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PREFACE 

This is the second report presenting results from Research Project 

3-8-71-156, "Surface Dynamics Road Profilometer Applications," which was 

initiated to carry out the implementation and operation of the Surface 

Dynamics (SD) Road Profi1ometer in field and research applications. 

The SD Profi1ometer measuring system was initially developed under 

Research Project 3-8-63-73, '~eve1opment of a System for High-Speed Measure­

ment of Pavement Roughness." A set of serviceability index prediction equa­

tions was also developed during that project, from the results of a large-scale 

rating session of typical Texas pavements. The current project involves the 

implementation of many of the research results from Project 3-8-63-73. This 

report discusses the uses of the original rating session data from Project 73 

in correlating pavement serviceability ratings with the road profile amplitude 

estimates and the extensive uses of this model in field and research applica­

tions. The development and uses of some other analysis techniques are also 

discussed. 

The assistance of Texas Highway Department Contact Representative James L. 

Brown is especially appreciated. The authors also wish to acknowledge the 

assistance of Center for Highway Research personnel H. H. Dalrymple and Hugh 

Williamson. 

August 1973 
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ABSTRACT 

An investigation of the uses of road profile spectral estimates for 

characterizing pavements has been made and is reported herein. This investi­

gation included the development of a serviceability index prediction model 

based entirely on the road profile wavelength amplitude estimates. This model 

has been used extensively in both research and field operations and is also 

currently being used as the Sl model standard for Mays Road Meter calibration 

procedures. Other pavement characterization techniques are also discussed, 

including the use of digital filtering techniques for obtaining more compre­

hensive wavelength-amplitude descriptors. 

KEY WORDS: Surface Dynamics Road Profilometer, serviceability index, road 
profile amplitude spectrum, digital filtering. 
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SUMMARY 

The problem of obtaining comprehensive pavement characterizing statistics 

which can be effectively related to pavement roughness, performance, and dis­

tress has been a prime concern of highway engineers. Slope variance and condi­

tion survey measurements such as patching, cracking, and rut depth have made 

up one of the most widely used set of such statistics, or variables, for pave­

ment performance measurements. This report describes research performed in 

which road profile wavelength amplitude estimates have been successfully used 

as pavement characterizing statistics, and in particular for obtaining pavement 

serviceability and performance measurements. The SD Profilometer provides a 

practical means by which accurate road profile information can be rapidly ob­

tained, thus making possible the effective utilization of road profile wave­

length amplitude statistics. The serviceability index (SI) model which is a 

function of the amplitude statistics is currently being implemented by the 

Texas Highway Department both for SI measurements in field and research appli­

cations and as the calibration standard for the Mays Road Meter. 

Additional discussions include the uses of digital filtering techniques 

for more comprehensive road profile amplitude investigations. Such methods 

show promise in providing key pavement descriptor statistics which can possibly 

be used in relating pavement distress to performance, one of the major concerns 

of highway design engineers today. 
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IMPLEMENTATION STATEMENT 

A new serviceability index model has been developed which is entirely a 

function of the road profile amplitude estimates. This model is currently 

being implemented in obtaining 81 measurements for both research and field 

applications. In addition, it is the model which provides the SI measurement 

standard for the Mays Road Meter calibration procedures. 
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CHAPTER 1. INTRODUCTION 

During Project 3-8-63-73, 'TIevelopment of a System for High-Speed 

Measurement of Pavement Roughness," serviceability index models were developed 

(Ref 5), based on the serviceability performance concept of Carey and Irick 

(Ref 1). The pavement servieeability concept used in Project 73 differed 

slightly from this initial concept in that it was based entirely on users' 

subjective evaluations of the riding quality of the pavement at any given 

time. 

For this method, correlations are made between physically representative 

characteristics of the surface of a set of test pavements and the subjective 

riding quality of these pavements. The users' subjective evaluations are 

obtained by averaging the individual present serviceability rating (PSR) values 

noted by members of a users' rating panel. These rating values are based on 

a linear scale from zero to five in which a road with a PSR of zero is con­

sidered impassable for high-speed traffic and a road with a PSR of five is 

perfect. This concept has since been used in its original and modified forms 

to predict pavement serviceability. 

Since this concept requires correlation between objective physical mea­

surements of pavement characteristics and subjective evaluations of pavement 

riding quality by highway users, the development of reliable serviceability 

index (SI) prediction models is not a trivial task; it requires some type of 

an adequate statistically designed highway rating experiment for the subjective 

measurements and some type of roughness measuring device for the objective 

measurements. The availability of the Surface Dynamics (SD) Profilometer 

provided a profile measuring device which could be used for obtaining accurate 

road profile information from which roughness characteristics could be obtained. 

Then, during Project 73 (Ref 5), a pavement rating experiment was conducted in 

which a panel of typical road users riding in typical American automobiles 

expressed their opinions of the riding quality of a group of pavements. 

Ninety-nine sites for the rating sessions were selected to represent different 

topographical areas of Texas, and the road profiles of these test pavements, 

1 
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along with pavement deterioration (conditional survey) information such as 

the measurements of texture, rut depths, and patching and cracking, were taken 

with the SD Profilometer. Roughness index and slope variance statistics com­

puted from these data were used for characterizing the pavement sections. 

These two statistics were selected because of their relationship with features 

which induce forces on the rider and because of their previous acceptance in 

the highway field. Roughness index is the sum of the vertical deviations of 

the profile throughout the section, and slope variance is the variance of 

slopes calculated for the length of the section. 

These roughness statistics and condition survey data were correlated with 

the mean PSR panel ratings to provide pavement SI prediction models. Later, 

somewhat better models were obtained through data-centering techniques during 

the regression analysis (Ref 9). 

Several problems were noted in using slope variance as the primary road 

roughness characterization statistic. For one, it does not individually 

explain enough of rater variation, and thus requires additional terms (patching, 

cracking, etc.) in the SI model. Measurement of these additional variables 

increases roughness measurement time. A second problem with slope variance 

is that it is difficult to relate or picture physically. Because of these 

problems, additional research was conducted to find other pavement charac­

terization statistics. 

