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PREFACE

This report is the third of a series which summarizes the detailed
investigation of the various problems associated with the design and con-
struction of long span prestressed concrete bridges of precast segmental
construction. The initial report in this series summarized the general
state-of-the~-art for design and construction of this type bridge as of
May 1969. The second report stated requirements for and reported test
results of epoxy resin materials for jointing large precast segments. This
report summarizes design criteria and procedures for bridges of this type
and includes two design examples. One of these examples is the three-span
segmental bridge constructed in Corpus Christi, Texas, during 1972-73.
Later reports in this series will detail the development of an incremental
analysis procedure and computer program which can be used to analyze seg-
mentally erected box girder bridges and will summarize the results of an
extensive physical test program of a one-sixth scale model of the Corpus
Christi structure. Comparisons with analytical results using the computer
model and verification of the design procedures will be presented in those

reports.

This work is a part of Research Project 3-5-69-121, entitled '"Design
Procedures for Long Span Prestressed Concrete Bridges of Segmental Construc-
tion." The studies described were conducted as a part of the overall
research program at The University of Texas at Austin, Center for Highway
Research. Work was sponsored jointly by the Texas Highway Department and
the Federal Highway Administration under an agreement with The University

of Texas at Austin and the Texas Highway Department.

Liaison with the Texas Highway Department was maintained through
the contact representative, Mr. Robert L. Reed, and the State Bridge Engineer
Mr. Wayne Henneberger. Extensive detailed liaison in the design phase was
maintained with Mr. Harold J. Dunlevy and Mr. Alan B. Matejowsky of the
Bridge Division; Mr. Donald E. Harley and Mr. Robert E. Stanford were the

contact representatives for the Federal Highway Administration.
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The overall study was directed by Dr. John E. Breen, Professor of
Civil Engineering. He was assisted by Dr, Ned H., Burns, Professor of
Civil Engineering. The design phase and the optimization studies were
developed by Dr. Geoffrey C. Lacey, who at that time was a Research Engi-

neer for the Center for Highway Research. Valuable assistance was con-
tributed by Dr. Robert C. Brown, Jr., Dr. Satoshi Kashima, and Mr. Tsutomu
Komura, Assistant Research Engineers, Center for Highway Research. The
authors are appreciative of the contributions of Dr. D. M. Himmelblau

and Dr. W. G. Lesso of the College of Engineering, The University of

Texas at Austin, for their advice regarding optimization techniques.
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SUMMARY

The economic advantages of precasting can be combined with the
structural efficiency of prestressed concrete box girders for long span
bridge structures when erected by segmental construction. The complete
superstructure is precast in box segments of convenient size for trans-
portation and erection. These precast segments are erected in cantilever

and post-tensioned together to form the complete superstructure.

This report details the application of design, analysis, and
optimization techniques to segmentally precast prestressed concrete box
girder bridges. These were classified into twe main types according to
their method of construction, namely those constructed on falsework and
those erected in cantilever. The prestressing cable patternsand the design

procedures required are very different in the two types of construction.

Design procedures are developed for both types of construction.
Both ultimate strength and service load design criteria are satisfied
under all loading conditions. The effect of the cable force on the con-
crete section is calculated using an equivalent load concept. A computer

program is used to check all service level stresses.

Sample designs are carried out for the case of a hypothetical
two-span bridge constructed on falsework and that of an actual three-span
bridge erected in cantilever. In the former case, full length draped
cables are used, the profile consisting of three parabolas. In the case
of the bridge erected in cantilever, each stage of construction is a
separate design condition and a pattern of cables of varying lengths is

required.

Optimization techniques are used to find the optimal cross sectionms,
i.e., those having minimum cost for such bridges. 1In each case, the
problem is treated as an unconstrained nonlinear programming problem and

a subroutine is developed to compute the objective function. Numerical



methods of solution that do not require derivatives of the objective

function are used. From contour plots of the objective function it is

found that the optimal dimensions can be varied substantially with small
increase in cost.



IMPLEMENTATION

This report presents the background and detail of design,
analysis, and optimizing procedures recommended for use with precast
segmental prestressed concrete box girders erected on falsework or by
balanced cantilevering. The design procedures illustrate the use of
both ultimate strength and service load design techniques and consider
a wide range of loading conditions. The interaction of manual calcula-
tions and various computerized analysis procedures is illustrated. The
report includes a brief summary of important factors to be considered in
initial design, treats analytical procedures which are especially
useful in dealing with the types of tendon layouts and erection schemes
utilized with this construction, and provides two major example problems
illustrating the numerical calculations and procedures to be utilized.
One of the example problems is based on the box girder bridge erected
over the Intracoastal Waterway at Corpus Christi, Texas, and is essen-
tially a documentation of the preliminary design procedure used in devel-

opment of the structure.

While the design examples consider box girders of constant depth,
the minor variations required in dealing with members of variable depths
are indicated. The design and analysis procedures should be extremely
useful in analysis of proposed structures in the 100 to 300 ft. span
range, can be easily extended to structures up to 450 ft. and can deal

with a wide variety of cross sectionms.
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CHAPTER 1
INTRODUCTION

1.1 General

Bridge engineers continually face requirements for safer, more
economical bridge structures. In response to many requirements imposed
by traffic considerations, natural obstacles, more efficient use of land
in urban areas, safety, and aesthetics, the trend is to longer span
structures. At present, the most commonly used structural system for
highway bridge structures in Texas consists of prestressed concrete
I-girders combined with a cast-in-place deck slab. This system has prac-
tical limitations for spans beyond the 120 ft. range. With the fluctuating
costs and maintenance requirements of steel bridges, there exists a need
to develop an economical approach to achieve precast, prestressed con-

crete spans in the 120-400 ft. range.

In the United States, spans in the 160 ft. range have been achieved
by the use of post-tensioned, cast-in-place girders.zax The box, or cellu-
lar, cross section shown in Fig. 1.1 is ideal for bridge superstructures
since its high torsional stiffness provides excellent transverse load
distributing properties. Construction experience along the West Coast
has indicated that this type bridge is a very economical solution to many

long span challenges.

In Europe, Japan, and Australia, during the late 1960's and early
1970's, the advantages of the cellular cross section were combined with
the substantial advantages obtained by maximum use of prefabricated com-
ponents.20 By precasting the complete box girder cross section in short

segments of a convenient size for transportation and erection, the entire

*Numbers refer to references listed at the end of this report.



Fig. 1.1. Typical cellular cross section

bridge superstructure may be precast. These precast units are subsequently
assembled on the site by post-tensioning them longitudinally. A number
of extremely long span precast and cast-in-place box girder bridges have

? and interest in this construc-

been segmentally constructed in Europe1
tion concept is rapidly growing in the United States. A three-span
precast segmentally constructed box girder bridge with a 200 ft. maximum

span was completed in Corpus Christi, Texas, in 1973.

When construction of large numbers of prestressed concrete bridges
is envisaged, precasting has a number of advantages over cast-in-place

construction, e.g.

(1) Mass production of standardized girder units is possible. This

isdone at present with precast I-girders for shorter spans.

(2) High quality control can be attained through plant production

and inspection.

(3) Greater economy of production is possible by precasting the girder

units at a plant site rather than casting in place.

(4) The speed of erection can be much greater. This is very
important when construction interferes with existing traffic

and is most critical in an urban environment.

In segmental box girder construction utilizing the cantilever erec-
tion procedure, precasting has several other advantages over cast-in-place
construction, e.g.

(1) Strength gain of the concrete is essentially taken out of the

erection critical path. This allows faster erection times and

higher concrete strength at time of stressing.



(2) Shrinkage strains can substantially develop prior to erection

and stressing if adequate lead times and stockpiling are used.

(3) Creep rates can be substantially reduced since the segments are

considerably more mature at time of stressing.

The major advantages frequently cited for utilization of cast-

in-place segmental construction are:

(1) Provision of positive nonprestressed reinforcement across the

joints is easier.

(2) Continuous correction of girder grade and line is possible to

compensate for deformations.

Extensive utilization of epoxy joints, grouted tendons, and
shear keys has reduced the emphasis on the positive bonded joint rein-
forcement while the versatility of the match casting procedure on numerous
major projects involving complex horizontal and vertical alignment has
illustrated the ability of the precast procedures to deal with geometri-

cal problems,

At present, precast I-section girders are widely used in highway
bridge construction for spans up to about 120 ft. They are cast in a
manufacturing plant and transported to the bridge site for erection.
While their span can be stretched by using 'drop in'" girders, they cannot
be used for significantly greater spans, because this length is approxi-
mately the upper limit that can be transported by road. In addition,
I-sections are not the most structurally suitable form for long span

bridge structures. A better structural unit is the box girder.

The box girder is a very compact structural member, which combines
high flexural strength with high torsional strength and stiffness. It is
superior to the I-section girder for long spans in that (a) there is no
lateral buckling problem so that the compressive capacity of the bottom
flange is fully utilized, and (b) the torsional rigidity brings about a
more even distribution of flexural stresses across the section, under a

variety of live loads. A further advantage of the box girder in precast
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structures is that it is possible to precast the full cross section
(apart from a longitudinal joining strip in some cases), whereas with

I-sections the deck slab must largely be cast in place.

A considerable number of long span bridges have been constructed
throughout the world using prestressed concrete box girders. Both cast-
in-place construction and segmental precasting have been widely utilized.
The suitability of box girders even for extremely long spans can be seen
from the Bendorf Bridge in West Germany, which was cast in place and has
a span of 682 ft. In the United States, cast-in-place box girder bridges
are being widely used by the California Division of Highways, as well as

in several other states.

When box girder bridges are precast, the casting is generally
segmental, i.e., the girders are cast in short, full width units or
"segments'. The reason for manufacture in short segments is essentially
that box girders, unlike I-girders which have narrow width, cannot be
readily transported in long sections. In addition, the short units are
suited to fairly simple methods of assembly and post-tensioning. During
erection the segments are joined together, end to end, and post-tensioned
to form the completed superstructure. The segmental pattern for a typical
bridge is shown in Fig. 1.2. The length and weight of the segments are

chosen so as to be most suitable for transportation and erection.

1.2 Segmental Construction

Figure 1.3 illustrates some of the wide range of cross-sectional
shapes which can be used. Various techniques have been used for jointing
between the precast segments, with thin epoxy resin joints being the widest
used. The most significant variation in construction technique is the
method employed to assemble the precast segments. The most widely used
methods may be categorized as construction on falsework and cantilever
construction. Construction on falsework is the simplest method of erecting
precast, segmental bridges. It also leads to the simplest design approach.
The joints used are usually cast-in-place concrete or mortar. This method

is particularly applicable to locations where access by construction



Fig. 1.2. Superstructure of the Qosterschelde Bridge, The Netherlands



(a) Single cell girder

L

(b) Single cells joined by deck

P

(c) Multicell girder

Fig. 1.3. Girder cross-sectional configurations



equipment is difficult, the project is of limited scope and traffic
interruptions due to falsework areacceptable, and where single or twin
spans are to be used so that balanced cantilevering is not feasible. The
prestressing system for the superstructure will normally consist of long
draped cables in the box girder webs. If the overall length of the bridge
is moderate, it is possible to set all the segments in place and join them
before inserting and tensioning full length cables. This method tends to
economize on prestressing steel and hardware. Stressing operations are

minimized but at the expense of falsework costs.

The outstanding advantage of the cantilever approach to segmental
construction lies in the fact that the complete construction may be accom-
plished without the use of falsework and hence minimizes traffic

interruption.

Assembly of the segments is accomplished by sequential balanced
cantilevering outward from the piers toward the span centerlines. Ini-
tially the "hammerhead'" is formed by erecting the pier segment and
attaching it to the pier to provide unbalanced moment capacity. The two
adjoining segments are then erected and post-tensioned through the pier
segment, as shown in Fig. 1.4(a). Auxiliary supports may be employed for
added stability during cantilevering or to reduce the required moment
capacity of the pier. Each stage of cantilevering is accomplished by
applying the epoxy resin jointing material to the ends of the segments,
lifting a pair of segments into place, and post-tensioning them to the
standing portion of the structure [see Fig. 1.4(b)]. Techniques for
positioning the segments vary. They may be lifted into position by means
of a truck or floating crane, by a traveling lifting device attached to
(or riding on) the completed portion of the superstructure, or by using
a traveling gantry. In the latter case the segments are transported over
the completed portion of the superstructure to the gantry and then lowered

into position.

The stage-by-stage erection and prestressing of precast segments
is continued until the cantilever arms extend nearly to the span center-

line, In this configuration the span is ready for closure. The term
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closure refers to the steps taken to make the two independent cantilever
arms between a pair of piers one continuous span. In earlier segmentally
constructed bridges there was no attempt to ensure such longitudinal con-
tinuity. At the center of the span, where the two cantilever arms meet,

a hinge or an expansion joint was provided. This practice has been largely
abandoned in precast structures, since the lack of continuity allows

19,24

unsightly creep deflections to occur. Ensuring continuity is advised

and usually involves:

(1) Ensuring that the vertical displacements of the two cantilever
ends are essentially equal and no sharp break in end slope exists.

(2) Casting in place a full width closure strip, which is generally
from 1 to 3 ft. in length.

(3) Post-tensioning through the closure strip to ensure structural
continuity.

The exact procedures required for closure of a given structure must be
carefully specified in the construction sequence. The final step in
closure is to adjust the distribution of stress throughout the girder to
ensure maximum efficiency of prestress. Adjustment is usually necessary
to offset undesirable secondary moments induced by continuity prestressing.

The final adjustments may involve19

(1) Adjusting the elevation of the girder soffit, at the piers, to
induce supplementary moments. The adjustment may be accomplished
by means of jacks inserted between the pier and the soffit of the
girder with subsequent shimming to hold the girder in position.

(2) Insertion of a hinge in the gap between the two cantilever arms
to reduce the stiffness of the deck while the continuity tendons
are partially stressed. The hinge is subsequently concreted
before the continuity tendons are fully stressed.

(3) A combination of hinges and jacks inserted in the gap to control
the moment at the center of the span while the continuity tendons
are stressed. The final adjustment is made by further incre-
menting the jack force and finally concreting the joint in.

The first of these possibilities is the widest used. After final

adjustments are complete, the operation is moved forward to the next pier

and the erection sequence begins again.
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1.3 Research Program in Segmentally
Constructed Bridges

In 1969, a comprehensive research effort dealing with segmental
construction of precast concrete box girder bridges was initiated at The
University of Texas at Austin. This report summarizes part of this

multiphase project which had the following objectives:

(1) To investigate the state-of-the-art of segmental bridge
construction.

(2) To establish design procedures and design criteria in general
conformance with provisions of existing design codes and
standards.

(3) To develop optimization procedures whereby the box girder cross
section dimensions could be optimized with respect to cost to
assist preliminary design.

(4) To develop a mathematical model of a prestressed box girder,
and an associated computer program for the analysis of seg-
mentally constructed girders during all stages of erection.

(5) To verify design and analysis procedures using a highly devel-
oped structural model of a segmental box girder bridge.

(6) To verify model techniques by observance of construction and
service load testing of a prototype structure,

Various phases of this work were reported in previous reports in

- 14-16
7-11, Objective (1) was

this series and in several dissertations.
initially accomplished with publication of Report 121-1. It has subse-
quently been updated and advanced by Muller's excellent paper.20 Objec-
tives (2) and (3) are the direct areas of interest in the present report.
Objective (4) was accomplished with the development of the program SIMPLA2
as documented in Report 121-4. Objectives (5) and (6) were accomplished

as documented in Report 121-5.

1.4 Objectives and Scope of this Report

The object of this report is to document proper design procedures
and to develop practical optimization techniques for the application of

the segmentally precast box girder in long span highway bridge superstructures.

Segmentally precast box girders should be designed and analyzed con-

sidering the construction process. In contrast to many concrete structures,
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it is essential that erection conditions and stresses be carefully checked
at all stages for balanced cantilever construction. Analysis at each
stage can represent a monumental task unless the problem is simplified
considerably. Effects of simplification for purposes of design are often
difficult to evaluate, since the degree to which a box girder behaves as

an element depends on many variables and it is difficult to determine.

In developing the design procedures, the authors used adaptations
of methods recommended in AASHO gpecifications for the design of normal
bridge cross sections under the action of wheel loads wherever possible.
This AASHO method was somewhat simplified and utilized in the development
of a computerized optimization scheme to determine preliminary box girder

cross section dimensions for minimum cost.

In Chapter 2 a general design procedure is outlined. Interaction
of the various steps of preliminary proportioning, optimization studies,
detailed transverse and longitudinal design, box girder analysis for
warping effects, checks of erection stresses, and development of post-
tensioning system details are interrelated. Construction trends influ-
encing preliminary proportioning are examined and references are made
to several helpful summaries of physical properties of completed

structures.

Detailed procedures for the design of bridges constructed on
falsework are developed in Chapter 3 and a design example is utilized.
Chapter 4 gives similar material and an example for bridges erected in
cantilever. Both ultimate strength and service load design criteria are
satisfied. Utilization of existing computer programs to thoroughly check

the stresses under various loadings is illustrated.

Mathematical methods of optimization are briefly reviewed in
Chapter 5. Appropriate methods are applied to illustrate factors affecting
the optimal cross section for bridges constructed on falsework (Chapter 6)
and erected in cantilever (Chapter 7). In the optimization studies, the

function which is minimized is an approximate cost index for the bridge.



This page replaces an intentionally blank page in the original.
-- CTR Library Digitization Team



CHAPTER 2
DESIGN PROCEDURES

2.1 General

While over one hundred long span bridges have been constructed
throughout the world using segmentally precast box girders, their utiliza-
tion in the United States has been very slow in developing. With comple-
tion of the first U.S. project in 1973, there has been a heightened interest
and a number of projects are now actively underway. While there are
undoubtedly many reasons for the slow development of this type of con-
struction in the United States, probably one of the most significant
is the general division of the engineering and construction responsibilities
that has existed in the concrete industry. The segmental precast box
girder bridge requires extensive consideration of construction methods
and procedures during the design phase. 1In the same way, the erector
must be responsible for substantial calculations for control of stresses
and deflections throughout the erection phase. While such interaction has
been very common in construction of long span steel bridges, it has not

been as usual in long span concrete structures.

A successful design of a precast segmental box girder bridge must
consider carefully the constructability of the project, must leave room for
competitive systems and constructor improvements, and must consider the
stability of the structure in all of its embryo stages as well as per-

formance of the completed structure.

Division of responsibility must be very carefully developed, so
that the constructor is not forced into undertaking an unrealistic or unsafe
construction procedure by orders of the designer and, conversely, the

designer is not responsible for errors or lapse in judgment by the contractor.

13
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The authors feel that the main reason for the lag in development
of this type of structure in the United States has been the technological
transfer gap, not of highly involved analysis procedures, but rather of
efficient construction procedures suited for the engineering, constructor,

laborer, and material practices of the United States.

In this chapter a very brief outline of the design procedures
which should lead to a successful project is given. The material in this
chapter is intended to outline the general framework of the design process.
Two very specific technical designs are included in subsequent chapters
to provide specific guidance on '"detailing". Substantial information on
factors affecting optimization of the cross sections are included in sub-

sequent chapters to assist in preliminary designs.

2.2 State-of-the-Art

Report 121-1 summarized the state-of-the-art in precast segmental
box girder technology as of 1970. The ensuing five years have seen rapid
developments in this technology. Foreign experience by one of the world's
foremost builders of this type structure was summarized in 1974 at the
FIP/PCI Congress in New York City by Jean Muller. His report has been
printed for distribution in the United States in the January 1975 BCI
Journa1.20 One of the most interesting aspects of the developmental period
of the last decade has been the evolution of the jointing and erection
process. Epoxy joints are still the foremost type of jointing, but less
reliance is being placed on the strength of the epoxy and more jointing
surface is being provided for mechanical interlock keys between units. Muller
shows pictures of recent French bridges with castellated or serrated web
keys for a long portion of the web length. The multiple key designs cer-
tainly decrease reliance on long-term epoxy integrity and should be carefully
studied. In the same light, numerous projects are going to procedures which
move the negative moment (cantilevering) tendon anchorages out of the web
end surface and provide internal stiffeners attached to the webs for
locating anchorages. By moving the anchorage from the end surface of the

unit, several units can be placed using temporary fasteners before stressing
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has to be accomplished. In this way threading of cables and stressing of

tendons has been removed from the critical path operations in erection.

Another obvious tendency in foreign practice is to the use of
wider sections resting on single piers, rather than double box sections
supported by parallel twin piers. While the cost of the superstructure
is somewhat higher for the wider single section, substantial economies

have been achieved in pier costs.

The large number of projects currently underway in the United
States as summarized by Koretzky and Kuo13 indicates that this type of
construction is emerging rapidly. Their survey indicates that as of
December 1973 sixteen states were involved on a total of 56 bridges with

almost half of these appearing to be on a fairly firm basis.

2.3 Design Sequence

Probably because of the relative unfamiliarity with the segmental
construction procedures, but largely because of the close relationship
which must exist between design and construction concept, the design
sequence for a pfecast segmental box girder bridge is a highly inter-
active one. Figure 2.1 shows the various stages of the design sequence

and the usual paths between sequences. The main elements are:

(1) Conceptual design--basic decisions regarding type of construc-

tion, span lengths and ratios, and cross section types.

(2) Preliminary design--choice of basic dimensions for cross
section elements, tendon and reinforcement patterns, slab and web thick-
nesses, and optimization studies of the span and cross section layout.

Analysis procedures are usually approximate.

(3) Detailed design--specific proportioning of a tentative cross
section considering both construction sequence loads and normal design
loads on the completed structure, sizing of tendons, reinforcement,
structural member dimensions, and planning of the erection and closure
sequences. Relatively detailed analysis to consider all major loads and

conditions which will affect behavior of a structure.
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(4) Verification Analysis--studies undertaken after most elements
of the design are substantially fixed to check construction stresses and

deformations and behavior under all critical design load conditions.

(5) Field Support Analyses--checks of working drawings, contractor's
erection stresses, detailed stressing sequences, and development of deflection

and closure information for guidance of field forces.

(6) Change Order Evaluation--providing rapid information to field
forces and contractor on technical advisability of proposed changes in

design requires quick response in technical decisions,

Some specific details for each of these stages will be developed
in the following sections. The large number of interactions indicated in
Fig. 2.1 shows that such a breakdown is extremely artificial, since often
the same person will be handling several of the items in the sequence.
The schematic is useful in organizing a discussion of the important elements

in the design sequence.

2.4 Conceptual Design

The most important decisions in the project are generally made at
the start when major questions have to be answered with relatively little

hard information. Major decisions usually involve:

Span lengths

Span ratios

Box girder versus alternate structural system

Cast-in-place versus precast

Erection on falsework versus cantilever erection

Single box versus multiple box versus multicell cross section
Constant depth versus variable depth

QOMFMEgaw >

These important questions are best decided after a careful review
of the state-of-the-art, consultation with experts who have been involved
in the design and construction of successful projects, and intensive study.
However, a substantial body of information is available to assist in these
decision-makings. Excellent summaries by Muller19 and Swann25 as well as
a summary by Lacey, Breen, and Burns16 describe many successful projects

and can help one develop a feel for the "possible", 1In particular, the
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compilation by Swann25 of detailed dimensions of 173 concrete box girder
bridges (segmental, nonsegmental, precast, and cast-in-place) is very
useful. Figure 2.2 illustrates the distribution of constant section,
constant depth with variable slab thickness, and variable depth bridges
reported by Swann. As in all studies, this distribution must be examined
carefully, since it contains a variety of experiences. The majority of
the short span structures were not built segmentally. In addition, most
of the structures are located in Europe and are undoubtedly colored by

the design criteria and economic experience of that region.
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Discussion with several other designers of segmental bridges
indicates that the following rough "rule of thumb" represents the current

state-of-the-art:

Span Bridge Type
0-150 ft. I-type pretensioned girder
125-300 ft. Precast segmental constant depth
275-450 ft. Precast segmental variable depth
400-600 ft. Cast-in-place segmental
600-1200 ft, Cable-stayed with precast segmental girders

1200 ft. up Suspension
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Obviously, such a rule-of-thumb is only a crude indicator of the
appropriate type structure. Decision between precast and cast-in-place
segmental units must consider not only span length but ease of access to
the site of heavy handling equipment, construction seasons, and size of

project.

Segmentally precast box girder bridges may be classified into
two main types according to the method of erection, namely those con-
structed on falsework and those erected in cantilever. The third method,

assembly on shore, will generally be too cumbersome to have widespread use.

The different methods of construction will require different pre-
stressing cable patterns and different design procedures. In bridges
constructed on falsework, long draped cables, traversing one or more spans,
can be used. If the cables run the full length of the bridge, only one
structural system, namely the completed continuous superstructure, need

be considered in design.

For bridges erected in cantilever, a set of cables in the top of
the girder is required for each length of the cantilever arm. Each stage
of erection constitutes a separate design condition, with different bending
moments in the cantilever. The completed superstructure contains additional
cables in the bottom of the girder and constitutes an indeterminate con-
tinuous system. It is designed to withstand the dead and live loads under

service conditions.

Erection on falsework with close-spaced supports is the simplest
method of construction when conditions permit, as in the case of viaducts
over land and not passing over existing roads. Lifting and placing tech-
niques will depend on the exact site conditions. For bridges having three
or more spans over water or over existing roads, where intermediate support
is not possible, the cantilever method will probably be the most suitable.
There will be a critical span length, however, below which it will be more
economical to use a falsework truss. For two-span bridges over an existing
highway, erection on a falsework truss or girder or with temporary braces

or ties is probably the simplest procedure.
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The superstructures of the box girder bridges generally conform
to three main types: (a) single-cell box girder, (b) pair of single-cell
box girders connected by the deck slab, and (c) multi-cell box girder.
These types are sketched in Fig. 2.3. The simplicity, economy, and good

appearance of these sections is evident.

Single-cell box girders are generally used in relatively narrow
bridges. As the width increases, the bending moments in the deck slab
increase and hence the thickness must increase. Beyond some critical
width it becomes more economical to use a multicell box or multiple

single-cell boxes,

In the case of multiple single-cell box girders, the basic
single-cell units are cast separately and are connected after erection
with a concrete joint. Usually the deck is post-tensioned transversely,
but it is possible to use nonprestressed reinforcement only and to make
the joint width sufficient for splicing. In general, it is possible to
have smaller basic units with multiple single-cell boxes than with a
multi~-cell box girder. The smaller units are easier to transport and
erect. The bridge can be easily widened by the addition of another box.
On the other hand, with a multi-cell box the cast-in-place longitudinal
joint is not required. Also, a multi-cell box, of relatively small base

width may be advantageous when narrow piers are desired.

2.5 Preliminary Design

In the preliminary design stage, the important structural parameters
are determined. Such factors as span-to-depth ratios, minimum web thickness,
upper and cantilever flange thicknesses, and preliminary tendon requirements
can be fairly readily determined by conventional elastic analyses, deter-
mination of cantilever moments prior to closure, and utilization of normal

or 'beam” theory for stress analysis of sectioms.

The recent report of the PCI Committee on Segmental Construction 21
suggests span-to-depth ratios from 18:1 to 25:1 are currently considered
practical and economical for constant depth segmental bridges. They suggest

that variable depth bridges may have span-to-depth ratios of 40 to 50, based
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(b) Single-cell boxes connected by deck slab.

"
1

(c) Two-cell box girder.

Fig. 2.3. Box girder cross section types.
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25 indicates

on the depth at the center of the span. Figure 2.4 from Swann
a wider variation in span-to-depth ratio. The optimizing studies in
Chapter 6 and Chapter 7 indicate that very efficient structures can be
obtained in the 25 to 30 span-to-depth'ratio range. Past experience, as
reflected in Fig. 2.4 may be colored by the much heavier live loads used
in European design. Figure 2.5 is from a study by Rajagopalan22 which
indicates that for 140 ft. spans, live load design moments in some
European countries will vary from 150 to 300 percent of those used in the
United States. Use of lower span-to-depth ratio values are indicated
when shears are heavy, little load balancing is utilized, or when pre-
liminary design indicates extreme congestion of tendons. The experience
with the Corpus Christi segmental bridge, which had a span-to-depth

ratio of 25, indicates that even higher values could be used without sub-

stantial deflection difficulty.

MAXIMUM SPAN/DEPTH RATIO AT PIERS

@ Bricish bridges
O other bridges
X Corpus |Christi |
0 40(131.23) 80 (262.47) 120 (393.70) 160(524.93) 200(656.17) 240(787.40)

MAXIMUM SPAN—m=(ft.)

