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Abstract

Most mechanistic-empirical methods for determining the remaining life of an existing pavement
rely on the use of deflection-based non-destructive evaluation (NDE) devices. This report describes
a methodology based on Artificial Neural Networks (ANN) techniques to estimate the remaining
life of flexible pavements given the occurrence of two possible failure modes: rutting and fatigue
cracking. The ANN techniques are also used to develop models that predict the critical strains at the
interfaces of the pavement. The inputs to all the models are the best estimates of the thickness of
each layer and the surface deflections obtained from a Falling Weight Deflectometer test.
Uncertainty in these variables is accounted for by the proposed methodology. The report also
describes an approach to the production of pavement performance curves using the results of the
ANN models.
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Executive Summary

One of the most common Nondestructive Evaluation (NDE) methods to collect pavement
performance data is the Falling Weight Deflectometer (FWD) test. The seven peak-deflections,
otherwise referred to collectively as a deflection bowl, provide some of the input used to
determine the pavement layers’ moduli, usually through a backcalculation process. Once the
layer moduli of the pavement have been computed, the pavement’s remaining life, using one of
the many available models, can be estimated.

This report describes an alternative approach to the computation of the remaining life of a given
section. The methodology is based on Artificial Neural Networks (ANN) techniques and statistical
concepts. In the proposed approach the backcalculation process is omitted. In addition, it only uses
data readily available to pavement engineers, such as the measured deflection bowls, the section
layers thickness and the condition survey. No laboratory-derived properties are required.

The objectives of this project were, 1) to develop ANN models to compute the remaining lives of
flexible pavements associated with the rutting and fatigue cracking failure modes, 2) to develop
ANN models to predict the critical strains at the interfaces of the layers, 3) to account for the
uncertainty in the variables used for predicting remaining life, 4) to develop pavement performance
curves and their confidence bounds, and 5) to create a software tool that integrates the models
developed.

The Artificial Neural Network theory is a branch of the more general field called Artificial
Intelligence. The ANN theory aims at understanding the way the information is processed in the
brain and to develop the mathematical relationships that would reproduce that process. To develop
an ANN it is necessary to have a set of examples that show specific values of the independent
variables and the corresponding values of the dependent variable(s). The examples are used to train
and test the ANN model. In this work, each example consists of an input vector with nine elements
that represent the thickness of the AC and base layers and the seven FWD readings and an output
vector, whose only element defines the quantity that the model will predict. In this case, that
quantity is any of the two critical strains at the interfaces of the layers or the remaining life of the
pavement when it experiences either fatigue cracking or rutting.

Optimally, the examples could be obtained from actual field data that has been collected and “fed”
into a PMS database. Nevertheless, this type of information is limited at the present time.
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Therefore, a synthetic and comprehensive database was generated to simulate and cover a wide
range of possible pavement sections. FWD tests and dual tandem loading on the pavement were
simulated to obtain the deflection basin and the critical strains in a number of pavement sections.
Furthermore, the Asphalt Institute models, for predicting the remaining life for rutting and fatigue
cracking, were used to associate remaining life values to each section. At the end, a database with
360,000 exemplars was compiled. The data sets for training and testing the ANN models developed
were sampled from this database.

Four ANN models were developed for a three-layer flexible pavement. Two of the models predict
the rutting and fatigue cracking remaining lives according to the Asphalt Institute equations. The
other two models predict the maximum tensile and compressive strains at the layer interfaces. The
models have proven to be accurate in their predictions.

To describe the continuous performance of a pavement with time or alternatively with passing
traffic, the pavement performance curve (PPC) has been proposed. In general, the development of a
PPC is based on the widely accepted Weibull type curve. An approach that uses the predictions of
the ANN models in the construction of PPCs has also been developed. The proposed approach also
allows the definition of confidence bounds for the PPC. The bounds are obtained using a Monte
Carlo simulation algorithm.

All the models and algorithms developed have been integrated into a software tool. The beta version
of the software is being developed under Windows 95, using C*™ development-programming
language. The software development follows a modular approach.

The proposed methodology has been initially validated with data obtained from one of the Texas
Mobile Load Simulator (TXMLS) test sites. Results of the measured and predicted degradation of
the section match closely.

Artificial Neural Network technology has proven to be a feasible and practical modeling approach
in the development of models to assess the integrity of pavements using data that is readily available
to the pavement engineer. This is particularly advantageous because other approaches require
information from laboratory tests, making the assessment more tedious and time consuming.
Another advantage of an ANN model over traditional approaches is that the remaining life can be
calculated without having to backcalculate the elastic moduli of each pavement layer.
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Implementation Statement

The software developed is ready for limited implementation. We recommend that staff member of
the Design Division utilizes this program along with the existing methodologies for evaluation
purposes, and for providing recommendations for future improvements.

We also recommend training courses for a few members of the districts to determine the ease of use
and to recommend means to make it more accurate and more practical for their use.
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Chapter 1
Introduction

Periodical assessment of the overall structural health of pavements is an integral factor in optimizing
the maintenance and rehabilitation strategies of the highway networks around the country. For the
past several years, many techniques have been developed to monitor pavement performance. Most
of these techniques use non-destructive evaluation (NDE) procedures. Significant amount of effort
has been placed to develop low cost simple non-destructive tests (NDT) for measuring pavement
properties. These properties are collected and maintained in a Pavement Management System
(PMS). The information contained in a PMS is frequently used by engineers to assess the integrity
of the pavements and to determine their remaining (future useful) lives. This type of assessment is
conducted at both the network and project level. Accurately predicting the integrity and remaining
life of pavements is of utmost importance in planning short-term and long-term maintenance,
rehabilitation and reconstruction strategies.

One of the most common NDE methods to collect pavement performance data is the falling weight
deflectometer (FWD). The seven peak deflections, otherwise referred to collectively as a deflection
bowl, provide some of the input used to determine the pavement layers’ moduli, usually through a
backcalculation process. Once the layer moduli of the pavement have been computed, it is then
possible to estimate the pavement’s remaining life using one of the many available models (Huang,
1993).

Despite the straightforwardness of this approach, several concerns still exist over its rationality.
Some of those concerns are: 1) the weaknesses in the existing backcalculation procedures, 2) the
uncertainty in the assumed input parameters, such as the thickness and Poisson's ratio of paving
layers and subgrade, and 3) the uncertainty in the measured responses, such as the magnitude of
applied load and the resulting deflections. '

Another concern is the applicability of the current models developed to predict the performance of a
pavement section. For instance, in the case of flexible pavements, the cracking of the pavement is
related to the tangential strain level at the bottom of the AC. These critical strains are typically
calculated using layered theory and backcalculated moduli. Small variations in moduli would
significantly affect the predicted remaining life from these models. Vennalaganti et al. (1994a)



performed extensive sensitivity studies on the effects of the variability of input pavement and traffic
parameters on two popular models for computing the performance of a pavement subjected to
fatigue (Finn et al., 1977) and to rutting (Shook et al., 1982). The main conclusion was that the
remaining life of a pavement is more rationally modeled using a probabilistic model than using a
single deterministic quantity. Deterministic models of pavement performance are being improved
by many states and under federal programs. In general the existing remaining life models are
functions of the backcalculated moduli and the computed strains at the interfaces of the pavement
layers.

In its simplest definition, backcalculation is an iterative process that requires varying a set of moduli
until a best match between the measured FWD deflection bowl and calculated deflection bowl is
obtained. The problem with the backcalculation process is the nonuniqueness of the results. A good
match between the deflections does not guarantee that the backcalculated moduli are reasonable for
that section and, as a consequence, the remaining life of the section could be grossly under or over
estimated.

This report presents an alternative approach to the computation of the remaining life of a given
section. Our methodology is based on Artificial Neural Networks techniques and statistical
concepts. In the proposed approach, the backcalculation process is omitted. In addition, it only uses
data readily available to pavement engineers, such as the measured deflection bowls, the section
layers thickness and the condition survey. No laboratory-derived properties are required.

Objective
The objective of this project were:

1) to develop neural network models which will rapidly and reliably predict the remaining lives of
flexible pavements,

2) to develop neural network models that rapidly and reliably predict the critical strains which are
used in existing remaining lives models.

3) to improve and integrate an algorithm for estimating the uncertainty in the predicted remaining
life from the uncertainty in the geometric and material variables of the section,

4) to develop a pavement performance curve, which incorporates the results of the ANN models,
condition survey and traffic,

5) to develop a state of the art modular software that incorporates items 1 through 4 and provide
results manifested with sophisticated graphical user interface (GUI) designed, specifically, to
complement TXDOT decision-making practices.

In this report, the results from the efforts made during the past two years of the project are
summarized. The ongoing success of this project has been due to the cooperative effort between
UTEP and TXDOT personnel. TXDOT personnel have provided valuable input at several stages of
the project to keep the methodology practical.



Organization

Chapter 2, of this report introduces the background information on FWD, ANN models, and
remaining life models. In chapter 3, the process of generating a database of pavement sections is
discussed. Chapter 4 shows the process of creating artificial neural networks models that estimate
the remaining life of flexible pavements as well as the critical strains at the interfaces of a pavement
section. Chapter 4 also contains a methodology to incorporate ANN model results in the definition
of pavement performance curves. It also discusses the effect of uncertainty of the input variables on
the uncertainty of the estimated variables. Chapter 5 describes the software under development.
Finally, Chapter 6 includes a case study that demonstrates the use of the methodology presented in
this report. The last chapter contains the conclusions of the research effort in this project. An
extensive literature review of neural network applications to pavements is included in Appendix A.
Appendix B shows a typical run of the software under development.