Power spectral or amplitude spectral estimates were one set of statistics 

which was investigated and, although still not considered ideal, these charac­

terization statistics were found to be better predictor variables than slope 

variances. An SI model was developed based on these estimates. Extensive 

field testing and usage proved the usefulness of this model and it was accepted 

as the standard SI measurement model. Correlations between this standard and 

the Mays Road Meter (MRM) were made, and calibration procedures based on this 

model were established for all MRM's purchased for estimating SI. The correla­

tion study is discussed in Research Report 156-1, '~ Correlation Study of the 

Mays Road Meter with the Surface Dynamics Profilometer" (Ref 10). 

This report discusses investigations into the use of power spectral or 

amplitude estimates as pavement characterization statistics and the develop­

ment of the SI model based on these variables. Further insight into the 

problems of slope variance are discussed in Chapter 2. In Chapter 3, the 
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spectral estimates of the rating sessions from Ref 5 are examined as a means 

of pavement characterization. Chapter 4 discusses the development and uses of 

the serviceability index model based on these estimates. Finally, Chapter 5 

briefly discusses the uses of digital filtering as another method for charac­

terizing pavements. 

Appendix 1 includes details of the computational methods employed in ob­

taining the spectral estimates. In addition, the computational details of 

the MRM-SI calibration program which were not included in Research Report 156-1, 

are given in Appendix 2. 



CHAPTER 2. THE USE OF SLOPE VARIANCE FOR 
HIGHWAY CHAFACTERIZATION 

As noted in Chapter 1, initial serviceability index models were developed 

using slope variance and condition survey information as the independent or 

predictor variables. 

Several disadvantages of the uses of slope variance as a pavement charac­

terization statistic or prediction variable of pavement serviceability have 

been noted. First, slope variance as computed for these models has been 

observed to be quite dependent on wheel bounce (Refs 7 and 9). Consequently, 

considerable variation in replication measurements for various combinations 

of pavement roughness and profilometer operating speeds is common. Second, 

the complexity of a section of pavement cannot be adequately characterized by 

a single statistic such as slope variance. In addition, slope variance is 

difficult, if not impossible, to relate or picture physically. Finally, prob­

ably due to a large extent to the above items, slope variance alone was found 

to provide at best a correlation coefficient of about 0.82 and this for pro­

filometer operating speeds of 20 mph (at greater operating speeds, this cor­

relation dropped significantly). That is, only about 67 percent of the mean 

rating panel's opinion could be explained by slope variance. Roughness index 

was found to be similarly disadvantaged by these problems, as well as to exhibit 

less correlation with PSR. Adequate SI prediction models were obtained only 

after both condition survey information and slope variance were included. 

Further insight into the problems of slope variance can be gained by investi­

gating its filter response or effect on road profile wavelengths. 

As previously defined, slope variance is the variation of the slopes of 

a road profile. Since any such function can be expressed as a linear combina­

tion of sine and cosine terms, the filter response of slope variance or a 

slope variance density function can be derived as follows. 

Consider a simple sine wave function of amplitude A and period T. 

The slope at any given point along this function is then 

Slope 

4 



where 

= A sin WT(t + b) - A sin WTt , 

2rc = 
T' 

b, base length, = 6t • 

slope 
A[sin WT(t + b) - sin WTt] 

= 
b 

5 

(2.1) 

The second moment of this then provides the power at each period T or 

F (T) 
1 ,T 2 = [f(x) ]dx 
T 

~'o 

or, thus, the slope variance for a wavelength of period T is 

SVT = 
A2 \T (sin WT(t ~ b) - sin WTt)2dt 
Tb2 

.... '0 

(2.2 ) 

A2 \T 2 . 2W = (sin WT(t + b) + s~n Tt 
Tb2 

""'0 

(2.3 ) 

Integrating and simplifying Eq 2.3 gives 

(2.4) 

which is the slope variance of a sine function for a period T and base length 

b. This equation is somewhat intuitive in that the slope variance for a time 
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series function will be zero when the base length is equal to integer multiples 

of the wavelength, as obviously the slopes between successive points in these 

cases are zero; hence its variation is zero. On the other hand, one can expect 

a maximum value when successive points lie at the positive and negative peaks. 

By assuming a unity wavelength amplitude for all wavelengths, the frequency 

response of slope variance can be obtained as illustrated in Fig 2.1. In this 

figure (note that the abscissa is represented in cycles per foot; i.e., distance 

is substituted for time), the function is shown for a base length of 0.75 feet, 

as used in the SI prediction models (Refs 5 and 9). The usefulness of slope 

variance as a pavement roughness indicator can be noted in this figure by its 

effects on long and short-wavelength profiles. For example, hills are always 

much larger in amplitude than bumps; however, they are not as important to 

riding quality as the shorter wavelength bumps or swells. Thus, the desired 

effect of stressing or weighing more heavily the shorter wavelength amplitudes 

over the longer wavelengt.h amplitudes is obtained. On the other hand, however, 

the multivalued characteristics of this function could be detrimental. Since 

the amplitudes of the extremely high-frequency or short-wavelength bumps are 

very small, judicious selection of the slope base length can help minimize 

this effect. Figure 2.2 illustrates this response for both frequency (in 

cycles per foot) and base length. Analysis shows bounce occurs near 0.645 

cycles and its harmonics, which is near the maximum point. Consequently, the 

extreme sensitivity of slope variance to profilometer operating speeds and 

profile roughness which was found to be common during profile measuring opera­

tions can be explained. 

Because of the complexities of a road profile, pavement section wavelength 

components appear to be much better for the characterization of a pavement than 

a single statistic such as slope variance. With wavelength information, various 

problems such as wheel bounce can be isolated or accounted for to provide more 

accurate pavement characterizations. 

It would also appear that at least as good a and probably a better pre­

dictor of riding quality could be obtained by correlating the effects of in­

dividual frequencies with PSR through multiple regression analysis techniques, 

since by this method only those frequencies which are found highly correlated 

could be included and the rest would be discarded. 

In Chapters 3 and 4, the use of spectral estimates for characterizing 

highways are discussed. 
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Definitions 

CHAPTER 3. THE USE OF ROAD PROFILE AMPLITUDE ESTIMATES 
FOR HIGHWAY CHARACTERIZATION 

The term spectral analysis, as it is employed herein, includes all 

techniques for summarizing time series functions by separating these functions 

into their frequency components. A detailed discussion of spectral analysis 

techniques, such as Fourier transformations, power spectrum, and coherence, 

is not included, but information on these analysis tools can readily be 

found in the literature. However, a brief definition of these terms is 

given here. 