Fig. 2.4. Span/depth ratios (from Swannzs)
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In many structures the web thickness will be based more on
""placeability" considerations and providing adequate room for anchorages
than on shear considerations. Based on successful French experience,
the Corpus Christi structure was designed with a minimum web thickness
of 12 in. In retrospect, the congestion of the webs hindered placement
and made detailing of anchorages difficult. Figure 2.6(a) from Swann's
study shows a web thickness parameter for a wide range of bridges. It
can be seen that the value of the parameter for the Corpus Christi bridge
is one of the lowest, with a value of 2.88 x 10-3. Retrospect would
indicate that the webs should have been increased to about 14 in. minimum,
which would give a parameter value of 3.36 X 10-3 and essentially plot

on Swann's curve. This indicates that such a graph could be quite useful

in preliminary design.

While many of the cross-sectional elements can be designed
utilizing normal slab design under AASHO specifications, the lower flange
near the piers in narrow bridges is very critically affected by the canti-~
lever moments and particularly span-to-depth ratios, This slab often
has to be thickened and may indicate the desirability of a greater cross
section depth to increase the lever arm and cut down the thickness of the
lower flange. This will be more prevalent on double box cross sections

than on single box cross sections.

Dimensions of successful projects are often one of the best indi-
cators of the practical market place. However, the use of more formal
optimization techniques can indicate important trends to be investigated
in design. In Chapters 5 through 7 of this study, an attempt is made to
illustrate how relatively simple optimization techniques can be used in
preliminary design to give the designer information as to the cost
"trade offs" of his basic parameter decisions. Unfortunately, these
optimization examples only include a relatively narrow number of span
lengths and roadway widths. These studies should be extended to give more
information as to the effect of variations in these important parameters.
There seems to be a systematic relationship between length and width in the

choice of cross section, as indicated in Fig. 2.7. The relatively narrower
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bridges go to single box units, while the wider structures go to twin box
units. Further studies of variables would clarify the practical boundaries

for these decisions.

2.6 Detailed Analysis

After a basic construction scheme, span arrangement, cross-sectional
type and important section properties have been at least preliminarily
decided upon, a detailed analysis can be made to determine tendon sizes and
patterns, flange and web thicknesses, transverse and shear reinforcement,
and stressing details. For the initial detailed analysis, ordinary equilib-
rium equations, elastic analysis, and normal '"beam' design procedures are
utilized. In many box girders, there will be substantial deviations from
such stresses due to shear lag, section warping, and torsion due to unsym-

metrical loading. After completion of a detailed design which considers
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both construction and normal live load effects, it is advisable to check
the structure with a "folded plate" type analysis. The authors recommend
the use of computer analysis programs such as MUPDI for constant depth
sections or FINPLA2 for variable depth bridges. These programs were
developed by A, Scordelis at The University of California under sponsor-
ship of the California Department of Transportation and are widely -

available.

In Chapter 3 and Chapter 4, comprehensive examples of a segmental
box girder erected on falsework and a structure erected by balanced canti-
lever are used to illustrate typical design procedures. These examples
illustrate the interaction between the preliminary and the detailed design
phase and typical changes made in the detailed design phase to satisfy

normal design requirements.

2.7 Verification Analysis

Particularly when cantilever erection is to be used, it is
advisable to run a check analysis which will verify the suitability of the
proposed construction sequence and check for stresses and deflections to
be expected during all stages of erection. In order to facilitate such an
analysis, a program SIMPLA2 was developed in this study. Detailed informa-
tion is given in Report 121-4. Such a program can be used to determine
longitudinal and transverse stresses, deformations, tendon friction losses,
tendon incremental stressing losses, and track the structure through all
unbalanced states and closure operations. The program uses a ''folded plate"
analysis and so also gives indications of excessive shear lag or other
effects. Because of the complexity ofinputting the problem into this pro-
gram and the high cost of the analysis, it is ordinarily only undertaken

at the completion of the design as a final check.

In a similar way it is advisable to make a final check of any struc-
ture where substantial shear lag or warping effects are suspected to verify all
design load conditions. The MUPDI program is an excellent one, and indi-
cated very high correlation with the measurements in the companion test

program involving a model study of the Corpus Christi Bridge.
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2.8 Field Support

Depending on the contractual arrangements, the designer, the owner,
or the contractor will need to carefully control the erection and have
substantial technical information to check on the adequacy of construction.
Upon completion of design and award of contract, erection stresses,
deflection profiles at various stages, tendon stressing patterns and limits,
tendon elongation values, and closure computations will have to be developed
and transmitted to the appropriate parties. Many of the procedures are
repetitive and a computer analysis is often advantageous. Because of the
complexity of input into the SIMPLA2? program, it will be advisable to

utilize simpler "beam theory" programs to develop the less critical values.

It is especially important that working drawings be cross-referenced
and compared so that careful coordination exists in placing reinforcing,
post-tensioning tendons, and post-tensioning anchorages. It is advisable
to develop high modularity in details to make maximum use of precast

technology.

2.9 Change Order Evaluation

After the contractor begins his work, numerous items will come up
requiring technical decisions. Some of these will be major, such as sub-
mission by a contractor of a major revision in the tendon layout, stressing
sequence, or erection plan. One of the great advantages of program
SIMPLA2 is that it can be reprogrammed relatively quickly to handle such
changes and give a complete reanalysis of all stages of construction. In
this way the designer will be able to see the overall effect of the plan

change in a clearer fashion.

2.10 Pier Design

In most of the existing literature on precast segmental box girders,
insufficient attention is given to pier design. Since the cantilever erec-
tion procedure imposes substantial moment requirements on the pier, it can
greatly increase the cost of the piers. Several cases have been reported

where the increase in pier cost to permit balanced cantilever construction
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amounted to 25 percent of the superstructure cost. Careful attention
should be given to the possibility of providing for the unbalanced moment
with temporary struts, ties, or shoring, as shown in Fig. 2.8, so that

the permanent pier does not have to have the built-in capability of
resisting the full moment. In addition, considerable saving can be
obtained by using hollow piers which can develop the required strength

and stiffness, but which will not need as much material as the solid

piers nor require as many additional vertical supports. In difficult water
crossings, the pier costs may be of the same magnitude as the superstructure
costs and it is extremely important that careful attention be paid to the
pler design. Several recent examples have indicated that erection on

falsework is practical even in long spans if pier costs are high.

2.11 Applicable Specifications and
Regulations

In design of relatively modest (up to 400 ft. span) segmental box
girder bridges, existing design regulations are reasonably adequate. The
examples in Chapter 3 and Chapter 4 utilize the 1973 AASHO regulations?
the ACI Building Code 318-71 provisions for shear and prestressed concrete
as allowed by AASHO for prestressed concrete shear, and the 1969 Ultimate
Design Criteria of the Bureau of Public Roads. This latter was used rather
than the 1973 AASHO because the authors are leery of the combined load and ¢

factors permitted for this type of construction in the AASHO regulations.

In the 1969 Bureau of Public Roads ultimate design criteria, the
basic load factors are 1.35 DL + 2.5 LL. 1In addition, the values of ©
for flexure are 0.9 and for shear are 0.85. For this bridge typein the
critical stage when cantilevering is almost complete, thé structure is
almost 100 percent dead load. The "safety factor" in flexure under the
BPR criteria would then be 1.35 =~ 0.9 = 1.5. Using the 1973 AASHO, the
load factor would be 1.3 dead load and a ¢ factor of 1 could be used, since
this could be interpreted as '"factory produced precast prestressed concrete
members'. This would give a total safety factor of 1.3 at this critical

stage. The authors considered this as insufficient.
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CHAPTER 3
DESIGN PROCEDURE FOR BRIDGES CONSTRUCTED ON FALSEWORK

Construction on falsework is the simplest method of erecting
precast, segmental bridges. It also leads to the simplest design approach.
The prestressing system for the superstructure will normally consist of
long draped cables in the webs of the box girder. If the overall length
of the bridge is moderate, say two to four spans, it is possible to set
all the segments in place and join them before inserting and tensioning
full-length cables. However, for very long bridges, especially viaducts
having many spans, it will be necessary to erect and tension one or two

spans at a time,.

The design procedure in this chapter is developed using as a
particular design example a two-span continuous bridge with spans of
180 ft.-180 ft. The basic steps in the design of the superstructure are
as follows:
(a) An approximate cross section is chosen, on the basis of a prelimi-
nary design or an optimization study.
(b) The cross section is designed in detail.
(c) The prestressing cables are designed to balance the dead load.
(d) The ultimate strength is calculated.
(e) The concrete service load stresses are calculated from beam theory.
(f) The ultimate shear strength is checked.

(g) The final structure is analyzed using the computer program MUPDI
to check for shearing, warping, and unsymmetrical loading effects
and to verify the design.

The same procedure can be applied directly to other span lengths. Exten-
sion to bridges having more than two spans and to viaducts will be

discussed.

It is to be noted that both ultimate strength criteria and service

load stress criteria are applied in this design procedure.

31
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In the design of continuous prestressed concrete structures there
are different ways of considering the effect of the prestressing cables
on the concrete stresses. The approach adopted here is to utilize an

equivalent load concept, as described below.

3.1 Equivalent Load Concept

In a prestressed concrete girder the prestressing cables exert
forces and moments on the concrete and so produce stresses in the concrete

which are added to those produced by the dead loads and applied loads.

In a statically determinate girder, the cable moment at any point
is simply equal to the product of the cable force and the eccentricity
about the girder centroid. However, in a continuous girder the cables
generally modify the external reactions and so the determination of the
stresses produced in the concrete by the cables is more complex. The con-
crete stresses in a continuous prestressed girder may be determined most
efficiently by means of the equivalent load concept,l? which will be

described below.

3.1.1 Cable Moments. 1In a continuous beam it is convenient to

distinguish between the different components of the cable moments as follows.

The primary moment (MP) at any point in the girder is equal to
the product of the cable force (F) and the eccentricity about the girder

centroid (e).

&P = F X e

The secondary moment (MS) is the moment produced by the cable

induced reaction. This moment will vary linearly between the supports.

The resultant cable moment on the concrete section (MR) is the

sum of these two.
M= M T
The concrete stresses produced by the cables at any point in the
girder can be determined from MR and ¥ at that point.

Normally MR is determined directly, without first determining MS.

MR will here be determined using the equivalent load concept.



33

3.1.2 Equivalent Load. Wherever there is a change in direction

of the cable, a transverse force is exerted on the concrete section. Also,
wherever a cable is anchored, it exerts a concentrated longitudinal force
on the section. If the anchorage is not at the centroid, this force has

a moment about the centroid. The equivalent load is here defined as the
transverse load (and also the concentrated moment) exerted by the cable

on the concrete.

The equivalent loads for some important cable configurations will
now be determined. First consider a general configuration, y = y(x), shown
in Fig. 3.1. The slope is §(x) = dy/dx. The equivalent load per unit

length is w = w(x). The transverse cable force on the element dx is given by

w.dx = F@(x + dx) - 6(x))
d
= 4+ — -
F(8(x) dx(Q)dx 8(x))
W = F(de/dx)
= F(d’y/dx?)
Consider now the parabolic cable shown in Fig. 3.2. 1Its equation
isy = ax2 + bx + c¢. The equivalent load is
w = F(d2y/dx2)
= 2aF

i.e., a parabolic cable gives a uniform equivalent load. The total load

along the length is given by

B B
JA w . dx IA F(d8/dx)dx

F(QB - 8,)

A

i.e., the product of the cable force and the total change in slope.

It is also useful to obtain the equivalent load in terms of the

cable drape, h, and the length, L.
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Fig. 3.1. Equivalent cable load
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Fig. 3.3. Straight cable

Fig. 3.4. Cable anchorage point
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2 2
a(xA + L) /2 + b(xA + L)/2 + c/2 + axA/Z + be/Z

+c/2 - a(xA + L/2)2 - b(xA + L/2) - ¢

aL2/4

4h/12

'Y
It

w = 2aF
2

8Fh/L

Consider next a straight cable with a sharp bend, as shown in Fig. 3.3.

The equivalent load, P, at C will be a concentrated load given by

g~}
]

F(sin QA + sin QB)
= F(GA + QB)
= TFQ

i.e., the product of the cable force and the change in slope, as before. 1In

terms of the cable drape, h,

g~}
il

F(h/a + h/b)

Fh(a + b)/(ab)

FhL/ (ab)

Finally consider the anchorage point of a cable, as shown in Fig. 3.4.

The transverse equivalent load is given by
P = F.0

as above. There is also an equivalent moment
m = F,e

and an axial load

Fcos®@ =~ F
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which will produce uniform compression but no bending if the girder cross

section is uniform.

3.1.3 Determination of Cable Moments. When all the equivalent

cable loads on a girder have been calculated, the resultant cable moments
can be determined. This is done by analyzing the girder under the equiva-
lent cable loads, treating these in the same way as externally applied
loads. The secondary moments are obtained by subtracting the primary

moments from the resultant moments:

Mg = M - M

3.1.4 Load Balancing. In the design of prestressed concrete

girders it is often convenient to treat the equivalent cable load as an
external load that can counteract or "balance'" other applied loads; for
example, the dead load and live load. A parabolic cable, for instance,
exerts an upward uniform load, which will counteract a portion of a uniform
dead load. The cable force may be determined so as to balance some
definite proportion of the dead load. Similarly, a concentrated applied
load could be balanced by a straight cable with a sharp bend. This

design technique17 is called load balancing.

3.2 Design Example - Two-Span Bridge

The design criteria will be developed, using as a design example
the two span bridge shown in Fig. 3.5. The precast segments are 10 ft.
long. The cross section, shown in Fig. 3.6, consists of a pair of single-
cell boxes connected by the deck slab. Each box is cast separately and
the 2-ft. wide longitudinal cast-in-place joint connecting them is not made
until the two separate girders have been erected and fully tensioned. The
completed superstructure is supported on simple neoprene pads on the
piers and abutments. Diaphragms are provided inside the box sections at
all supports., The prestressing system consists of a group of full length
draped cables in the webs of the box girders. This particular example was
chosen to correspond to an approximate maximum length of a two-span

highway crossover.
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The overall width of the superstructure, 50 ft., allows a
four-lane roadway width of 48 ft. The 7-ft. depth was chosen to give a
conservative span/depth ratio of about 25, a value typical of existing
segmental bridgeé. The other dimensions shown in Fig. 3.6 are trial
dimensions for the design and were selected on the basis of a preliminary

design similar to that described in Chapter 6, which was carried out to
determine approximate dimensions and an approximate cable quantity. The
10-ft. segment length was chosen as a convenient dimension for handling
and highway transportation. The cross section consisting of a pair of
single-~cell boxes was chosen, rather than a full-width multi-cell box
girder, to provide basic units that conform with highway transportation
weight requirements. The 2-ft. wide cast-in-place strip allows for
splicing of the reinforcement between the two halves of the cross section.

If the deck were post-tensioned transversely, this width could be reduced.

The joints between the segments may be either concrete or epoxy
resin. Ordinarily segmental bridges erected on falsework have used

concrete or mortar joints.

3.3 Construction Procedure

The details of the construction procedure depend on whether con-
crete joints or epoxy resin joints are used. In either case the falsework

must be very rigid.

In the case of concrete jointing, the segments are cast short of
the 10 ft. nominal length to allow for the cast-in-place joints. A 3-in.
joint thickness is suitable. All of the segments are lifted onto the
falsework and set in their exact positions, after which the joints between
the segments are cast at one time. The cables are then inserted in

their ducts and tensioned.

With epoxy resin jointing, the segments are lifted into place on
the falsework and are glued together one by one, starting from the central
pier. A number of single strand, 20-ft. long prestressing cables inserted
in the top and bottom slabs, or alternatively temporary external strands,

must be used to tie each pair of segments together. Great care must be
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taken to ensure that the segments are firmly supported on the falsework
in such a way that no differential settlement will occur and cause
cracking. When all the segments have been connected, the main cables are

inserted and tensioned.

Finally, in either case, the falsework is removed so that the
superstructure is supported on the neoprene bearing pads, and the longi-

tudinal deck joint is cast between the two box girders.

Epoxy joints require more care in setting the segments in position
than do concrete joints and also require the use of short cables to tie
each pair of segments together. On the other hand, they require no forms
and should make possible faster construction, better quality control and

a better finished appearance.

3.4 Material Properties

The material properties assumed are as follows:

Concrete: Compressive strength: f; = 6 ksi.

Reinforcement: Yield strength: £ = 40 ksi. (This choice is
arbitrary; 60 ksicould be used.)

Prestressing: Each cable consists of a bundle of 1/2 in. diam-
eter strands. Ultimate strength: f; = 270 ksi,

3.5 Cross Section and Reinforcement

Details of the transverse design of the cross section will not be
given here. The procedure used was identical with that to be described
in Chapter 4 for a three-span bridge. The reinforcement details are shown

in Fig. 3.16.

The deck slab thickness and reinforcement were designed to comply
with the 1969 and 1973 AASHO specifications.l’2 The live load used was
AASHO HS20-44. The transverse reinforcement adopted in the top and bottom

of the slab consists of #8 bars at 6-1/2 in. spacing.

Since this design envisaged cables anchored in the webs, the
thickness of the web must be adequate to accommodate the cables and their

anchors and, together with the reinforcement, to withstand the transverse
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bending moments and the shear force. 1In this case, a thickness of 13 in.
was chosen as a minimum thickness which could accommodate cables consisting
of 20 strands, arranged in rows of two. The vertical reinforcement was
designed to resist the maximum transverse bending moment in the web. The

shear capacity will be checked later.

A minimum thickness of 6 in. was chosen for the bottom slab, this
being considered a practical minimum for placing of concrete with two
layers of reinforcement., The thickness is increased linearly to 10 in.
at the pier over a distance of 45 ft., i.e., a quarter of the span, to with-
stand the higher longitudinal compression in that region. The 10-in. maxi-
mum thickness was chosen on the basis of the preliminary design, using
procedures outlined in Sec. 6.2.4 and 6.2.5. The compressive capacity

will be checked later.

The transverse reinforcement in the bottom slab and the longitudinal
reinforcement throughout the section were provided to comply with the mini-

mum requirements specified by AASHO.

3.6 General Design Criteria

The following design criteria must be satisfied by the bridge

superstructure.

3.6.1 Ultimate Strength. The concrete section and the prestress-

ing cables must provide adequate ultimate flexural strength at all sectionms,
The concrete in the webs, together with the vertical reinforcement, must

provide adequate ultimate shear strength.

The load factors and © factors used are the more conservative

values specified in the BPR Criteria for Reinforced Concrete Bridge

6
Members, Clause 2.A.1, and are as follows:

LF Dead Load: 1.35 ¢ Flexure 0.9
LF Live Load and Impact: 2.25 ¢ Shear 0.85

As permitted by the AASHO specifications, ACI Standard 318-714

will be used for all of the ultimate shear strength calculations.
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3.6.2 Service Load Stresses. Under all possible loads the stresses

at service load after losses have occurred must not exceed the allowable

limits specified by AASHO, Clause 1.6.6(B)(2).
The allowable concrete compressive stress at design load is
0.4f = 2.4 ksi

Since the nonprestressed longitudinal reinforcement does not cross

the joints between the segments, no tension will be allowed on the concrete.
The effective prestress in the cables after losses is assumed to be
f o= 0.6f = 162 ksi [Equivalent to 0.8f;]
3.6.3 Deflections. Deflections in the completed bridge will be

examined to ensure that they are compatible with proper functioning and

good appearance of the bridge.

3.7 Design of Superstructure

After completion, the bridge superstructure will consist of a pair
of connected box girders, continuous over two spans and seated on simple

supports.

The section properties of the superstructure have been calculated
by a program, for which a listing and a diagram showing the notation are
given in Appendix B. The properties of the section at the pier and of
the minimum section are presented in Table 3.1. Properties of the half
section (i.e., one box girder) and of the full section (i.e., two box
girders joined by the 2 ft. width of a cast-in-place deck) are given for
each position. The former are required for computing stresses under dead

load and cable forces and the latter for computing stresses under live load.

3.7.1 Loading. Dead Load. The dead load compreses the weight

of the girder section and that of an asphalt road surface. The unit
weights are as follows:
(a) Concrete: A gross density, including reinforcement and cables,
of 0.150 kip/ft.3 is assumed.

(b) Asphalt: The asphalt surface, weighing 0.017 kip/ft.z, covers
the 48-ft. width of roadway.



TABLE 3.1. SECTION PROPERTIES OF SUPERSTRUCTURE--TWO-SPAN BRIDGE

Maximum Section

Minimum Section

Properties of Half Section (1l box)

Area (ft.z)

Distance from top to centroid (ft.)

Second moment of area (ft.4)

Section modulus (top) (ft.3)

Section modulus (bottom) (ft.3)
Properties of Full Section (2 boxes)

Area (ft.z)

Distance from top to centroid (ft.)

Second moment of area (ft.4)

Section modulus (top) (ft.3)

Section modulus (bottom) (ft.3)

35.84

3.118

261.9

83.98

67.47

72.77

3.076

532.4

173.1

135.7

32.55
2.797
225.4
80.58

53.61

66.19
2.755
457.5
166 .0

107.8

£y
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The load per ft. length is as follows, using the area of the

completed section obtained from Table 3.1.

Dead Load at Pier:

10.91

_0.82
11.73 kip/ft.

Concrete section: 0.150 x 72.77
Asphalt: 0.017 x 48

Dead Load at Minimum Section:

Concrete section: 0.150 x 66.19 9.92
Asphalt: = 0.82
10.74 kip/ft.

Live Load. The live load is AASHO HS20-44. The lane load will
be critical. When four lanes are loaded simultaneously, a 25 percent

reduction in load intensity is allowed (AASHO Clause 1.2.9).

Impact. The impact factor, specified in Clause 1.2.12, is as
follows:

I = 50/(180 + 125) = 0.164

3.7.2 Bending Moments. The bending moments are calcula ted at

the pier, i.e., the point of maximum negative moment, and at a distance
of 72 ft., from the end of the girder (i.e., 0.4 x span) which is approxi-
mately the point of maximum positive moment. The influence coefficients

used in the following calculations were obtained from Ref. 5.

Dead Load Moments

Moment at pier:
-0.125 x 10.74 x 1802
(263/960) x (11.7 - 10.7) x 452/2

-43,500
-280
-43,780 k. ft.

Moment at 72 ft. from end:

0.0700 x 10.74 X 1802

(19/1280) x (11.7 - 10.7) x 45 x 72/2

il

24,360
20
24,380 f.ft.
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Live Load Moments

Uniform lane load on 4 lanes = 0.75 x &4 x 0.640 1.92 kip/ft.

54 kip

Concentrated lane load on 4 lanes = 0.75 X 4 X 18

Moment at pier:

-0.125 x 1.92 X 1802

= -7,776
-2 x 0.0962 x 54 x 180 = -1,870

-9,650 kip-ft.

Moment at 72 ft. from end:

0.0950 x 1.92 x 1802 = 5,910
0.2064 x 54 x 180 = 2,006

7,920 kip-ft.

Moments Due to the Cables

These will be determined after the cable area has been calculated.

3.7.3 Cable Area. In an initial preliminary design the cable
area was calculated by the criterion of adequate ultimate strength at the
pier similar to that in Sec. 6.2.4. However, when service load stresses
were determined, it was found that this cable area was insufficient to
prevent some tension in the concrete. Accordingly, it was decided instead
to select the cable area by the relatively simple procedure of balancing
the dead load. The service load stresses and ultimate strength are then

checked in detail.

The cable profile will take the form of three parabolas having
points of tangency at 22.5 ft. (i.e., span + 8) from the center of the
pier, as shown in Fig. 3.7. An "ideal" profile, consisting of two parabolas
and a sharp bend at the pier (Fig. 3.8) would balance a uniform load along
the full length of the girder. However, it is impossible to have a sharp
bend in practice, and so the third parabola is fitted. The position of
the tangent point, at a distance of span + 8 from the pier, is sufficient

to avoid excessive curvature.

If five cables per web are assumed as suggested by the preliminary

design, then

Minimum distance from edge of girder to cable center = 0.610 ft.
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At the end of the girder the centroid of the cable anchors will
be made to coincide with the centroid of the concrete section, to produce

no bending at that point. From Table 3.1:
Distance from top of girder to centroid of end section = 2,797 ft.

The cable area will now be chosen as that required to balance the
dead load of the superstructure, assuming the idealized cable profile

of Fig. 3.8. The cable drape is:
h ~ (7 - 0.610) - (2.797 + 0.610)/2 = 4.686 ft.

Cable force required to balance dead load:

wL2/8h (From Sec. 3.1.2)
10.8 X 180%/(8 X 4.686) = 9,330 kip

F

"

162 ksi

Effective prestress: fse

9,330/162 = 57.6 in%

Cable area required: AS

Adopt 20 cables each 20 strands (i.e., 5 cables per web) [A possible

alternate would be 32 cables, each 12 strands.]
A_ = 61.2 in? (Total - 4 webs)

The cables could of course have been chosen to balance some other
fraction of dead load, either greater or less than unity. All that is
necessary is that the concrete stresses in the girder be satisfactory under
all service loads and that the ultimate strength be adequate. The choice
of the factor of unity, used here, was again suggested by a preliminary
design in which the cables balanced about 0.9 of the dead load and were

insufficient since some tensile stress occurred in the concrete.

The idealized cable profile was used to simplify the 'load
balancing" calculation. However, in all checks on the concrete stresses
and the ultimate strength in the following sections, the actual profile

is used.

3.7.4 Equivalent Cable Loads. In order to determine the stresses

in the concrete the equivalent cable loads must be calculated for the

actual tendon profile. The total cable force is given by:
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Cable Force: F A % f

S se

61.2 x 162 = 9,914 kip

il
i

The equations of the parabolas forming the cable profile (Fig. 3.7)

are as follows:

x = 0 to x = 157.5 f¢t.:

y = 0.00065440x% - 0.096980x

157.5 ft. to 180 ft.:

y = ~0.0024257x2 + 0.87325x - 76.406

b
i

where y is measured upwards from the centroid of the minimum cross section
(i.e., the centroid of the cables at the end). Reference 12 (Table 1A)

was utilized in deriving these equations.

The equivalent transverse cable loads are obtained as follows,

using the approach of Sec. 3.1.2.

x =0 to x = 157.5 ft.:
Uniform equivalent load, w = F(d2y/dx2)
= 9,914 x (2x.00065440)
= 12.975 kip/ft.
Total load = 12.975 x 157.5 = 2,043.6 kip
x = 157.7 ft. to x = 180 ft.:
Uniform equivalent load = 9,914 x (2x-0.0024257)
= -48.097 kip/ft.
Total load = -48.097 x 22.5 = -1,082.2 kip
x = 0:
Concentrated load, P = F(dy/dx)
= 9,914(-0.096980)
= -961.46 kip

These transverse loads acting on the concrete section are shown in
Fig. 3.9. An axial load, equal to the cable force, is also shown acting

on either end.

3.7.5 Cable Moments. The bending moments produced by these cable

loads on the concrete section are now determined. The moment at the pier

is obtained by elastic analysis utilizing Fig. 21 of Ref, 12.
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Resultant cable moment at pier

(about line of action of F) = 39.761 k-ft.

This value is not quite "exact" because the effect of the axial force was
ignored. The position of the section centroid varies over a part of the
span, as shown in Fig. 3.10, and in that portion the axial force will have
a moment about the section centroid, which will cause bending of the
girder and modify the moment determined above. This small error is ignored
here, but will be taken into account when a computer analysis of stresses

is made using the program MUPDI.

The following moments and reactions are required in the calculation

of ultimate strength and concrete stresses.

Resultant Cable Moment at Pier (about centroid of section) =

39,761 + 9,914(3.118 - 2.797) = 42,943 k-ft,

Secondary Cable Moment at Pier =

Resultant moment - Primary moment =

42,943 - 9,914(3.118 - 0.610) = 18,080 k-ft.

Since the secondary moment is produced by the cable-induced reactions, it
will vary linearly across the span from zero at the end of the girder to

the above value at the pier.

Cable-induced End Reaction =

Secondary moment at pier <4 span =
18,080/180 = 100.44 kip

This is an upward reaction.

Resul tant Cable Moment at 72 ft. from End = .
(100.44 - 961.46) X 72 + 12.975 x 72°/2 = -28,362 k-ft.