Chapter 2

Background

Falling Weight Deflectometer

The Falling Weight Deflectometer, as shown in Figure 2.1, is a pavement evaluation instrument
designed to monitor its conditions. The FWD produces a transient impulse loading force on the
pavement and seven seismic deflection transducers, usually placed 305 mm (12 in.) apart on the
surface of the pavement, to measure the resulting pavement deflections.

The impulse load is produced by dropping a mass from various heights. The seven seismic
transducers (geophones), which are controlled by the data acquisition equipment that is integrated
with the FWD, measure the time histories of deflections. Extracted from the time histories are
seven peak deflections that define the deflection basin (Stokoe et al., 1991). These deflections
provide part of the input to the methodology developed under this project.

Figure 2.1 - Schematic of Falling Weight Deflectometer



Artificial Neural Networks in Pavement Engineering

The Artificial Neural Network (ANN) theory is a branch of the more general field called Artificial
Intelligence. The ANN theory aims at understanding the way the information 1s processed in the
brain and to develop the mathematical relationships that would reproduce that process (Smith,
1993). An artificial neural network is modeled to resemble the human’s brain capability to think
and learn through perception, reasoning and interpretation. A brain is composed of networks of
neurons that receive input signals from other neurons. When a certain level of excitation is reached,
a neuron “fires” an output signal that acts as an input to other connecting neurons. The type of
relationship between the input and the output of a neuron can be described mathematically using a
number of algorithms (Freeman and Skapura, 1991).

Figure 2.2 graphically shows a model for an ANN and its main components. In an analogy to a
biological neural network, the neurons are replaced by artificial neurons also called processing
elements (PEs). In general, an ANN consists of at least three layers of interconnected PEs: the input,
hidden, and output layers. The number of PEs in the input layer is the same as the number of input
variables that are used to predict the desired output (independent variables). The PEs in the output
layer represent the variables to be predicted (dependent variables). The input and output layers are
connected through one or several intermediate layers of PEs, also called hidden layers. The number
of hidden PEs within these layers is decided by trial and error depending on the complexity of the
problem.

........
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Figure 2.2 - Components of an Artificial Neural Network

In most types of ANN, the PEs between two adjacent layers are usually interconnected. The
strength of each connection is expressed by a numerical value called a weight. The weights are
determined through a “training™ process that consists of presenting input and output examples to
the network. The ANN is supposed to learn the relationship between the input and the output by
adapting the weights of the connections. A number of algorithms have been developed to conduct



the training process (NeuralWare, 1993). In this work the commonly used “backpropagation™ model
was implemented.

During the training of a backpropagation neural network, information is transferred in two phases:
the forward phase and the backward phase. In the forward phase, the input is presented and
propagated forward through the network to compute an output value for each PE. In the backward
phase, for each PE in the network, the current output is compared to the desired output and the
difference or error is computed. Starting at the output layer and ending at the input layer, the error is
gradually propagated back through each node in the network using a predefined learning rule.
During this process, the weights of the connections are also modified until the error is minimized
(NeuralWare, 1993). Once the network is trained, the development process is completed.

The use of ANN is not new in pavement engineering. Several applications have already been
published in the specialized literature. Some of those applications include: 1) parameter
determination, such as the pavement section moduli; 2) assessment of the condition of the pavement
and 3) selection of maintenance strategies. Appendix A gives a summary of publications on the
subject. It shows the type of application for the ANN models, the input variables used, the predicted
variables, and the size of the databases used to generate training (input examples) and testing files.

Remaining Life Models

A pavement, either flexible or rigid, may develop several modes of failure during its service life.
Therefore, its integrity at a given point in time depends on the type of failure it is exhibiting. When
no distress is visible, the prediction of the remaining life of a pavement requires a priori
identification of its possible failure modes. The most common structural failure types observed in
flexible pavements are rutting and fatigue cracking.

In most design and evaluation methodologies of flexible pavements, loads on the surface of the
pavements are considered to produce two critical strains (tensile and compressive). Figure 2.3
below shows the location of the critical strains for a three-layer flexible pavement.

AG, E, & It

Base, Eg_ . £, t,

Subgl‘ade, ESubgrade |

Figure 2.3 - Three-Layer Flexible Pavement Section



The first critical strain, horizontal tensile strain, g, develops at the bottom of the asphalt layer and it
has been shown to be a measure of the fatigue cracking of a pavement. The second critical strain,
the vertical compressive strain, €., develops at the top of the subgrade layer and has direct relation to
the permanent deformation or rutting that results on top of the surface of the pavement.

Two general mathematical distress models are used to determine the remaining life of flexible

pavements. These models take the following general forms (Huang, 1993): For the fatigue
cracking failure mode,

Nf =.fl(€t)_fZ(EAC )_f" (21)
and for the rutting failure mode,

N,=fe)?” (2.2)
where N¢ is the number of repeated 80-KN (18-kip) equivalent single axle load (ESAL) the
pavement can stand before fatigue cracking failure occurs. Parameter N; is a similar quantity
associated with the rutting of the pavement.

The constants f), f;, f3, fs, and f5 in Equations 2.1 and 2.2 are usually determined from field

performance data, road tests, or laboratory tests. Table 2.1 gives the values developed by various
institutions.

Table 2.1 - Fatigue Cracking Model and Rutting Model Parameters Used to
Determine Remaining Life of a Flexible Pavement (from Huang, 1993)

Ne=fi (&) 2 (Ea0)™ Nr=fi (&)™
f) f f3 fa fs

Asphalt Institute 0.0796 3.291 0.854 NA NA
Shell 0.0685 5.671 2.363 NA NA
Shell (50% reliability) NA NA NA 6.15E-7
Shell (85% reliability) NA NA NA 1.94E-7
Shell (95% reliability) NA NA NA 1.05E-7
Illinois Dept. of Transportation 5E-6 3 NA 3 NA
Transport and Road Research Laboratory | 1.66E-10 4.32 NA 4.32 NA
University of Nottingham NA NA NA 1.13E-6 | 3.571
Belgian Road Research Center 4.92E-14 4.76 NA 3.05E-9| 4.35




Chapter 3

Data Base of Pavement Section Parameters

To develop an ANN it is necessary to have a set of examples that show specific values of the
independent variables and the corresponding values of the dependent variable(s). These examples
are used to train and test the ANN model. In this work, each example consists of an input vector
with nine elements that represent the thickness of the AC and base layers (t;, t;) and the seven FWD
readings (dy...d), and an output vector, whose only element defines the quantity that the model will
predict. In this case, that quantity is any of the two critical strains at the interfaces of the layers (g,
or g) or the remaining life of the pavement when it experiences either fatigue cracking (Ny) or

rutting (Ny).

Optimally, the examples could be obtained from actual field data that has been collected and “fed”
into a PMS database. Nevertheless, this type of information is limited at the present time.
Therefore, a synthetic and comprehensive database was generated to simulate and cover a wide
range of possible pavement sections.

Data Base Generation

The overall process employed to generate a synthetic data base is graphically depicted in Figure 3.1.
First, a simulation was conducted to generate a number of pavement sections [STEP 1]. The
thickness of the AC and base layers and their corresponding elastic moduli defined each section.
Wide ranges of possible thickness and moduli were initially established to cover most types of
pavement sections. To generate these variables a Monte Carlo simulation approach was conducted
(Ang and Tang, 1984) using the following assumptions: 1) the variables were not correlated, 2) the
thickness of the subgrade was fixed at 610 cm (240 in.) to simulate a semi-rigid layer, and 3) the
pavement section variables were simulated using a discrete uniform distribution. Some of these
assumptions could be reviewed in the future as more evidence of the statistical relationships of the
pavement section variables become available.
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Once a section was defined, a FWD test on the section was simulated using the five-layer linear
elastic program WESLEA [STEP 2a]. The seven FWD readings were computed under a static load
of 40 KN (9000 1b) acting over a 152 mm (6 in.) radius and with a uniform 305 mm (12 in.) spacing
for the seven sensors. The thickness and seven deflections constituted the input vector for the
ANNE.

As stated earlier, the variables that define the output vector could be the critical strains or the
remaining life associated with each failure mode. Using WESLEA, the critical strains, for each of
the sections generated, were evaluated under a simulated dual tandem loading (DTL) of 80 KN
(18000 Ib) [STEP 2b]. These computed strains were then used in Equations 2.1 and 2.2 to
determine the rutting or fatigue cracking remaining life of the pavement section [STEP 3]. This
process was repeated for every pavement section until a comprehensive database was built [STEP
4]. Finally, training and testing files were selected from this comprehensive database to develop the
ANN models [STEP 5]. Through this process a synthetic database with 360,000 examples was
produced. Training and testing files were extracted using random sampling.

Data Processing

A very important step in developing ANN models is data pre-processing. In many engineering
applications, raw data should be preprocessed to ensure that the ANN learning process is not
inhibited. Thus, the data extracted from the database was subjected to mathematical transformations
before being used in the training of ANN models.