The autocovariance of a function x(t) at lag A may be given as 

C( A) = 1 
lim T 

T ..... (l) 

T 

? x(t) . x(t + A)dt \T 
2 

(3.1) 

The power spectrum is the Fourier transform of the auto covariance function, 

or 

(3.2 ) 

From the above interpretation, it can be seen that a power spectrum, 

so commonly used in communications engineering, geophysics, and other sciences, 

can also be referred to as a covariance spectrum (Ref 9). Thus, P(f)df 

represents the contribution to the variance of the road profile waveform from 

frequencies f and (f + df) • A power spectrum, therefore, is another 

* See Ref 9 for a discussion of the assumptions necessary for computing 
spectral estimates of road profile data obtained with the SD Profilometer. 
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statistic, like slope variance, except that it provides a set of spectral 

values or variance densities for a road profile section whereas slope variance 

or simple variance yields only one such value. It is this fact which prompted 

an interest in the investigation of spectral analysis as a means of providing 

some measure of roadway roughness. 

Information on energy differences between two or more time series can be 

obtained with cross-spectrum analysis. Whereas the power spectrum is the 

Fourier transform of the autocovariance, the cross-power spectrum is the 

Fourier transform of the crosscovariance function between two separate time 

signals. 

It is sometimes helpful to talk about the amplitude spectrum of a section 

of road profile rather than its power or covariance spectrum. Such estimates 

are usually more easily visualized physically by the highway engineer than are, 

say, the power spectrum estimates; i.e., the root-mean-square amplitude of the 

profile irregularities in, say, inches is more easily understood than power 

in, say, in:!(cyc1e!ft). Such amplitudes may be obtained from the power 

spectral estimates from 

X. 
1. 

= .j 2Q.6f 
1. 

where Q. represents the two-sided power or covariance spectrum component 
1. th 

for the i frequency band and 6f is the frequency containing this variance. 

Investigating Spectral Estimates of Rating Session Data 

In order to investigate the usefulness of spectral estimates for charac­

terizing a pavement, the original rating session data (Ref 5) were reexamined 

using 86 nonrepeated representative test sections in the Houston and Da11as­

Fort Worth areas. The power or variance spectral estimates of each of the 

road profiles of these 1200-foot sections were then obtained as described in 

the Appendix. For these estimates, the spectrum was first broken into 32 

bands yielding approximately 52 degrees of freedom for the spectral estimates 

and then into 64 bands (26 degrees of freedom). For each profile section, 

the power spectral estimates for the right and left wheel paths and the cross­

power were all computed. Figures 3.1 and 3.2 depict typical digitized road 
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profile plots for the right and left wheel paths. Figures 3.3 and 3.4 

illustrate typical right and left power spectral plots that were computed 

13 

for all 87 profile sections. As noted from the power spectral plots, the 

higher-frequency components are filtered. From previous observations, vali­

dated in the run-to-run coherence estimates of Ref 9, the high-frequency 

components generally are not of interest. Thus, to reduce the already rather 

extreme computation requirements, the data were decimated. 

Figures 3.5 and 3.6 illustrate the relationships between the mean subjec­

tive rating panel measurement, PSR, and the road profile spectral estimates 

for the first ten bands of the 32-band and 64-band data. For these figures, 

the power spectral estimates for several frequencies or wavelength bands are 

shown for various road roughness classes, as indicated by PSR. That is, the 

86 pavement sections covering the gamut of pavement roughness were grouped as 

shown (PSR intervals from 4.5 to 5.0, 4.0 to 4.5, etc.) and their average 

spectral amplitudes were obtained. As noted in this figure, in general, the 

rougher the road the greater the spectral amplitudes. However, as also may 

be noted for the higher frequencies or smaller wavelengths, these groupings 

are less discriminating as roughness indicators. 

Table 1 provides a summary of these estimates for the various road classes 

for the same PSR intervals. For each frequency band of these two intervals, 

the mean power and a corresponding approximate upper 30 amplitude range are 

provided. The upper range for the individual amplitude term is also provided, 

since it might be useful in construction control studies; i.e., typically mean 

amplitude values should not exceed these upper ranges (control of such specifi­

cations is, of course, another matter). For example, roads in Texas are typi­

cally designed to allow deviations from a 10-foot straightedge to be no greater 

than 1/8 inch. As noted, roads in the roughness class of 2.5 to 3.0 (frequency 

near 0.104) are near this upper range. The values in this table however, should 

be viewed as rough estimates, since their accuracy depends on the statistical 

assmnptions necessary for accurate power spectrum estimates (Ref 9), which are 

not exactly met. Another useful analysis method would be to examine the profile 

data with digital filtering techniques, as described in Chapter 5. With such 

techniques, the amplitudes within specific frequency bands can be examined as 

a function of distance along the road. 
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Fig 3.6. Wavelength versus power spectral estimates (64-band) 
for rating session data. 



TABLE 1. AMPLITUDE STATISTICS FOR PSR LEVELS 

Frequency 

(cpf) 

0.012 

0.023 

0.035 

0.046 

0.058 

0.069 

0.081 

0.092 

0.104 

0.116 

0.012 

0.023 

0.035 

0.046 

0.058 

0.069 

0.081 

0.092 

0.104 

0.116 

Power Mean 

(in
2
/cpf) 

PSR INTERVAL 4.0 TO 4.5 

1.2945 

0.0520 

0.0159 

0.0076 

0.0044 

0.0028 

0.0025 

0.0022 

0.0018 

0.0017 

PSR INTERVAL 2.0 TO 2.5 

2.6602 

0.2538 

0.0759 

0.0307 

0.0249 

0.0174 

0.0108 

0.0087 

0.0082 

0.0084 

Approximate Amplitude 
for Upper 30 

(inches) 

(19 SECTIONS) 

1.4134 

0.2833 

0.1566 

0.1085 

0.0823 

0.0661 

0.0617 

0.0580 

0.0526 

0.0516 

(10 SECTIONS) 

2.0262 

0.6258 

0.3422 

0.2176 

0.1960 

0.1641 

0.1291 

0.1161 

0.1127 

0.1140 

18 



CHAPTER 4. SI MODEL DEVELOPMENT AND USES 

Model Development 

As discussed in Chapter 2, the riding quality of pavements can be 

subjectively established by having a group of representative highway users 

rate these pavements. These ratings can then be correlated to Some physical 

characteristic of the pavement or road such as the summary statistic slope 

variance. As further discussed in Chapter 2, the profile wavelength components 

appear to be natural candidates for use as such identifying characteristics. 