3.7.6 Ultimate Flexural Strength at Pier. 1In calculating ultimate

flexural strength, no moment redistribution will be assumed. The secondary
cable moments are included in the calculations, because these are produced
by real external reactions caused by the cables. The ultimate moment at

the pier is given by
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1.35(DL moment) + 2.25(LL + Impact moment)

=
It

+ (secondary cable moment)

1.35(-43,780) + 2.25(1.164)(-9,650) + 18,080
-59,100 - 25,270 + 18,080

-66,300 k-ft.

The capacity of the cables and the bottom slab are now determined

as follows:

Effective depth: d 7 - 0.61 = 6.39 ft.

Total bottom slab

width: b=2x12 = 24 ft.

Cable area: AS = 61.2 in?
p = As/bd
= 61.2/(24 x 6.39 X 144) = 0.00277
O.5pf;/f; = 0.5 X 0.00277 x 270/6 = 0.0623

Cable stress at ultimate load, given by AASHO Sec. 1.6.9(C) for
bonded members:
= f _ t gt
fsu = fs(l O.5pfs/fc)
= 270(1 - 0.0623) = 253 ksi

Bottom slab

thickness: t = 10 in. = 0.833 ft.

Since C = T indicates A = 10.5 in. ~ t
Moment arm =d - 0.5a =d - 0.5t
= 6.39 - 0.5(0.833) = 5.97 ft.
Cable force at
ultimate load: Pu = Mu/(d - 0.5¢t)
= 66,300/5.97 = 11,100 kip

Capacity of cables = ¢ﬁsuAs
= 0.9 X 253 x 61.2 = 13,900 kip
Caz?:;ty of bottom - @(0.85f;bt)

0.9 x 0.85 x 6 x 144 x 24 x 0.833 = 13,200 kip

The capacities of both the cables and the slab are greater than

Pu. Hence the ultimate flexural strength is adquate.
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3.7.7 Ultimate Flexural Strength at 72 ft. from End. The

ultimate moment at 72 ft. from the end is given by

M 1.35(DL moment) + 2.25(LL + Impact moment)

u

+ (Secondary moment)
1.35(24,380) + 2.25(1.164)(7,920) + (0.4 x 18,080)
32,910 + 20,740 + 7,230
60,880 k-ft.

The capacity of the cables was checked in a manner similar to

that used in the preceding section and found to be adequate.

3.7.8 Service Load Stresses. The service load stresses in the

concrete at the critical sections are first determined using beam theory.
The cable moments used are the resultant moments on the concrete section.
In the calculation of dead load stresses the properties of the two unjoined
box girders are used and for live load stresses the properties of the full

section are used, These properties are obtained from Table 3.1.

Concrete stresses at pier

Stress at centroid = P/A =

-9,914/(2 x 35.84 x 1l44) = -0.960 ksi

Stresses under dead load

Dead load moment = =43,780
Cable moment = 42,940
-840 k-ft.

Top stress = -0.960 + 840/(2 X 83.98 x 144) = -0.925 ksi
Bottom stress = -0.960 - 840/(2 x 67.47 X 144) = -1.003 kdi
Stresses under full load

LL + Impact moment = -1.164 X 9,650 = -11,230 k-ft.

Top stress = -0.925 + 11,230/(173.1 X 144) = -0.474 ksi

Bottom stress = -1.003 - 11,230/(137.5 % 144) = -1.570 ksi

Concrete stresses at 72 ft., from end

Stress at centroid = P/A =

-9,914/(2 x 32.55 x l44)

-1.057 ksi

fi
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Stresses under dead load

Dead load moment = 24,380

Cable moment =-28,360
-3,980 k-ft.

Top stress = -1.057 + 3,980/(2 x 80.58 x 144) = -0.885 ksi
Bottom stress = -1.057 - 3,980/(2 x 53.61 x 144) = -1.315 ksi
Stresses under full load

LL + Impact moment = 1,164 X 7,920 = 9,220 k-ft.

Top stress = -0.885 - 9,220/(166 x 144) = -1.270 ksi

Bottom stress = -1.315 4+ 9,220/(107.8 x 144) = -0.721 ksi

All of the stresses ealculated are within the acceptable 2.4 ksi
compression and O ksi tension limits. The stresses at all sections and
under various critical loadings will also be checked by computer analyses.
However, before that the shear strength will be investigated to determine

web adequacy.

3.7.9 Shear. The maximum shear forces on the full width of the
superstructure are calculated using the influence coefficients obtained

from Ref. 5.

Shear force at pier:

Dead load: 0.625 x 10.74 x 180 = 1,208

(1,261/1,280) x (11.7 - 10.7) x 45/2 = 22
1,230 kip
Live Load: 4[(0.625 x 0.640 x 180) + 26] = 392 kip

The 25 percent reduction in live load intensity for loading on four lanes
is not used here, because it was found in the computer amnalysis of a
double box girder bridge (to be described in the next chapter) that, if
this reduction is made, the critical shear loading case will then be live

load on two lanes only,
Cable-induced shear: -100 kip

This is equal to the external end reaction induced by the cables, as

calculated in Sec. 3.7.5.
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Shear force at end of bridge

Dead load: 0.375 x 10.74 x 180 = 725
(19/1,280) x (11.7 - 10.7) x 45/2 = __ 0
725 kip
Live load: 4[(0.4375 x 0.640 x 180) + 26] = 306 kip
Cable~induced shear = 100 kip

Ultimate shear at pier

Vu 1.35(DL shear) + 2.25(LL + Impact shear) + (cable shear)
1.35(1,230) + 2.25(1.164)(392) - 100

1,660 + 1,027 - 100

2,587 kip

H

it

fl

n

The shear capacity of the webs at this section will now be deter-
mined. The concrete stresses fpc and (fpe - fd) are obtained from
Sec. 3.7.8.
Compressive stress at centroid: fpC = (0,960 ksi
Compregsive stress at top of girder under dead load and
prestress: (f e~ fd) = 0.925 ksi
6 JE = 6.,/6,000/1,000 = 0.465 ksi
Top section modulus (from Table 3.1):
(Ify) = 173.1 x 12> in3

(/) (6 /E, + (£, - £5)]
173.1 x 123(0.465 + 0.925)/12
34,600 k-ft.

i

fi

Cracking Moment: M
cr

]

]

Live load shear/moment ratio:

(V./M__ ) = 0.75 % 392/9,650 = 0.0304
{' max
VM
—%—55 = (0.0304)(34,600) = 1052
max
Effective depth: d = (7 - 0.61) ¥ 12 = 76.7 in.
Total web width: v =4 %X 13 = 52 in.

Vertical component of cable force: Vp =0

since the cables are horizontal at the pier.
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The shear carried by the concrete, VC == v b’d is the lesser of
c

V,=v bdand Vv = v _ b d, where
ci ci cw cw
_ Ny,
Vo = (0.6./fc)b d+ Vv, + vmer/Mhax

= (0.0465 X 52 x 76.7) + (1230 - 100) + 1052
= 185 + 1130 + 1052

= 2,367 kip
= /
v, (3.5./f1 036 B+

= (0.271 + 0.288) x 52 x 76.7 + O

= 2,230 kip

Hence, VC = 2,230 kip.

The AASHO Specifications allow the use of the above expressions
for the shear capacity of the concrete, taken from Eqs. 11-11 and 11-12
of the ACI Standard 318-71. These expressions were actually developed
for prestressed I-sections, but are considered also applicable for box
girders, when the webs are loaded approximately uniformly as in this

calculation.

In the expression for VCi the cable-induced shear must be included

with the dead load shear.

The vertical shear reinforcement required in the webs of the box

girders will now be determined.

Shear reinforcement required: Using Eq. 11-13 of ACI 318-71 as per-
mitted by AASHO Specifications

- / _ (4
. - (vu Vc)b s ) (Vu ‘”Vc)b s

v f T A d £
y @ y

(¥, - @V )5/ (eAf)
(2,587 - 0.85 x 2,230) x 12/(0.85 x 76.7 x 40)

3.18 in% per ft. length of bridge

This exceeds the minimum AV = 100b’s/fy = 1,56 in% per ft. required by
AASHO.
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The vertical web reinforcement provided for transverse bending
moment is #7 at 13 in. in both faces of each web. The total area (4 webs)
is 2

Av = 4,43 in7/ft. length
In this particular case it is not considered necessary to add the rein-
forcement requirements for maximum shear and maximum transverse moment,
because the amount required for shear falls off rapidly away from the
pier, whereas the diaphragm over the support ensures that the transverse
moment near the pier will be small. So the web reinforcement will remain

as shown in Fig. 3.16.

The shear strength at the end of the bridge was also investigated.
It was found that the concrete webs have adequate strength at that sec-

tion without utilizing additional reinforcement.

3.7.10 Computer Analysis. With the basic proportions, reinforce-

ment, and tendons designed, the completed superstructure was analyzed by
computer to determine the stresses in the concrete section under dead
load and under various live load patterns. The MUPDI program of A.
Scordelis, described in Ref. 23, was used. This program analyzes the

structure using elastic folded plate theory.

For dead load (including the cable forces) one box girder (i.e.,
half of the superstructure cross section) was analyzed, but for live load
the full cross section was used, In this way the actual behavior of the

structure is best represented.

The effect of the prestressing cables was simulated by treating
their equivalent transverse loads and éxial forces as applied loads in
the webs of the girder. Thus, the cable forces for input comsist of the
distributed lateral loads and the axial forces shown in Fig. 3.9. 1In
addition, the effect of the change in the position of the girder centroid
over the 45-ft. distance either side of the pier (Fig. 3.10), was taken
into account. In that region the axial force has a moment about the cen-
troid, which causes additional bending. This effect was treated as an
applied moment varying linearly from a value of (cable force) x (shift in

centroid position) at the pier to zero at a distance of 45 ft. from the pier.
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The following two simplifications were made, so that analysis

with the MUPDI program would be feasible.

(a) The MUPDI program cannot handle the variation in the thickness
of the bottom slab. Separate analyses were made with two different
idealized sections, one having the properties of the maximum section
(Fig. 3.11), the other the minimum section (Fig. 3.12). The first is used
to obtain the stresses near the pier and the second to obtain the stresses

elsewhere throughout the superstructure.

(b) With this program, all concentrated loads must be applied at
the node points of the idealized section. The moment of the end axial
force about the centroid of the real section was calculated and this
force and moment replaced by a pair of forces at the node points at the
top and bottom of the web of the idealized section. This pair of forces
was determined so as to give the same resultant force and moment about the
centroid of the idealized section as occur in the real section. The
applied moment near the pier was also replaced by a pair of forces in the

same way.
The following live load cases were investigated:

(a) Full lane loads on all lanes of one span
(b) Lane load on one side (2 lanes) of one span

(¢) Full lane loads on all lanes of two spans

Examination of the computer output revealed that under dead load
and also under full dead and live load (with impact) all stresses in the
concrete were within the permissible limits. Stress distributions across
the section at the pier and at a distance of 70 ft. from the end of the
bridge are shown in Figs. 3.13 and 3.14. It can be seen that the stresses
vary across the section at the pier because of shear lag, but are almost
uniform over each slab for the section 70 ft. from the end, where the
shear is small. Comparison of these stresses with those calculated using
beam theory in Sec. 3.7.8 shows generally good agreement. The increased
local stress at the piers due to shear lag results in an approximately
25 percent increase over beam theory calculations. This indicates a need

for conservatism in design based on beam theory analyses.
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The stresses in the cables and hence in the concrete alter with
time under the effects of creep and shrinkage. Creep tends to reduce the
effective stress in the cables. However, the value of the effective
stress used in the calculations, namely fse = O.6f;, allows for this loss.
The effect of shrinkage is similar to that of creep, but will probably be
small, because much of the shrinkage occurs in the precast units before
they are erectéd. This minimization of creep and shrinkage effects is an

important advantage of precast segmental constructiom.

Comparison of the results obtained for (a) full live load on ome
span and (b) live load on one side of one span showed that the full (4 lane)
loading is critical (for stresses in the positive moment region), even
though a 25 percent reduction in load intensity is made in this case. When
the load is uneven, the superstructure tends to even out the stresses to

some extent. The stress distribution for case (b) is shown in Fig. 3.15.

Deflections are also given in the computer output. The maximum

deflections occur at 80 ft. from the end of the bridge and are as follows:

Deflection under dead load -0.481 in.
Deflection under live load (with impact)

on one span 1.128 in.
Total deflection 0.647 in.

The effect of creep on the concrete modulus is not included. If creep,
shrinkage, or temperature seem significant, the MUPDI analysis eould be
changed to examine these effects. The deflection/span ratio under live
load is approximately 1/2000. This is well within the limit of 1/300 which

is normally considered acceptable.

The results of the computer analysis indicate that no alterations
are required to the girder section or the cables. Since the units meet
all service load stress conditions comfortably and have approximately
25 percent more ultimate moment capacity than required, another iteration
in design could be attempted. However, as the previous trial did not meet
tensile stress limits with approximately 10 percent less tendon area, little
is to be gained from further refinement. Full details of the section,

including cables and reinforcement, are shown in Fig. 3.16.



Loaded lanes

Top slab

o ~t o~ D r~
N o ~ o N
o~ o~ o~ o~ —i
o o o o o
1 ] 1 [ '
Bottom slab

— <
= Ne] wn (]
= ~3 0 N
. . N N
(e») Q - .
Q Q

NOTES: Stresses are in ksi. Tensile stresgds are positive.
Live load consists of AASHO lane load on two lanes

Fig. 3.15.

(one side) of one span. Impact is included.

MUPDI analysis live load stress distribution in
two-span bridge at 70 ft. from end support under
live load on one side only

-0.144

63



64
#8 @ 6-1/2" 6-1/2"

# @ 12'z_§ —\ l

6" (over middle half
of span between webs)

# @ 12" (over outer half)

CABLES

5 tendons, each 20
strands

Strands: 1/2" dia.

Possible alternate:
8 tendons, each

12 strands
#7 13"
/— @
””“ﬂ,w--#4 @ 12"
#4 @ 6-1/2"
Concrete cover to reinforcement
6" and cables:

Underside of deck slab - 1"
Elsewhere - 1-1/2"

7.7 %
X
e\
#4 @ 18"

Fig. 3.16. C(Cable and reinforcement details




65

3.7.11 Friction Losses. The friction losses in the cables

were calculated using the SIMPLA2 program developed by R. Brown. It
was found that the assumed effective prestress of 0.6f; was realistic
with normal stressing if the conduits consist of rigid thin wall metal

tubing.

3.7.12 Diaphragms. Diaphragms inside the box sections are
required at each of the bearings to maintain the shape of the cross
section and to provide concrete bearing capacity. A thickness of 6 in.
is chosen as a practical minimum. This provides adequate bearing capacity.
No intermediate diaphragms are indicated as necessary from the results

of the MUPDI analysis.

3.7.13 Prestressing System Details. When the actual post-

tensioning system is selected for the project (usually following selec-
tion of a contractor), the prestressing system details will have to be
closely examined. Anchorage locations, dimensions, and auxiliary rein-
forcement to control bursting, spalling, and splitting stresses should be

checked by the designer.

3.8 Summary of Design Procedure

The principal stages of design are as follows:

(a) An approximate cross section shape is chosen.--This can be based on
the result of an optimization study, as described in Chapter 6.

Alternatively, a preliminary design may be carried out.

(b) The cross section is designed in detail.--The deck slab thickness and
reinforcement are determined by wheel load moments. The web thickness
must be sufficient to accommodate the cables and their anchors. A
preliminary shear check is advisable to ensure adequate web thickness

is provided.

(¢) The cables are designed to balance the dead load.--To calculate the
cable area, an ideal cable profile consisting of two parabolas is
assumed. The actual profile consists of three parabolas, fitted to

avoid excessive curvature at the pier.
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(d)

(e)

(£)

(g)

The ultimate strength of the superstructure is checked.--The
capacities of the cables and the bottom slab are checked at the

pier. The capacity of the cables is also checked at the section of
maximum positive moment. If necessary the cross section or the cables

are revised.

The concrete service load stresses are calculated from beam theory.--
The stresses under dead and live load are checked at both critical

sections. The cross section or cables are revised if necessary.

The ultimate shear strength is checked.--The ultimate shear force,
the capacity of the webs, and the reinforcement required are calculatd
at all the critical sections. Web thickness is adjusted upward if

necessary.

The superstructure is analyzed with the MUPDI program.--The stresses
are determined under dead load and under various live loads. 1If
necessary the cross section or the cables are revised and the analysis

repeated.

3.9 OQther Examples of Bridges

Constructed on Falsework

Other cases of bridges constructed on falsework, requiring varia-

tions in the design procedure adopted in the example chosen, are considered

briefly.

3.9.1 Multi-Cell Box Girder. An alternative cross section for

the bridge considered is a three-cell box girder cast in full width

sections.

The design procedure for this case is almost identical with that

already outlined. However, a different program must be prepared or manual

computations used to compute the cross section properties. A preliminary

design and optimization program for a multi-cell box girder bridge is

included in Chapter 6.

The advantage of a multi-cell box is that the cast-in-place longi-

tudinal joint is not required. The disadvantage is that the basic units
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are twice as heavy and, therefore, more difficult to transport and erect.
Also, the lower flange tends to have excess capacity and results in

longer cantilever overhangs on the top flange.

3.9.2 Bridges with More Than Two Spans. With bridges having

three or four spans, it may still be possible to use full length draped
cables. Friction losses constitute the main factor limiting the feasible

length of cables.

If full length cables are used, the design procedure can be essen-
tially the same as that for two-span bridges. The number of critical
sections for investigation of service load stresses and ultimate strength
is, of course, greater. 1If all spans are equal, the load that is balanced
by the cables in the outer spans will be less than that balanced in the

inner spans, unless the drape is adjusted.

If the cables do not run the full length of the bridge, the
cable pattern and, hence, the determination of the cable loads will
become more complex. Apart from this, it should be possible to follow
a generally similar design procedure. Concrete stresses must also be
checked during construction, i.e., as each separate group of cables is

tensioned.

3.9.3 Continuous Viaducts. In viaducts, comprising a large

number of equal spans, the cables will generally extend across one or two
spans. The strength of the superstructure must be checked during the dif-
ferent stages of construction of a span, especially as each set of cables

is tensioned.

The determination of ultimate strength and service load stresses
in the completed structure can be generally similar to that for the two-
span example. The MUPDI program can handle a maximum of five spans, but
this should provide an adequate approximation to the stresses in the

multi-span superstructure.

Provision must be made for expansion of the superstructure and
careful consideration given to location of joints and to design of the

piers.
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CHAPTER 4

DESIGN PROCEDURE FOR BRIDGES CONSTRUCTED IN CANTILEVER

The design of a bridge to be constructed in cantilever is
considerably more complex than that of a bridge constructed on falsework.
The bridge must be designed for each stage of the segmental construction,
as well as in its completed state. Besides, unlike construction on false-
work, where full-length draped cables can be used, cantilever construction
requires a large number of cables of various lengths anchored at various

points along the girder.

The design procedure in this chapter is developed using the
particular example of a continuous bridge with spans 100 ft.-200 ft.-100 ft.
The basic steps in the design of the superstructure are as follows:

(a) An approximate cross section is chosen on the basis of a
preliminary design or an optimization study.

(b) The cross section is designed in detail.

(c) The top cables are designed for cantilever erection.

(d) The bottom cables are designed for ultimate load on the
completed structure.

(e) The concrete service load stresses are calculated from beam
theory.

(£) The ultimate shear strength is checked.

(g) The completed superstructure is analyzed using the computer
program MUPDI to check for shear lag, warping, and unsymmetrical
loading effects, and to verify the design.

(h) The final design is analyzed using the computer program SIMPLA2
to check stresses, deflections, and forces at each construction
stage to verify the design and construction plan.

The same procedure can be directly applied to other three-span
bridges with span ratios 1:2:1 but with varying lengths. Extension of
the method to other span ratios and to bridges of more than three spans

will be discussed.

69
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The equivalent cable load concept, developed in Chapter 3, will
again be extensively used. However, first this concept will be extended
to apply to a system with cables of varying length as used in a cantilever

constructed bridge.

4,1 Equivalent Load of a Cable System

4.1,1 Moment Balancing. In a continuous girder prestressed by a

system of cables of varying length, it is often desirable or convenient
to design the cable forces such that the cable moment at each point will
counteract or "balance" the bending moment due to some applied load. By
analogy with load balancing, this design technique will be called moment

balancing.

As an example, consider the problem of balancing a uniform load
on the three-span bridge shown in Fig. 4.1. This can be done by setting
the primary bending moment of the cables about the centroid equal and
opposite to the elastic bending moment due to the uniform load w, at each
point along the girder [Fig. 4.1(a)]. With cantilever construction the
cables are generally straight over the greater part of their length and
the eccentricity from the centroid is approximately constant. Variation
in cable moment is achieved by varying the number of cables of each size
from section to section. The resultant of the bending moments due to the
applied load and the cables will be zero at all points. The deflection,

consequently, will also be zero.

The cable (primary) moment diagram shown in Fig. 4.1(a), however,
is not the only one that will achieve balance. There is no need for the
primary cable moment diagram to correspond to an elastic distribution; any
moment diagram that is statically compatible with the applied load will do.
Two other suitable primary cable moment diagrams are shown in Figs. 4.1(b)
and 4.1(¢c). In 4.1(b) the moment diagram is the same as in a simply sup-
ported system, and in 4.1(c) it is the same as in a cantilever system, i.e.,
the end reactions are zero. However, in all cases under the applied load w,
there will be zero resultant moment at all points in the concrete section.
There will be zero deflection also and no interaction between the different

spans.
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Fig. 4.1. Moment balancing for a uniform load
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If the cable systems of Figs. 4.1(a), (b), and (c) are further
examined, it will be found that the external reactions at the supports
are different in each case. Also, it may be noted that the primary and
secondary cable moments differ in each case but the resultant cable moments

are the same.

One further important distinction between load balancing with a
single draped cable and moment balancing with a system of cables should
be pointed out, With a draped cable the shears, as well as the bending
moments, can be balanced. However, with a system of cables of varying
length it is generally possible to balance the bending moments only but
not the shears, because the cables normally run horizontally except near

their anchorages.

4,1.2 Equivalent Load. The equivalent load of a cable system

will be defined as the applied load which produces the same resultant
bending moments on the concrete girder section as are produced by the

cable system,

The equivalent load is equal and opposite to the load that would
be balanced by the cable system. Consequently, in view of the preceding
section, the following principle provides one way of determining the
equivalent load of a cable system.

If a system of cables produces a primary bending moment diagram
that can statically balance some applied load, then -the negative
of that load is the equivalent load of the system.

Thus, when the cable system is designed to directly balance some
specific applied loading, the equivalent load will be known. However,
sometimes a cable system will be designed by some other criterion, and
the above principle cannot be readily used to obtain the equivalent load.
In such cases, the following alternative approach will be useful.

Another way to determine the equivalent load of the system is to
take each cable separately and calculate its individual equivalent
load. Then combine all the separate loads for the different cables

along the length of the girder to give the equivalent load of the
system.
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As an example, consider a 200-ft. span of a continuous girder,
as shown in Fig. 4.2(a), which has a system of ten cables in the bottom
flange, all of equal size and stopping off at 10-ft. intervals starting
5 ft. from the span center. The cable force is the same in all cables
and the eccentricity is constant. The equivalent load for each individual
cable consists of a pair of concentrated moments, m(k-ft.), one at each

anchor, where
m = (cable force) X (eccentricity)

Summing for all cables, the equivalent load will be a set of

concentrated moments, m, at 10-ft. intervals, as shown in Fig. 4.2(b).

The girder could now be analyzed to obtain the resultant cable
moments., However, a simplification can be made that will greatly facili-
tate the design procedure. Each concentrated moment can be replaced by
the statically equivalent couple of forces, P(kip), as shown in Fig. 4.2(c),

where

P = m/10

Now it can be seen that these forces all cancel out, except at
midspan, where there is a resultant upward force of 2P, and at the supports
where there is a downward force P[Fig. 4.2(d)]. So, ignoring the forces

at the supports, which are equivalent reactions, we have an equivalent
load of 2P at midspan.

In a simple case like this, the equivalent load can also be obtained
using the first method and the two results can be compared. The primary

moment diagram for the cable system is triangular (smoothing out the steps)

with a maximum moment
M= 10m = 100P

Such a moment diagram will statically balance a downward concentrated load

Q (kip) at midspan, where
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M = QL/4
= Q x 200/4
i.e., Q = M/50
~ 2P

Hence, again there is obtained an equivalent load of 2P acting upwards

at midspan.

4,2 Design Example - Three-Span Bridge

The design criteria will be developed using as a design example
the three-span bridge shown in Fig. 4.3. The precast segments are 10-ft.
long, except for the two end segments which are 5 ft. and the central
closing segment which is made 1 ft. short to allow for a concrete joint.
The cross section, shown in Fig. 4.4, consists of a pair of single-cell
boxes connected by the deck slab. Each box is cast separately and the
2-ft. wide longitudinal cast-in-place joint connecting them is not made
until the two separate girders have been erected and fully tensioned. The
completed superstructure is supported on simple neoprene pads on the piers.

Diaphragms are provided inside the box section at all supports.

This particular example was chosen to meet the requirements for
an actual prototype, envisaged by the Texas Highway Department, to cross
the Gulf Intracoastal Waterway at Corpus Christi, Texas. This example
was used as the preliminary design of the structure. Details of the final

design are shown in Appendix A.

The overall width of the superstructure, 56 ft., allows a four
lane roadway width of 54 ft. The 8-ft. depth was chosen to give a con-
servative span/depth ratio of 25. The other dimensions shown in Fig. 4.4
are trial dimensions for the design and are selected on the basis of a
preliminary design similar to that described in Chapter 7, which was
carried out to determine approximate dimensions of the cross section and

approximate cable layouts and quantities.

Epoxy resin jointing is used between the segments,
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4,3 Construction Procedure

The stages of construction are as follows:

The first 10-ft. segment is set in place directly above the main
pier, as in Fig., 4.5, Temporary support blocks are used instead of the
neoprene pads, to provide rigidity during construction. Temporary holding
down bolts are also used to keep the segment fixed in place. To provide
fixity against any unbalanced moments on the superstructure the pier must
have a high moment capacity or temporary struts supported on the pier

foundation can be set at either end of this first segment.

The superstructure is erected by the symmetric cantilever proce-
dure, to a distance of 95 ft. either side of the pier [Fig. 4.6(a)]. Top
cables are inserted and tensioned as each pair of segments is set in place
and jointed. This procedure is carried out for both halves of the cross

section and for both of the main piers.

The final 5 ft. segment is placed in each side span [Fig. 4.6(b)].
The bottom cables in this span are inserted and tensioned, thereby com-
pleting this span. Jacks are set on the end piers under the ends of the

girder.

The closing segment is placed at the center of the bridge
[Fig. 4.6(c)]. This segment is made 9 ft. long (or two &4 ft., 6 in.
segments are used) to allow a 6 in. cast-in-place concrete joint at either
end. The girder is required to have zero slope at this point for continuity.
This could be assured either by initially setting the pier segment at an

appropriate slope or else by camber.

The bottom cables in the main span are then inserted and tensioned,
starting with the longest cables. The temporary struts or bolt connec-
tions at the piers can be removed after the first (longest) set of cables
have been tensioned [Fig. 4.6(d)1. The jacks at the ends of the bridge
will provide restraint. At some stage during the insertion of the bottom
cables, these jacks will have to be raised to give an increment in the
reaction sufficient to prevent tension in the concrete at the top of the
girder at midspan. The required stage and increment will be determined

in Sec. 4.8.11.
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After all the cables have been inserted and tensioned, the bridge
is jacked up slightly at the main piers and the temporary supports are
replaced by the neoprene bearing pads. The end jacks are then adjusted
to exert the correct reaction for the completed continuous bridge as
determined in Sec. 4.8.9. The neoprene bearing pads at the ends are set

firmly in position to provide this reaction ensuring continuous behavior.

Finally, the longitudinal deck joint between the two box girders

is cast in place.

4.4 Materal Properties

The material properties assumed are the same as in Chapter 3, i.e.,

Concrete: Compressive strength: fg = 6 ksi
Reinforcement: Yield Strength: f = 40 ksi
Prestressing: Each cable consists of a bundle of
1/2 in. dia. strands
Ultimate strength: f; = 270 ksi

4.5 Design of Cross Section and
Reinforcement

4.5.1 Deck Slab. The deck is designed according to the 1969 and
1973 AASHO specifications.l’2 The loading on the deck is as follows:

Dead load
(a) Concrete: A density of 0.150 kips/ft? is assumed.