A combinatorial analysis was conducted to select a suitable set of transformations for each of the
input and output variables. The analysis involved replacing each of the raw input and output
variables with one or more transformed variables, during the ANN training process. The final
transformations were selected from a pool of candidate transformation chosen priori. A genetic
algorithm was implemented to choose the best set of transformations. The criteria used to select the
transformations, was the minimization of the root mean square (RMS) error of the output. Table 3.1
shows the pool of candidate transformations and those selected by our algorithm for training the
ANN model that predicts the rutting remaining life. A different set of transformations was used for
each of the ANN models developed.

Results of two Artificial Neural Network models, one trained with the raw data and the other trained
with pre-processed data are shown in Figure 3.2. The accuracy gained by pre-processing of the data
is evident.
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Table 3.1 - Candidate Transformations

Name Function
Identity function * X
Natural logarithm function * In(x)
Log of Log log(log(x))
Exponential function exp(x)
Exp of Exp exp(exp(x))
Square function xt
Fourth Power function X'
Square root function * x>
Fourth root function X"
Inverse function (1/x) xT

1 / (Square function) * X~

1 / (Fourth Power function) X"

1 / (Square root function) x>

1 / (Fourth root function) x P
Hyperbolic tangent function * tanh(x)
Log (x/(1-x)) * In(x/(1-x))

a) trained with raw data

* Transformations applied to data used for developing
the ANN model that predicts the rutting remaining life
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Figure 3.2 - Results of Two ANN Models



Chapter 4

Artificial Neural Networks Models

ANN Development

All the ANN models developed during this project have been based on a multi-layer feed-forward
backpropagation algorithm. A Kalman filter (Puskorius and Feldkamp, 1991) was selected as the
learning rule, to estimate the weights for the links that join the processing elements between two
adjacent layers. The sigmoid function was selected as the transfer function of the processing
elements. The sigmoid transfer function is used in the output layer to transfer the weighted sum, as
shown in Figure 2.2, to fit within certain specified bounds (Smith, 1993). The architecture (number
of hidden layers and their corresponding number of PEs in each of them) was chosen based on the
RMS error of the output. The model with the best architecture was then tested and validated with a
testing data file. The architectures for the final models consisted of three layers. However, the
number of PE’s in the input and hidden layers were different for each model. The number of PE’s
in the input layer depended on the data transformations used for the model. Likewise, the number
of PE’s in the hidden layer depended on the model’s performance. In the development of the ANN
architecture, it is always desirable to keep the number of PE’s to a minimum. The smaller the
architecture is, the more robust the ANN model will be (NeuralWare, 1993).

ANN Models

Four ANN models were developed for a three-layer flexible pavement. Two of the models predict
the rutting and fatigue cracking remaining lives according to the Asphalt Institute Equations (see
Table 2.1). The other two models predict the maximum tensile and compressive strains at the layer
interfaces. As mentioned earlier, the result from these two ANN models can be used with any of the
failure models in Table 2.1 to estimate remaining life. All four models are based on the ranges of
pavement sections shown in Table 4.1. These ranges were based on surveys conducted by TXDOT
Personnel.
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Table 4.1 - Ranges of Pavement Section Variables Used in ANN Model Development

Pavement Variables Units Value

Minimum Maximum
Asphalt Thickness ~ (t1) mm (in.) 254 (1) 254 (10)
Base Thickness (t2) mm (in.) 102 (4) 457 (18)
Asphalt Modulus ~ (Eac) MPa (ksi) 2067 (300) 6900 (1000)
Base Modulus (Epase ) MPa (ksi) 207 (30) 759 (150)
Subgrade Modulus ~ (EsuBGraDE) MPa (ksi) | 35 (5) J 167 (25)

The ANN models developed during this project are summarized in Table 4.2. The table contains
the best and final architecture, the limitation or bounds of the prediction range, and the performance
of each model. These models are valid for pavement sections listed in Table 4.1, and should not be
used to predict values outside those ranges.

Table 4.2 - Specifications and Architectures of the Three-Layer ANN Models

Prediction Bounds

ANN Model (in E?/T:le;ezflifts at) P((a(l"/formance
P P Upper Lower o error)
Fatigue Cracking 9/30/1 25 million | 2000 e 20%

ESALS ESALS

) 25 million 2000 o
Rutting 13/28/1 ESALS ESALS +/- 10%

Tensile Strain 11/18/1 350E-6 75E-6 +/- 10%

Vertical Strain 7/24/1 950E-6 225E-6 +/- 10%

Remaining Life for Fatigue Cracking

Figure 4.1 shows the results for the ANN model that predicts the remaining life associated with
fatigue cracking of a pavement. The figure shows 500 cases. The upper limit for valid predictions of
this model is twenty-five million ESALS. The range of pavement properties covered by this model
is listed in Table 4.1 except for the minimum AC thickness, is 75 mm (3 in.) instead of 25 mm (1
in.). The model’s architecture is comprised of 9 PE’s in the input layer and 30 PE’s in the hidden
layer. The fatigue cracking ANN model predicts 86% of the desired values within a +/- 20% error.

14
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Figure 4.1 - Results of the Fatigue Cracking (N;) ANN Model

Remaining Life for Rutting

Figure 4.2 shows the results for the ANN model that predicts the remaining life associated with
rutting of a pavement. The model is applicable to the entire range listed in Table 4.1. Results for
500 cases are plotted. The maximum number of ESALS is limited to twenty-five million. The
model predicts a remaining life of about twenty-five million ESALS for any section that has a
remaining life beyond this value. The model’s architecture is comprised of 13 PE’s in the input
layer and 28 PE’s in the hidden layer. This ANN model was trained with a database consisting of
5000 examples. The trained model predicts 95% of the desired values within a 20% margin of
erTor.
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Tensile and Compressive Strains

Figures 4.3 and 4.4 show the results for the ANN models that predict the tensile and compressive
strains at the layer interfaces of a pavement, respectively. These ANN models were developed
primarily because various institutions such as the Asphalt Institute, Shell, Illinois Department of
Transportation, Transport Research Laboratory, and Belgian Road Research Center assign
different values to the coefficients of Equations 2.1 and 2.2. Figure 4.3 compares the predicted
tensile strain with the desired strain. The model’s architecture is comprised of 11 PE’s in the
input layer and 18 PE’s in the hidden layer. For the 500 cases shown, this ANN model predicts
90% of the desired values with +/- 10% error.

Figure 4.4 illustrate the performance of the ANN model that predicts the compressive strain. The
model’s architecture is comprised of 7 PE’s in the input layer and 24 PE’s in the hidden layer. The
performance of this ANN model indicates that 96% of the desired values are predicted with +/- 10%

€ITOor.
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Pavement Performance Curves

To describe the continuous performance of a pavement with time or alternatively with passing
traffic, the pavement performance curve (PPC) has been proposed (Garcia-Diaz et. al., 1984 ; Vepa
et. al., 1996). In general, a PPC is a monotonically non-decreasing curve. A popular model used
for this curve is the Weibull function. The Weibull function is a two-parameter curve that is
commonly used to describe the “life” of a system. Mathematically, the Weibull function is

expressed as:
D =1-—exp[—[—T—]a} 4.1)
B

D = level of damage
T = number of accumulated traffic to reach D in ESALS,
o, =site dependent parameters.

where:

A PPC can be generated for failure mode of the pavement. Figure 4.5 graphically shows a
pavement performance curve that is based on Equation 4.1. The graph represents the damage
accumulation in the pavement plotted against traffic or time. The actual shape of the curve is a
function of the parameters used in the equation. The figure also shows the concept of remaining life
used in this project: the extra time/traffic (from the day the NDT was performed) that it will take for
a section to reach a failure limit. The failure limit shown in the figure represents the maximum
damage level that can be tolerated before the pavement is repaired. This limit is different for each
failure mode of the pavement. For example, in this project the failure limits considered were: for
rutting 12.7mm (0.5 in.) and for fatigue cracking 45% of the wheel path.

To obtain the parameters of a PPC, it is necessary to know at least two points on the curve. The first
point may be obtained from the results of an ANN remaining life model, or from one of the
remaining life regression models in Table 2.1, and the corresponding failure limit. The second
required point is obtained from available information about the past performance of the pavement.
The following two cases present two scenarios in which different amount of information is used to
generate the PPC.

18
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Case 1: This scenario assumes that: 1) no damage existed when the pavement section was

new, 2) the accumulated traffic of the pavement section at the time of the NDE is known, and 3)
at the time of the NDE no record of the level of distress is available. Based on this assumption,
the PPC of a pavement section can be generated using two points. One point 1s when the
pavement was constructed (no traffic, no damage). The other point is obtained by adding the
predicted remaining life to the traffic at the NDE test time. The result is the time/cumulative
traffic at which the pavement reaches the failure limit.

Case 2: The second scenario is similar to the first with the exception of the third
assumption. In this case, a condition survey is carried out during the field test. Based on this new
assumption, the PPC of the pavement section can be generated using three points. The first point
is when the pavement was constructed (no traffic, no damage). The second point is obtained
from the damage measured and the accumulated traffic at the time of the test. The third point is
obtained from the results of the ANN model.