The model could then be used for establishing, for instance, the relative 

importance of wavelengths present in the road. 

To predict a pavement serviceability index as a function of profile wave­

length, the following linear model is considered: 

(4.1) 

where 

= the linear model parameters, and 

= the average wavelength amplitudes. 

Average wavelength amplitudes will be used as the independent variables, 

because these values are more easily visualized physically by the highway 

engineer than are, say, the power spectrum estimates. 

To develop the model, the original rating session data described in 

Chapter 4 were reexamined using the mean panel ratings from 86 representative 

test sections throughout Texas as the dependent variable. The amplitude es­

timates for each of the road profiles of these l200-foot sections were then 

used as the independent variables. 

From Figs 3.3 and 3.4, it app~ars that there should be some appropriate 

equation which relates SI to power spectrum estimates and thus wave amplitudes. 
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The problem is to determine which wavelengths or bands to include in such a 

function or model. 

20 

A stepwise regression procedure was used with the PSR values from the 

original rating session experiment as the dependent variables and the logs of 

the wavelength amplitudes as the independent variables. Regression analysis 

assumes that the dependent variable is the only random variable. Since there 

are errors in these independent variables and these errors are not symmetrically 

distributed (power spectr~m or variance estimates are distributed according to 

the chi-square distribution), they tend to bias the results unless these errors 

are symmetrically distributed. Thus, the log transformation on these values 

* was used. In addition, the independent variables were centered before the 

regression was performed. 

Initially, the stepwise regression procedure was performed on the 32-band 

model where 90 independent variables, the first 30 wavelength bands for the 

right, left, and cross-amplitudes, were used. The regression procedure stopped 

after Some 42 variables of the possible 90 had been included. Upon examining 

the standard error of residuals for each step, however, it was noted that this 

error reduces to about 0.198 and then begins fluctuating. The multiple cor­

relation coefficient R2 for this step was 0.96. However, a model should also 

make sense physically. Upon examining the correlation matrix of the independent 

variables with the dependent variables, it was noted that the right and left 

amplitudes (or power spectral estimates) were negatively correlated with PSR. 

This is plausible and illustrated in Figs 3.3 and 3.4; i.e., the greater the 

power the rougher the ride. However, when the regression models were examined, 

Some of the coefficients for these same amplitudes were found to be positive, 

implying the greater their amplitude the better the performance - a direct 

contradiction. The high correlation of some of the wavelength components with 

the performance index indicates that these variables should be used in a model. 

Average right and left amplitudes in conjunction with cross-amplitudes 

were next considered. The same type of results once again occurred. However, 

this time more negative coefficients were brought into the model. Since the 

* It should be noted that after performing the log transformation, only a 
constant separates the power spectral amplitudes from the profile wave 
amplitudes. Thus, similar results can be obtained using power spectral 
estimates as the independent variables, rather than wave amplitudes. 
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adjacent power spectral estimates for the high frequencies (0.23 cpf and higher) 

are very highly correlated and since these frequencies are not ver~! well 

correlated to PSR, it was decided to use the ten most highly correlated (with 

PSR) right and left average variables and all possible combinations of the 

second-order interactions concomitant with the cross-amplitude terms. The 

result of the stepwise regression procedure in this case provided a much more 

realistic function. Equation 4.2 provides the results of this regression. 

SI 3.24 - 1.47X1 - 0.133X2 

- 0.54X
3 

+ 1.08XC1 - 0.25XC2 

+ 0.49T (4.2 ) 

where 

Xl = logAO.023 + 2.881 

X2 
=: 

10gAO.046 + 4.065 

X3 =: 
10gAO.069 + 4.544 

X4 
=: 

10gAO.093 + 4.811 

X6 =: 10gAO.139 + 5.113 

X10 = 10gAO.231 + 5.467 

XC 1 = 10gCO•023 + 3.053 

XC5 = 10gcO• 116 + 5.659 

A. = average right and 
l. 

left wave length amplitude, in inches; 

C. = cross-amplitude, in inches; 
l. 

i = frequency band, in cycles per foo t; 

T = 1 for rigid pavements and o for flexible pavements. 
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Table 2 lists the results of the regression procedure. 

In an attempt to obtain a better model, the same regression procedure 

was rerun on 64-band power spectrum estimates (32 degrees of freedom for each 

estimate) of the same data. The multiple correlation coefficient ( R2 ) for 

the model in this cas~ increased to 0.89 and the standard error of residual 

decreased to 0.33; however, more interaction terms entered the model. The 64-

band model is as follows: 

81 = 3.41 - 1.43Xl - .306X2 - .180X4 - .644X5 + 1.25Cl 

2 2 2 2 
- .458X2 - 1.05X4 - 0.986X5 + .84lX

7 
+ 1.76X l X4 

(4.3) 

where 

= .426 

= logAO•023 + 0.895 

= logAO.035 + 1.481 

= logAO.046 + 1.893 

= logAO.058 + 2.139 

= logAO•069 + 2.351 

= logAO.08l + 2.500 

= lOgAO.092 + 2.593 

= logAO.l04 + 2.670 

XlO = logAO.116 + 2.744 

= logCPO.012 - .3389 



Source 

Regression 

Residual 

TABLE 2. REGRESSION ANALYSIS RESULTS 
(32-Band Model) 

Multiple correlation coefficient R2 = 0.81 

Standard error for residuals = 0.38 

DF Sum of Squares Mean Square 

9 47.68 5.297 

76 10.75 0.1414 
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F-Ratio 

37.46 



Table 3 lists the analysis of variance of this regression. Both models 

were used on several test sections and essentially the sarrle results were ob­

tained. However, it was decided to use the 64-band model for the following 

reasons: 
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(1) Irregularities at all frequencies are usually present in a road (as 
indicated by Figs 3.3 and 3.4). 

