may then be closed to continue with the next step is 
to view the results and inspect the performance of the pavement with the presence of traffic and 
conduct the reliability study for final analysis. This is accomplished in the third main module of the 
software described in the following section. 

Pavement Remaining Life/ Expected Performance and Reliability Analysis 

Once the remaining life values and the corresponding uncertainty parameters have been determined 
in the ANN/Uncertainty module, the results are combined with traffic data to build a Pavement 
Perfonnance Curve (PPC) and conduct a Reliability Analysis. 

To access the Reliability and Results module, the user selects from the main window the menu item 
with the same title, and in addition selects the typical options (pavement type, layer system and 
performance model). The corresponding window will appear on the screen. 

To see the PPC displayed, the user must follow the next steps (see figure B.7): 
a) first choose the "project file" that contains the determined remaining life values; 
b) choose a failure mode for which the remaining life has been determined. If the remaining life 

values are available for the failure mode selected, the corresponding PPC will appear on the 
window based on default traffic and damage data; 

c) set or change the traffic and damage data such as pavement age, cumulative traffic after the first 
year the pavement was built, traffic growth, amount of damage at the time the NDT was 
performed among others, to see the effects on the pavement' life. 

The PPC chart also highlights the failure limit criteria boundary set for the corresponding 
performance model. Moreover, the remaining life in years is computed and displayed. 
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Figure B. 7 - Pavement Performance Curve, Traffic and Damage Data 

Some of the features integrated in this window allow the user to: a) toggle between failure modes to 
compare the corresponding PPC's; b) scroll over the "project file" to compare the different PPC's 
for each pavement case; c) perform What if? analyses by changing the parameters; d) save and 
retrieve from a text file traffic and damage data, and e) customize the PPC chart. 
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