The parameters in equation 4.1 can be obtained with a closed form solution for Case 1 and using
linear regression for Case 2.

From FWD Test to PPC

Figure 4.6 summarizes the steps required to construct a pavement performance curve. Step 1
illustrates how the thickness and FWD data is collected and used as input to the ANN model. Step
2 indicates how the ANN model uses the pre-processed data to estimate the output. Step 3 shows
that the output of the ANN model is post-processed. Finally, the performance curve is obtained in
Step 4. Once the FWD data is collected the rest of the process is almost instantaneous.
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Confidence Bounds for Remaining Life and Pavement Performance Curve

The approaches to predict the remaining life of a pavement and to produce its PPC, described in the
foregoing sections, assume that all the required input variables are known with certainty. However,
it is well acknowledged that the actual thicknesses of the layers of a given section may not
correspond to those specified, and that there are experimental errors in the FWD tests. In addition,
the cumulative traffic passing through a section can only be known with a given level of confidence.
The impact of uncertainty in the layer thicknesses and in the deflection basin on the predicted
remaining life of a pavement is shown in Figure 4.7. If the input variables are accepted as random
variables with given probability density functions, then the output variable (remaining life) is also a
random variable defined by a probability density function. Once this distribution is known, upper
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and lower confidence bounds for the predicted remaining life can be established as shown in the
figure. Due to the highly nonlinear relationship, between the pavement section variables and the
predicted remaining life variable, finding the probability density function of the remaining life can
only be practically done through a Monte Carlo simulation (Ang and Tang, 1984).

COV =11.2 % mean = 8.6 million ESALS based on Rutting Model

600 - ‘ + /- 2 standard deviation W 100%
_ 500 - Phd B - 80% o =
> : * > o
Q.2 400 + ( = .2
g g 60% & 5
S, 2 300 ER=
2 500 40% E &
L2 Sz
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D AN A X 50 A DD AN AN AN
(Million)
M Frequency —¢— Cumulative
Variable C.0O.V. Correlation | Distribution
Thickness 10% None Tnormal*
Deflections 2% Correlated Normal

* Truncated Normal

Figure 4.7 - Uncertainty in the Remaining Life of a Pavement

To conduct the simulation, the statistics and the type of distribution of each of the input variables
should be known. In our approach we assume that the mean values of the variables are: for the
section parameters, the specified values; and for the deflections, the measured values. The
variability of each parameter is a function of construction practices and the conditions under which
the NDT is performed. The level of variability is commonly quantified by the coefficient of
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variation (ratio of standard deviation and the mean value of a variable). Some data on suitable
coefficients of variation for the variables used by the ANN models have been reported in the
literature and summarized by Vennalaganti et al (1994b). In our simulation, all input variables are
assumed to have normal or truncated normal distribution.

After analyzing the deflection data in the synthetic data base, it was determined that the FWD
deflections are correlated. Tables 4.3 and 4.4 show the correlation matrixes used for simulating
deflections. The matrices are different because they were obtained using separate samples. However
the trend in the correlation coefficients is basically the same.

Table 4.3 - Correlation Matrix of the Deflections Used in Developing

Fatigue Cracking ANN Models
do dl d2 d3 d4 ds dé

do 1 0.90 0.75 0.68 0.64 0.63 0.64
d1 1 0.95 0.89 0.86 0.85 0.85
d2 1 0.99 0.97 0.96 0.95
d3 1 0.99 0.99 0.99
d4 Symmetric 1 0.99 0.99
ds 1 0.99
dé 1

Table 4.4 - Correlation Matrix of the Deflections Used in Developing

Rutting ANN Models
do dl d2 d3 d4 ds dé

do 1 0.85 0.62 0.51 0.48 0.48 0.49
d1 1 0.92 0.85 0.82 0.81 0.81
d2 1 0.99 0.97 0.96 0.96
d3 1 0.99 0.99 0.99
d4 Symmetric 1 0.99 0.99
ds 1 0.99
dé 1

Once the Monte Carlo simulation is performed, the results can be used to define confidence bounds
for the predicted remaining life. Figure 4.7 shows a histogram built with the results of one such a
simulation and the upper and lower bounds defined by plus/minus two standard deviations from the
mean value. A pavement performance curve can be obtained using each of the bounds thus defined.
These curves in turn define a region for the possible location of the PPC. Figure 4.8 shows a
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schematic representation of these concepts. It also shows a pavement performance curve generated
using the mean value of the predicted remaining life.

A numerical example of the methodology described in this chapter is given in Chapter 6.

Damage

Time

Figure 4.8 - PCC with the Upper and Lower Confidence Bounds
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Chapter 5
Description of Software

This chapter contains a description of the prototype software developed to predict the remaining life
of flexible pavements. The software is the product of integrating the various methodologies
described in the previous chapters.

Presently, the software contains two ANN models that predict the remaining life of a three-layer
pavement section for both the rutting and fatigue cracking failure modes. The ANN models are
based on the Asphalt Institute equations. The software also contains the uncertainty-processing
algorithm based on the Monte Carlo simulation methods. An option to obtain the pavement
performance curve based on the cumulative Weibull distribution has also been incorporated. Efforts
are being made to develop a stand-alone end product that will be user-friendly and complimentary
to procedures used by TXDOT pavement engineers.

Software Architecture: Main Modules and Sub-Modules.

The beta version of the software to compute the remaining life of pavements, hereinafter the
software, is being developed under Windows 95, using C++ development-programming language,
which allows object oriented programming. The major benefit of object oriented programming is
the capability of developing programs with a modular architecture.

The software was designed to have three main modules: a) Input and Project Information module;
b) the Artificial Neural Network (ANN) and Uncertainty processing module; and c) the Reliability
and Results module (see Figure 5.1).

Each module is comprised of additional sub-modules organized in three levels. The first level sub-
modules are classified according to the “pavement types” to be analyzed. Two pavement types were
originally considered, a) Flexible and b) Rigid. Currently, the software only handles flexible
pavements (see Figure 5.2).
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Figure 5.1 - Software Architecture: Main Modules

Each first level sub-module is comprised of a second level of sub-modules that are classified under
the “performance models” criteria. Any available performance model can be incorporated at this
level. So far, the models that predict the remaining life according to the Asphalt Institute are the
only ones incorporated.

The third and final level consists of the “failure mode” for which the remaining life is to be
determined. Two failure modes are currently incorporated for flexible pavements: rutting and
fatigue cracking.

First Jevel Second level Third level

Fatigue cracking
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... other
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1 ... other L’g
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Figure 5.2 - Software Architecture: Three-Level Sub-Modules
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The failure mode sub-modules that contain the ANN models are further comprised of three sections
that perform specific data processing tasks. An ANN per pavement type per performance model per
failure mode is integrated into the software to determine the corresponding remaining life (see
Figure 5.3).

For each ANN, the input data (comprised of pavement thickness and FWD deflections) is read from
a file and passed to the pre-processing section, where a set of mathematical functions transform the
data before it is processed by the corresponding ANN. Immediately after, the transformed inputs
are passed through the ANN and the corresponding remaining life is determined in a transformed
space. To be able to interpret the results in real space, the transformed ANN output is passed
through the post-processing section where another set of mathematical functions are used.

Fatigue
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: Life
Processing !
ANN Model -
|
1
|
1
|

Input data Rutting

i

Post-processing

. Other...
output transformations
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Figure 5.3 - Software Architecture: ANN Processing Sections

In the uncertainty analysis module, 250 Monte Carlo simulations per pavement case are conducted
to determine the statistical parameters of the predicted remaining life. These parameters are later
used to determine the remaining life’s confidence intervals, and to establish confidence bounds on
the PPC.

The C++ programming language proved to be suitable for the integration of the different
methodologies used to determine the remaining life of a pavement, providing the framework to
develop a modular and windows based application, without sacrificing user-friendliness. A typical
program execution is described in Appendix B.
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Chapter 6

Case Study

A case study is included in this chapter to demonstrate how the ANN-based methodology to predict
the remaining life of pavements is applied. Information collected from one of the Texas Mobile
Load Simulator (TxXMLS) test sites is used to illustrate the process.

Description of Site

The site, located in Victoria, TX, is designated as Pad F5. The section is a four-layer asphalt-
concrete pavement with the following nominal features:

Asphalt layer of 75 mm (3 in.)
Lime-treated base of 300 mm (12 in.)
Lime-treated subbase of 150 mm (6 in.)
Clayey subgrade

The test section was 3m (10 ft) wide by 12m (40 ft) long. To facilitate data collection, the test area
was divided into a grid, as shown in Figure 6.1. FWD deflections were measured at each point on
the grid. Only data from the middle of the section, shaded in the figure, were used in this case
study.