(2) Because of the nonorthogona1ity of the independent variables, these 
additional interaction terms should aid the prediction equation not 
only in fitting the original data but in field applications. 

(3) All terms were found to have acceptable partial F levels. 

Many other regression procedures were tried but none provided as good a 

model as the above. Even so, these two models are not considered ideal. 

Some of the problems in the modeling procedure which could have led to dif­

ficulties that prevented obtaining a more desirable SI model are discussed here. 

First, the linear scale rating method that was used is similar to the one 

used at the AASHO Road Test, which has been criticized as not giving an adequate 

subjective representation. If not all pavement classes are properly distin­

guished by the raters, it becomes difficult if not impossible to obtain an 

appropriate model. 

Second, as noted for the higher frequencies (or shorter wavelengths), 

adjacent power spectrum estimates are highly correlated. For the lower fre­

quencies (or longer wavelengths), this correlation drops significantly. For 

example, the correlation coefficient R between the first and second bands 

(0.0116 and 0.0231 cycles per foot) was 0.599. For bands above 0.231, these 

values increased to above 0.9. These upper frequencies, however, were not 

found to be very highly correlated with PSR. Also, when the average amplitude 

levels for frequencies of 0.231 cycles per foot and higher were examined, it 

was noted that their values were very much less than 0.01 foot for the smoother 

roads, which is well beyond the measuring accuracies of the vehicle. As roads 

get rougher, these levels increase in the same proportion. Since these fre­

quencies probably do affect roughness for some of the rougher classes of roads, 

a better technique should be used for including their effect in the equation. 

Because of their high interrelationships and their unreliability for the smooth 

roads, these values were omitted. Even though the long wavelength components 

are not as highly correlated among each other, they are correlated which leads 

to difficulty in obtaining an ideal model. 



Source 

Regression 

Residual 

TABLE 3. REGRESSION ANALYSIS RESULTS 
(64-Band Model) 

Multiple correlation coefficient R2 = 0.89 

Standard error for residuals = 0.33 

DF Sum of Squares Mean Square 

21 51.49 2.451 

64 6.951 0.109 

25 

F-Ratio 

22.57 



Uses of the Model 

A desirable regression model should 

(1) make sense physically, 

(2) show suitable correlation between the dependent and independent 
variables, 

(3) exhibit an acceptably small degree of lack-of-fit, and 

(4) produce reasonable results in actual field use. 
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Although not ideal, these models do appear to make sense in that the 

greater the amplitude terms, the smaller the SI readings. The cross-amplitude 

term (which comes from cross-power) is a little more difficult to define 

physically; however, it indicates the similarities between the two profile 

heights (cross-roll or roughness effects). The interaction terms are useful 

in fitting the model. 

The best practical test for the model is how well it performs in use. 

The performance of this model on over 500 miles of pavements has been quite 

acceptable and it is currently being used for all SI measurements involving 

the SD Profilometer. Table 4 provides a typical set of repeat data runs. 

That is, three different l200-foot pavement sections (none of which was in­

cluded in the original rating sessions) were each run five times with the SD 

Profi10meter. The data were digitized and the power spectrum estimates com­

puted for each run. The appropriate terms were then computed and the SI ob­

tained for each run. 

It should be noted that although current SI measurements involve first 

SDP profile measurement runs, analog-to-digital conversion, and finally the 

SI measurement computations by a program on the digital computer, the entire 

process could be performed in real-time during profilometer runs by a small 

onboard mini-computer such as an HP 2100. Fast Fourier transform hardware 

which is available on such mini-computers would provide considerable aid in 

such computations, thus minimizing central memory requirements to around 8,096 

words. In addition to performing the SI model computation, the computer could 

also replace many of the functions currently being performed by the analog 

computer and thus make the overall SDP hardware cost about the same. 

Figures 4.1 and 4.2 provide additional illustrations of the uses of the 

model, the first (Fig 4.1) in computing the SI frequency distribution of 
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TABLE 4. SI REPLICATIONS 

Test Run SI 

1 4.50 

2 4.53 

I 3 4.61 

4 4.57 

5 4.57 

1 4.18 

2 3.70 

II 3 3.76 

4 3.98 

5 4.14 

1 2.02 

2 1.69 

III 3 1.53 

4 1.92 

5 1. 86 
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several miles of pavements on US 71 south of Austin, and the second (Fig 4.2) 

providing SI samples for several miles of 1H 10 east of San Antonio. 

Because of the stability found through field use of the model, it is also 

currently being used for Mays Road Meter (MRM) calibrations (Ref 10). The 

relationship found between the Mays Road Meter cumulative roughness readings, 

in inches per mile, and the SD Profilometer SI measurements is 

where 

SI = 

M = the MRM roughness readings, in inches per mile; and 

~ and a = the MRM instrument coefficients (regression coef­

ficients) • 

(4.4) 

This equation was obtained by regressing the MRM readings onto the SI 

values and then solving for SI. A typical plot of this equation for one of 

the MRM devices calibrated to the SI standard is shown in Fig 4.3. 

Other Modeling Considerations 

A8 noted in the preceding section, even though a highly usable model was 

developed, an ideal SI model was not obtained. This could have been due to 

the rating procedure as indicated, or simply because no such model exists. 

Several different modeling techniques were investigated. For instance, factor 

analysis methods were employed and a regression performed on the orthogonalized 

variables. Clustering methods were also briefly investigated where some simi­

larities between the various variables could be established and related to PSR. 