(b) Asphalt: An asphalt surface, weighing 0.017 kip/ftg, covers
the 54-ft, width of roadway.

Live load and impact. The live load is AASHO HS20-44. The impact
factor is 30 percent (Clause 1.2.12).

Allowable stresses (Clause 1.5.1)
Concrete: £, = O.AEL = 2.4 ksi
20 ksi

Reinforcement: fS
Modular ratio (Clause 1.5.2): n = 6

The distance from the surface of the slab to the neutral axis

is kd, where

o
]

fc/(fC + fs/n)
2.4/(2.4 + 3.33) = 0.419
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The moment arm is jd, where
j=1-%k/3=0.860

The concrete moment resistance coefficient
R O.Sijk
0.5 %X 2.4 % 0.860 x 0.419 = 0.432 ksi

Concrete cover. The concrete cover for reinforcement and cables

will be as specified by AASHO (Clause 1.5.6), i.e.,
(a) Underside of deck slab: 1 in.
(b) Elsewhere: 1-1/2 in.

Live load moments., The live load moments in the deck slab are calcu-

lated by the method given in Clause 1.3.2 of the AASHO specifica-
tions. To determine if this method is sufficiently accurate for

a double box girder bridge, a typical superstructure was analyzed,
using the MUPDI program, with truck loads in various critical
positions. The maximum negative moment computed by the program

for the interior portion of the deck slab exceeded that given by
the AASHO method by 9 percent under the worst loading condition.
The maximum positive moment computed was 20 percent below the AASHO
value. Allowing for a small amount of inelastic moment redistribu-
tion, and the conservatism of the design procedures selected, the

AASHO method may be considered sufficiently accurate.

4,5,2 Cantilever Portion of Deck Slab. The slab dimensions and

the critical wheel load position are shown in Fig. 4.7. For design
purposes, assume a 6 in. X 6 in. fillet to allow for possible variations.
The critical section is at the root of the fillet. The weight of a curb
and railing is neglected in this design example. 1In general it should be

included, although the effect on the total bending moment will be small.

Dead load moment

Asphalt:  0.017 x 4.5%/2 = 0.172
Concrete:  (6/12) x 0.150 x 5.52/2 = 1.134
(1.833/12) x 0.150 x 5.5°/6 = 0.116

1.422 k-ft./ft.
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(Live load and impact) moment

X = 3.5 ft,
Width of distribution [Clause 1.3.2(H)]:

E = 0.85+ 3.75 = 6.55 ft.
Moment:
M = 1.3 PX/E (30% Impact Factor)
= 1.3 x 16 x 3.5/6.55 = 11.114 k-ft./ft.
Total moment: 12.54 k-ft./ft.

Required effective depth

d = JIM/®x D]
=./ [12.54/(0.432 x 1)] = 5.39

Actual d = 5.83 in., assuming #8 bars and 1-1/2 in. concrete
cover.

Reinforcement required
A = M/f jd
s s 9
= 12,54 % 12/(20 x 0.86 X 5.83) = 1.50 in./ft.

Adopt #8 bars at 6 in. in top of slab
AS = 1.57 in?/ft.

4.5.3 Interior Portion of Deck Slab. To be on the safe side,

the fillets are ignored and the full clear span between the webs is used:
S = 13.33 ft.

Dead load moment

(0.017 + 0.150 x 7/12) X 13.332/12 = 1.55 k-ft./ft.

Live load moment

Wheel load: P = 16 kip

The maximum positive and negative moment is given according to
Clause 1.3.2(C)

M=1.3 % 0.8(S+ 2)P/32
1.3 x 0.8(13.33 + 2) x 16/32
(0.3 represents the impact factor and 0.8 is a continuity factor)

9.52 f-ft,/ft.

7.97 k~ft./ft.

Total moment
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This moment must be corrected for carry-over from the cantilever
portion. As an approximation, the top slab is considered fixed at the

interior web and the outer web pinned at the bottom slab.

Top slab stiffness: (7/12)3/14.33 = 0.014
Web stiffness: (3/4)(1)3/7.5 = 0.100
0.114

The corrected moment is then obtained from moment distribution, thus
M= [(9.52 x 0.100) + (12.54 x 0.014)]/0.114
= 9,89 k-ft./ft,

Required effective depth
d =./[9.89/(0.432 x 1)] = 4.78 in.

Actual d = 5 in.

Reinforcement required
A= 9.89 x 12/(20 x 0.86 x 5) = 1.38 in/ft.

To match the spacing in the cantilever portion, adopt #8 bars

at 6 in. in top and bottom of slab.

AS= 1.57 in?/ft.

4.5.4 Web Thickness. The maximum cable size to be used in the

girder was envisioned as 20 strands. The contractor later submitted a
construction plan based on 12 strand tendons. A minimum web thickness
of 12 in. is required to accommodate the anchorages for these cables.

Construction experience with the congested webs later indicated that a

14 in. thickness would have been more appropriate.

4.5.5 Bottom Slab. A minimum thickness of 6 in. is chosen for
the bottom slab, as in Chapter 3. The thickness is increased linearly or
in steps to 10 in. at the main pier, over a distance of 25 ft., to with-
stand the higher longitudinal compression in that region. The 10 in,
maximum thickness and the 25 ft. taper length are chosen on the basis of
a previous preliminary design similar to that outlined in Sec. 7.2.3. The

compressive capacity will be checked later.

4.5.6 Reinforcement of the Girder Section. The transverse

reinforcement in the deck slab has been determined. The reinforcement
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for the full cross section is shown in Fig. 4.14. The following criteria

were used to determine this reinforcement.

Vertical reinforcement in the webs. The results of the MUPDI

analysis of a bridge under truck loads, referred to earlier, indicated
that the maximum bending moments in the webs are approximately equal to
those in the interior portion of the deck slab. Vertical reinforcement
is provided to withstand these moments. The shear capacity will be

checked later.

Transverse reinforcement in the bottom slab. Minimum reinforce-

ment of 0.5 percent of the flange section is specified by AASHO, Clause
1.5.12(F). This is adequate to withstand the maximum bending moments

computed in the MUPDI analysis.

Longitudinal reinforcement in bottom of deck slab. Reinforcement

to distribute the wheel loads is provided as specified by AASHO
Clause 1.3.2(E).

Longitudinal reinforcement in top of deck slab. The BPR Criteria

for Reinforced Concrete Bridge Members6 specify temperature and shrinkage

reinforcement in the top of the deck slab equal to 0.25 percent of the

concrete area.

Longitudinal reinforcement in webs and bottom slab. Shrinkage

reinforcement equal to 0.125 in% per foot of each surface is specified

by AASHO, Clause 1.5.6(H).

4.6 General Design Criteria

The design criteria set out in Chapter 3, Sec. 3.6, are again
applied. They must be satisfied by the bridge superstructure at all

stages of construction and also in the completed state.

4.7 Design of Superstructure during
Cantilever Construction

As each pair of segments is set in place, a set of cables is

inserted and anchored (see Fig. 4.13). The cables at each section must
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be adequate to resist all moments applied at that section. The highest
bending moment at each section during the construction phase occurs when
the full cantilever arm, a length of 100 ft. from the pier centerline, is
completed. The two box girders comprising the superstructure are con-

structed separately and are not joined till after completion.

It was initially assumed that the segments would be lifted into
place with a pair of floating cranes and that the only live load on the
bridge would be the weight of equipment for fixing the segments in position,
placing the cables, etc., and the weight of the persons who would carry out
these operations. To include all these loads, a concentrated live load
(including impact) of 25 kips could be assumed at the end of the cantilever
for each (27 ft. wide) box girder. The maximum distance of this load from
the pier centerline would be 95 ft. Further reflection indicated that
even if two cranes were used, unrealistic coordination would be required
to maintain symmetrical loading at all times. Both to reflect construction
realities and to allow use of only one crane, design should be based on
temporary unbalance of one segment during an erection stage. Each com-
pleted stage should be able to support a segment plus holding equipment

with reasonable impact.

If, instead of using a floating crane, the segments were to be
lifted by traveling hoists moving outward on the superstructure, the live
load would be even greater. It would have to include the weight of the
hoist and the segment being lifted, and a high impact factor of at least
100 percent should be used. Since segments will almost certainly be
temporarily unbalanced, the temporary unbalanced moments must also be

considered in pier design.

The section properties of the superstructure were calculated by
the program listed in Appendix B. The properties of the section at the
pier and of the minimum section are presented in Table 4.1. Properties of
the half section (i.e., one box girder) and of the full section (i.e., two
- box girders joined by the 2-ft. width of cast-in-place deck) are given.
The former are required for design during construction and the latter

for design of the completed bridge under live load.

The approximate positions of the prestressing cables, which are

required to carry out the design, were obtained from a preliminary layout
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TABLE 4.1. SECTION PROPERTIES OF SUPERSTRUCTURE--THREE-SPAN BRIDGE

Properties of Half Section (One box)
Area (ft?)

Distance from top to centroid (ft.)
Second moment of area (ft%)

Section modulus (top)(ft?)

Section modulus (bottom)(ft?)

Properties of Full Section (Two boxes}
Area (ftg)

Distance from top to centroid (ft.)
Second moment of area (fte)

Section modulus (top)(ft?)

Section modulus (bottom)(ft?)

Maximum Minimum
Section Section
40,60 36.93
3.442 3.058
398.2 338.0
115.7 116.5
87.36 68.39
82.37 75.02
3.397 3.015
807.8 684.8
237.8 227.2
175.5 137.4

TABLE 4.2. TOP CABLE ECCENTRICITIES

Distance from Distance from top of girder to Cable eccentricity
center of main about section
pier Centroid of section Center of cables centroid
(ft.) (ft.) (ft.) (ft.)
0 3.442 0.460 2.982
3.373 0.439 2.934
15 3.224 0.455 2,769
25 3.058 0.402 2.656
35 to 85 3.058 0.313 2.745
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based on the preliminary design, Table 4.2 gives the position of the

section centroid, the position of the center of the top cables, and the
cable eccentricity for various locations along the girder, corresponding
to the ends of the segments. The section centroid was obtained from the

program mentioned above,

4.7.1 Loading. The loading on each box girder is as follows:

Dead load. This is the weight of the girder sectionm.
Maximum section weight (i.e., at pier):
40.60 x 0.150 = 6.09 kip/ft.
Minimum section weight:

36.93 X 0.150 = 5.54 kip/ft.

Live load and impact. 25 kip concentrated load as an allowance

for erection equipment and personnel plus a construction load
equal to the weight of a unit being temporarily supported from

the end of the cantilever arm plus a 50 percent impact factor.

4,7.2 Top Cables Required at Pier Center. The bending moment

on each box girder at the pier for the full 100 ft. cantilever is as follows:

Dead load moment

5.54 ¥ 1002/2

= 27,700
(6.09 - 5.54) x 252/6 = 60
27,760

Live load moment
25 x 95 - 2,380

30,140 k-ft.
(NOTE: This case does not require temporary support of one unit
since it represents the terminal and worst condition.)
Cable eccentricity (from Table 4.2) = 2,982 ft.
Effective prestress: fse = 162 ksi (A very conservative assump-
tion during construction, since losses will not have fully

occurred,)

For a cable force F (per box girder) the concrete stress in the

top of the girder can be found from

it

f

N - F/A£M/S= -~ F/A -~ Fe/st+ M/st

|

ft = (30,140 - F x 2.982)/115.7 - F/40.60

in ksf units (tension positive).
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The prestress force furnished F must be at least sufficient to
ensure that this stress is compressive, since no tension is desired across

the fresh epoxy joints.

F 2 30,140/(2.982 + 115.7/40.60)
= 5,170 kip
However, a more severe case may be the construction condition
when individual units are being temporarily supported from the existing
cantilevering structure prior to completion of stressing. As an example,
the condition with 95 ft. of cantilever completed on each side of the
pier and with the last 5 ft. length segment near the side pier being

applied will be checked.

Dead load moment - completed section

5.54 % 952/2

= 25,000

(6.09 - 5.54) x 25°/6 - 60

Live load moment 25,060

Lifting equipment 25 % 90 = 2,250
Segment (5.54)(5)(97.5)(1.5) = 4,050

Note: 1.5 includes 50% impact factor 31,360 k-ft.

Substituting this moment in the equation for prestress force,

F = 5380 kip or approximately a 4 percent increase for construction loads.

The design of the completed superstructure will be greatly
simplified if the top cable pattern is such as to balance some simple
applied load, for instance a uniform load. Within some range the value
of the uniform load to balance may be chosen arbitrarily. In choosing
such a load, the following considerations are relevant: (a) The more
cables there are in the top of the girder, the fewer cables will be
required in the bottom; (b) it is desirable to make the balanced load
less than the dead load to ensure that there will be adequate reaction at
the outer supports of the completed girder without excessive jacking. This
is particularly important with short side spans, since live loading in the
center span causes the end reactions to decrease and it is undesirable to
have the girder rise off its outer supports; (c) the balanced load should
be sufficiently high that it will be the controlling criterion for the
top cable quantity at each section rather than the no tension criterion

or the ultimate load criterion.
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Based on trial designs, it was found that a balanced load of about
60 percent of the dead load is suitable. The force F was chosen to balance

a uniform load of 3.5 kip/ft. on each box girder,

w = SFh/L2
wL2/8h
0.125 x 3.5 x 2002/2.982 = 5,870 kip

i

]

The cable area required

H

A F/f

s s¢e
5,870/162 = 36.2 in>

The ultimate strength must now be checked. The ultimate moment at
the pier center with a 50 percent impact factor on the suspended segment

during lifting is

1.35(25,060) + 2.25(2,250)+ 2.25(4,050)
48,000 k-ft,

=
[}

"

Effective depth:

d = 8 - 0,460 = 7.540 frt,.
Bottom slab width:

b = 13 ft.

p = As/bd

]

36.2/(13 X 7.54 X 144) = 0.00256
O.Spf;ff; = 0.5 X 0.00256 x 270/6 = 0.0577

The cable stress at ultimate load, given by AASHO Sec. 1.6.9(C)

for bonded members ig

= & 1 . 1 4t
foo = £5(1 - 0.5p£ /£7)

= 270(1 - 0.0577) = 254 ksi
Bottom slab thickness: t = 10 in. = 0.833 ft.

T=2C
sFeu = 0.85ngc
(36.2)(254) = (0.85)(6)(AC)
A = 1802 in% required

c
Area of lower flange

(10)(156) = 1560
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Therefore, part of web is in compression zone

1802 - 1560
24
Centroid of compression is 0.53 ft. from bottom

= 10 in.

Moment arm: ~d - 0.53

= 7.540 - 0.53 = 7.01 ft.

Ultimate moment capacity (m)(AS)(fsu)(Moment arm)

(0.9)(36.2)(254)(7.01)
58010 k-ft. [Approximately 1.21 Mu]

Hence, the ultimate strength of the section at the pier is adequate.

This reserve in ultimate strength (approximately 20 percent con-
sidering the impact allowance) was fortunate, since the contractor decided
to erect the structure with one crane. Similar calculations at each sec-
tion based on a one-segment imbalance indicated this was permissible.

Provision for imbalance should be considered in initial design.

4.7.3 Top Cable Pattern throughout Girder. The above procedure

is followed to determine the cables required for sections at distances
of 5, 15, 25, . . . and 85 ft. from the pier center, corresponding to
the ends of each of the segments in the cantilever. The cable force and

cable area required at each section are shown in Table 4.3.

TABLE 4.3. TOP CABLES REQUIRED

(For each box girder)

Distance from pier Cable force required Cable area required
ft. kip sq. in.
0 5868 36.2
5 5383 33.2
15 4566 28.2
25 3706 22.9
35 2694 16.6
45 1929 11.9
55 1291 8.0
65 781 4.8
75 398 2.5
85 152 0.9
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In the case of all sections except the last (85 ft. from the pier
center), the governing criterion for the cable force and area was the
requirement to balance the 3.5 kip/ft. load. 1In the latter case, the
no-tension criterion was critical by a small amount. The ultimate load

capacity was quite adequate at all sections.

The system of cables adopted in the design, which provided the
required area at each section, is given in Table 4.4. Each set of cables
extends beyond the point indicated in the table to the end of the next
segment, where the cables are anchored in the webs. An elevation of the
bridge showing the cables is given in Fig. 4.13

At any stage of erection, before the cantilever arms are completed,
the cable area at each section is less than the value indicated in
Table 4.4. Beam theory calculations were carried out to ensure that at
each section and for each length of the cantilever arm during erection,
the cables inserted up to that stage are sufficient to provide a compres-
sive stress in the top of the girder and adequate ultimate strength. 1In
these calculations, the dead load moment was conservatively taken as that
corresponding to the length of cantilever arm completed at the stage con-
sidered together with an extra segment added to allow for the possibility
of accidental loss of crane support during placing of a segment or unsym-
metrical placement of segments. It was found that the cables are adequate

at all sections during all stages of erection.

A check was made on the concrete stresses in the bottom of the
girder for the different stages of completion of the cantilever arm.
The compressive stresses are highest when the cantilever arm is completed
and these do not exceed the allowable value of 2.4 ksi. However, it was
found that some tensile stresses can occur near the pier. The highest ten-
sile stresses occur at a distance of 15 ft. from the pier center when the
cantilever arm length is 25 ft. or 35 ft. They disappear when the length
becomes 45 ft. These stresses do not exceed 50 psi and must be controlled
by the use of some temporary external prestressing strands. Us of such
external prestressing force is advantageous on all units to keep positive

contact on the epoxy surfaces prior to completion of stressing.

Prior to actual construction, the post-tension supplier asked

that an alternative cable arrangement be allowed so that the maximum tendon



TABLE 4.4. TOP CABLES ADOPTED
(For each box girder)

%6

) Design
Distance . - No. of strands Design total Cable Total cable
from No. of Cables per cable cable cable force force
pier  Dpesign Supplied Design Supplied area area Design Supplied Design Supplied
(ft.) (sq.in.) (sq.in.) (kip) (kip)
85 2 2 6 6 1.837 1.84 298 298 298 298
75 2 2 1.837 3.67 298 298 596 596
65 2 2 6 7 1.837 5.51 298 348 894 944
55 2 2 13 12 3.981 9.49 645 596 1538 1540
45 2 2 13 12 3.981 13.47 645 596 2182 2136
35 2 2 13 12 3.981 17.45 645 596 2827 2732
25 2 4 20 11 6.124 23.58 992 1092 3819 3824
15 2 4 20 11 6.124 29.70 992 1092 4812 4916
2 2 13 12 3.981 33.68 645 595 5456 5511
2 2 13 12 3.981 37.66 645 595 6101 6106
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size would be based on 12 - 1/2 in. diameter 270 ksi strands. 1In this
way anchorages could be used more efficiently and the maximum anchorage
size reduced. The proposed pattern was approved, as shown in Table 4.4,
and used in the construction. At most stages force equivalents were
virtually the same except for the initial segments. This illustrates
again the desirability of flexibility in design procedures which can be
had if the initial design philosophy does not take the design to absolute

limits.

4.8 Design of Completed Superstructure

In the completed bridge it is assumed as a trial that the support
reactions are set to provide the '"beam on unyielding supports'" condition.
If there were no camber the supports could all be set at the same level
to obtain the correct reactions. However, camber will be provided and at
the completion of construction the end supports will be set in position
using jacks to ensure that the correct reactions are obtained. These
reactions will be determined in Sec. 4.8.9. Correct application of these
reactions allows analysis of the completed structure to be based on elastic

analysis of a continuous bridge.

If it is found in the process of design that this condition does
not lead to suitable behavior of the structure, the end reactions may be
modified as necessary and the resulting effect on the calculated bending

moments and shears taken into account.

Strictly speaking, the sequence of construction should be con-
sidered in the design and analysis of the completed superstructure.g’19
While dead load moments are determined for a three~span continuous beam
using normal elastic influence lines, the structure has carried its full
dead load as a cantilever span and its moment pattern is set by its stage
completion (including jacking of the reactions). This will be considered
in the ultimate moment performance, but is questionable refinement at the
service load stage. Action of creep will put the true values of moment
somewhere intermediate between those of full cantilever dead load and

fully continuous dead load. 1In each case, a reasonably conservative

assumption will be made.



96

Throughout this section, loads, shears, and moments calculated

refer to the full 56 ft. width of the superstructure unless otherwise

noted.

4.8.1 Loading. Dead load. The dead load consists of the weight

of the girder section and the asphalt. The area of the completed section

is obtained from Table 4.1.

Dead load at main pier:

Concrete section: 0.150 x 82.37 = 12.36
Asphalt: 0.017 x 54 = 0.92

13.28 kip/ft.

Dead load at minimum section:

Concrete section: 0.150 x 75.02 11.25
Asphalt: 0.92
12.17 kip/ft.

Live load. The live load is AASHO HS20-44. Generally the lane
load will be critical, rather than the truck load, When four lanes are
loaded simultaneously, a 25 percent reduction in load intensity is

allowed (Clause 1.2.9).

Impact. The impact factors, specified in Clause 1.2.12, are

as follows:

Positive moment--main span: 50/(200 + 125) = 0.15
Positive moment--side span: 50/(100 + 125) = 0.222
Negative moment--both spans: 50/(150 + 125) = 0.182

4.8.2 Bending Moments. The influence coefficients used in the

following calculations were obtained from a program prepared by T. Komura.
This program was checked against tables in Ref. 5 for the case of a con-

tinuous beam with three equal spans.

Dead load moment (if fully continuous)

Moment at main pier:
-0.070 x 12.17 X 200° =-34,080
~(13.28 - 12.17) x 25% x 375/(12 x 200) = _ -100

-34,180 k-ft.
Moment at center of bridge:
0.055 x 12.17 X 200°

(13.28 -~ 12.17) x 252/6 - 100

26,780
10
26,790 k-£ft.
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Moments in side span (at ¥ from end):

(x = 10) 0.0043 x 12.17 x 200° = 2,090 k-ft.

(x = 20) 0.0061 x 12.17 X 2002 = 2,970 k-ft.
(x = 30) 0.0054 x 12.17 x 200° = 2,630 k-ft.
(x = 40) 0.0022 x 12.17 X 2002 = 1,070 k-ft,
(x = 50) -0.0036 x 12.17 X 2002 = -1,750 k-ft.
Live load moments
Uniform lane load on four lanes = 0.75 X 4 x 0.640
= 1.92 kip/ft.
Concentrated lane load on four lanes = 0.75 X 4 % 18
= 54 kip
Moment at main pier:
-0.074 x 1.92 x 2007 ~ -5,680
-(0.1024 + 0.0360) x 54 X 200 = -1,495
-7,175 k-ft.
Moment at center of bridge:
0.0625 x 1.92 x 2002 = 4,800
0.1563 x 54 x 200 = 1,690
6,490 k-ft.

Moments in side span:

(Truck load is critical)
(x = 10)

[(0.0441 + 0.0353)96 + (0.0269)24] x 200 = 1650 k-ft,
(x = 20)

[(0.0764 + 0.0593)96 + (0.0430)24] x 200 = 2810 k-ft.
(x = 30)

[(0.0973 + 0.0725)96 + (0.0492)24] x 200 = 3500 k-ft.
(x = 40)

3840 k-ft.

[(0.1074 + 0.0758)96 + (0.0663)24] x 200

Moments due to top cables

The equivalent load from the top cables, ignoring the turned down
section at the anchorages, for the full width of the superstructure is
-2 % 3.5 = -7.0 kip/ft. (Two boxes with 0.6DL.) The moments on the

concrete section produced by this load are as follows:
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Moment at main pier:
6.070 x 7.0 X 2002 = 19,600 k-ft,
Moment at center of bridge:
0.055 x 7.0 x 200° = -15,400 k-ft.
The above requirements are the resultant cable moments. The
secondary moments will also be required, where
Secondary moment = Resultant moment - Primary moment
At the center of the bridge the primary moment for the top cables is zero,

because there are no top cables at that section. Hence,

Secondary moment at center of bridge = -15,400 k-ft.

Since the secondary moment is that produced by the cable-induced reactioms,
it will be constant in the main span and will vary linearly in the side

spans from the above value at the main piers down to zero at the ends of

the bridge. (This moment is induced during the closure by jacking of the
end reactions. Stressing top cables during cantilevering does not introduce

secondary moments.)

Moments due to bottom cables

For ultimate load calculations the secondary moments due to the
bottom cables will also be required. Let the values of these moments in
the main span be denoted as follows.

Ms1

Mso

Again, these moments will be constant in the main span and in the

Secondary moment from bottom cables in main span

Secondary moment from bottom cables in side spans

side spans will vary linearly down to zero at the ends.

The values of MS and MS are not known until the bottom cable

2
areas have been determinid. Initial values must therefore be assumed, so
that the ultimate moments can be calculated, After the cable areas have
been determined, the assumed values can be corrected and the ultimate
moments rechecked if necessary. The initial values could be zero.
However, on the basis of a preliminary design the following trial values

will be assumed.

+5000 k-ft.
+1000 k-ft.

]

M
s1
Mso

K
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4.8.3 Ultimate Strength at Main Pier. 1In calculating ultimate

strength, no moment redistribution will be assumed. The secondary cable
moments are included in the calculations, because these are produced by

real external reactions caused by the cables.

Conventional calculation of the ultimate moment at the pier,
assuming the structure was completely constructed as a three-span beam,

is given by

=
I

1.35(DL moment) + 2.25(LL + Impact moment)
+ (Secondary moments)

1.35(-34,180) + 2.25(1.182)(~7,175)

i

+ (-15,400 + M + M)

lMJ < 46,140 + 19,080 + (15,400 - 6000)

74,620 k-ft.

which is less than the ultimate moment capacity found in Sec. 4.7.2

.Mu|= 2 x 58,010 = 116,020 ft.

However, based on the recommendations following the model test
program contained in Report 121-5, a more severe computation of ultimate
moment is recommended. The structural ultimate moment capacity should
M . is computed for 1.35 DL,as a balanced cantilever.

exceed M . + M
u u

1 2° ul 1
DI, is the dead load at time of cantilevering construction. Mu2 is com-
puted for 1.35 DL, + 2.25(LL + I) + S. DL, is any subsequent dead load

2 2

placed on the completed structure, LL is the design live load, I is
impact, and S is secondary moments induced by stressing of cables and

reactions provided on closure. (See Sec. 4.8.9.)

On this basis

2 2
1.35)(11.2 1 . .
My, - - AL3001.29 0007 | (1.3 AN s 090 gr. -k
Mu2 = (1.35)(0.92)(-0.070)(200)2 - (2.25)(7175)(1.182)
+(185) (100) = -4060 ft.-k
Mu = -76,090 - 4060 = -80,150 ft.k

which is less than the ultimate moment capacity of 116,020 k-ft.
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4.8.4 Bottom Cables in the Main Span. The bottom cable pattern

used in the preliminary design is shown in Fig. 4.8. All of the cables
are the same size and there are seven cables per web. However, under
detailed analysis with the MUPDI program, it was found that this pattern
did not give a satisfactory stress distribution along the length of
girder. Excessive cable area was required to prevent tensile stresses
from occurring in the bottom of the girder in a region about 20 ft. to

40 ft. from the bridge center under live loads.

Accordingly, the cable pattern was revised to that shown in
Fig. 4.13, in which the inner set of cables is removed, leaving six cables

per web all the same size.

The design procedure used to determine the bottom cable quantity
is as follows. First, the cable area required to give adequate ultimate
strength at the bridge center is determined. Later, after design of the
bottom cables in the side span, stress analyses are carried out and the

cable area is revised if necessary.

In this case it will be more conservative to compute the moment
as if a three-span continuous beam for all loads. Such a condition will
be closely approximated if correct reactions are jacked in during closure.
A check will be made in Sec. 4.8.9 to ensure that the ends of the bridge
will not 1ift off the neoprene pads under design ultimate load. The
ultimate moment at the center of the bridge is given by

Mu = 1.35(DL moment) + 2.25(LL + Impact moment)
+ (Secondary moments)
= 1.35(26,800) + 2.25(1.154)(6,490)

£ (-15,400 + Mg + M)

Using the assumed values of MS1 and MS2 from Sec. 4.8.2
= 36,180 + 16,850 - 15,400 + 5,000 + 1,000

= 43,630 k-ft.

The cable area As required to satisfy this moment will be

determined.

On the basis of the preliminary design, the following two

quantities are first assumed.



Distance from bottom of girder to center of cables = 0.437 ft.

A ~ 25 in?
S

Then the exact determination of AS proceeds as follows:

Effective depth: d 8 - 0.437 = 7.563 ft.