Testing and Data Collection

The TxMLS personnel performed condition survey at predetermined load applications. The
progression of rutting and fatigue are documented in Tables 6.1. This table contains the average rut,
and percent fatigue cracking about the 6-m mark in the longitudinal direction (see Figure 6.1). The
results from the FWD tests are included in Table 6.2.
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Table 6.1 - Percent Cracking and Rutting Measured for Pad F5 at the 6-m Mark

MLS Percent Cracking Rutting, (mm)
Axles Left Right Average
0 0 0 0.0

2500 0 0 0.5
5000 0 0 0.7
10000 0 0 1.0
20000 0 0 1.3
40000 0 0 1.9
80000 42 16 3.7
160000 43 16 4.7
320000 66 50 7.5
640000 69 60 9.8

Table 6.2 - FWD Data Collected for Pad F5

. do d1 d2 d3 d4 ds dé
MLS Axles | Location (mm) (mm) (mm) (mm) (mm) (mm) (mm)
0 b 473 | 0196 | 0098 | 0.062 | 0.044 | 0.033 0.025
c 0.448 | 0.201 0.101 0.064 | 0.043 | 0.031 0.022
d 0.389 [ 0.182 | 0.095 | 0.061 0.044 | 0.032 0.024
b 0.471 0.209 [ 0.103 | 0.064 | 0.044 | 0.031 0.023
2500 c 0.449 [ 0.208 | 0.108 | 0.068 | 0.044 | 0.031 0.022
d 0404 | 0.196 | 0.102 | 0.064 | 0.045 | 0.033 0.024
b 0.544 | 0.238 | 0.106 | 0.065 | 0.044 | 0.031 0.023
5000 c 0.457 | 0.211 0.108 | 0.068 | 0.044 | 0.029 0.023
d 0.408 | 0.198 | 0.099 | 0.063 | 0.043 | 0.032 0.023
b 0.533 | 0227 | 0.108 | 0.066 | 0.044 | 0.032 0.023
10000 c 0.463 | 0213 | 0.109 | 0.070 | 0.044 | 0.030 0.021
d 0.430 | 0.207 | 0.105 [ 0.064 | 0.043 | 0.031 0.021
b 0.559 | 0.242 | 0.111 0.068 | 0.043 | 0.031 0.021
20000 c 0.484 | 0222 | 0.114 | 0.070 | 0.047 | 0.032 0.023
d 0.468 | 0218 | 0.108 [ 0.066 | 0.045 | 0.032 0.022
b 0.561 0.250 | 0.111 0.067 | 0.043 [ 0.031 0.020
40000 c 0.474 | 0.221 0.113 | 0.071 0.047 | 0.033 0.024
d 0.460 | 0227 | 0.109 | 0.065 | 0.044 | 0.033 0.023
b 0.626 | 0256 | 0.115 | 0.068 | 0.046 | 0.033 0.024
80000 c 0.480 | 0220 | 0.117 | 0.073 | 0.048 | 0.033 0.024
d 0.445 | 0.219 | 0.111 0.068 | 0.047 | 0.034 0.025
b 0.610 | 0.259 | 0.103 | 0.062 | 0.043 | 0.032 0.023
160000 - 0.477 | 0220 | 0.106 | 0.065 | 0.044 | 0.032 0.023
d 0.446 | 0209 | 0.097 | 0.059 [ 0.043 | 0.031 0.022
b 0.814 | 0303 | 0.113 | 0.064 | 0.040 | 0.028 0.019
320000 c 0.503 | 0230 | 0.118 | 0.072 | 0.045 | 0.031 0.021
d 0.549 | 0259 | 0.112 | 0.069 | 0.046 | 0.033 0.023
b 0.769 | 0284 | 0.128 | 0.073 | 0.046 | 0.034 0.025
640000 c 0.506 | 0.247 | 0.124 | 0.076 | 0.049 | 0.035 0.025
d 0.570 | 0.251 0.122 | 0.072 | 0.050 | 0.037 0.027




ANN Models

Since pad F5 was a four-layer system, and the ANN models developed up to this phase of the
project were for a three-layer system, three new ANN models had to be developed. These models
consisted of: 1) an ANN to estimate the remaining life associated with rutting using the Asphalt
Institute criterion, 2) an ANN to estimate remaining life associated with fatigue cracking using the
Asphalt Institute criterion, and 3) an ANN to predict vertical compressive stress under the asphalt
layer.

Chen et al. (1999) demonstrated that the rutting model that is based on calculating the rate of rut is
reasonable for estimating the remaining life at the validation site used in this study. The general
form of the equation is:

log( RR) =C, +C,log(d,)+C,log( N,y)+C,log(c,) 6.1)

where RR = rate of rutting in microinches per axle load repetition, dy = surface deflection under the
load plate in mils (obtained from the FWD test), Nj3 = equivalent 18-kip (80-KN) single-axle load,
and o = vertical compressive stress under the asphalt layer in psi.

The constants proposed by Finn et al. (1986), specifically for conventional construction with hot
mix asphalt (HMA) less than 150 mm (6in.), are appropriate for this site. The constants are C; =
Log (Rr) — 5.617, C; = 4.343, C; = -0.167 and C4 = -1.118. Parameter Ry is the ratio of the
observed rutting to the estimated rutting, and can be determined from:

R, =302.2-26.33(,) - 14.12(t,) (6.2)

where t; and t, are the AC thickness and base thickness in inches, respectively. Equation 6.2 was
proposed by Finn et al. (1986) as a calibration or a shift factor to adjust the estimated rutting based
on field observations. Therefore, the ANN model that predicts the compressive stress was used in
conjunction with the Finn et al. model.

To develop the ANN model, a database containing the thickness, modulus and remaining lives was
created following the methodology explained in Chapter 3. The ranges of pavement properties
considered in generating the database are reflected in Table 6.3. The values reported in the table
were selected based on the available information from a trenching operation at the site and
backcalculated moduli reported by Chen et al. (1998). As before, to execute any of the three ANN
models, the only information needed is the thickness of the layers and the deflections from the FWD
tests.

The remaining lives due to fatigue cracking from the conventional approach and the ANN models
are included in Table 6.4. The conventional approach corresponds to backcalculating moduli from
the deflection basin, calculating the tensile strain at the bottom of the AC layer, and using Equation
2.1 to estimate the remaining life. From Table 6.4, the conventional method and the ANN models
provide reasonably close results given the shortcomings of the conventional method and the
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approximations involved in the ANN model. This statement is true for all FWD measurements
reported in the table. The advantage of the ANN model, as indicated before, is that the results are
provided instantaneously, without any need for backcalculation.

Table 6.3 - Pavement Sections used in ANN Model Development for this Case Study

Pavement Designs Value

Minimum ¢ Maximum
Asphalt Thickness mm (in.)  (t)) 51 (2) 102 (4)
Base Thickness mm (in.)  (t) 254 (10) 356 (14)
Subbase Thickness mm (in.)  (t3) 76 (3) 229 (9)
Asphalt Modulus MPa (ksi) (Eac) 690 (100) 6900 (1000)
Base Modulus MPa (ksi) (Egpase) 69 (10) 690 (100)
Subbase Modulus MPa (ksi) (Esuspasg) 69 (10) 2067 (300)
Subgrade Modulus MPa (ksi) (EsuBGrADE) 69 (10) 345 (50)

Table 6.4 - Remaining Life due to Fatigue Cracking

. : Axles
Methods Location ™=37772,00 T 20000 | 80000 | 320000
ANN Left 498 | 336 | 332 | 228 | 109
(million ESALS)  |Right | 1,008 | 889 | 600 | 750 | 344
Conventional® _|Left 661 | 405 | 378 | 256 | 192
(million ESALS)  |Right 1,276 986 758 859 406

* Asphalt Institute Equation

Similar results for the remaining life due to rutting are given in Table 6.5. The Asphalt Institute
model (Equation 2.2) using the conventional approach yields remaining lives in the ranges of 4
million to 12 million ESALS. The ANN model reports a value of 2.8 million ESALS for all FWD
test results. This value is the upper limit of the remaining life introduced to the ANN model. Since
ANN models cannot extrapolate results outside the range of outputs that they are trained for, they
return the upper limit as the response. Therefore, from the ANN models one can only deduce that
the remaining life is in the excess of 2.8 million ESALS. One thing is clear from the results of both
methods: Equation 2.2 is not appropriate for this site. These results clearly show that if the
fundamental model is not accurately describing a phenomenon, the ANN models will not yield
reasonable results.

As indicated before, the Finn et al. (1986) model for predicting the remaining life based on rutting is
appropriate for this site. The rate of rut from the Finn model using the ANN and conventional
methods are also compared in Table 6.5. The two methods yield fairly close results for the amount
of approximation involved in the ANN model and the FWD backcalculated moduli.
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Table 6.5 - Remaining Life due to Rutting

Axles
Model Methods 0 | 5000 | 20000 | 80000 | 320000
Asphalt Institute ANN 2.8* 2.8% 2.8* 2.8* 2.8*
(million ESALS) Conventional 12.9 10.0 6.70 5.6 4.1
Finn et al. ANN 409 | 169 | 134 | 099 | 0.70
(log (RR)) Conventional 432 1.84 1.49 1.11 0.80

* Upper bound of the trained ANN model

From the results shown in both Tables 6.4 and 6.5, it can be concluded that the ANN models are
quite satisfactory, and can readily replace the conventional methods within the limitations they are
trained for.

To demonstrate the strengths and the weaknesses of the pavement performance curves developed by
the algorithm described in Chapter 5, the case study is expanded one more step. The observed
pavement performance from condition survey is shown in Figure 6.2. Up to 40,000 repetitions, the
section does not exhibit any cracking. At about 80,000 repetitions, the section can be considered as
failed. As such, this case may not be as typical as those encountered under actual traffic.