Tables 5 and 6 illustrate the uses of these methods for comparing groupings to 

PSR. For this example, four clusters were selected using the convergent k-means 

clustering algorithm and 
2 1/2 [L (xi - x)] similarity measurement for the 

log of the power spectral estimates of the first 10 bands (32-band data); i.e., 

10 variables. Additional investigations into the uses of various clustering 

techniques might provide better characterizing methods. 
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TABLE 5. CLUSTER ANALYSIS - FLEXIBLE PAVEMENTS 

Cluster 1 

Members (PSR) 2.1, 1.6, 1.1, 2.1, 2.1, 2.1, 2.9, 2.7 

Cluster 2 

Members (PSR) 3.2, 4.2, 3.6, 2.9, 3.6, 2.4, 3.1, 3.3, 
3.8, 2.4, 3.9, 3.7, 3.0, 3.2, 3.7, 3 .7, 
3.8, 3.7, 4.0, 4.2, 3.6, 3.9, 1.1, 3.8, 
3.5 

Cluster 3 

Members (PSR) 4.3, 4.0, 4.4, 4.1, 4.1, 3.9, 4.3, 4.0, 
3.9, 3.6, 4.3 

Cluster 4 

Hembers (PSR) 2.1, 1.5, 3.4, 3.4, 2.1, 3.2, 3.3, 3.9, 
4.0, 3.5, 2.5, 2.7, 4.1 
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TABLE 6. CLUSTER ANALYSIS - RIGID PAVEMENTS 

Cluster 1 

Members (PSR) 3.2, 2.1, 2.9, 3.4, 2.1, 3.6, 2.1, 2.4, 
2.1, 2.4, 3.3, 3.9, 3.7, 3.9, 1.1, 2.7 

Cluster 2 

Members (PSR) 4.2, 3.6, 3.1, 3.3, 3.8, 3.7, 3.0, 3.2, 
3.7, 3.8, 3.7, 4.0, 3.6, 3.8, 3.5 

Cluster 3 

Members (PSR) 4.3, 4.0, 4.4, 4.1, 4.1, 3.9, 4.3, 4.0, 
3.9, 3.9, 3.6, 4.3, 4.2 

Cluster 4 

Members (PSR) 2.1, 1.5, 1.6, 1.1, 3.4, 2.1, 3.2, 2.9, 
4.0, 3.5, 2.5, 2.7, 4.1 



Introduction 

CHAPTER 5. THE USE OF DIGITAL FILTERING 
FOR ROAD PROFILE ANALYSIS 

There are several problems in using power spectral analysis methods in 

analyzing road profile signals, the primary problem being that the spectral 

estimates obtained are a mean amplitude estimate for each particular band. 

Assuming that the profile data meet the usual statistical assumptions (gaussian, 

stationary, ergodic, etc.) and enough samples are present, this mean is a 

good estimate of the real profile amplitude from which a good indication of 

the characteristics of the individual time or distance ensembles can be ob-

tained. On the other hand, however, if these assumptions are not met, which 

is usually the case, then the amplitude estimates can become distorted. Fil­

tering techniques offer another analysis tool in which the amplitudes of 

selected wavelength bands can be observed as a function of distance, thus 

permitting more localized examinations of the true average amplitude varia­

tions. Digital filtering methods are attractive for such analysis techniques 

for analyzing road profile data because of the analog-to-digital and digital 

computing facilities available at the Center for Highway Research and the 

Texas Highway Department. For this reason, this chapter will briefly provide 

some of the general definitions for such filtering methods, illustrate some 

initial uses of these methods, and discuss possible future applications. Ref­

erences are provided in which more details of these methods can be obtained. 

Digital Filtering Definitions 

Digital filtering is the process of spectrum shaping using a digital 

computer as the basic building block (Ref 2). Hence, the goals of digital 

filtering are similar to those of continuous or analog filtering. Whereas 

continuous filter theory is based on linear differential equations, digital 

filter theory is based on linear difference equations. 

Digital filters are usually applied to discrete time series (such as 

digitized road profile data) by convolving the input series with the weighing 
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function (impulse response) of the filter (see Fig 5.1). The convolution 

is designed as follows: 

N 

L 
i=O 

where 

x = (xO' xl' ••• XM) represent M+l values of the input 

or road profile 

W = tWo' WI' ••• wN} represent N + 1 values of the filter 

weighing function 
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(5.1) 

series 

= (YO' Yl' ... YN+M} represent the N+M+ 1 va lues of the Y 

filtered output series 

Equation 5.1 can also be expressed in terms of its z transform as 

Y(z) = W(z) X(z) (5.2) 

where 

X (z) 
2 M = Xo + Xl z + x2z + .... ~z 

W (z) 2 N = Wo + wlz + w2 z + wN z 

Y (z) 
2 MtN = YO +yl z+Y2 z + ... YM+N Z 

The variable z which represents the operation of delaying a data sample 

one sample interval (zN by N sample intervals) is related to the Laplace 

variable S by the equation 

z = -TS e 

where T is the ~t sample interval. 

(5.3 ) 

Some digital filters can also be expressed as a ratio of two polynomials 

in z, or 
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Fig 5.1. Digital filtering. 
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W(z) = :lli2. 
B(z) 

(5.4 ) = 

By using long division (Ref 6) we may expand W(z) into a simple polynomial: 

:lli2. = 
B(z) (5.5 ) 

If the filter is stable, the coefficients will converge to zero and hence 

W(z) may be closely approximated by a finite number of terms, say K such 

terms, or 

W(z) :lli2. K 
= B (z) ~ w 0 + w 1 z + ••• wK z (5.6 ) 

This approximation can then be used as a filter by standard digital convolution. 

If the rational filter 

W(z) (5.7) 

is used to filter a set of profile data then the standard output Y(z) can 

be expressed as 

Y(z) 

or 

= 

and thus 

(5.8) 



That is, Y(z) is equal to the input convolved with the series (aD, a l ) 

minus the output delayed one sample interval and convolved with the series 

(b
l

, b
2

) • 

Figure 5.2 illustrates this feedback system which is realized by the 

recursive algorithm of Eq 5.B. The general recursive equation for rational 

filters can be expressed as 

M M 
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y = n L a.x. . - L bj Yn_· 
i=O ~ n-~ j=l J 

(5.9) 

* Such filters may be synthesized in the z plane or standard S plane filters 

can be converted to such recursive relationships. 

Recursive filters may also be used for obtaining zero phase filters by 

the use of both forward and reverse recursive aigorithms (see Ref 2). 

Filtering Applications 

As noted above one of the advantages in using digital filtering techniques 

for analyzing road profile data is that a plot of the filtered profile amplitude 

versus distance can be obtained. Statistical methods can be applied which first 

divide a pavement into sections according to similarities of the variances of 

the profile irregularities, and then obtain more realistic average and extreme 

amplitude estimates for road sections. 