1

Top slab width: b = 56 ft,
p = As/bd

= 25/(56 x 7.563 x 144) = 0.00041

O.Spf;/f; = 0.5 x 0.00041 x 270/6 = 0.00922

Cable stress at ultimate load:

4 4 13
£, £,(1 - 0.5p£! /£!)

270(1 - 0.00922) = 267.5 ksi
Concrete stresss block depth:

a = Af /0.85fb

s su ¢
= 25 % 267.5/(0.85 x 6 X 56 x l44) = 0.163 ft.

Cable force at ultimate load:

Pu Mu/(d - 0.5a)

43,630/(7.563 - 0.163/2) = 5,830 kip

4

Cable area required:

A
s

H

Pu/(@fsu) ,
5,830/(0.9 x 267.5) = 24.2 in|

Adopt 24 cables each 7 strands

A 25.72 in%

S

il

Actual ultimate moment capacity:

M 25,72

55 (43,630) = 46,370 ft.-k

Equivalent load

In order to determine the cable moments, the equivalent cable

load will be calculated.

Total cable force: F = 25,72 x 162 = 4166.8 kip
Cable eccentricity about section centroid at center of bridge:

e = 7,563 - 3.058 = 4.505 ft.

101
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The equivalent load is calculated using the second approach
described in Sec. 4.1.2. As a (conservative) simplification,* each group
of similar cables is treated as stopping off at the bend-up point, i.e.,
at distances of 20 ft., 30 ftr., 40 ft., 50 ft., 60 ft., and 70 ft., from
the bridge center. Thus, the equivalent load for each group is a moment

m at either end, as shown in Fig. 4.9(a), where

it

F-e/b
4,167 X 4.505/6 = 3,130 ft.-k

m

it

and this moment can be replaced by a pair of loads P [Fig. 4.9(b)], where
P = m/10 = 313 kip

These loads cancel out except for the four shown in Fig. 4.9(c), which

will be considered as the equivalent load diagram.

Moments due to bottom cables

The resultant moments on the concrete section from the bottom

cables are determined using influence line values as follows:

Moment at main pier:
(0.1005 + 0.0823 ~ 0.0609 - 0.0206) x 313 x 200
= 0.1013 x 313 x 200
Moment at center of bridge:
(-0.1211 + 0.0217) x 2 x 313 x 200
= -0.1988 x 313 x 200

i

6,340 k-ft.

-12,440 k-ft.

L]

Since the primary moment due to the bottom cables at the main

pier is zero, the secondary moment is given by
MSI = 6,340 k-ft.

Since this is greater than the initial assumed value, the ultimate moment
at the bridge center must be rechecked. Using MSl = 6,340, the design
moment increases to 44,970 ft.-k which is still less than the 46,370 ft.-k

capacity provides. Thus, these cables were found to be adequate.

4,8.5 Bottom Cables in Side Span. The bottom cable pattern

chosen for the side span is shown in Fig. 4.13. There are two cables per

web. The cable size required to give adequate ultimate strength in this

*Consideration of the curved portion of the tendons would increase
equivalent loads less than 18 percent.
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Fig. 4.9. FEquivalent load for main span bottom cables
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span will be determined first. Later, stress analyses will be carried
out and the size revised if necessary. Again, it will be more conserva-
tive to compute design moments as if a three-span continuous beam for
all loads. It was found in the preliminary design that the critical
section is about 30 ft. from the end support. The ultimate moment at

this section is given by

M
u

1.35(DL moment) + 2.25(LL + Impact moment)
+ (Secondary moments)

1.35(2,630) + 2.25(1.222)(3,500)

+ 0.3(-15,400 + 6,340 + 1,000)

(Note: The last term is the linear proportion of the secondary moment

at the pier which is effective at the critical section. The value of
MS1 determined in the previous section is used along with an assumed
MS2 = 1,000.)

= 3,550 + 9,620 ~ 4,620 + 1,900 + 300

= 10,750 k-ft.
From preliminary design, AS ~ 6 in%, and

Distance from bottom of girder to center of cables = 0.292 ft.

8§ - 0.292 = 7,708 ft.

Effective depth: d

P = As/bd
= 6/(56 % 7.708 % 144) = 0,0001
0.5pf;/f; = 0.5 x 0.0001 x 270/6 = 0.0022
£, = 270(1 - 0.0022) = 269 ksi
a = Asfsu/0.85f;b

6 x 269/(0.85 x 6 X 56 X 144) = 0.04 ft.

Cable force at ultimate:

Pu = Mu/(d - 0.5a)
= 10,750/(7.708 -~ 0.02) = 1,400 kip
Cable area required:
As = Pu/(mfsu)

1,400/(0.9 X 269) = 5.8 in>
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Adopt 8 cables each 5 strands

AS = 6.124 in%

Actual ultimate moment capacity:
u 5.8
Equivalent load
Cable force: F = 6.124 % 162 = 992.1 kip
Cable eccentricity: e = 7.708 - 3.058 = 4.650 ft.

The equivalent load is calculated in the same way as for the main

M (10,750) = 11,350 k-ft.

span bottom cables, and the different steps are shown in Fig. 4.10. The

moments m and the load P are as follows.

m= Fee/2
= 992 % 4.65/2 = 2,300 k-ft,
P =m/10 = 230 kip

Moments due to side span bottom cables

The resultant moments on the concrete section from the bottom

cables in both side spans are calculted using influence lines as follows.

Moment at center of bridge:
2(0.0031) + 0.0120 - 0.0090] % 2 x 230 x 200 = 850 k-ft,

This moment is constant over the main span.

Since the primary moment due to the side span bottom cables is

zero in the main span, the secondary moment is
M82 = 850 k-ft.

Since this is very close to the 1,000 k-ft. assumed, no further check is

required.

4.8,6 Additional Cables in Side Span. When the 100 ft, cantilever

arm in the side span is completed, the bottom cables in this span are to be
inserted and tensioned as the last segment is added and thus before the
end supports are set in place. To avoid tensile stresses in the top of the
girder near the end at this stage, it is necessary to include some addi-

tional cables at the centroid. Trial designs were made in which top
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Fig. 4.10. Equivalent load for side span bottom cables
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tensile stress at several critical sections was calculated and necessary
compressive stress to restore the top fiber to compression was determined.
These showed that the following set of centroidal cables will give

satisfactory stresses.

Centroidal cables adopted: 8 cables each 5 strands (i.e., two cables per

web), half to extend from the end a distance of 25 ft., half to extend

from the end a distance of 45 ft, All to be placed along the section
centroid.

These cables produce no moments on the concrete section but could
provide resistance to ultimate moment loading in the side span. This
contribution will be ignored although the design could recycle to reduce

the bottom cables.

4,8.7 Service Load Stresses for Completed Structure. The

service load stresses at the critical sections will now be determined
using beam theory. Elastic analysis for a three-span continuous beam will
be generally applicable if the correct reactions are jacked in during
closure. Similar service load stresses were previously checked for the
cantilever stage and determined acceptable in Sec. 4.7.3. The cable
moments used are the resultant moments on the concrete section. 1In

the calculation of dead load stresses the properties of the two unjoined
box girders are used and for live load stresses the properties of the

full section are used. In inch units these properties are as follows:

Maximum section

Properties of section for dead load

Area 11,690 in%
Section Modulus (Top) (33,320 x 12) in?
Section Modulus (Bottom) (25,160 x 12) in%
Properties of section for live load
Section Modulus (Top) (34,240 % 12) in?
Section Modulus (Bottom) (25,270 x 12) in?
Minimum section
Properties of section for dead load
2

Area 10,640 in,
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Section Modulus (Top) (31,820 x 12) in?

Section Modulus (Bottom) (19,700 x 12) in?
Properties of section for live load

Section Modulus (Top) (32,720 x 12) in?

Section Modulus (Bottom) (19,790 x 12) in?

Concrete stresses at main pier assuming full continuous three-span beam
for all stresses

Stress at centroid
Top cable force = 2 ¥ 6,101 = 12,200 kip
Stress = 12,200/11,690 = -1.044 ksi

Stresses under dead load

Dead load moment: ~34,180

Top cable moment: 19,600
Main span bottom cable moment: 6,340
Side span bottom cable moment: 850
- 7,390 k-£ft.
Top stress = -1.044 + 7,390/33,320 = -0.822 ksi
Bottom stress = ~1.044 - 7,390/25,160 = -1.338 ksi

Stresses under full load

Live load + impact moment = -1.182 x 7,175 = 8,480 k-ft.
Top stress = -0.822 + 8,480/34,240 = -0.574 ksi
Bottom stress = -1.338 - 8,480/25,270 = -1.673 ksi

Concrete stresses at main pier assuming dead load of concrete is carried
as a cantilever

This calculation represents the most conservative stress calcula-
tion possible in case end reactions are incorrectly applied during
closure. The true state of stress is somewhere intermediate between the

cantilever state and the fully continuous state when creep is considered.

Stress at centroid

Top cable force = 2 X 6,100 = 12,200 kip
Stress = -12,200/11,690 = ~-1.044 ksi
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Stresses under dead load

Concrete cantilever dead load moment:

-27,760 x 2 = -55,520
Asphalt topping dead load moment:

'0.92/12.17 x (-34,180) = - 2,500
Top cable moment: 19,600
Main span bottom cable moment: 6,340
Side span bottom cable moment: 850

-31,310 k-ft.

Top stress = -1.044 + %%*%%% = -0,104 ksi
?

31310 . 5 288 kst

tt t = - - =
Bottom stress 1.044 25,160

Stresses under full load

Top stress = -0.104 + 8,480/34,240 = 0.143 ksi

Bottom stress = -2.288 - 8,480/25,270 = -2.623 ksi

The stresses are within acceptable limits under dead load even by
this calculation. Stresses would be reduced when applied end reactions
are considered. However, under this extreme calculation procedure, full
service load stresses are high. The tensile stress at the top is within
the 6 JEZ-tension allowed by Clause 1.6.6(B)(2). The compressive stress
is 9 percent above the 0.4fé limit. In view of the extreme conservatism

of the calculation procedure these were judged acceptable.

Concrete stresses at center of bridge

These stresses can be checked conservatively for fully con-

tinuous action only.

Stress at centroid

Bottom cable force = 4,167 kip
Stress = -4,167/10,640 = -0.392 ksi

Stresses under dead load

Dead load moment 26,790
Top cable moment -15,400
'Main span bottom cable moment -12,440
Side span bottom cable moment 850

-200 k-ft.
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Top stress = ~-0.392 + 200/31,820 = -0.386 ksi
Bottom stress = -0.392 - 200/19,700 = -0.402 ksi

Stress under full load

Live load + impact moment = 1.154 X 6,490 = 7,490 k-ft.
Top stress = -0.386 - 7,490/32,720 = -0.615 ksi
Bottom stress = -0.402 + 7,490/19,790 = -0.023 ksi

Concrete stresses 30 ft. from end of bridge

Stress at centroid

Top cable force: 2 X 893 = 1,786

Bottom cable force: 992

Center cable force: 992/2 = _ 496
3,274 kip

Stress = -3,274/10,640 = -0.308 ksi

Stresses under dead load

Dead load moment: = 2,630
Top cable moment: -0.0054 X 7.0 X 200 = -1,510
Main span bottom cable moment: 0.3 X 6,340 = 1,900
Side span bottom cable moment:
~-(992 X 4.65) + (0.3 x 850) = -4,360
-1,340 k-ft.

Top stress = -0.308 + 1,340/31,820 = -0/266 ksi
Bottom stress = -0.308 - 1,340/19,700 = -0.376 ksi

Stresses under full load

Live load + impact moment = 1.222 x 3,500 = 4,277 k-ft.
Top stress = -0.266 - 4,277/32,720 = -0.397 ksi
Bottom stress = -0.376 + 4,277/19,790 = -0.160 ksi

All of the other stresses calculated are within the acceptable
limits. The stresses at all sections and under all loadings will also
be checked with the MUPDI program for the completed structure and the
SIMPLA2 program for erection stresses. However, first the shear strength

will be investigated.

4.8.8 Shear. The shear forces on the full width of the

superstructure are as follows:
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Shear force at main pier during construction

Dead load: 2 X 5.54 x 95 = 1053
2 x 0.5(6.09 - 5.54) x 25 = 14
1067 kip
Live load: 2 x 25 = 50 kip
2 % 5.54 x5 %1.5 = _ 83
133 kip
Total 1200 kip
Shear force in main span at pier (after completion
Dead load: (0.5 x 12,17 x 200) + 14 = 1231 kip
Live load: 4[(0.5155 x 0.640 x 200) + 26]= 368 kip
Total. ' | 1599 kip

(Note: The 26 kip load is the AASHO concentrated load with shear lane
loads.) The 25 percent reduction in live load intensity for ioading
on four lanes is not used here, because it was found in the MUPDI
analysis of the completed bridge (to be described later) that, if this
reduction is made, the critical shear loading will then be live load on

two lanes only.

Shear force in side span at main pier

Dead load: (0.3902 x 12.17 x 200) + 14 = 964 kip
Live load: 4[(0.398 x 0.640 x 200) + 26] = 308 kip
Top cables: 15,400/100 = 154 kip
Main span bottom cables: -6340/100 = =63 kip
Side span bottom cables: -850/100 = -9 kip

Total 1354 kip

For live load shear, the lane load is critical. The cable shears
computed above are the shears due to the external reactions induced by
the cables, where

End reaction = (Secondary moment at main pier) + (Side span)

Shear force at end of bridge

Dead load: 0.1098 x 12,17 x 200 = 267 kip
Live load: (truck load critical)

4(32(1 + 0.822) + 8(0.649)] = 254 kip
Top cables: = -154 kip
Main span bottom cables: = 63 kip
Side span bottom cables: = 9 kip

Total 439 kip
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From examination of the various service load shear conditions,
the shear face in the main span after completion is clearly the critical

condition.

Ultimate shear in main span at pier

(Disregarding allowable reduction to the shear at critical section at d

from support)

v
u

1l

1.35(DL shear) + 2.25 (LL + Impact shear)
1.35(1,231) + 2.25(1.154)(368)
2,617 kip

The shear capacity of the webs at the pier will now be
determined. Using ACI 318-71, Eqs. 11-11 and 11-12, as allowed by AASHO,

the concrete stresses, fpc and (fpe - fd) are obtained from Sec. 4.8.7.

Compressive stress at centroid: fpc = 1.044 ksi

Compressive stress at top of girder under dead load and prestress:

(f S f) = 0.822 ksi + 0.104 ksi - 0.461
pe d 2

(Note: This assumes an actual stress midway between cantilever and fully

continuous conditions.)
6 4@2 = 6 4/6,000/1,000 = 0.465 ksi
Top section modulus (from Table 4.1): (I/y) = 237.8 X 123 in?
Cracking moment: MCr = (I/y) |6 J@Z + (fpe - fd)]
[(237.8 x 123)(0.465 + 0.461)]/12
31,700 k-ft.

it

Live load shear/moment ratio:

(V,/M__ ) = 0.75 x 368/7,175 = 0.0385
V M
ﬁi—ﬁi = (0.0385)(31,700)

max

it

1220

Effective depth: d = (8 - 0.46) X 12 = 90.5 in.

Total web width: b = 4 X 12 = 48 in,

The shear carried by the concrete Vc = vcb'd is the lesser of

V,=v ,b/dand V. = v b’ d, where
ci ci cw cwW

vV .
ci

n

(0.6./fé)b’d + g+ (VM M)

Cc max

(0.0465 x 48 x 90.5) + 1231 + 1220

2653 kip
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<
I

el /
o (3.5./fC + 0.3fpc)b d

(0.271 + 0.313) X 48 x 90.5
2,537 kip

Hence, VC = 2,537 kip.

Shear reinforcement required using Eq. 11-13 of ACI 318-71 as permitted

by AASHO:

AL N A N

v f - d f
y @Sty

(2,617 - 0.85 x 2,537) x 12/(0.85 x 90.5 x 40)

1.80 in% per ft. length of bridge.

]

This exceeds the minimum AV = 100b’s/fy = 1.44 in% per ft. required by
AASHO. This is much less than the reinforcement required for bending
moment in the webs. Thus, the web reinforcement will remain as shown in

Fig. 4.14,

The shear strengths in the side span at the main pier and at the
end support were investigated, and also the shear strength at the main

pier during construction. None of these cases was critical.

4.8.9 Reaction at End of Bridge. The reaction over the full

width of the superstructure at each end of the fully continuous completed

bridge is obtained as follows:

Dead load: 0.1098 x 12,17 x 200 = 267 kip
Maximum live load: (truck load critical)

0.75 x 4[32(1 + 0.0822) + 8(0.649)] = 190 kip
Minimum live load: (lane load critical)

-0.75 X 4[(0.1247 x 0.640 x 200) + (0.2047 x 26)] = =64 kip
Top cables -154 kip
Main span bottom cables 63 kip
Side span bottom cables 9 kip

The total reactions under dead load and under maximum and minimum

live loads are as follows:
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Reaction due to dead load and cables
267 - 154 + 63 + 9
Maximum reaction = 185 + 1.222(190)

1]

185 kip/bridge
417 kip/bridge
107 kip/bridge

92.5 kip/box
208.5 kip/box
53.5 kip/box

i
i

Minimum reaction = 185 -1.222(64)
Checking ultimate live load conditions the minimum reaction

= 185 - (2.25)(1.222)(64) = 9¥

The minimum reaction is adequate (barely) to maintain proper
seating on the bearings. Therefore, the "beam on unyielding supports"
condition will be adopted as initially assumed. At the completion of
erection, the reaction at each end of the bridge will be set to the correct
value for dead load and cable forces, i.e., 185 kip, or 92.5 kip/box.

In a subsequent check, Kashimag’11 showed that consideration should

be given to the effect of the end reaction on cracking moment as well. His
calculations indicated the optimum value of the end reaction as 176 kips

per bridge, or 88 kips/box. This is very close to the value above.

4.8.10 Computer Analysis of Completed Structure. With the basic

proportions, reinforcement, and tendons designed, the completed bridge
was analyzed by the MUPDI program to obtain the stresses in the concrete
section under dead load and under various live load patterns. For dead
load (including the cable forces) one box girder (i.e., half of the super-
structure cross section) was considered and for live load the full cross
section was analyzed to correspond to the real conditions. The structure
was assumed fully continuous at all times. This corresponds to the com-

pleted structure with the correct end reactions applied.

In this analysis the effect of the cables was simulated by consid-
ering each cable individually, determining the load it exerts on the con-
crete section and including this load with the input. However, the number
of cable loads far exceeded the number that can be handled by the program
in one run. The following simplifying assumptions were made regarding
these loads in order that the dead load and cable forces could be handled
in three runs. The output for the runs was then added to give the total

dead load stresses.

(a) Each cable is treated as a straight cable stopping off approxi-

mately at the bend point. Thus, the top cables are considered to stop off
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at distances of 5 ft., 10 ft., 20 ft., 30 ft., . . . and 90 ft. from the
main pier center; the main span bottom cables at 20 ft., 30 ft.,

and 70 ft. from the bridge center: and the side span bottom cables at

60 ft. and 70 ft. from the end support. The load exerted by each cable

is a pair of equal and opposite longitudinal forces, one at each end.

(b) In cases where a number of successive cables along the span
are the same size and have approximately the same eccentricity about the
centroid, the set of concentrated longitudinal forces corresponding to
these cables is replaced by a single linearly varying longitudinal force

in each web.

(c) The beneficial compressive effect of the turned-up portions
of the main span bottom cables is taken into account by treating these
overlapping portions as a single horizontal cable at the centroid in each

web, extending between 15 ft. and 80 ft. from the bridge center.

The following further simplifications were made in order to make

the analysis feasible:

(d) The MUPDI program cannot handle the variation in the thickness
of the bottom slab. Separate analyses were made with two different ideal-
ized sections, one having the properties of the maximum section (Fig. 4.11),
the other of the minimum section (Fig. 4.12). The first is used to obtain
the stresses mear the main pier and the second to obtain the stresses

elsewhere throughout the superstructure.

(e) With this program, all concentrated loads must be applied at
the node points of the idealized section. The moment of each cable force
about the centroid of the real section was calculated and this force and
moment replaced by a pair of forces at the node points at the top and
bottom of the web of the idealized section. This pair of forces was
determined so as to give the same resultant force and moment about the

centroid of the idealized section as occur in the real section.
The following live load cases were investigated:

(a) Full lane loads om main span

(b) Lane loads on one side (two lanes) of main span
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(c) Full lane loads on two adjacent spans

(d) Lane loads for maximum moment 40 ft, from center of bridge

(e) Full truck loads for maximum moment in side span

(f) Truck loads on one side (two lanes) of side span for maximum moment
(g) Lane loads on main span for maximum shear

(h) Lane loads on one side (two lanes) of main span for maximum shear

(1) Lane loads on two inner lanes of main span for maximum shear

Examination of the computer output revealed that under each of
the loadings econsidered, all stresses in the concrete were within the per-
missible limits, However, in order to provide a greater factor of safety
against tensile cracks, it was decided to increase the size of the bottom
cables in the main span to 8 strands and that of the bottom and centroidal
cables in the side span to 6 strands. In this way the minimum compressive
stresses in the bottom slab under the most severe live load conditions are
increased from about 0.023 to 0.118 ksi in the main span and from 0.035 to

0.077 ksi in the side span.

The final layout of the cables is shown in elevation in Fig. 4.13

and in section in Fig. 4.14.

The dead load analysis was then repeated for the altered cable
sizes. All stresses were found to be satisfactory. Flexural stress dis-
tributions across the section at the main pier and the section at the
bridge center are shown in Figs. 4.15 and 4.16 for dead and live load.

The characteristics of these stress distributions are similar to those

in Chapter 3; shear lag is evident at the pier section, whereas the
stresses are almost uniform over each slab at the center of the bridge.
Pier section stresses increased by as much as 25 percent over the beam
theory computations due to shear lag. The increased stresses on the lower

flange at midspan reflect the increased cable sizes.

The critical live load conditions for bending moments are as

follows:
Bending moment at center of bridge: Full lane load on main span

Bending moment in side span: Truck load on two lanes
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If it were not for the 25 percent reduction, four lane loading

would be critical in all cases.

The shear stresses in the four webs are approximately equal under
dead load and under live load on all four lanes. For live load on two
lanes only they are not equal. The maximum shear stress in the main

span occurs under two-lane loading on one side of the deck.

When the maximum shear stress occurs under a load condition that
produces unequal shears, as in this case, then the reinforcement for each
web may be designed individually for the maximum shear possible in that
web. An alternative, simpler procedure is to design all four webs
together under a uniform load that produces shears in all of the webs
equal to the maximum value that can occur in any one of them. This latter
approach was adopted in the design of the webs in Sec. 4.8.8. Four-lane
loading without the 25 percent reduction was used as this loading causes
shears slightly greater than the maximum occurring under the critical

two-lane loading condition.

It is to be noted that although dead load and uniform live load
produced an equal distribution of shears among the webs in this particular
design example, this may not always occur. In general, the distribution

will depend on the geometry of the cross section.

Deflections in the bridge are also given in the computer output.

The deflections at the center of the bridge are as follows:

Deflection under dead load: 0.216 in.
Deflection under live load on main span

(with impact): 0.665 in.
Total deflection: 0.881 in.

The effect of creep on the concrete modulus is not included, although if
felt significant it could be examined in a MUPDI analysis. The deflection/
span ratio under full load is approximately 1/2,700. This is well within
the limit of 1/300 normally considered acceptable. The structure is

quite stiff.
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Examination of behavior under minimum positive moment conditions
. , e . . 19 . ..
in the main span indicated satisfactory behavior. Muller indicates
midspan top cables are sometimes needed across the closure section if

moment reversal is possible.

4.8,.11 Stresses during Tensioning of Main Span Bottom Cables. As

described in Sec. 4.3, the first of the main span bottom cables is
inserted and tensioned after jacks have been set under the ends of the
superstructure and the closing segment has been placed at the center. At
this stage the bridge behaves as a continuous girder, although the end

supports have not been raised to their final position.

As the bottom cables are tensioned, there is a tendency to produce
a tensile stress in the top of the girder at midspan. To reduce this
tendency the longest cables are placed first. The stress produced by
the cables at this point was calcula ted as in Sec. 4.8.7, after determining

the equivalent load of the cables as in Sec. 4.8.4.

It was found that in order to prevent tensile stresses in the
concrete during the placing of the last two sets of cables, the reaction
at each end of the superstructure had to be increased by 20 kip (10 kip/box)

by means of the jacks after the fourth set of cables had been tensioned.

4.8.12 Friction Losses. The friction losses in the longest

cables were calculated using the program developed by R. Brown.

It was found that the assumed effective prestress of 0.6f; was

realistic 1f the conduits consist of rigid thin wall metal tubing.

4.8.13 Diaphragms. Diaphragms inside the box sections are
required at each of the bearings to maintain the shape of the cross section
and to provide concrete bearing capacity. A 6-in. thickness is adequate.
no intermediate diaphragms were indicated as necessary from the MUPDI

analysis.

4.8.14 Prestressing System Details. When the actual post-

tensioning system is selected for the project (usually following selec-

tion of a contractor), the prestressing system details will have to be



125

closely examined. Anchorage locations, dimensions, and auxiliary
reinforcement to control bursting, spalling, and splitting stresses should

be checked by the designer.

4.8.15 Incremental Computer Analysis of Construction Sequence

Stresses. With the completed structural plans, a final check was made

of the structure to examine stresses and deflections under each stage of
construction through closure and setting of permanent supports. The
sequential analysis program SIMPLA2 was utilized as described in Report 121-4.
All proposed details and operations were input to the program and an incre-
mental folded plate analysis used to include effects of shear lag, warping,
and construction sequence. This program transitions smoothly from canti-
lever to continuous structure so that its results are more consistent

than the MUPDI analysis. The complexity of input procedures and extensive
running time required restrict practical use of the program to the final

check stages.

Typical stress calculation results are shown in Figs. 4,17 through
4,20. These calculations indicate that dead load stresses are much
closer to those calculated for beam theory assuming continuity than for
complete cantilever action. Figures 4.19 and 4.20 are particularly informa-
tive, showing the critical stages for flange stress to occur at widely

different stages for top and bottom flanges.

Typical displacement results are shown in Figs. 4.21 and 4.22.
These figures illustrate the advantage of the incremental analysis which
has the ability to track all major construction operations. This analysis
indicated a slightly lower closure reaction desirable for geometric

compatability.

4.9 Summary of Design Procedure

The principal stages of design are as follows:

(a) An approximate cross section shape is chosen.--This can be based on
the result of an optimization study as described in Chapter 7. Alterna-

tively, a preliminary design may be carried out.
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(b)

(c)

(d)

(e)

(£)

(g)

(h)

The cross section is designed in detail.--The deck slab thickness

and reinforcement are determined by wheel load moments. The web
thickness must be sufficient to accommodate the cable anchors. A
preliminary shear check is advisable to ensure adequate web thickness

is provided.

The top cables are designed for cantilever construction.--The cables
are chosen at each section to balance a uniform load, about 60 per-
cent of the dead load. They must provide adequate ultimate load
capacity and ensure acceptable service load stresses in the concrete.
The bottom slab of the girder must be made thick enough to give

adequate ultimate load capacity.

The bottom cables are designed for ultimate load on the completed
superstructure.~-A simple pattern of bottom cables is chosen for
each span and the quantity adjusted to give adequate ultimate strength

under the critical live load.

The concrete service load stresses are computed from beam theory.--
The stresses under dead and live load are obtained for the critical

sections. 1If necessary the bottom cables are revised.

The ultimate shear strength 1s checked.--The ultimate shear force,
the capacity of the webs and the reinforcement required are calculated
at all of the critical sections. Web thickness is adjusted upward if

necessary.

The completed superstructure is analyzed with the MUPDI program, -~
The stresses are determined under dead load and under various live
loads. If necessary the bottom cables are revised and the analysis
repeated.

The completed design is analyzed with the SIMPLA2 program.--Stresses
and deflections are determined at all stages of construction to

verify the design.
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4.10 Other Examples of Bridges
Constructed in Cantilever

Other cases of bridges constructed in cantilever, requirimg
variations in the design procedure adopted in the example chosen are

considered briefly.

4,10.1 Multi-Cell Box Girder. An alternative cross section for

the bridge considered is a three-cell box girder, cast in full width

sections.

The design procedure for this case is almost identical with that
already outlined. However, a different program or manual computations
must be prepared to compute the cross section properties. Other advan-

tages and disadvantages are as given in Sec. 3.9.1.