100 1 ’
\ |
50 80000 MLS Axles
V) 20000 MLS Axles
=
Z 60 J 5000 MLS Axles
[~
} =
O 450, | failure limit 0 MLS Axles |
5 1
[P
S
[~ W

¢ Measured Data

1 10 100 1000 10000 100000
Traffic, (KESALS)

Figure 6.2 - Comparison of Percent Cracking for Pavement Performance Curves from ANN
Models and InSitu Condition Survey (Condition Survey not Considered)
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The pavement performance curves related to fatigue cracking from FWD tests at several load
repetitions are also included in the figure. The procedure defined in Chapter 4 (Case 1) was used;
that is only the data corresponding to remaining life from the ANN and the origin were used to
develop the Weibull curves. From the figure, when the FWD deflection basin is used along with the
Asphalt Institute failure model before the application of load, the PPC curve does not follow the
observed results well. However, as the FWD data from greater load repetitions are used, the PPC
becomes more representative of the observed progression of failure. The FWD results past 160,000
repetitions are not used because, by definition, the section can be considered as failed.

The same case study is repeated again with one difference. The condition of the pavement, in terms
of cracking or rutting at the time of FWD test, is also considered. When the percent cracking is
more than zero, the Weibull curve is fitted to three points (consisting of origin, the result from the
ANN model, and a point corresponding to the condition of the pavement at the time of FWD test).
On the other hand, when no cracks are evident at the site, the Weibull curve is fitted to two points
(the results from the ANN model and the point corresponding to the condition of the pavement at
the time of FWD test). The results are included in Figure 6.3. The PPC from the FWD tests before
applying the load is identical to that shown in Figure 6.2. The PPC’s from FWD data and condition
surveys after 5,000 and 20,000 load repetitions predict final failure better. However, the pattern to
final failure is not very accurate. Finally, from NDT and condition survey at 80,000 repetitions, the
performance curve is quite realistic.
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Percent Cracking

/ 4—,— 20000 MLS Axles
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rY Y &
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1 10 100 1000 10000 100000
Traffic, (KESALS)

Figure 6.3 - Comparison of Percent Cracking for Pavement Performance Curves from ANN
Models and InSitu Condition Survey (Condition Survey Considered)
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The impact of combining the structural and functional results in determining the remaining life is
reflected in Figure 6.4. Three performance curves are shown in Figures 6.4a and 6.4b. One
performance curve corresponds to when only the condition survey is used to predict the remaining
life. At 20,000 axle repetitions, that PPC is not representative of the behavior of the pavement (the
curve is superimposed on the x-axis); whereas for 80,000 repetitions, the performance curve is more
representative of the in situ condition, but still underestimates the behavior of the pavement. The
same trend is also applicable when only structural condition is considered, except that the
performance is over-estimated. When both the condition survey and FWD data are considered, the
performance curves for both 20,000 and 80,000 repetitions are more representative of the actual
pavement condition. However, for 20,000 repetitions, the intermediate cracking is not predicted
well because the actual field condition resembles a step function.
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20 - Based on
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0 R A v 1w A umm e T ¥ T
1 10 100 1000 10000
Traffic, (KESALS)
-—— Condition Survey Only ANN Only
Condition Survey & ANN ¢ Measured Data
100
b) 80,000 MLS axles
80 Predicted by ANN model - g
- .
2 Based on
=2 L1
E 60 Condition Survey ’
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S 40
S
-
20 Points denoted by i
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the middie curve
0 N E— T 4!
1 10 100 1000 10000
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Figure 6.4 - Comparison of Different Models used in Predicting Pavement Performance
due to Fatigue Cracking
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This case study shows that in order to better predict the future behavior of a pavement section, the
structural and functional conditions of the pavement should be combined.

As indicated before, the predictions of the Asphalt Institute model for rutting was unrealistically
high. This occurred because the Al model is not appropriate for this site. It is impossible to obtain
realistic results from an inappropriate model, independent of the method used. However, the Finn
model seems to be appropriate for the site.

The same process used to illustrate the PPC for fatigue cracking is used for rutting. Figure 6.5
compares variations in rut depth based on results of the Finn et al. model with measured rutting.
The pavement performance curves were constructed by fitting a Weibull curve using Case 1 and
Case 2 as defined in Chapter 4. Figure 6.5a shows the PPC based on two points (Case 1). Figure 2
shows the PPC when the condition survey is used to develop the curve (Case 2). Since the Finn
model is based on the rate of rutting, the FWD data from before the application of the load cannot
be used. Figure 6.5, the short-term rutting of the pavement is reasonably accurately predicted in all
cases. However, as expected, the final rut depth is more accurately estimated when the condition
survey is considered and for FWD data at higher axle repetitions.
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Figure 6.5 - Comparison of Rut Depth for Pavement Performance Curves
from ANN Models and InSitu Condition Survey
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Figure 6.6 shows the actual variations in rut depth with the number of ESALs as well as estimated
PPC from the three strategies: 1) only the condition survey considered, 2) only ANN results
considered, and 3) both condition survey and ANN results are considered. Once again, the results
show that the most realistic PPCs are determined when the structural and functional conditions of
the pavement are combined.
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Figure 6.6 - Comparison of Actual Rutting Performance Curve with Calculated Ones Using
Several Strategies
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Chapter 7

Summary and Conclusions

This report summarizes the efforts to develop a methodology based on the Artificial Neural
Networks to process data from NDE tests, such as the Falling Weight Deflectometer, to estimate the
remaining life of a pavement. The project has progressed with close cooperation between TxXDOT
and UTEP.

The following items summarize the achievements during the period covered by this report.

1.

Artificial neural network models were developed which rapidly and reliably predict the
remaining lives of flexible pavements. Other models were developed to predict the critical
strains at the interfaces of the layers.

An algorithm has been developed to assess the influence that uncertainty (variability) in the
input variables has on the predicted remaining life and critical strains.

An algorithm to produce a pavement performance curve that incorporates the results of the
ANN models, condition survey and traffic has been developed.

A modular software that incorporates all methodologies and algorithms described in this report,
is being developed.

The following is a detailed assessment of the status of this project:

1.

Four general ANN models have been developed, two models to predict the remaining life of
flexible pavements, based on two possible failure modes of the pavement; and two models to
predict the critical strains which can be used in existing remaining life models. The models are
based on a three-layer system and a constant depth to bedrock. Based on discussions between
TXDOT and UTEP, and on the success of the ANN models, a set of ANN models is being
developed to predict critical stresses, critical strains, and remaining lives of pavements for three-
layer and four-layer systems with varying depth to bedrock.
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2. The software includes
— ANN models,
— algorithms for estimating the uncertainty in the predicted remaining life and critical strains,
— methodology to establish upper and lower bounds for the pavement performance curve, and
— graphical results module.

3. A case study has been conducted on an MLS site. This allowed for both UTEP researchers and
TXDOT personnel to initially verify the methodology, proposed in this report, using real data.
Although the output for this case study shows promising results, further studies will be
conducted when new data become available.

Artificial Neural Network technology has proven to be a feasible and practical approach in the
development of models to assess the integrity of pavements using data that is readily available to the
pavement engineer. This is particularly advantageous because other approaches require information
from laboratory tests, making the assessment more tedious and time consuming. Another advantage
of an ANN model over traditional approaches is that the remaining life can be calculated without
having to backcalculate the elastic moduli of each pavement layer.
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Appendix A

Summary of Available Literature on ANN Applications in
Pavement Engineering
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Table Al - Neural Network Applications to Pavements

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF No. OF No. OF COMMENTS
TYPE/ WARE HIDDEN  NODES PER TRAINING TESTING
(TRANSFER LAYERS HIDDEN EXAMPLES EXAMPLES
FUNCTION) . LAYER.
Classification of types B Neural 17) 7 (1) 17 (36-135) (6-27) Data provided by NCHRP
of cracks from video Ware Moment Different 1-27;
images invariants types of (2000 epochs) Neural network classified 100%
{Chou ct.al. 1995} 4 Bamiek cracks. of the cases. The largest output
[Chou et.al. 1994] 7 Hu value determines type of distress.
6 Zemike
Determination of B N/A (15) (1) (1) 6) 298 3902 Data provided by ODOT;
condition rating (CR) of Distress CR w/ 60% of noise ~ w/60% of Neural Networks were able to
: (Sigmoid) severity noise identify CR even with high noise
levels and levels with a 95% confidence
R/C pavements. density. level.
[Eldin and Senouct
1995]
Jointed concrete 22 (a) 1202 (a) 6812 (a)
pavements,
[Eldin and Senouci
1995a]
Flexible pavements 17 (b) 774 (b) 1736 (b)
[Eldin and Senouci
1995b)
Automated inversionof B Neuro 6 7 6) 1) (70) 152 patterns 36 patterns Data collected from state of New
SASW test data to Shell 2 Dispersion 3 fayer Jersey roads;
evaluate elastic moduli Window  curve and thicknesses Training was over when both
and layer thickness s ver. associated and 3 neural networks showed the
[Gucunski et.al. 1995] profile with shearwave same mean squarred error;
5 parameters  velocities The 5 layer neural network was
based on the best of both, it predicted
shearwave everything except the thickness
velocity and of the subbase layer.
thickness of
AC layer
B 3) " (total of 66)

* B: Backpropagation; F-F: Feed-forward; GA: Genetic Algorithm; GANNT: Genetic Adaptive Neural Network Training; N/A: Not available; n:learning coefficient
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Table Al - Neural Network Applications to Pavements Cont.....