A simple band pass filt~r was applied to about two miles of pavements on 

a farm-to-market road near Bryan, Texas, near which swelling clay mounds were 

observed to occur in 20-foot wavelengths. In Fig 5.3, the response or gain 

of the filter is plotted versus frequency. The gain is the multiple by which 

the amplitude of an input sine wave is decreased by filtering. Note that at 

the filter's center frp.quency, .05 cpf, the gain is one; i.e., an input sine 

wave with frequency .05 cpf would have the same amplitude after filtering as 

before. The gain decreases quickly as the frequency moves away from .05 cpf, 

which indicates that the filter essentially removes all irregularities except 

those whose frequencies are near .05 cpf. Since frequency is expressed in cpf, 

the corresponding wavelengths are the reciprocals of the frequencies; i.e., 

* Refs 2, 4, and 6 should be consulted for more details of such filtering 
techniques. 
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Fig 5.2. Recursive digital filter 
(after Ref 6). 
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the wavelength corresponding to .05 cpf is 1/(.05 cpf) or 20 feet per cycle. 

The time or impulse response of this filter is depicted in Fig 5.4. The coef­

ficients used in obtaining this filter are given in Eq 5.10: 

= -6 -6 (-5.375 X 10 )xn_l + (5.375 X 10 )xn_5 + 3.954 Yn-l 

- 5.870 Yn-2 + 3.876 Yn-3 - 0.9610 Yn-4 (5.10) 

for a Nyquist frequency of 2.96 cpf. 

Figures 5.5 through 5.7 show the plots of these data before and after 

~ero phase filtering was performed. The zero phase filtering was obtained as 

described in Ref 2, or, after using the forward recursive algorithm of Eq 5.10, 

the time reverse algorithm of Eq 5.11 was applied: 

= (-5.375 X 10-
6

) xn+l + (5.375 X 10-
6

) xn+5 + 3.954 Yn+l 

- 5.870 Yn+2 + 3.876 Yn+3 + 0.9610 Yn+4 (5.11) 

One useful method of applying these filtering methods would be to estab­

lish a set of typical upper amplitude levels for construction specifications 

and control rather than a single number, such as 1/8 inch for 10-foot wave­

lengths. For example, a representative sampling of profiles from pavements of 

* highly acceptable riding quality could be measured. Band pass filters could 

be designed and used on these data to obtain several sets of filtered profile 

data. Mean and upper amplitude ranges (say three standard errors) could be 

established for appropriate roughness regions for each band of this data to 

establish a set or spectrum of not-to-exceed-amplitude regions (see Fig 5.8). 

If the mean of the absolute values of the profile elevation deviations at any 

wavelength exceeded the established threshold value, then the pavement would 

be judged unacceptable. Initially, filters centered at the bands used in the 

81 model of Chapter 4 might be used. Once such ranges are established, the 

8D Profilometer could be used for evaluation of new or recently overlayed 

* Nonrecursive filters using the fast Fourier transform for convolution (Ref 2) 
might be more desirable, particularly if similarities between these filters 
and the amplitude estimates of Chapter 3 are to be investigated. 
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pavements to rapidly find areas violating these critical regions. A small 

digital controller within the SD Profilometer could be used to easily detect 

such violations immediately during profile measurements. 
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APPENDIX 1. COMPUTATIONAL METHODS 

This appendix describes the computational methods used in the computer 

programs for computing power spectral and coherence estimates. 

Computation of Power Spectral and Coherence Estimates 

Power spectral and coherence estimates for the text were computed in 

accordance with the following six steps: 

(1) data collection and A-to-D operations, 

(2) data decimation and filtering, 

(3) data detrending, 

(4) data windowing, 

(5) power spectral computations, and 

(6) coherence computations. 

Data Collection and A-to-D Operations. A typical road profile data 

collection procedure involves using the SD Profi1ometer for obtaining analog 

* voltage levels proportional to the road profile of the section being measured. 

This profile signal is recorded on an FM recorder along with a distance pulse 

providing 11.87 pulses for each foot traveled. The recorded profile data are 

then digitized in accordance with the distance signal, thus providing 5.93 

samples per foot for both the right and left profile signals. These digitized 

values can be scaled to inches by dividing by a numerical value corresponding 

to 1 inch of road profile displacement. The scaled right and left profile 

data sets will be referred to respectfully as 

[xl = 

[Yl = 

* See Refs 8 and 9 for details on the measuring system and A-to-D operations. 

51 



52 

where the number of samples N is equal to the total section length (in feet) 

times 5.93 data points per foot. 

Because of the upper-frequency response characteristics of the measuring 

system, the highest frequency present in these data will always be less than 

three cycles per foot, thus satisfying the sampling theorem. 

Data Decimation and Filtering. Since long data sections (N data points) 

can become quite large and because typically the sampling resolution provided 

is not needed, the digitized data records are usually decimated or subsamp1ed. 

Decimation usually requires low pass filtering, and thus each series is deci­

mated and filtered by generating a new set of values as follows (Ref 12): 

w 
= ._2.. a .x(t _ l)d + . +w+ 1 

J--W J J 

where 

d = decimation ratio, 

w = 12d (filter half-length), 

= 1 + cos ~1UMlw~ • sin l:rc {k + 112 ~ jlwJ a. 4w sin (:rcj/2w) , 
J 

The number of scans or data points N is then changed to 

N = [
N01d - (2w + 1)] 

d + 1 

Data Detrending. Detrending is often done in spectral analysis to help 

insure against nonstationarity. Reference 13 illustrates how such problems 

can distort the low-frequency spectral estimates. Since the SD Profi1ometer 

includes high pass filtering, such trends, if existing, are not desirable. 

Hence, any linear trend is removed from the two data series by replacing each 

data value as follows: 

= xo1d - x - ~ (t - t) 



where 

x = 

t = 

= 

1 N 
L xt N 

, 
t=l 

.!(N + 
2 1) , 

N 
L tXt - ¥ (N + l)i 
t=l 

iN(N + 1)(2N + 1) - ~(N + 1)2 

Data Windowing. To reduce the spurious side lobes which are always 

present in the power spectrum when the data length is finite, a cosine taper 

data window is applied to each data series as follows: 

= 

where 

0.5[1 - cos [n(t - 1/2)/r]} t = 1, ••• r 

= 1 t = r + 1, ••• N - r 

0.5(1 - cos [n(N - t + 1/2)/r]} t = N - r + 1, ••• N 

r = [N/lO] 

* 
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The remainder of each series is then filled with zeros to a total of 

points. 