4.10.2 Segments Lifted from Bridge Superstructure. In the con-

struction procedure considered in Sec. 4.3, the segments were lifted
into position by a floating crane. An alternative method is to 1ift

them by a hoist on the partially completed superstructure.

In this case the impact load on the cantilever should be much
higher (possibly 100 percent) and the live load and impact moments may
constitute a substantial fraction of the total moment during construction.
If this is so, it is probably best to design the top cables to balance a
uniform load together with a concentrated load at the ends of the canti-

levers (i.e., at the center and ends of the completed bridge).

4.10.3 Superstructure Rigidly Connected to Pier. Instead of the

final simple support system considered so far, it is possible to have the
segments above the main piers permanently rigidly fixed by vertical pre-

stressing cables,

This will considerably modify the construction procedure and
hence the design. The cantilever erection process will not be altered,
but because of the fixity at the main piers it will no longer be possible
to adjust the moments in the completed structure simply by jacking at the

ends. Before closure at midspan, flat jacks will have to be inserted
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between the final segments at deck level and pressure applied to induce

a positive moment.

Closure and placing of the main span bottom cables may be done

before placing the side span bottom cables if desired.

4.10.4 Side Span Greater Than Half Main Span. If the side span

is greater than half the main span, the final segments in the side span

cannot be readily erected by the cantilever method.

The simplest procedure is to erect the superstructure by canti-
lever on either side of the main piers to a distance of half the main
span (minus the gap for the closing segment). The remaining segments in
the side spans can be erected on falsework. Closure and insertion of the
main span bottom cables can be done either before or after completion of

the side spans, depending on the details of the structural system.

4.10.5 Continuous Viaducts. The construction and design of

viaducts, comprising a large number of equal continuous spans presents
no special difficulties. However, provision must be made for expansion
and careful attention paid to joint location and pier-girder comnections.

Muller20 treats this problem in some detail.



CHAPTER 5
METHODS OF OPTIMIZATION

In the previous two chapters criteria were developed for the
design of bridges, for which the spans, overall width and comstruction
method were specified. The basic dimensions of the cross section apart
from the overall width were chosen somewhat arbitrarily on the basis of
experience and initial trial designs. The problem to be considered in
this and the following two chapters will be that of determining the dimen-

sions that will lead to a design having "minimum'" cost.

To obtain this minimum cost design, i.e., to "optimize'" the design,
the structural problem must be expressed in mathematical terms. A
standard mathematical problem is that of minimizing a function f(x1 . xn)
of a set of variables LS Such a problem is called "mathematical
programming"” or "monlinear programming'. The function f is called the

"objective function"_30s31,34

Nonlinear programming problems may be subdivided into uncon-
strained and constrained problems. In an unconstrained problem the
variables can take on any value. In a constrained problem the constraints

may be either equality constraints, of the form

h(x . xn) =0

1
or inequality constrains, of the form
g(x1 . . . xn) 20
A simple example of an inequality constraint would be the following:
X, 2 a constant

1

i.e., there is a lower limit to xl(for instance, a minimum web thickness).

135
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In this chapter only unconstrained problems will be considered,
as it will be shown later that the optimization of the bridge super-
structure can be treated as such a problem. This is fortunate, because

the solution of constrained problems is much more complex.

5.1 Notation and Definitions

.x ]

x is the column vector [x1 . . 0

The optimal point: x*, is the vector x which minimizes the objective
function, f(x).

The optimal value: £(x*), is the corresponding value of the objective
function.

The optimal solution: comprises the optimal point and the optimal value.

A global optimal solution represents the smallest value of f(x) for all x.

A local optimal solution represents the smallest value of f£(x) in a
limited region only (see Fig. 5.1).

A unimodal function has only one optimum.

A contour of the objective function is the set of points for which this
function has a constant value.

The gradient, Vf(x) of the objective function at any point is a vector
pointing in the direction of maximum increase of the
function and is given by

VEGR) = [E/axg . . . AE/3x )

The gradient exists if the objective function is continuous and

differentiable.

5.2 Unconstrained Minimization Using
Derivatives

There are various numerical methods of solving the nonlinear pro-
gramming problem without constraints. These methods may be divided into
two classes, those that use derivatives of the objective function and
those that use values of the function only., The methods using derivatives
are generally the more efficient, provided of course the derivatives
exist and can be easily calculated. These methods will be examined first,

5.2.1 Gradient Methods. In gradient (or '"steepest descent')
28,30,31 a

methods, n initial starting point is chosen and the gradient
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Fig. 5.1. TLocal and global optimal solutions
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gf(x) at that point calculated. A step is taken in the direction of
steepest descent, i.e., the reverse of the gradient, and a new point
obtained. This point may be chosen, for example, by searching along the
direction of steepest descent until a minimum value of f(x) along this
line is reached. The gradient is then calculated at the new point and
another step taken. The process continues until an optimal is reached to
within some tolerance, i.e., until some appropriate stop criterion is

satisfied.

The gradient methods are relatively simple. However, they con-
verge very slowly and are imefficient., With some functions which have

very irregular contours, they can never reach a solution.

5.2.2 Second Order Methods. Second order methods are those

which will minimize a quadratic function in n steps or less, where n is

30,31 Such methods are much more efficient than

the number of variables.
the gradient methods and will usually converge for a general objective

function.

Some of the most powerful of these methods make use of '"conjugate
directions. It can be shown that a quadratic function

FG) =x Ax+b x+c

can be minimized in n steps by searching along each of a set of A-conjugate
directions (in a manner similar to that described for gradient methods in

, ; 29
the preceding section). The Fletcher-Powell method, ? is perhaps the most

powerful of the second order methods.

5.3 Unconstrained Minimization
without Using Derivatives

Although the methods using derivatives are generally the most
efficient, sometimes continuous derivatives may not exist or may not be
readily calculated as in the box girder optimization problems. For such
cases, derivative-free methods, also known as ''search' methods, must be
used to find the optimal solution of the nonlinear programming problem.BO
Two of the most efficient of the search methods are Powell's method and

the Nelder-Mead method.
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5.3.1 Powell's Method. 1In Powell's method33 the minimum of an

objective function of n variables is located through a series of itera-
tions, each of which involves a search for a minimum along a set of n
linearly independent directions. These directions are the coordinate
directions initially, but at each iteration a new direction is defined to
replace one of the initial directions. The new directions formed after

a series of iterations will be mutually conjugate if the objective function

is quadratic.

One iteration of the procedure is as follows. Let X be the

starting point and let s s

. . s be the search directions.
=2’ -n

1’
(a) Carry out the search for a minimum along each of the n directions;
i.e., for r =1, 2 . . . n calculate A, so that f<§r—1 + szr) is a

minimum. Define x = X + )\ X where ) x 1is the step size.
=r -r-1 r—r r—r

(b) Define a new direction to replace one of the initial directions, thus:

for r = 1,2, . . . (n-1) replace £ and replace s by

by s 41
(x - x)-
(c) Define a new starting point for the next iteration, thus: choose )
so that f[gn + \(§n - 50)] is a minimum and replace X by
X, A, - ).
It can be shown that, if the objective function is quadratic,
after k iterations the last k of the n directions chosen for the (k+1)th
iteration is mutually conjugate. After n iterations all the directions

are mutually conjugate and the exact minimum of the quadratic is found.

Powell has added some modifications to the procedure to ensure
rapid convergence for more difficult objective functions and poor starting
points. The method appears to be very efficient in general. The method

has been programmed in FORTRAN as program OPTMSE and listed in Appendix C.1.

5.3.2 Nelder-Mead Method. In the Nelder-Mead method32 the

optimal solution for a problem involving n variables is obtained by a
search procedure using a "simplex'". This is defined by a set of (n+l)
points in the n-dimensional space of the variables. In a two-dimensional

space the simplex is defined by three points forming a triangle; in a
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three-dimensional space by four points forming a tetrahedron, etc. Over
successive iterations the simplex is modified by processes of '"reflec-
tion'", "expansion', and "contraction'", to be defined; eventually it

becomes smaller and smaller and converges on the optimal point.

The following definitions are made:

Let Po’ Pl’ . Pn be the (n+l) points defining the current simplex,
v, = the value of the objective function at each Pi’
H = the suffix such that Yy = max (yi),
L = the suffix such that v, = min (yi),
P = the centroid of the points excluding PH’
[Pin] = the distance from Pi to Pj.

The steps in one iteration of the method are as follows.

(a) Reflection. The reflection of P, denoted by P, is obtained.

H’
Its coordinates are defined by the relation

PP =(1+a)P -a PH

where the "reflection coefficient", a, is usually taken as 1.0, If

/

y' lies between Yy and Yy the P is replaced by P’ to form a new

H
simplex.
(b) Expansion. If y < Yo then P/ is expanded to P’/ by the relation
P =P +(1-¢c)P
where the "expansion coefficient", ¢, is generally taken as 2.0.

If y” < yp» Tep lace P_ by P’ and start the next iteration.

H
Otherwise, replace PH by P’ and restart.
(c) Contraction. 1If in stage (a) it occurs that y > Yy for all i # H,

define a new PH to be either the old PH or P/, whichever has the

H’

P/’ =bPH+(1-b)1'>

lower y value, and contract P thus

where the "contraction coefficient'", b, is usually taken as 0.5,
Then replace PH by P’/ and start the next iteration, unless

y' > min (> ¥ ), in which case replace all the P.'s by
(Pi + PL)/Z and restart.
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The iteration process continues until a stop criterion is
satisfied, indicating convergence on a minimum. A flow chart taken

from Ref. 32 is shown in Fig. 5.2.

The method appears to be very efficient for a wide range of
objective functions. The method has been programmed in FORTRAN as

program SIMPLEX and is listed in Appendix C.2.

5.4 Limitations of the Methods

The second order methods using derivatives and the two search
methods presented generally give rapid convergence and good solutions
for problems in which the contours of the objective function are fairly
regular. When the contours are very irregular, solution will be more dif-
ficult. However, these methods have been found to give a reasonable rate
of convergence, even in several test cases having irregular contours such
as the function

2 2
f(xl, XZ) = 100(x2 - xl) + (1 - xl)

known as Rosenbrock’'s parabolic valley.

When the objective function is not unimodal, there is no guarantee
that the solution obtained will be the global optimum rather than a local
optimum.30 The Nelder-Mead method is considered most likely to terminate
at a global optimum, provided the initial points defining the simplex are
widely dispersed. 1In general, when it is known or suspected that there
is more than one optimum, a safe procedure is to compare solutions

obtained using widely different starting points.

In some cases the gradient of the objective function is very flat
in a wide region around the optimal point. This makes exact determination
of the optimal point very difficult, although the actual optimal value of
the objective function can be found quite accurately. In such cases it is
useful to obtain two-dimensional plots of contours of the objective func-
tion, and these may be of more significance than the value of the optimal
point itself. When gradients are very flat, a wide choice of dimensions

is usually possible.
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The choice of a starting point can be important in some cases. If
the starting point is far removed from the optimal point, solution may be
difficult in the case of very irregular contours. If there are local
optima or a very flat gradient, the starting point may influence the

solution.
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CHAPTER 6

OPTIMIZATION OF BRIDGES CONSTRUCTED ON FALSEWORK

In this chapter the problem of optimizing the cross section of
bridges constructed on falsework will be considered. The function to be
minimized will be the cost of the bridge. The dimensions defining the
basic geometry of the cross section to produce this minimum cost will be

determined.

The optimization will be carried out for the sample case of a
two-span, four-lane crossover, having the same length as the bridge
designed in Chapter 3. Two cases will be solved: (a) a superstructure
consisting of a pair of single-cell boxes and (b) one consisting of a
multi-cell box girder. The procedure used in these examples can be
readily extended to other spans. Extension of the method to bridges

having more than two spans will be discussed.
The steps in the optimization procedure are as follows:

(a) A mathematical model of the structure is set up.--The constants,
independent variables, and dependent variables for a nonlinear program-

ming problem are defined.

(b) A computer subroutine is developed to calculate the objective
function.--The objective function is calculated by carrying out a simpli-
fied design of the superstructure and summing the costs of the various

components. This process is programmed to form the computer subroutine.

(c) The nonlinear programming problem is solved by the Nelder-Mead
method and the Powell method.--Computer programs for both methods are used,
together with the objective function subroutine, to obtain the optimal

solution of the problem.
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6.1 First Example--Two-span, Double
Box Girder Bridge

The first example for optimization is shown in cross section in
Fig. 6.1. The cross-sectional type, the cable pattern, and the support
system are the same as in the example designed in Chapter 3. Each span

1s 180 ft.

To obtain the optimum cross section the problem must be expressed
in mathematical terms, i.e., as a nonlinear programming problem. The
various dimensions and quantities will first be somewhat artibrarily
classified into constants, independent variables, and dependent variables

as follows. All dimensions are in foot units.

(a) Constants:
The spans of the bridge: 180ft. - 180 f¢t.
b: overall width
b6: width of cast-in-place strip

t4: web thickness (based on anchorage and placement requirements)
Minimum thickness of bottom slab: 6 in.
Thickness of outer edge of deck slab: 6 in.

Segment length: 10 ft.

(b) Independent Variables:

bl: width of cantilever portion of deck slab
b2: width of outer internal spans of deck slab
b3: width of lower slab of each box

d depth of concrete cross section

(c) Dependent Variables:

b.: width of central span of deck slab

sS: sloping height of web between slabs

ty: thickness at root of cantilever portion of deck slab
ty: thickness of interior portion of deck slab

t3: thickness of bottom slab at pier

q : fraction of span over which bottom slab is thickened

cable area
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0.5'

b
1 A 2 |1 3 |
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NOTES: Bottom slab thickness tapers from ty at pier to 0.5 ft. at 180q ft.

from pier.
All dimensions are in feet.
Spans: 180 ft.-180 ft.

Fig. 6.1. Cross section of first example

‘ 3d | b + 10 i 3d [

NOTE: Dimensions in feet,

Fig. 6.2, Profile of roadway embankment
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The objective function, denoted by C, will be the cost of the
bridge per foot length of superstructure. It is a function of the

independent variables, i.e.,

C = f£(b d)

17 Py Py
The problem will be treated as an unconstrained nonlinear pro-
gramming problem, i.e., no limits will be set on the values taken by
the independent variables. This is the simplest approach possible, and
will be justified if a meaningful solution is obtained. From physical
considerations it seems likely that there will be such a solution. How-
ever, if the resulting dimensions turned out to be physically unfeasible
(i.e., d having a negative value), the problem would have to be reformu-
lated as a constrained problem; limits would have to be set on the dimen-

sions, and very different and more complex solution techniques used.

The procedure outlined above was not the only approach considered.

Initially the quantities t t2, and t, were included with the independent

’
variables and a constraine; nonlinear 2rogramming problem formulated.
Constraints would take the form of inequalities expressing allowable limits
for the concrete stresses. However, it became apparent that with this
approach the problem would be so complex as to be probably insoluable.
Besides, it became clear that the thicknesses could be treated correctly

as dependent variables.

6.2 The Objective Function

A computer subroutine listed in Appendix C.2 was developed to
calculate the objective function. This calculation involves the two
stages of performing an approximate design of the superstructure and sum-

ming the costs of the various components.

The procedure used in the approximate design follows closely that
outlined in Chapter 3, except that the later stages are omitted. The

basic steps adopted here are as follows:

(a) The deck is designed for wheel loads.
(b) The cables are designed to balance the dead load.

(¢) The ultimate moment is calculated, the bottom slab thickness is
determined, and the cable area adjusted.
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A number of simplifications are made to facilitate the design
and to reduce the time taken by the computer to evaluate the objective
function. Reducing this time is important since the computer solution of
the problem may involve over a hundred evaluations of the objective func-
tion. Some of the main simplifications are as follows; others will appear

in the course of the computations.

(a) Fillets in the cross section are ignored.

(b) The nonprestressed reinforcement is not calculated separately,
but is considered as a fixed percentage of the concrete quantity.

(c) The positions of the cable centers are treated as being inde-

pendent of the cable quantity.

These simplifications may significantly affect the design and
hence the cost estimate. However, the purpose is not to develop a com-
puterized final design but to determine the basic dimensions of the cross
section for minimum cost. In other words, what is important is to obtain
correct values of the independent variables at the optimal point. It is
considered that the simplifications will have little effect on the solution

value of these variables.

The material properties used in the calculations are the same as

those given in Chapter 3.

6.2.1 Design of Deck. The deck slab thicknesses at the base of

the centilever portion, tl’ and in the interior portion, are calculated

t2,
using the procedure of Sec., 4.5.

Cantilever portion of deck slab

2

Dead load moment = 0.5 x 0.150 x b 2/2 + (t1 - 0.5) x 0.150 x b1 /6

= 0.025(1 + tl)bI}
Live load and impact moment = 1.3 PX/E
= 1.3 x 16 x (b1 - 2)/[0.8(b1 - 2) + 3.75]

= 26(b; - 2)/(b, + 2.6875)

Total moment: M1 = 0.025(1 + tl)bl2 + 26(b1 - 2)/(b1 + 2.6875)

If b1 > 8.0 ft., the live load moment will include an additional

term corresponding to a second wheel load. This is done in the subroutine.
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The concrete moment resistance coefficient is
R = 0.430 ksi

The distance from the top of the slab to the center of the
reinforcement is assumed to be 2 in. (corresponding to #8 bars and 1-1/2 in.

concrete cover). The slab thickness required, t1 (feet), is then given by

rt
tl

[2 + J(Ml/R)]/lz
[2 +4/(M,/0.432)]/12
0.167 + 0.1268 JM

1]

1 depends on tl’ an initial value of t1 is assumed in the

subroutine and the correct value obtained by iteration.

Since M

Interior portion of deck slab

The interior portion of the deck has two different spans, b2 and

b.. The latter is a dependent dimension given by

b5 =b - Zb1 - 2b2 - 4t4

The thickness required for each span will be calculated and t2 set to

the larger value.

(a) Span, S = b

Dead load moment = t2 x 0.150 x b52/12
2
= 0.0125 t2b5

Live load and impact moment == 1.3 X 0.8(S + 2)P/32
1.3 x 0.8(b5 + 2) x 16/32

0.52(b5 + 2)

2
Total moment: M5 - 0.0125 t2b5 + 0.52(b5 + 2)

The slab thickness required, t2(feet), is given by

t, = 0.167 + 0.1268 Jﬁ's'
(b) Span, S = b2
2
Total moment: M2 = 0.0125 t2b2 + 0.52(b2 + 2)

However, this moment must be corrected for carry-over from the

cantilever portion, as in Sec. 4.5.3.
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Clear sloping height of web:

— / 2 2
s = JQ[d - t, = 0.5]% 4 [(b, - by)/2 + t,17)

Topslab stiffness: k2 = t23/b

Web stiffness: k4 = 0.75t43/s

ted : M=
Corrected moment: M (k4M2 + kle)/(k4 + kz)

2

The slab thickness required is

t, = 0.167 + 0.1268 /i

Minimum thickness

The minimum value allowed for all slab thickresses will be

0.5 ft,

6.2.2 Properties of Concrete Girder Section. The following

properties of the minimum cross section (i.e., away from the pier) are

next computed by the subroutine.

a;, = area of the half-section (i.e., one box girder)

8
dc1

6.2.3 Cable Area. The cables are designed to balance the dead

= area of the full section

= distance from top of girder to centroid of the half-section

load of the concrete section, assuming the idealized double-parabolic

profile.

The minimum distance from the edge of the girder to the center of
the cables is assumed to be 0.67 ft. (corresponding to six cables per

web, 20 strands).

Cable drape: h

(d - 0.67) - (d + 0.67)/2

d - 0.5d - 1.005
cl

Dead load per unit length of half-section = 0.150a11

Cable force (per half-section) required to balance dead load:

F = 0.150a,, X 1802 /8h

607.5a11/h

il

Effective prestress: o ™ 0.6f; = 162 ksi
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The cable area per full section in ft? is given by

A
s

]

2F/ f

se
2 X 607.5 % allf(léz X h x 144)
(19.2h)

a1/
6.2.4 Ultimate Strength at Pier and Bottom Slab Thickness. The

load factors are the same as in Sec. 3.6.1. The bending moments are
calculated in the same way as in Sec. 3.7.2. The moments at the pier are

as follows:

Dead load moment = -0.125 (Concrete DL + Asphalt DL) ¥ 1802
= -0.125 [0.150a, + 0.017(b - 2)] X 180°
= -607.5[a1 + 0.113(b -2)|

-9,650 (k-ft.)

B

Live load moment

The secondary cable moment is obtained by calculating that for
the idealized cable profile and multiplying by a correction factor of 0.7.
This factor takes account of the difference between the actual and
idealized profiles and was obtained during the preliminary design for the

bridge of Chapter 3.

Secondary moment: MS = 0.7 [Resultant moment (ideal profile) - Primary

moment (ideal profile)]
0.7 [(2 X 0.150a,; X 180%/8) - 2F(d_; - 0.67)]

]

"

0.7 [(12,150a11) - (2 % 607.5a11/h)(dc1- 0.67)]
850.5a11[1 - (dcl - 0.67)/h]

i

The ultimate negative moment at the pier is then given by

=
i

-1.35(DL moment) - 2.25(LL + Impact moment) -
(Secondary moment)

1.35(607.5)[a1 + 0.113(b - 2)]

4

+ 2.25(1.164)(9650) - MS
820{31 + 0.113(b - 2)] + 25,260 - M

i

S
The thickness of the bottom slab at the pier, t3, is chosen to

give adequate compressive capacity at ultimate load.
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Moment arm: d =d - 0.67 - 0.5t
m 3

The required value of the thickness is given by

.
ty =M /(d X o X 0.85f x 2b,)

3

il

M /(d_ X 0.9 x 0.85 X 6 X 144 X 2b,)

]

Mu/(1322 dmb3)

3 an initial value of t3 must be assumed in the

subroutine and the correct value obtained by iteration.

Since dm depends on t

The cablearea required for ultimate strength is now determined.
The following (conservative) value is assumed for the cable stress at

ultimate load.

f = 240 ksi
su

Cable area required:

A (ult)= M /(dm X o X £_ )

Mu/(dm X 0.9 x 240 x 144)

Mu/(31,100dm)

If the value of AS computed previously is less than this value, then it

must be replaced by this value.

6.2.5 Extent of Bottom Slab Taper. The value of q, the fraction

of the Span’over which the bottom slab must be thickened, is also
calculated.

The effective depth de (i.e., the distance from the center of the
cables to the bottom of the girder) varies along the span from a maximum
value of (d - 0.67) at the piler. A linear approximation to de was obtained
by drawing a straight line through points on the cable profile at the pier

and at the point of contraflexure, in the case of the example in Chapter 3,
giving
de = (d - 0.67) - 1.7z2(d - 1.,34)

where z = (the distance from the pier center)/(span).



154

At the end of the taper in the bottom slab, the thickness is

0.5 ft. and the ultimate moment capacity is obtained as follows.

Moment arm: d
m

de - 0.5/2

I

d - 0.92 - 1.7z(d - 1.34)

Moment capacity:

]

M (min) = d X ., X 0.85f x 2b. X 0.5
u m . C

3
dm x 0.9 x 0.85 x 6 x 144 x 2b

i

3><0.5

661 dmb3

The actual moments at z are obtained as follows. The dead load

moment varies parabolically, thus
Dead load moment at z = (DL moment at pier) ¥ (1 - 5z + 422)

The live load moment for this case will be obtained by loading
only the span that does not contain the section considered, and so will

vary linearly as follows.
Live load moment at z = 0.5 % (LL moment at pier) X (1 - 2)

The secondary moment varies linearly along the span. Hence,
Secondary moment at z = MS X (1 - z)

The ultimate negative moment at z is then given by
Mu(z) -1.35 (DL moment) - 2.25(LL moment) - (Secondary

moment)

820[al + 0.113( -~ 2)](1 - 5z + 422)

1)
.

+12,630(1 - 2) - M (1 - 2)

The subroutine computes the value of Mu(z) for successive values of
z, starting from z = 1/9, until a value less than Mu(min) is obtained.

The fraction q is set equal to the value of z at that point.

6.2.6 Average Section Area. The subroutine next computes the

area of the full cross section at the pier, a,.

The average cross-sectional area is given by

a=a + (a2 - al)q/z
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6.2.7 Unit Costs. The following typical unit costs (1970) were

obtained from manufacturing firms and from the Texas Highway Department.

The costs are relatively of a correct magnitude, although a wide range

was indicated. Objective functions can easily be updated for new or more

accurate cost information.

(a) Concrete

I

3
Cost of concrete without reinforcement $75 per yd?

i

$2.78 per ft?
$0.20 per 1b.

it

Cost of reinforcement

Both figures include an allowance for the placing of the materials.

A cost analysis of the bridge designed in Chapter 4 gave the

following average figure for the cost of the concrete + reinforcement,

which will be used in this optimization study.

(b)

(e)

(d)

(e)

(£)

(g)

(h)

$4.92 per ft?

1

Cost of reinforced concrete

Prestressing cables

$0.70 per 1b.
$343 per ft?

Cost of cables (including tensioning)

It

Epoxy regin joints

Cost of epoxy (including application) = $80 per ft?
Earth fill
Cost of fill (including labor) = $1.0 per yd?

= $0,037 per ft?
Transportation of segments

Seventy-five miles is chosen as a likely average distance for
transportation. For this distance,

Transportation cost = $2.55 per kip
Forms - The cost of the forms is considered likely to be a
constant, for the range of dimensions possible in this analysis,
and is not taken into account.

Asphalt surface - The asphalt cost is also ignored, as it is a
constant.

Erection cost - There are insufficient data available about

erection costs. The cost will depend on the weight of the
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segments, but will probably increase with discrete increments
of weight rather than in a linear manner. Hence, it will not

be taken into account.

Final cost objective functions will thus correctly reflect
variables such as costs of concrete, steel, transportation of segments,
etc., but will not give correct cost estimates, since items such as forms

and stressing labor are not included.

6.2.8 Total Cost per Foot Length. The costs of the various

items, per foot length of superstructure, are obtained as follows:

(a) Concrete
Cost per ft. length = (Unit cost) X (Average section area)

= 4.,92a

(b) Cables

(Unit cost) x (Cable area)
343A
s

Cost per ft. length

(c) Joints
An epoxy joint thickness of 1/16 in. is assumed

(Unit cost) %X (Joint thickness) ¥

Cost per ft. length
(Average section area)/(Segment length)
(80) x [1/(16 x 12)] x (a)/(10)

0.042a

(d) Earth fill - The quantity of earch fill, forming the roadway

embankment leading up to the abutment, is a function of the girder
depth, d. The profile of the embankment at the abutment (above
the level of the bottom of the girder) is shown in Fig. 6.2. The
width and slopes shown are those required by the Texas Highway
Department. A 150 ft. length of embankment is assumed, giving a
volume of fill (above that required for a value of d = 0) at

each abutment, as follows:

Vol. = (b + 104 3d) x d x 150

Cost per ft. length of superstructure = (Unit cost) x (vol.)/
(1/2 length of bridge)

0.037 x (b + 10 + 3d) x d x 150/180

0.031(b + 10 + 3d)d
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(e) Transportation
Cost per ft. length = (Unit cost) X (Unit weight) x (Average
section area)

2.55 x 0.150 x a

0.383a

W

It

(f) Total cost
The total cost per ft. length is given by
C = 4.92a + 343AS + 0.042a + 0.031(b + 10 + 3d)d + 0.383a

= 5.345a + 343AS + 0.031(b + 10 4+ 3d)d
The quantity C constitutés the objective function for the problem.

6.2.9 Subroutine. A listing of the subroutine which carries out
the design outlined above and computes the objective function C is given

in Appendix C,3.

The constants b, b and t, are set to the following values,

6° 4
corresponding to the design in Chapter 3.
b = 50
b6 = 2
t4 = 1.0833

6.3 The Optimal Solution

6.3.1 Optimization Methods. To solve the unconstrained nonlinear

programming problem the methods of Nelder-Mead and Powell will be used.
As explained in Chapter 5, these methods do not require derivatives of
the objective function. It is probable that continuous derivatives of
the object function C do not exist at some points. In any case, to calcu-

late the derivatives would be extremely difficult.

Computer programs for both the Nelder-Mead and the Powell methods
were used in order to obtain solutions by both methods in order to see

which is the more efficient for this problem,

6.3.2 Solution., Optimal solutions to the problem were obtained
using both optimization programs together with the subroutine for determining

the objective function.
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As a precaution against obtaining a local optimum rather than a
global optimum, several solutions were obtained using different starting

points.