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF NODES No. OF No. OF COMMENTS
TYPE/ WARE HIDDEN PER HIDDEN TRAINING TESTING
(TRANSFER LAYERS LAYER. EXAMPLES EXAMPLES
FUNCTION) .
Interpretation of raw B Neural N/A) (N/A) N/A N/A 186 UPE 30 UPE signals  Data provided by USACE;
data from ultrasonic Network  UPE signals Ultrasonic signals Neural network was able to rank
pulse echo (UPE) for Toolbox Pulse concrete specimens in correct
NDT of concrete for Velocity order of deterioration.
structures Matlab signals as
[Haskins and target
Alexander 1995] values
Select maintenance B with GA Brain (16) [binary] (7) ) (16) 235 100 Data previously used (?);
strategy for pavements. using Maker Distress type, [binary] Ten networks are created over 50
[Taha and Hana, 1995] mutation and with density, Mainte- (100 epochs) generations;
crossover genetic severity, nance The best network is selected
training riding comfort  strategy after training;
=10 option index, traffic Six out of 100 cases were
vol.,climate, : misclassified.
crack type.
Recommended M & R B N/A 57 (13) 1) (40) 55 30 Data collected by visual
actions based on 19 distress Different M observation of Egyptian road
pavement condition types with &R network;
[Alsugair and Sharaf 3 severity actions. Some sets were obtained with
1994] levels. PAVER;

Accuracy of network was 66 %;
No examples are given.

Automated pavement MLF-F N/A 3-12) ) (1) (6) 60 images 23 images Data collected from ConnDOT;
condition evaluation features of Type of Neural network had a success
system (SQP distress distress rate of over 90 %
[Garrick et.al. 1994] algorithm) (3 pixel recognized

densities and

angle of

inclination

* B: Backpropagation; N/A: Not available
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Table Al - Neural Network Applications to Pavements Cont...
APPLICATION NETWORK SOFT INPUT OUTPUT  No. OF No. OF NODES  No. OF No. OF COMMENTS
TYPE/ WARE HIDDEN  PER HIDDEN TRAINING TESTING
(TRANSFER LAYERS LAYER. ’ EXAMPLES EXAMPLES
FUNCTION) .
Backcalculate B N/A 9) 3) ) (11-8) 9750 250 Data generated;
pavement moduli 2 thicknesses Layer Both networks give robust
[Meier and Rix 1994] 7 deflections Moduli estimates of moduli w/noise and
are faster than other searching
techniques.
{5-15) 9750 w/noise 250
Priority assessmentof B Neural {6) ¢)) H H (128-12500) 300 Data generated;
Highway pavements Works Indices for Priority SET I linear Network can learn regardless of
maintenance needs (Sigmoid) highway rating and non-linear data generation methodology and
[Fwa and Chan, 1993] functional score. data with up to a 50% level of noise.
class, skid - structured
resistance, - random
crack width,
crack length,
pavement
serviceability,
rut depth.
SET 1l: data
w/several noise
levels
SET IIL:
empirical data
Automatic process B Neural (N/A) (N/A) (1 (10) 500 and 3000 N/A Sensitivity accuracy and
and analysis of moire Ware Binarized Reproduc efficiency of the NN was
fringes of pavement ML pattern of ed image compared to results from other
surface pavement of the fringe thinning algorithms;
[Guralnick et.al. image surface Reproduced surface resembles
1993] actual surface with 2% error.
Conditions B Neural (30) [¢))] (1 (10) 721 311 Data collected in Cincinnati;
assessment of utility Works  Type and Utility Utility Cut Condition Index
cuts {Sigmoid) Profess  severity of Cut determined w/ Delphi method,
[Pant et. al. 1993] . distress (data Condition Network accurately predicted 92
11 Plus  preprocessed). Index % of the outputs.

* F-F: Feed-forward; ML: Multi-layered; N/A: Not available
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Table A2 - Neural Network Applications to Pavements: Comparison Studies

APPLICATION NETWORK SOFT INPUT OUTPUT No. OF No. OF NODES No. OF No. OF COMMENTS

TYPE/ WARE HIDDEN PER HIDDEN TRAINING TESTING

(TRANSFER LAYERS LAYER. EXAMPLES EXAMPLES

FUNCTION) .

|

Prediction of pavement ~ Modular N/A (@) Q)] N 8) N/A N/A Data provided by ODOT;
condition rating GANNT Pavement PCR Results compared to those of
(PCR) F-F structure, age, regression models are similar;

[Shekharan and George
1997}

traffic, route
classification.

Network is a viable alternative.

Predict skid resistance Adaptive Auto 4) ) 2) (total of 5) 45 15 Data provided by ConnDOT;
to assess future modeling Net Pavement age, Skid Compared to Linear Regression
rehabilitation needs on procedure AADT, speed number. LR model using the mean error
flexible pavements. limits, (E) and the coeff. of
[Owusu-Ababio 1995] (quadratic pavement determination (R?);
function) regional Network gives lower (E) and
location. higher (R?); Network fits better
than LR.
Crack type pattern B “C” 5 5) N 5 230 230 Data provided by NCHRP -27;
classification from MLF-F progrm  Parameters Crack Both neural networks perform
pavement images. (sigmoid ?) Jlang. extracted from types. slightly better than Baye's
[Kaseko et.al.1994] a=0.7 histogram of classifiers and k-NN classifiers
n=0.1 distressed on the test data set.
pixels in binary
image, such as:
distressed pixel
density,
variances of
distressed
pixels in
several
orientations.
2PWL No. of No.of nodes per
i)competitive modules module
leamning (@) 3)
ii) Kohonen
LVQ2 rule
(n=decaying
function)

* AADT: Annual average daily traffic; B: Backpropagation; F-F: Feed-forward; GANNT: Genetic Adaptive Neural Network Training, LVQ2: Learning vector quantization 2; ML: Multi-layered: N/A:
Not available; 2PWL: two-stage piecewise linear, a:momentum gain; 1:learning coefficient
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Table A2 - Neural Network Applications to Pavements: Comparison Studies Cont...

APPLICATION NETWORK SOFT INPUT OUTPUT  No. OF No. OF NODES  No. OF No. OF COMMENTS

TYPE/ WARE HIDDEN  PER HIDDEN TRAINING TESTING

(TRANSFER LAYERS  LAYER. EXAMPLES EXAMPLES

FUNCTION) .

_________________________________________________________________________________________________________________________ ]

Selection of pavement B Brain (40) ) N/A N/A 148 pavement 20 pavement Neural network is compared
sections for routing . Maker sections sections against a rule-based expert
and sealing (R&S) (sigmoid) Profess 15 pavement Desirabi- system ROSE; Input-output
maintenance ITPlus  surface defects  lity of Set to automatic ~ Provided b training sets were determined by
treatment. learning R&S neuron selection MTO ROSE; Network yields
[Hajek and Hurdal rate=1 to 30 severity and comparable results to ROSE's for
1993) guarantee density of (scale higher desirabilities (range from

convergence defects from 6-10); Network is faster and

if possible 0-10) easier to develop, has greater

generalization ability and can
include uncertainty implicitly as
part of training; Network does
not explain reasoning.

Automated MLF-F N/A 3) ) Q] 3) 130 image 125 image Data provided by NCHRP 1-27;

thresholding of 255 Mean and std. Threshold vectors vectors Neural network compared to

asphalt concrete dev. of gray value linear regression model,

pavement images. level histogram Neural network unnecessary due

[Kaseko et.al. 1993] and co- to strong linear relationship
occurrence between input and output.
parameter

Prediction of a N/A N/A (€)) ) N/A N/A N/A N/A None

pavement condition Pavement age, PCI

index (PCI). traffic,

[Schwartz 1993] subgrade

strength and
other variables

* B: Backpropagation; F-F: Feed-forward; ML: Multi-layered; N/A: Not available
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Appendix B

Software Overview

Opening and Running the Program
Once the software has been completely installed and run, the main menu appears on the screen.

Four menu items show in the menu bar: 1) Project Information, 2) Life & Uncertainty, 3) Results
and Reliability and 4) Help. The first three correspond to the main modules integrated in the
software. In addition to the main menu items, a Help menu item is included, for later incorporation
of a Help file.

Under each menu item a list of submenus are “nested” or associated to the main menu items. These
submenus correspond to the different levels of sub-modules described in Chapter 6 (Figure B.1).
The general flow of execution is from left to right, starting with the project information definition.

Project Information ~ Life and Uncertainty {_~  ~Life and Uneertainty . i {587 3 " 30773
Headerlnfo | | Flesble Pavements > | 3layer % Al model
InputFile ¥ ~ Rigid Pavements » [
Report » ' '

e

' Rigd Pavement » [

Figure B.1 - Typical Menu Items and Nested Menus
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Project Information

The first main menu item to choose is the Project Information/ Header Info. A window frame will
appear on the screen with several edit boxes prompting for executive information that describes the
project under analysis (see Figure B.2).