M data 

Power Spectral Computations. The raw power spectral computations can be 

obtained from the discrete Fourier transform by 

* M is the smallest power of 2 greater than or equal to N. 



where 

,.. 
x. 
~ 

F 
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= the Fourier transformed data array, 

= band width in hertz = frequency step size in the FFT. 

For b bands, resulting in approximately N/b degrees of freedom, the 

power spectral terms are computed as 

where 

d 

C 

(k+1/2)d 
= C L x

t t=(k-1/2)d 

= 11.. 
2b ' 

= M N 

,,* • x 
t 

s(d + 1) N - 5/4r 

k = 0, ••• b 

The term (N - 5/4r)/N is used to correct for the bias resulting from 

the data windowing applied in Step 4. The number d + 1 is the number of 

spectral estimates contained in each band computed. The frequency associated 

with each band is then 

= k • s 
2b k = 0, 1, ••• b 

As indicated above, the discrete Fourier transform is used to compute 

the Fourier coefficients. Since both data series are real, this transform 

(using the FFT algorithm) can be used fer computing both series. at the 

same time. This is possible because of the symmetrical characteristics of 

the transform, as indicated in Ref 3. To perform this operation, the series 

z is formed by placing one series, say x, in the real array and the second, 

y , in the imaginary array, or 

z = x + iy 
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The Fourier transform is then made and the following relationships are used for 

obtaining the individual transformed values: 

= -i (z _ 
2 . t 

,,* \ z I 
m-t/ 

Coherence Computations. Coherence computations are obtained by computing 

the cross-power, in the same manner as before except that both data series 

x and yare used, or 

(k+1/2)d 
= C L xt t=(k-l/2)d 

.... ,," • Y 
t 

where c, d, and b are defined as before. 

Coherence may then be computed as follows: 

iCPki 
= 

~P • xk 

k = 0, ••• b 

The multiple regression analysis in Chapter 2 for the 32-band model 

illustrates the method in which a typical power spectrum analysis is set up. 

In this analysis, power spectral estimates were needed on l200-foot data 

sections, or the maximum data series length was preset. This provides a 

constraint on the maximum number of bands and degrees of freedom possible. 

Based on these constraints, the remaining decisions made on this analysis 

were as follows: 

Number of bands b 

Decimation rate d 

Number of original data scans N 

Sampling rate SR 

32 

4 

6750 

5.93 
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From these initial specifications, the following program parameters were 

necessary for obtaining the spectral estimates (Steps 5 and 6): 

Filter half-length = l2d = 48 

Number of data points after decimation N 

New sampling rate = 

Degrees of freedom = 

s 
4 

= 1.48 

1664 
32 

= 52 

Maximum power of 2 (for FFT) = 2048 

= 6750 - 97 + 1 
4 = 1664 

Figure Al.l illustrates typical output provided by the program, where 

Freq = frequency in cycles per foot, 

PI = power spectral estimate for right profile, 

P2 = power spectral estimate for left profile, 

CP = cross-power estimate, 

Coh = coherence, 

Phase = phase of CP and Coh . 

The power and cross-power estimates shown have not been scaled (i.e., 

are not in inches squared per cycles per foot). The file identification indi­

cated on the first line is used in the A-to-D and data-reduction process. 

That is, each profile section run was digitized and written as one data file 

on a seven-track magnetic tape, and the first record of each file contains 

the file identification shown (see Ref 8). 



FILE I: b NO. RECS. = 11 101 = 20 1D2 = 
NUMBER OF SCANS BEFORE DEcIMATION = &750 
NUMBER OF SCANS AFT~R OEClMATI0N = 1664 
NUMBER OF BANDS = 32 SAMPLING RATE = 1.4800 

DEGREES OF FREEDOM = 52.00 

FREO 
0.0000 
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c.12 605F+02 
9.913 AB F+Ol 
2.(,9042f+01 
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Fig AI.I. Typical spectral analysis computer printout. 
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APPENDIX 2. MRM SI CALIBRATION PROGRAM 
COMPUTATIONS 

The following calibration equation is currently being used for Mays Road 

Meter-SDP SI calibrations (Ref 10): 

51 = (A2.l) 

This reverse regression equation is obtained by solving for 81 in terms of 

M , the MRM roughness measurement. In the following regression equation (as 

described in Ref 10), 

(A2.2 ) 

where 

y = -tn M ; 

p = regression coefficients; 

M = the MRM accumulated roughness readings, in inches per mile; 

X = -tn (5/S1) ; 

e the residual or regression error. 

the Y intercept Po is zero; that is, the function or mode 1 pas ses through 

the origin. 

A special regression procedure was developed for rapidly obtaining the 

a and S estimates using a self-adjusting, steepest descent, searching tech­

nique (Ref 14). Once the parameter estimates are computed the program 

generates the specific MRM 81 calibration table as described in Ref 10. 

Figure A2.1 provides a flow chart of the technique used for computing the 

calibration table. 
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0 

J = 0 

Compute Reg. Error 
ERR for QI 

01 

Compute Reg. Error 
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f::.:.QI = 10-5 

e = S 
10-8 

K = 2.5 

(Continued) 

Fig A2.l. Flow chart for calibration procedure (Ref 10). 

60 



00' = -K'Q"E 

bE = _K('Q"E)2 
0' 

0:' = 0' + 60:' n 

compute Reg. Error 
ERR for 0:' 

n n 

bE = ERR - ERR 
a n 0' 

J = 1 

bE - bE a Ci 

oE E = 
Ci 

Fig A2.1. (Continued). 
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(Cont inued) 
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[Xi = log(5/S.)] 11 Q! 
1 

Routine to Compute 
Regression Error .... - -­
and Associated B 
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Mean Square 
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X~ = l: 

i 1 
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= l: X.Y. 

i 1 1 

SSy - (B)SSxy 
=-~-~~= 

(N - 1) 

Error = ~Mean Square 

Computational technique when model passes through origin. 

Fig A2.l. (Continued). 
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