In order to determine the sensitivity of the optimal point to
relative changes in the unit costs of the materials, a second problem was
solved in which the tendon cost was increased by 50 percent. Thus, the

objective functions for the two problems are as follows:

First problem: C = 5.345a + 343AS + 0.031(b + 3d + 10)d
Second problem: C = 5.345a + 514.5AS + 0.031(b + 3d + 10)d

The solutions obtained for both problems, using the two optimiza-
tion methods and various starting points, are shown in Table 6.1. The
best solution for each problem, i.e., the one having the lowest value of

the objective function, is indicated.

6.3.3 Contour Plot. To obtain an estimate of the sensitivity of

the objective function to small changes in the variables near the optimum,

a contour plot of this function is useful.

In the case of the first problem, a two-dimensional contour plot
of the objective function was obtained by computer. The two variables

chosen for the axes of the plot were b1 and d. The other independent

variables, b, and b,, must be set at constant values or else made dependent

2 3°

on b1 and d. They were made functions of b, in the following way.

1

b, was set at a fraction of the sum of the interior spans of the

2

top slab, i.e., (b - 2b1 - Ath)’ and b3 was set at a fraction of the
bottom slab width for vertical webs, i.e., (b2 + 2t4). The fractions were

chosen to give the correct values of b2 and b3 at the optimal point; thus,

0.319(b - 2b1 - 4t4)
O.700(b2 “+ 2t4)

it

bZ
by

The contour plot is shown in Fig. 6.3.

6.3.4 Comments. With each of the two problems solved, there is
some variation in the values obtained for the variables at the optimal
point, using the different optimization methods and different starting

points. However, the variation in the optimal value of the objective



TABLE 6.1. OPTIMAL SOLUTION FOR TWO~SPAN DOUBLE BOX GIRDER BRIDGE

Method Starting Point Solution
Variables (feet) Variables (feet) Objective
Function
by b, by d b, b, b, d L/d |($ per ft.)
Objective function:; C = 5.345a + 343AS + 0.031(b + 3d + 10)d
Nelder-Mead 6.0 10.0 10.0 8.0 8.00 9.47 8.14 6.30 | 28.6 472.04
Powell 10.0 8.0 7.0 5.0 9.35 8.06 6.85 6.381] 28.24 474.00
Powell 6.0 10.0 7.0 5.0 8.00 9.46 7.73 6.32]28.5 472.50
Best Solution 8.00 9.47 8.14 6.30] 28.6 472.04
Objective function: C = 5,345a + Sl&.SAS + 0.031(b + 34 + 10)d
Nelder-Mead 6.0 10,0 10.0 8.0 8.00 9.38 7.15 7.271 24,8 535.95
Nelder-Mead 6.0 10.0 5.0 8.0 8.00 9.38 7.12 7.30| 24.6 535.96
Powell 6.0 10.0 10.0 8.0 7.23 10.00 7.39 7.20| 25.0 538,59
Powell 9.0 9.0 9.0 8.0 8.22 9.14 6.83 7.29 24.7 536.72
Best Solution 8.00 9.38 7.15 7.27 | 24.8 535.95

661
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function is less than 0.5 percent. Examination of the contour plot
reveals that the gradient of the objective function is quite flat near

the optimum. Consequently, the optimal point is not sharply defined.

The best solutions to both problems were obtained using the
Nelder-Mead method. 1In the case of the Powell method, some starting
points were tried that did not lead to a solution at all. The reason
for this was that in one of the early iterations the method would arrive

at a point having a value of b, or d so small that the objective function

3

subroutine could not obtain a value for t3. On the other hand, with the
Nelder-Mead method, the computer output always revealed a slow but steady

convergence.

The value of b1 (the width of the cantilever portion of the deck
slab) has a value of 8.00 ft. at the optimum in both problems. The
apparent reason for this "round figure" value is that for greater widths
a second wheel load would be acting on the cantilever, giving a discon-
tinuity in the gradient of the objective function at this value. The
value of b, (the width of the outer interior span of the deck slab) is

2

such that this span is less than the central span, b5. The value of b3
(the width of the lower slab) is such as to give sloping webs for the box

girders,

The effect of increasing the unit cost of the cables as done in
the second problem is to increase the value of the depth d at the optimum
and to decrease the value of b3. The increase in d was expected because
the required cable area decreases with the depth of the superstructure.
Optimal L/d ratios decreased from 29 to 25 with increased tendon costs.
The bottom flange area required for negative moment also decreases with the
depth; hence the decrease in b3.
The contour plot for the first problem (Fig. 6.3) shows that the
objective function is not very sensitive to small changes in the variables
near the optimal point. 1In other words, as already noted, the gradient is

flat. A range of values of b, and d to give values of the objective

1
function within 1 percent and 2 percent of the optimal value are as follows:



162

Objective Function Range of bl(ft) Range of d(ft) Range of 1./d
1 percent above optimal value 6.8 to 9.0 5.6 to 7.1 32 to 25
2 percent above optimal value 5.3 to 10.8 5.2 to 7.7 35 to 23

6.4 Second Example--Two-Span, Multi-cell
Box Girder Bridge

The cross section of the second example bridge to be optimized is
shown in Fig. 6.4. The spans, the support system, and the cable pattern
are the same as for the first example. The constants and the variables
for the nonlinear programming problem are the same as in the previous

example, apart from the following exceptions to the constants.

The dimension b6 does not appear in this example. The following

item is added:
nw = number of webs

Four webs are shown in Fig. 6.4. However, the subroutine is set up to
handle any arbitrary number. If there are more than four webs, the
interior spans of the deck slab, apart from those adjacent to the canti-
lever portion, are all set equal to b5.
The procedure for computing the objective function is similar to
that used in the previous case. A listing of the subroutine is given in

Appendix C.4. The constants b, t4’ and n are set to the following values:

b = 50

t4 = 1.0833
n = 4

w

Two problems are again considered, corresponding to two values of

cable cost. As before, the objective functions are given by:

First problem: C = 5.345a + 343AS + 0.031(b + 3d + 10)d
Second problem: C = 5.345a + 514.5AS + 0.031(b + 3d + 10)d

The optimal solutions obtained from the Nelder-Mead method and the

Powell method are shown in Table 6.2.
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Fig. 6.4. Cross section of second example



TABLE 6.2. OPTIMAL SOLUTION FOR TWO-SPAN THREE-CELL BOX GIRDER BRIDGE

791

Method Starting Point Solution
Variables (feet) Variables (feet) Objective
Function
by b, by d b, b, by d L/d ($ per ft.)
Objective function: C = 5.345a + 343AS + 0.031(b + 3d + 10)d
Nelder-Mead 6.0 10.0 20.0 8.0 10.83 6.46 24.39 5.95| 30.2 509,63
Powell 6.0 10.0 20.0 8.0 11.00 6.29 24,39 5.91 | 30.4 509,68
Best Solution 10.83 6 .46 24,39 5.95 | 30.2 509.63
Objective function: C = 5.345a + 514.5AS + 0.031(b + 3d + 10)d
Nelder-Mead 6.0 10.0 20.0 8.0 10.89 6.10 23.25 6.32 | 28.5 582.45
Powell 6.0 10.0 20.0 8.0 14.30 8.12 17.28 6.83| 26.3 581.20
Powell 10.0 8.0 20.0 8.0 13.78 7.68 18.30 6.69 | 26.9 581.28
Best Solution 14. 30 8.12 17.28 6.82 | 26.4 581.20
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A contour plot for the first problem is given in Fig. 6.5. The

axes correspond to the variables b1 and d. As in Sec. 6.3.3, the

variables b2 and b3 are expressed in terms of b1

correct values are obtained at the optimal point; thus,

in such a way that the

0.269(b - 2b1 - 4t4)

0.861(b - 2b1)

H

Py
b3

6.4.1 Comments on the Optimal Solution. As in the previous

i

example, there is some variation in the values of the variables at the

optimal point, obtained with the different methods and different starting
points. The variation in the optimal value of the objective function does
not exceed 0.2 percent. Again, the flat gradient of this function is the

reason why the optimal point is not sharply defined.

The best solution for the first problem was obtained by the
Nelder-Mead method and for the second problem by the Powell method. The
Powell method yielded solutions with all of the starting points tried.
In view of the small variation in the solution values of the objective
function, the two methods can be considered about equally effective in

this example.

The values of b1 and b3 in the optimal solutions indicate a large
cantilever overhang for the top slab and a narrow bottom slab. The
apparent reason for this is that a large area of bottom slab is required
only in the negative moment region near the pier, thus leading to a narrow
width for the optimum, and in consequence the cantilever portion of the

top slab becomes large, avoiding excessive slopeof the outside webs.

The effect of increasing the unit cost of the cables is again to
increase the value of the depth d at the optimum. L/d decreases from 30
to 26 with increasing tendon costs. Also the value of b3 decreases and
that of b1 increases.

The contour plot for the first problem (Fig. 6.5) again indicates
that the objective function is not very sensitive to changes in the
variables near the optimal point. The range of values of b1 and d giving
values of the objective function within 1 percent and 2 percent of the

optimal value are as follows.



9.0
d(£t.)
8.0 //Ag : gig Objective Function
o - sis C = 5.345a + 343a_
/¢ =514 + 0.031(b + 3d + 10)d
/¢ = 512
= —
g
/:%3§
6.0 / ) /H\( \ \
5.0 A — —
4.0
8.0 9.0 10.0 11.0 0 13.0 14.0

12.
bl(ft')

Fig. 6.5. Objective function contours for two-span three-cell box girder
bridge

991



167

Objective Function Range of bl(ft) Range of d(ft) Range of L/d
1 percent above optimal value 9.8 to 13.7 5.3 to 6.6 34 to 27
2 percent above optimal value 8.8 to >14.0 4.9 to 7.2 36 to 25

6.5 The Optimal Solution as
a Basis for Design

The procedure developed in this chapter makes possible the deter-

mination of the optimal basic dimensions (bl, b and d) for the cross

2? b3’
section of a two-span bridge, of given length, width, and sectional type.

These optimal dimensions can form the basis for the design of the bridge.

As noted in Chapter 2 and Sec. 3.8, the first step in the design
of the superstructure is to select an approximate cross section. The
full dimensions, including the various thicknesses, are required. These
latter dimensions, classified as dependent dimensions in Sec. 6.1, may be

otained as follows.

The subroutine developed to compute the objective function can
easily be converted into a program to compute the full dimensions of the
section. The variables bl’ b2, b3,
this program and the various dimensions computed by the subroutine, e.g.,

and d can be made input items for

the slab thicknesses, the section area, and the cable area, can be printed

as output. Thus, this program performs the function of a preliminary design.

6.6 Possible Limitations of
the Optimal Solution

The question must finally be raised as to whether the cross section
determined by the optimal solution, i.e., having the minimum cost, is in
fact the most appropriate one to use in design. The following considera-

tions are relevant.

The optimal depth, d, obtained using the best estimate of cable
cost, came to 6.30 ft. in the case of the double box girder and 5.95 ft,
for the three-cell box girder. These correspond to a span/depth ratio of
about 30, which is higher than that for most box girder bridges actually
constructed abroad. It is to be noted that the smaller the depth the

greater the number and the crowding of the cables. However, there is no
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reason to consider this excessive for these values of d. The higher
span/depth ratios may be reflecting both lighter U.S. live loads and

different economic conditions.

Deflections are also greater for smaller depth. A deflection
limitation was not built into the subroutine for the objectiwe function.
This could be done but would add significantly to the complexity. 1In
view of the very small deflections obtained for the bridge designed in
Chapter 3 and considering that the dead load was balanced, it is unlikely
that the deflections obtained for the optimal values of depth, given

above, will be excessive.

In the case of the three-cell box girder, the optimal values of
b1 indicate a large cantilever overhang. The larger the overhang the
more crowded the transverse reinforcement becomes in the top of the slab.
It is also possible that with a large value of bl the shear stresses in
the outer webs of the girder may be considerably higher than those in
the inner webs. A large inequality of shears will probably result in a

greater quantity of web reinforcement being required.

The flat gradient of the objective function near the optimum allows
a reasonable latitude in the choice of the dimensions without large varia-
tion in this function. So an increase in depth or a decrease in the
cantilever overhang (in the case of the three-cell box) can be made with

small increase in cost.

6.7 Other Examples for Optimization

The methods developed in this chapter for optimizing two-span
bridges can be extended to bridges having a greater number of spans.
The changes in procedure will follow the changes outlined in the design

method.

In the case of long viaducts, the span could also be made a
variable to be optimized. This will be discussed further in the next

chapter.




CHAPTER 7

OPTIMIZATION OF BRIDGES CONSTRUCTIED IN CANTILEVER

The problem of optimizing the cross section of bridges constructed
in cantilever will be considered in this chapter. The difference in the
design procedure for a bridge of this type as compared to one constructed
on falsework will be reflected in the subroutine to compute the objective
function for the problem. Otherwise, the optimization procedure is essen-
tially similar to that described in the preceding chapter and the basic

steps are as follows:

(a) A mathematical model of the structure is set up.

(b) A subroutine is developed to calculate the objective function.

(c) The nonlinear programming problem is solved using the Nelder-Mead
method and/or the Powell method.

The sample case for which the optimization is carried out in full
is that of a three-span bridge, having the same length and span ratio as
that designed in Chapter 4. The function to be minimized will again be
the cost of the bridge. The method used in this example can be readily
extended to other lengths of bridge. Extension of the method to bridges

with other span ratios and to viaducts having many spans will be discussed.

7.1 Example Case--Three-Span
Double Box Girder Bridge

The cross section of the example bridge is shown in Fig. 7.1. It
consists of a pair of connected, single-cell box girders. The segmental
pattern, the cable pattern and the support system are the same as for
the bridge designed in Chapter 4. The spans are 100 ft. - 200 ft. -

100 ft.

The constants, independent variables, and dependent variables for

the nonlinear programming problem are the same as in Sec. 6.1. The

169



170

2 11 5 i

] |
L L

NOTES: Bottom slab thickness varies from t, at main pier to 0.5 ft. at
100q ft. from pier.
All dimensions are in feet.
Spans: 100 ft.-200 ft.-100 ft.

Fig. 7.1. Cross section of example for cantilever erection
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objective function C, the cost of the bridge per foot length, is a function

of the independent variables; thus

C = f(bl, b d)

2’ b3’

The problem will again be treated as unconstrained.

7.2 The Objective Function

The subroutine given in Appendix C.5 is developed to calculate
the objective function, by performing an approximate design of the super-

structure and summing the costs of the various components.
The basic steps adopted in the approximate design are as follows:

(a) The deck 1s designed for wheel loads.

(b) The bottom slab thickness and the top cables are designed for
cantilever erection.

(c) The bottom cables are designed for ultimate load on the completed
superstructure.

This procedure closely follows that outlined in Chapter 4, except
that some steps are omitted., Various simplifications are made to

facilitate the design. These include the ones outlined in Sec. 6.2.
The material properties assumed are as given in Chapter 3,

7.2.1 Design of Deck. This is exactly the same as in Sec. 6.2.1.

7.2.2 Properties of Concrete Section at Center of Bridge. The

following properties of the minimum section are next computed by the

subroutine.

a,, = area of the half section (i.e., one box girder)

[\
B

1 area of the full section

f

dc1 distance from top of girder to centroid of the
half section

7.2.3 Bottom Slab Thickness. The bottom slab thickness at the

main piers, t3, is designed to give adequate compressive capacity for
ultimate strength during cantilever erection. The ultimate load factors
are the same as in Sec. 3.6. The approximate bending moments are calcu-
lated as in Sec. 4.7.2 and the ultimate moment is as follows for each box

girder.
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=
It

1.35(Dead load moment) + 2.25(Live load moment)
1.35(0.150a11 X 1002/2) + 2.25(25 % 95)
= 1012.5a11 + 5,344

The distance from the top of the girder to the center of the top

cables is assumed to be 0.46 ft., as in the bridge designed in Chapter 4.

Moment arm: d =d - 0.46 - 0.5t
m 3

The required value of the thickness is given by

"

t

/
;=M /A XX 0.85¢ X b,)

Mu/(dn X 0.9 x 0.85 X 6 x 144 X b3)
Mu/(661 dmb3)

The value of q, the fraction of the cantilever span over which the
bottom slab must be thickened, is now calculated. At the end of the taper
the bottom slab thickness is 0.5 ft. and the ultimate moment capacity is

obtained as follows.

Moment arm: dm =d - 0.46 - 0.5(0.5)
=d - 0.71

1

R . ’
Moment capacity: Mu(mln) dm X o X 0.85fC X b3 x 0.5
dmx0.9x0.85x6x144xb

330.5 d b
m

3 X 0.5

3
The actual ultimate moment at a distance (100z) ft. from the pier

center is given by

Mﬁ(z) 1.35(DL moment) + (LL moment)

1.35 x 0.5 % 0.150a11[100(1 - z)]2 +
2.25 x 25(95 - 100z)

1012.5a, (1 - 2)2 + 5,625(0.95 - z)

H

The subroutine computes the value of Mu(z) for successive values
of z, starting from z = 0.10 until a value less than Mu(min) is obtained.

The fraction q is set equal to the value of z at that point.

7.2.4 Properties of Concrete Section at Main Piers. The following

properties of the maximum section can now be computed by the subroutine.
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a,, = area of the half section
a, = area of the full section
dc2 = distance from top of girder to centroid of the

half section

7.2.5 Top Cable Area. The top cables are designed to balance

60 percent of the dead load during cantilever erection.

The moment to be balanced at the pier for each box girder

(i.e., the half section) is given by

M = 0.6(Dead load moment)
= 0.6 x 0.150a,; x 100°/2
= 450a11
The eccentricity of the cables about the section centroid is
dec = dc2 - 0.46

The effective prestress: fse = 0.6f; = 162 ksi

The top cable area required for the full cross section at the
pier is given by

A

]

2><M/(de x £ )

sl c se

#

2 ‘350a11/(deC X 162 x 144)

it

0.0386a,,/(d_, - 0.46)

The capacity of the cables at ultimate load is now checked. From

Sec. 7.2.3 the ultimate moment at the pier is given by

M
u

1012.5a11 + 5,344
and the moment arm is

d
m

d - 0.46 - O.St3

The following (conservative) value is assumed for the cable stress at
ultimate load

f = 240 ksi
su

Hence, the top cable area required for ultimate strength 1s given by
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AuIt) =M /(d X o X £_)

su
Mu/(dm X 0.9 x 240 x 144)

Mu/(31,100 dm)

If the value of ASl computed previously is less than this value, then

it must be replaced by this value.

The average top cable area along the length of the girder will
be required for the cost estimate. This was calculated in the case of
the bridge designed in Chapter 4 and found to be 43 percent of the cable

area at the pier. This proportion will be assumed here., Hence,

Average top cable area: ASt = 0.43ASl

7.2.6 Bottom Cable Area. The bottom cable area is designed to

provide adequate ultimate strength at the center of the completed bridge.

The bending moments (on the full cross section) at the center of

the bridge are calculted as in Sec. 4.8.2 and are as follows:

Dead load moment 0.055(Concrete DL + Asphalt DL) X 2002

0.055{0.150a1 + 0.017(b - 2)] x 2002

330[a1 + 0.113(b - 2)]

i

Live load moment = 6,490 (k-ft.)

Secondary moment due to top cables

-0.055(balanced load) X 2002
-0.055(2 x 0.6 x 0.150a,,) X 200°
-396a11

I

i

In order to determine the secondary moment due to the bottom cables,

an initial value of the bottom cable area at the bridge center, AsZ’ is

assumed. The cable force and the eccentricity of the cables about the

centroid of the section are obtained as follows:

Cable force: F f X A

se s2

|

162 x 144 X A52

i

23,3304 ,



175

The distance from the bottom of the girder to the center of the bottom

cables is assumed (conservatively) to be 0.5 ft.

Cable eccentricity: d = (d - dc

cc - 0.5)

1
Since the cable pattern and segmental pattern are the same as in

Chapter 4 the equivalent cable load and the secondary moment may be

obtained in the same way as in Sec. 4.8.4. The equivalent load for the

main span bottom cables is given by

P

F xd, . /(6Xx10)
23,330A .d /60
s2 ec
388.8A .d
s2 ec

The secondary moment due to the main span bottom cables is (0.1013 X
P x 200). In Chapter 4 the secondary moment due to the side span bottom
cables amount to 14 percent of this value. So it is assumed here that

the secondary moment due to all of the bottom cables is given by

Mg

1.14 % 0.1013 x P x 200
1.14 x 0.1013 x 388'8A32dec x 200
8,980A _d

s2 ec

1]

2
The ultimate moment at the center of the bridge can now be

determined; thus

M = 1.35(DL moment) + 2.25(LL + Impact moment)
+ (Secondary moments)
= 1.35330(a; + 0.113(b - 2)) + 2.25(1.154)(6,490)
+ (—396a11 + MS)]
445,5fa, + 0.113(b ~ 2)] + 16,850 - 396a11 + M

1

The required cable area is now determined. In Sec. 4.8.4 a value

S

of 267.5 ksi was calculated for the cable stress at ultimate load at the

bridge center. The following conservative value will be assumed here.

f = 265 ksi
su

Depth of stress block: d A f /(0.85f b)
a su C

s2
As2 X 265/(0.85 x 6 X b)

= 52A52/b
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Moment arm: d

d - 0.5 - 0.5d
a

l

d - 0.5 - 26AS /b

2

Bottom cable area required at center of bridge:

Agp =M /W@ Xox £ )

M /(d X 0.9 X 265 x 144)
Mu/ (34, 340dm)

The subroutine thus computes the correct value of AS by an

2
iterative procedure, starting with the assumed value.

The average bottom cable area over the full length of the bridge
was calculated in the case of the bridge designed in Chapter 4 and found
to be 47.5 percent of the area at the center. The same proportion will

be assumed in this calculation.

Average bottom cable area: A . = 0.475A
sb s2

7.2.7 Average Section Area and Cable Area. The average cross-

sectional area is
a=a + (a2 - al)q/2
The average area of top and bottom cables is
As - Ast + Asb

7.2.8 Cost per Foot Length of Bridge. The unit costs for this

bridge are the same as in Sec. 6.2.7. However, earth fill is not consid-
ered in this case, as it is assumed that a conventional short span struc-
ture leads up to each end pier of the bridge (as in Chapter 4) rather than

an earth embankment.

The objective function, i.e., the total cost per foot length, is
given by the same expression as in Sec. 6.2.8, except that the last term

(corresponding to earth fill) is dropped. Thus,
C = 5.345a + 343AS

A listing of the subroutine that computes the objective function,
C, is given in Appendix C.5. The constants b, b6’ and t4 are set to the

following values corresponding to the design in Chapter 4.
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b = 56.0
b6 = 2.0
t4 = 1.0

7.3 The Optimal Solution

The nonlinear programming problem having the above objective
function was again solved using both the Nelder-Mead method and the

Powell method.

A second problem was also solved in which the cable cost was
increased by 50 percent. The objective functions for the two problems

are as follows:

First problem: C

5.345a + 343AS
Second problem: C = 5.345a + 514.5AS

The solutions obtained are shown in Table 7.1.

A contour plot obtained by computer for the first problem is

presented in Fig. 7.2. The axes correspond to the variables b1 and d.

As in Sec. 6.3.3, the variables b2 and b3 are expressed in terms of b1

in such a way that the correct values are obtained at the optimal point;
thus

b,

by

0.322(b - 2b1 - 4t4)

0.783(b2 + 2t4)

7.3.1 Comments. As in the examples of the previous chapter,
there is some variation in the values of the variables at the optimal
point, obtained with different methods and different starting points.

The flat gradient of the objective function is again the reason for this.

The variation in the optimal value does not exceed 0.2 percent.

The best solution to both problems was obtained by the Nelder-
Mead method. As in the first example of the previous chapter, the
Powell method failed to give a solution for some starting points that

were tried.

The geometry of the cross section defined by the optimal solution

for each problem is similar to that obtained in the first example of



TABLE 7.1. OPTIMAL SOLUTION FOR THREE-SPAN DOUBLE BOX GIRDER BRIDGE

8L1

Method Starting Point Solution
i Variables (feet) Variables (feet) Objective
Function
b, b, by d by b, by d L/d ($ per ft.)
Objective function: C = 5.345a + 343AS
Nelder-Mead 6.0 10.0 10.0 8.0 8.00 11.62 10.14 5.72 34.9 463.64
Nelder-Mead 6.0 10.0 5.0 8.0 8.00 11.60 10.65 6.13 | 32.6 463.62
Powell 10.0 8.0 7.0 5.0 8.00 11.61 10.07 5.76 | 34.7 463.66
Best Solution 8.00 11.60 10.65 6.13 | 32.6 463.62
Objective function: C = 5.345a + 514.5AS
Nelder-Mead 6.0 10.0 10.0 8.0 8.00 11.54 9.76 6.78 | 29.5 521.79
Nelder-Mead 6.0 10.0 5.0 8.0 8.00 11.54 9.32 6.75 | 29.6 522.71
Powell 10.0 8.0 7.0 5.0 8.00 11.53 9.08 6.86 | 29.2 522.75
Best Solution 8.00 11.54 9.76 6.78 | 29.5 521.79
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Chapter 6. The value of b1 (the width of the cantilever portion of the
deck) has a "round figure" value of 8.00 ft. The value of b2 (the width
of the outer interior span of the deck slab) is such that this span is
slightly less than the central span, b5. The value of b3 (the width of
the lower slab) is such as to ensure sloping webs for the box girders.
The effect of increasing the unit cost of the cables is again

to increase the value of the depth d at the optimal point. The value

of b3 decreases also as before.

The contour plot for the first problem (Fig. 7.2) again indicates
that the objective function is not very sensitive to changes in the
variables near the optimal point. It may also be noted that the contours
are more irregular than in the previous cases. The range of values of b1
and d to give values of the objective function within 1 percent and 2 per-

cent of the optimal value are as follows.

Objective Function Range of bl(ft) Range of d(ft) Range of L/d
1 percent above optimal value 6.8 to 8.7 5.1 to 6.8 39 to 29
2 percent above optimal value 5.6 to 9.8 4.6 to 7.5 43 to 26

7.3.2 Possible Limitations of the Solution. The optimal depth d,

obtained in the first problem (i.e., using the lower value of cable
cost) is 6.1 ft. This corresponds to a span/depth ratio of 33, which is
higher than that occurring in any of the existing bridges recorded in
Ref. 16 except for those having variable depth. So the question arises
as to whether or not the optimal depth should be used for design in this

case.

First, deflections must be considered. As in the previous chapter,
no deflection limitation was built into the subroutine for the objective
function. However, a rough estimate of the deflection at the center of
the bridge can be obtained by a comparison with the bridge designed in
Chapter 4. The maximum dead and live load deflection (excluding creep
effects) in that case was 0.88 in. Assuming that the deflection is
inversely proportional to the square of the box girder depth, the approxi-
mate deflection in the present case is 0.88 X (8.0/6.1)% = 1.52 in. =

span/1600. This is quite acceptable.



181

The sizé of the top and bottom cables required will be roughly
inversely proportional to the depth of the girder. With larger cables
bigger fillets may be required to provide adequate concrete cover. Fillets
were ignored in the optimization process, as noted in Sec, 6.2, and it

is considered that they would not significantly affect the optimum depth.

The girder section corresponding to the optimal solution is the
one having minimum cost. However, in view of the flat gradient of the
objective function, a design having some improved features, namely
smaller deflections and smaller cable and fillet sizes, can be obtained
at small increase in cost by increasing the depth above the optimal. The
actual value used in construction of the example bridge (L/d = 25) is
near the 2 percent above optimal limit. This bridge was so stiff that

higher L/d ratios seem indicated.

7.4 Effectiveness of the Optimization
Techniques

The following is a summary of the previous comments regarding

the effectiveness of the optimization techniques:

(a) Treatment as an Unconstrained Problem.--In each of the three
examples considered, the problem of optimizing the dimensions of the
bridge cross section was set up as an unconstrained nonlinear programming
problem. The cost per foot length was chosen as the objective function
and expressed in terms of the basic variables, bl’ b2, b3, and d.
Physically acceptable solutions were obtained for these variables in all

cases, thereby justifying the treatment as an unconstrained problem.