I Project header information

Project Name : ’apaso
Disict: [24-E| Paso Caunty {072 - El Paso
Highway : {Loop 375 Station/Milepost: [0+001.5
Control : ’2552 Section:)lUZ Lane: ]NB
Pavement. Engineer ; !Nazarian Date: lUBXT 3/38

Description : 14 HMAC
7o

S axfﬁabﬂized sub-grade

Comments : INear Montana - USB2

Traffic report from Houston

e ~

Header file name: [C_;\Rzem{_if_eiﬁl Paso\elpaso.ixh

p—

CLearAll Close

Open Existing Header ’: S Ay {

iy

Figure B.2 - Project Header Information Window
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The information may be entered and then saved into a text file, or an existing file can be opened and
modified for ease of use. Typical information entered includes project location, test date, pavement
description, and a section for additional comments and other pertinent information.

The above information is not required to process the remaining life, yet it will be used to customize
the final report.

Data Management within the Software

The program requires that all the project data including the input and output data be stored in a

dBase table, hereinafter the “project file”, throughout the execution of the program. This particular

feature of the program is justified under the following reasons:

1. dBase is a universal format, allowing portability among software programs,

2. data management, data manipulation and program maintenance is easier and faster,

3. allows faster and safer access to the data,

4. the C++ developer software has several built-in functions to access and manipulate database
tables allowing easier programming, as opposed to accessing and manipulating text files,

5. all of the above comply with the initial criteria of developing a modular architecture program.

When using the software, the user does not require to be experienced in using or programming
databases. The manipulation of the dBase table is “invisible” to the user, since it is an internal
process within the program. The user only sees a grid displaying the data values.

The “project file” is generated using the corresponding template file (e.g. F3AILdbf). This file is
chosen when the user selects the pavement type, layer system and analysis model under the Project
Information/ Input file menu items (see Figure B.3).

Flexible Pavements [System de!iniicm, Model seleclion]
~Layer Systen- - o : Thr_ial_yais Modér‘—'_—'
{~ 3[AC, Base, Sub-grade] (¢ Asphalt Institute
e | others

Figure B.3 - Layer System/Analysis Model Window for Flexible Pavements
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Currently, the software defaults to a three-layer system and the Asphalt Institute model. As different
layer systems and performance models become available, they will be incorporated in the software
and this window will be updated accordingly.

Once the pavement type and layer system options are defined and the performance model is chosen,
the Create/Edit Project File window shows on the screen. This window might be slightly different
for other pavement types. The window shown in Figure B.4 corresponds to the typical input format
tor a three-layer flexible pavement.

Figure B.4 - Create/Edit Project File Window for a 3-Layer Flexible Pavement
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The user has three options to generate the “project file”, listed as follows:

a) User Defined Input: by clicking on this button, the user creates a new project file. First a new
file name must be entered in the Open dialog box shown in Figure B.S. Currently, the user must
choose the “system folder” and type the name of the new file. The user must type a file name
that is not currently existent in the selected folder. The dialog box displays the existing database
table files in the current folder for this purpose.

Open
Look jn: I £ RenmLife

 Asphalt (Jztrash
] Childress 24072_061398
| ) ElPaso E] Copy of F_aAl_inp_template
] temp E] Faal
1 xbra template_F34l
)z cht_fx test_F3al

File name: | Open l
Files of type: IExisting Project file ﬂ Cancel ]

I~ Open as read-only

Figure B.S - Typical Open Dialog Box to Choose a New Project File or Open an Existing One

b) Open Text File: By clicking on this button the user is allowed to open a text file (*.txt) from a
similar open dialog box as in Figure B.5 and edit the data if necessary.

¢) Open Existing Project: The user can also open an existing project file in dBase format (*.dbf) if
desired. Figure B.4 shows the data retrieved from an existing project file and displayed in the
datagrid.

The dBase and Text formats are commonly used file formats, and are also compliant with TxXDOT
standards. Therefore, the reason for having only these formats incorporated.

Once the new file name is entered or an existing one is chosen, the template file is used to generate
the new database table. The control is returned to the Create/Input File window to start entering or
editing the input parameters in the data grid.

The user must always click on the “Save as Project File” button to insure that the database table is
generated. When saving the project file, a suffix is appended to the file name (*_F3 Al dbf) with the
name of the template that generated the project file. This feature allows easy identification of project
files since it contains the minimum information regarding pavement type, number of layers and
analysis model.
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In this window the user is allowed to scroll over the data, by use of the record control buttons and
scroll bars. The buttons can scroll the database and position the cursor on a certain record (e.g. the
first record, the next, the previous or the last record), and allow the user to add entire new records,
delete or edit existing ones and refresh and update the database. Help hints are available under each
control button for easy identification. Likewise, the scroll bars allow similar tasks except for
database editing.

Once the project file has been saved, the following task is to process the inputs through the ANN
models to determine the expected remaining life.

Remaining Life Processing with Uncertainty Analysis

At this point the “project file” should contain the necessary input parameters, namely the pavement’
layer thickness and the FWD deflections.

To process the remaining life through the corresponding ANN models, the second main module
must be accessed by choosing under the second main menu item Life and Uncertainty the
corresponding pavement type and subsequently the layer system and performance model (e.g.
Flexible Pavement/ 3 layer/ AI model).

= Bemaining Life? Uncentainty Processar  [Flexbled 3-layer/ Asphalt Instifule]
Project File selection : : '
Choose Pioject File | JC:\RlemLife\24072_061338.DBF
Coefficients of Variation for Uncertainty Analysis e
j20 205 [ i
tAC 1Base PWD readings
~Failure mode ANN Model-—— [ Text Dulput Files:
: “Ruting:
v Rutting : E:\Flenﬂ_ile\24072_,081 398 _rut_oo.txt
[ Fatigue Cracking : " Fatigue:
’ia i . 'v">5
3% ﬂun q;ia-\w 'C];ﬁatﬁlﬂptions £ T o i w LT e Hﬂb i
|[Rutting stats copiedto database : 4

Figure B.6 - ANN Model Selection and Uncertainty Analysis Parameters
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When accessing this module, the window depicted in Figure B.6 is displayed on the screen. In this

window the user must do the following:

a) first select the ANN model(s) under which the remaining life is to be determined. For a flexible
pavement, rutting and fatigue cracking are currently available;

b) choose the project file that contains the input data;

c) enter coefficients of variation for each input parameter. These values are assigned empirically or
can be obtained from published references.

Once these options are set, the processing starts after clicking the “Run” button. The processing
will take anywhere from several seconds to several minutes, depending on the number of cases to be
analyzed. During the run, the status of the processing is displayed at the bar located at the bottom of
the window.

Both the deterministic remaining life values and the corresponding statistical parameters are
determined. These values are stored in the “project file” and for practical purposes, separate text
files are also created containing the input and output values. '

When the processing is finished, the output text filenames are displayed in the edit boxes located in
the middle portion of the window. The window may then be closed to continue with the next step is
to view the results and inspect the performance of the pavement with the presence of traffic and
conduct the reliability study for final analysis. This is accomplished in the third main module of the
software described in the following section.

Pavement Remaining Life/ Expected Performance and Reliability Analysis

Once the remaining life values and the corresponding uncertainty parameters have been determined
in the ANN/Uncertainty module, the results are combined with traffic data to build a Pavement
Performance Curve (PPC) and conduct a Reliability Analysis.

To access the Reliability and Results module, the user selects from the main window the menu item
with the same title, and in addition selects the typical options (pavement type, layer system and
performance model). The corresponding window will appear on the screen.

To see the PPC displayed, the user must follow the next steps (see figure B.7):

a) first choose the “project file” that contains the determined remaining life values;

b) choose a failure mode for which the remaining life has been determined. If the remaining life
values are available for the failure mode selected, the corresponding PPC will appear on the
window based on default traffic and damage data;

¢) set or change the traffic and damage data such as pavement age, cumulative traffic after the first
year the pavement was built, traffic growth, amount of damage at the time the NDT was
performed among others, to see the effects on the pavement’ life.

The PPC chart also highlights the failure limit criteria boundary set for the corresponding
performance model. Moreover, the remaining life in years is computed and displayed.
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= Pavement Performance

Choose Project FﬂsJ

{Flexible 7 3-layer / Asphalt Institute]

|C:\RemLife\24072_061398.DBF

Project file -

TH_AC

a

[1H_pasE - [Fwp D0 [FwD D1 [FwbD D2 [FwD D3 [FwD D4 [FwD D5 [FwD D6 [NR_RUT [NF_FAT

M

5

8 183 147 102 72 53 41 33 20247455 39433635 ,
- e m MG e o e - - . . , B

" Ruting

| {* Fatigue Cracking

72 @failure‘ Ivmrt criteria. .

Figure B.7 - Pavement Performance Curve, Traffic and Damage Data

Some of the features integrated in this window allow the user to: a) toggle between failure modes to
compare the corresponding PPC’s; b) scroll over the “project file” to compare the different PPC’s
for each pavement case; ¢) perform What if? analyses by changing the parameters; d) save and
retrieve from a text file traffic and damage data, and e) customize the PPC chart.
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