(b) The Nelder-Mead and Powell Methods of Optimization.--Calcula-
tion of derivatives of the objective function was not feasible. The
Nelder-Mead and the Powell methods were accordingly chosen, being the
most efficient of the methods that do not require derivatives. 1In the
examples considered, the Nelder-Mead method was generally superior to the
Powell method. In two of the three examples, with some starting points
the Powell method would not reach a solution. With the Nelder-Mead method

steady convergence to the solution was always attained.
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(c) Design Simplifications.--In calculating the objective function
an approximate design of the superstructure was carried out by the sub-
routine. Various simplifications were made in this design, as outlined
in Sec. 6.2. It was considered that these would have little effect on

the solution value of the basic variables at the optimal point.

(d) Contours of the Objective Function.--Two-dimensional plots of
contours of the objective function were obtained by computer for each of
the three examples. In each case the plot showed that the gradient of
the objective function near the optimal point was quite flat. Variations
in the values of the variables b1 and d over a considerable range produce
only small changes in the value of the objective function.

(e) Effect of Changes in Unit Costs.--By varying the cost of the
cables by 50 percent, it was found that the optimal point is sensitive to
relative changes in the unit costs. A 50 percent increase in cable cost
causes an increase of about 1 ft. in the optimal value of d. The value

of b3 decreases.

(f) Deflections.--No deflection limitation was built into the
objective function subroutines. Approximate estimates indicate that for
the examples considered deflection is not critical. However, if bridges
with much greater spans were being optimized, it would be best to have a

deflection limitation in the subroutines.

(g) Design Dimensions.--The optimal solution defines the basic
dimensions of the cross section for the bridge having minimum cost.
However, by utilizing the flat gradient of the objective function, the
design dimensions can be varied to some extent with only small increase in
cost. An increase in the depth d will result in smaller deflections and
also fewer or smaller cables. In the case of a multi-cell girder, a

decrease in the cantilever overhang b, will result in less crowding of the

1
transverse reinforcement and a better distribution of shears.

7.5 Other Examples for Optimization

The optimization of other cases of bridges constructed in canti-

lever will now be considered briefly.
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7.5.1 Multi-Cell Box Girder. The procedure for a multi-cell box

girder bridge is similar to that for the example considered in this chap-
ter. Some minor changes are required in the objective function subroutine,

as was the case for the second example in Chapter 6.

7.5.2 Side Span Greater than Half Main Span. In the case of a

three-span bridge in which the span lengths are specified, the optimiza-
tion process can be generally similar to that used in the example of this
chapter. However, when the side span is greater than half the main span,
the design procedure and the calculation of the objective function will

be a little more complex.

More generally the different spans will not be specified but only
the total length of the bridge. The side span can be made one of the
independent variables to be optimized. An alternative case is that of a
bridge crossing a navigation canal, where the main span is specified and
the side span can be a variable. The two cases can be treated in essen-
tially the same way. They differ from the problems already considered in

that there is an extra variable, the side span length.

In Sec. 4.10.4 it was pointed out that when the side span exceeds
half the main span, the final outer portion of the superstructure cannot
readily be erected by the cantilever process and that some falsework will
normally be required. The amount of this falsework will depend on the
length of the side span in excess of half the main span. 1Its cost must

be included in the objective function, when the side span is a variable.

7.5.3 Continuous Viaducts. With continuous viaducts, comprising

many spans, the span length should be included among the independent
variables in the optimization problem. The number of piers will depend
on the span and so the pier and bearing costs must be included in the

objective function.
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CHAPTER 8

CONCLUSIONS

8.1 General Conclusions

The prestressed concrete box girder constitutes an effective and
economical member for the superstructure of a long span bridge., Segmental
precasting provides an economical means of manufacture, with high quality
control, and leads to rapid methods of erection. A number of long span
bridges have been constructed throughout the world using segmental precast
box girders and techniques of precasting and jointing are available for

high strength and precision.

There are two principal methods of construction, namely erection
on falsework and cantilever erection. The former is generally simpler
provided support for the falsework is feasible at fairly close intervals.
Cantilever erection 1s usually more suitable for river crossings and for

viaducts over water or heavily traveled roadways.

Procedures for the design of such bridges erected on falsework or
erected in cantilever have been developed. These procedures involve using
"beam'" theory analysis procedures to satisfy both service load criteria
and ultimate strength criteria under all conditions of loading. The
effect of the cable forces on the concrete stresses is calculated using
an equivalent load concept. Service load level stresses considering
possible warping effects and effects of unsymmetrical loading throughout
the structure are then checked using the MUPDI program developed by
A. Scordelis. Erection stresses in bridges erected in cantilever are

also checked using the SIMPLA2 program developed by R. Brown.

For bridges erected on falsework, the prestressing system can con-
sist of long, draped cables. If the number of spans is small, these can
run the full length of the bridge and are inserted and tensioned at the

end of construction. A cable profile consisting of a series of parabolas
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will produce a series of uniform equivalent loads along the girder. The
cables and the concrete section must provide adequate ultimate strength
and acceptable service load stresses under dead load and the various

live load patterns on the continuous superstructure.

In the case of bridges erected in cantilever, each stage of
construction is a separate design condition, for which the ultimate
strength and service load criteria must be satisfied. The cables are of
varying length. Those in the top of the girder are inserted and ten-
sioned as each pair of segments is erected and must withstand the dead
load and possible unbalanced moments in the cantilever arm. The cables
in the bottom of the girder are inserted after completion of the canti-
lever arms and casting of the closure and are designed to ensure adequate
ultimate strength and satisfactory service load stresses under dead and
live load on the completed bridge. To obtain the effect of the cable
forces on the concrete stresses, the equivalent load concept has been
fur ther developed for application to a system of cables of varying

length,

Mathematical methods of optimization have been adapted to the
problem of finding the optimal cross sections, i.e., those having minimum
cost, for bridges constructed on falsework and bridges erected in canti-
lever. Two types of cross section were considered--a pair of connected
single-cell box girders and a multi-cell box girder. 1In each case the
problem was treated as an unconstrained nonlinear programming problem in
four variables that define the geometry of the cross section. A subroutine
was developed to compute the objective function, taken as the relative
cost of the bridge per foot length, and a solution obtained by the
Nelder-Mead method and the Powell method.

The optimal solution obtained for each problem defines the basic
dimensions of a cross section having minimum cost. However, to some
extent the dimensions can be varied with small increase in cost, because
it was found from two-dimensional contour plots that the gradient of the
objective function is quite flat near the optimum. The range of variation
of the variables for a given increase in cost can be readily obtained

from the contour plots.



187

The dimensions of the section for minimum cost are sensitive to
relative changes in the unit costs of the materials. An increase in
the cost of the cables, for example, causes an increase in the optimal
depth. Studies using the optimization programs were limited to the gen-
eral spans and roadway widths of the example problems. Results should

not be widely generalized until further parameter studies are made.

8.2 Particular Conclusions

The following conclusions apply to the particular examples treated
in Chapters 3, 4, 6, and 7, and may not necessarily apply to other cases,

such as bridges with different spans, widths, and loadings.

For the bridges designed in Chapters 3 and 4, the more accurate
stress analyses obtained with the MUPDI and SIMPLA2 programs confirmed
the adequacy of the basically simple design procedures adopted. These
procedures utilized hand calculations and beam theory to determine the
basic concrete section and the layout and size of the prestressing cables

required.

In the case of the bridge constructed on falsework (Chapter 3),
the cable profile consisted of three parabolas and the equivalent cable
loads were determined accurately. However, in the case of the bridge
erected by the cantilever method (Chapter 4), the design procedure
utilized approximate estimates of the equivalent loads of the system of
cables. This procedure resulted in a satisfactory design, as confirmed

by the MUPDI and SIMPLA2 analysis.

In the design of the bridge constructed on falsework, full length
draped cables were adopted and their size determined by a simple load-
balancing procedure. The cable area was set equal to that required to
balance the dead load, assuming an idealized, double-parabolic profile
for this purpose. The area so determined gave satisfactory service load

stresses and ultimate strength,

For the bridge constructed by the cantilever method, it was found
that the top cables could be designed to balance a uniform load of about

60 percent of the dead load on the completed cantilever. The quantity of
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cables so determined gave acceptable service load stresses and adequate
ultimate strength during construction. The MUPDI program was used to
determine a suitable pattern for the bottom cables. These were designed
to give adequate ultimate strength under live load on the completed bridge
and their quantity was adjusted after analysis to give better service

load stresses.

Stress distributions obtained by the MUPDI analyses for both
bridges designed indicated a variation of stress across the sections at
the main piers, because of shear lag, and an almost uniform stress dis-

tribution across the top and bottom slabs at sections of zero shear.

Studies in Chapters 6 and 7 showed that the problem of optimizing
the cross section of the bridge could be treated successfully as an uncon-
strained nonlinear programming problem. Physically acceptable solutions

were obtained in all cases.

Of the two optimization methods used, the Nelder-Mead method was
generally the more effective. It always gave steady convergence to a
solution. On the other hand, in two of the three examples considered,
the Powell method did not reach a solution for some starting points. The

Nelder-Mead method is also the simpler of the two methods.

For sections of the double box girder type with an approximate
overall width of 56 ft., whether comstructed on falsework or by the canti-
lever method, the optimal width obtained for the cantilever overhang of
the deck was 8.0 ft. This is the maximum width for which there is a
single wheel load on this portion of the deck. The values of bottom slab

width were such as to give sloping webs.

In the case of the three-cell box girder, the optimal solution
indicated a large value of the cantilever overhang, a narrow bottom slab
and sloping webs. The apparent reason for this configuration being
optimal is that a large area of bottom slab is not required structurally

except in the short region of negative moment.

The span/depth ratios obtained in the optimal solutions were

approximately 30 for the two-span bridges constructed on falsework, and
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33 for the three-span bridge constructed in cantilever. These values

are higher than those generally occurring in similar bridges, excluding
those having variable depth. The flatness of the cost gradient indicated
relatively little cost change (2%) for span/depth ratios as low as 26.
This indicates that the "optimum" ratio will be somewhat above 25 but
factors such as fillet size and tendon congestion should be considered

in selecting proportions.

8.3 Recommendations

Important design cases not considered in detail in this report
include skew bridges and bridges with variable depth. These should be

investigated more fully,

Highway crossovers will often be skewed. The design and analysis
of such bridges will require modifications to the procedures developed
for normal bridges. A few computer programs are now available for
analyzing box girder skew bridges and these could be used in the way
MUPDI was used in this study. Skew will also create some difficulties
with segmental precasting. One solution is to cast a few segments near
the ends of the span on the skew and the remaining segments normal to
the roadway axis. Much will depend on the pier location details in this

case.

Bridges having spans greater than 250 to 300 ft. generally vary
in depth from a maximum at the piers to a minimum at midspan. In this
way greater economy can be achieved. To a large extent the design proce-
dure developed is applicable to bridges with variable depth. The finite
element analysis program FINPLA2, developed by Scordelils, can be used
for these bridges in place of the MUPDI analysis. Unfortunately, no pro-

gram corresponding to SIMPLA2 exists for this case.

The optimization techniques should also be extended to cases where
the bridge span is a variable, as well as the cross-sectional dimensions.
Examples of such cases include three-span river crossings, in which the
total length is specified but not the span ratio, and also viaducts. A

wider study of effects of variables such as span and roadway width should
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be undertaken using the optimization techniques to provide further

guidance for preliminary designs.
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APPENDIX B

LISTING OF PROGRAM BOX2 TO CALCULATE SECTION PROPERTIES
OF DOUBLE BOX GIRDER BRIDGE

[207]
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Notation

N: Problem Number
B, B1, B3, B5, B7, D, Tl, T2, T3, T4, T6, Hl, V1, H2, V2, H3, V3, H4, V&:

Dimensions defined in Fig. B.1l

Form of Input Data

1, First Card -- Format (I1)
Column 1 - N

2., Second Card -- Format (8E10,3)

Col. 1 to 10 - B Col. 41 to 50 - B7
Col. 11 to 20 - Bl Col. 51 to 60 - D
Col. 21 to 30 - B3 Col. 61 to 70 - T1
Col. 31 to 40 - B5 Col. 71 to 80 - T2

3. Third Card -- Format (8E10.3)

Col. 1 to 10 - T3 Col, 41 to 50 - V1
Col. 11 to 20 - T4 Col. 51 to 60 - H2
Col. 21 to 30 - T6 Col, 61 to 70 - V2
Col. 31 to 40 - H1 Col, 71 to 80 - H3

4., Fourth Card -- Format (8E10.3)

Col, 1 to 10 - V3
Col. 11 to 20 - H4
Col. 21 to 30 - V4

All above data cards are repeated for next problem.

6. One blank card will terminate program,

Output Description

The output includes (a) a printout of the input quantities and (b) a
list of the following section properties for both the half section (i.e., each
unconnected box) and the full section:

Section area

Distance from top of girder to centroid of section

Second moment of area

Section modulus (top of girder)

Section modulus (bottom of girder)
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Bl |
B Cast-in-place strip
l T1 | T2 r ‘/ |
—1 1 |
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Fillet detail
Fig. B.1l. Notation for Program BOX2
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PROGRAM BOX2 (INPUTs QUTPUT)
PRINT 1000
1000 FORMAT (1H1ls 9SXs *BOX GIRDER SECTION PROPERTIESH)
10 READ 1010sN
1010 FORMAT (11)
IF {(N.EQ.O) CALL EXIT
READ 1020y By Bls B3y B5s B7s Ds Tls T2s T3s T4y Tés
1 Hls V1s HZ2s V2s H3s V3, H4s V4
1020 FORMAT (8E1043)
PRINT 1030s By Bls B3y BS5s B7y Ds Tls T2y T3y Ti4s Tbs
1 Hle V1 M2y V2s H3s V3, H4, V4
1U30 FORMAT (/// 1CXy *B =%, E10e3s 5Xs %*Bl =%, F10e3s 5Xys *RB3 =%,

1 E1Ce3s 5Xy #B5 =%, E10e3/ 10Xs *B7 =%, F10e3s 5X
1 *D =%, E10439s 5Xs *#T1 =%, E10e¢3, 5Xs *T2 =%, E10.3/
1 10Xs *T3 =%, E10e3s 5Xy %#T4 =%, F10e3s 5X9 %T6 =%,
1 E10e3s 5Xs ¥H1 =%, E10e3/ 10X, *V1 =%, F10e3s 5X»
1 ®HZ =%y E10e3s 5Xs ¥V2 =%, E10e3, 5Xs *H3 =%, E1043/
1 10Xy *V3 =%, E10e3y 5X» ¥H4 =%, FE10e43y S5X» *v4s =%y F1043)

AA = Q.

AY = Q.

AYY = Q0o

A= Bl®({T1+T6)1/2s

Y = {(TI¥%24TE*%24T1%¥T6)/7(T14T6) /3

AA = AA + A

AY = AY + A¥xY

AYY = AYY + ARYH®y

A = ((B-BT7)1/2.-B1)*T2

Y = T2/2

AA = AA + A

AY = AY + A#Y

AYY = AYY 4+ AXYHRY

A = B3%*T3

Y = D=T3/2

AA = AA + A

AY = AY + AnY

AYY = AYY + ARYH*Y

SY = D~T2=~T3

SX = (B/2.~B1-B5-B3)/2.

S = SART(SYRH24SX%HR2)

A = 2.%5%T4

Y = T2+S5Y/2e

AA = AA + A

AY = AY + A%Y

AYY = AYY + ANYHY + ASYRXP /12,

A = H1#*V]l

Y = T2+V1/3,

AA = AA + A

AY = AY + AnY

AYY = AYY + ARYHY

A = H2%®V2/2.

Y = T2+V2/3.

AA = AA + A



1040

— e s s

1050

— e

AY + A#%Y
= AYY + A®Y®Yy
H3%*Vv3/2,
T1+Vv3/3,

AA + A

AY + A®Y

AYY + ARYRY

<=
non =<
]

<<>
Hou

-T3-V4/3,
A= AA + A
Y = AY + A®Y
YY = AYY + ARYH®Y
M AY/AA
= AYY = AA#YM#*YM
= R/YM
SB = R/ (D=YM)
PRINT 1040s AAs YMy Ry STy SB
FORMAT (/7 10Xs #PROPERTIES OF HALF SECTION*/

DLPPPLPPPPL<PIPP>

wn
—

15Xy *AREA =%, E1043/
15Xy *DISTANCE FROM TOP TO CENTROID =%,
15Xy *SECOND MOMENT OF AREA =%, E10.3/
15Xy *SECTION MODULUS (TOP) =%, E10.3/
15Xy *SECTION MODULUS (BTM) =%, E10.3)

AA = 24%AA

AY = 2.%AY

AYY = 2+%AYY

A = B7T*72

Y = T2/2

AA AA + A

AY = AY + A®Y
AYY = AYY + ARY#*Y

YM = AY/AA
R = AYY ~ AA#YM*YM

ST = R/YM

SB = R/(D-YM)

PRINT 1050y AAs YMs Ry ST» SB

FORMAT (710X, #*PROPERTIES OF FULL SECTION*/
15Xy *AREA =%, E104,3/
15Xs ®*DISTANCE FROM TOP TO CENTROID =%,
15Xs *SECOND MOMENT OF AREA =%, F1043/
15Xy *SECTION MODULUS (TOP) =%, E10.3/.
15Xy *SECTION MODULUS (BTM) =%, E10.3)

GO TO 10

END

E10e.3 /

E10e3 7/

211
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APPENDIX C

OPTIMIZING PROGRAMS
SUBROUTINES TO CALCULATE OBJECTIVE FUNCTIONS

OPTMSE

SIMPLEX

OBJECTIVE FUNCTION 2 SPAN BRIDGE
OBJECTIVE FUNCTION MULTIWEB 2 SPAN BRIDGE
OBJECTIVE FUNCTION 3 SPAN BRIDGE

QO OO0
U1 B (D N et

[213]
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Unconstrained NLP Algorithm OPTMSE
(Powell's Method)

These instructions describe how to use the computer code to execute Powell's

algorithm as programmed by Alan Brown.

1. Structure of the Program

1.1 Main Program (OPTMSE). The main program initializes the counting
indices, introduces the initial step size by
STEP = 1.0
and causes the following function values and time printouts to be
activated after completion:
(a) Time beginning
(b) Time ending
(c) Number of stages
(d) Number of functional evaluations in linear searches
(e) Value of f(x), the objective function
(f) Value of the components of x.
Place ICONVG = 1 if one pass through the Powell algorithm is
sufficient. Place ICONVG = 2 if the final solution is to be
perturbed, a new solution sought,: and an extrapolation between the

two solutions carried out.

1.2 Subroutine POWELL. This subroutine carries out the Powell
algorithm. Place the desired accuracy in the fractional change
in f(x) and x as the first statement, such as ACC = 0.00001
(see TEST below).

1.3 Subroutine TEST. Executes the test for convergence on both
EGTY - 1G5 1/£G5) and (x5 - x¥1/x° (as well as Af(x) and
bx if £(x) or x 0.

1.4 Subroutine COGGIN. Executes the unidimensional search to minimize
f(x) in a selected search direction. The initial step size is

fixed by
STEP = 1.0

Termination is based on the fraction change in f(x) in statement 27.
Note: Subroutine GOLDEN in the Davidon-Fletcher-Powell code is

compatible with this code and may be used in lieu of COGGIN.



215

1.5 Subroutine FUN. Contains the function to be minimized.
Place f(x) below the comment card FUNCTION 1 as
FX = .

User Supplied Information

2.1 Place the objective function, f(x), to be minimized in subroutine
FUN (see 1.5).
2.2 Place the initial values of the elements of X and the number
of independent variables in BLOCK DATA as follows
DATA X(1), X(2), X(3)/3.0, -1.0, 0.0/
DATA N/3/

(or add, N/3/ to the end of first data entry).

NOTATION

Comment cards in the code explain most of the pertinent notation.
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PROGRAM OPTMSE (INPUTsQUTRUT)
COMMON /ONE/ XyYsSsFXoFYsNyKOUNTSILININDRVIH)SIGIDELG
DIMENSION X(10)sY{10198(10)s8IG(10)snELG(L10)9H({10410)

CeayygeOPTIMIZATION BY THE POWELLI METHOD ¢ ey oo

c

D000 00

*w® NDRV IS Ao REDUNDANT PARAMETER WITHIN TWE POWELL METHOD
K OUNTS=0
ICONYGu2
STEPal,0
LIN=Q
CALL SECOND(A])
CALL POWELL (STEP,ICONYG)
CALL SECOND (A2)
PRINT 600441
PRINT 601sKOUNTSLINsRXy (X(I)oIm]1eN)
PRINT 602s42
~ CALL EXIT
600 FORMAT(leM TIME IS NOW =,F20,3)
601 FORMAT (/// 1104481 FUNCTION EVALUATIONS WITHIN POWELL ROUTINE. AND
1 110947H FUNCTION EVALUATIONS pURING THE LINE SEARCHES,
2 /7 184 FUNGCTION VALUE = +E20,8
.3 ’/ 184 VARIABLE VALUES:= / (Xy8£20.8 ))
602 F:gMAT(/// 14H TIME IS NOW = 4, F20.8)
E
SUBROUTINE POWELL (STEPyICONVE)
COMMON /ONE/ XY ySoFXoFYsNsKOUNTILININDAV,OIRECTyBEFOREIFIRST
DIMENSION X(10)+Y(10)9sS(10)sDIRECT(10410)4BEFORE(10)YFIRST(1A)
1 oW {10)+SECND(10)
EQUIVALENCE (W SECND)

#ss N = THE NUMBER OF VARIABLES,
KOUNT = THE NUMBER OF FUNCTIONS EVALUATIONS NOT IN LINEAR SERRCH,
ICONVG = THE FINAL CONVERGENCE TEST DESIRED.
= 1y TERMINATE 4S SOON AS TESTING IS SATISFIED, ,
® 2, AS SOON AS THE: TESTING CRITERIA ARE SATISFIED INCREASE
ALL THE VaQIABLES BY 10eACC AND SOLVE PROBLEM AGAIN.
THEN PERFORM A LINE SEARCH BETWEEN THE $nLUTIONS 1IF OIFFERENT
SOLUTIONS ARE DEEMED To BE FOUND,
STEP = TME INITIaL STEp SIZE,
ACC = THME REGQUIRED ACCURACY IN THE FUNCTION AND VECTOR VALULS.
INSERT IPRINT= 1 FOR COMPLETE PRINT OUT oR IPRINT = 2 FINAL
1ANSKER ONLY
ACC = ,0001
IPRINT=1
NTRY=]
Nl=Nel
_ STEPAaSTEP
#ee SET UP THE INITIAL DIRECTION MATRIX (USING UNIT VECTORS) .
DO 2 IslN
D01 JmieN
1 DIRECT(Jo])mOo
2 DIRECT(Ie1)ml,
#p0- EVALUATED THE FUNCTION AT THE INITIALI vAnlaBLE VALUES,

100 CALL FUN(X¢FX)
KOUNTSKQUNT#1 .

#ws SAVE THE FINAL FUNCTION VALUE (F1) AND TwWe FINALI VARIABLE VALUES
(BEFORE) FROM THE PREVIOUS CYCLE.
PRINT 36

© 36 FORMAT (BXo#FXR912Xe0X (1180 10X 92X (2) 0o 12X 0xX(3)hy 13X 00X (#)0s12X,0x(

18)0s14Xe8X(6) %)
3 rlaFy

DO & Im]lyN
4 BEFORE(1)mxX(])
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G0 TO (801+802)y IPRINY
891 PRINT SOL1sFXe (X (2)91m1 ,N)
901 FORMAT (/(SEl16e8))
#an START SEARCHMING WERE,
802 SUM=Q,
AT THE END OF THE CYCLEs SUM WILL CONTAIN THE MAXIMUM CHANGE IN
THE FUNCTION VALUE FOR ANY SEARCH DIRECTION» AND ISAVE INDICATES
THE DIRECTION VECTOR Tp wHICH IT CORRESPONDS,.
P09 Im]leN
S CONTAINS THE INITIALI STEP SIZES IN THE IeTH DIRECTION.
DO S  J=lsN
5 S(J)=DIRECT (Jol)aSTEP
F:ND THE MINIMUM IN THE [«TH DIRECTIONs aND THE CHANGE IN FUNCTIAN
VALUE,
CALL COGGIN
ARF XFY
IF{A=SUM) 79796
& ISAVEw]
SUM=A
c TRANSFER THE NEW FUNCTION AND VARIABLE VALUES TO Fx AND X,
T 008 JmlyN
8 x{Ji=Y(J)
9
»

O OO0 (¢}

[ X el

FXuFyY
NOW INVESTIGATE WHETHER A NEW SEARCH DIRPCTION SMOULD BE INCORPOne
c ATED INSTEAD OF THE ISAVE DIRECTION,
FeémFy
DO 10 IslyN
10 w(l)m2,08X(1)=BEFORE(],
CALL FUN(WF3)
KOUNTaKOUNT« ]
ARF3-F]
IF(A) 11419449
11 AR2.08(F1le2,0%F2.F3)#((FleF2.5UM)/A) o2
~ IF(A=SUM) 12419419
C ®#& Ao NEw SEARCH DIRECTION ]S REQUIREDs FIRSY REMOVE ROW ISAVE.
12 IF(ISAVE=N) 13115415
13 DO 14 ImISAVEsN]
1lalel
DO 14 JmlN
14 DIRECT(Joy 1) wDIRECT(Jr 1Y)

c SET THE NeTH DIRECTION VECTOR EQUAL YO THE NORMALISED DIFFERENCE
¢  BETWEEN THE INITIAL ANp FINAL VARIABLE VaLUES FOR LAST CYCLE,
15 AsQ,

DO 186 JmlsN
DIRECT(JoN)aX {J) «BEFORE (J)
16 AmDIRECT (JoN) #*Rea
A=l 0/8SQRT (A}
00 17 JmisN
OIRECT (JoN) mDIRECT (JoN)#A
17 S(J)aDIRECT (JoIN) #STEP
CALL COGQIN
FXsFy
_ DO 18 1ImlsN
8 x(sy(Iy
¢ ®#® TEST FOR CONVERGENCE,
19 CALL TEST(F1+FX BEFORELXsFLAGINIACCY
. IF(FLAG) 22,22+20
¢ *#® CONVERGENCE NOT YyET ACHEIVED, COMPUTE: A NEw STEP SIZE AND
G0 BACK T0 3.
20 IF(FiwFX)l210120,120
121 STEP==0.4*SQRT(ABS(FlerX))
80 TO 123

©
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120
123
21

C sen
22

23
26

26

C Gan

27

28
29
30

ol ﬁi&

3l

32
33

C bae

34

35

-~ Ry WV

STEP'Q.‘.SQRT(FIOFx)

IF (STEPARSTEP) 2143+3

STEP=STEPRA

60 To 3

CONVERGENCE ACHEIVED: IF ICONVG®=2s INCREASE ALL VARIABLES BY
10#%ACC AND GO BACK TO 13,

80 TO (23:24)1CONVE

RETURN

G0 TO (25s27)sNTRY

NTRY=2

DO 26 ImlsN

FIRST(I)saX (1)

X{li=X(I)eacCeio,

FFIRSTaFX

60 To 100

CONVERGENCE ATTAINED USING Tw0 DIFFERENT STARTING POINTS. CONSTRIC
UNIT VECTOR BETWEEN SOLUTIONS AND SEARCH DIRECTION FOR A MINIMUM,
FSECND=FX

a=al,

DO 28 IsleN

SECND(I)eX (1)

S{I)eFIRST(I)=SECND(I)

ASA+S (1) ong

IF(A) 23,423,29

ASSTEP/SGRT (A)

DO 30 ImlyN

S{l)nS(l)%A

cALL COGGIN .

TEST IF NEw POINT IS SUFFICIENTLY CLOSE vo EITHER OF THE TWO
SOLUTIONSe IF SO RETURN,

CALL TEST(PFIRSTFYsFIRSToVeFLAGINYACC)

IF(FLAG) 32,32,3)

CALL TEST (FSECND,FY,SECNDYFLAGIN1ACCY

IFAFLAG) 32,32+34

DO 33 1I=lsN

x (=Y (1}

FAaFy

RETURN

FINAL SOLUTION NOY ACCURATE gNOUGHe REPL_ACE THE FIRST DIRECTION
VECTOR 8Y INTER=SOLUTION VECTOR (NORMALISED)! AND RECYCLE
ABA/STEP

DO 35  ImisN

DIRECT (1+1)w{FIRST(I)wSECND (1)) %A

FIRST(I)mSECND(])

60 TO 3

END

SUBROUTINE TEST(FIsFF,nl+RFsFLAGINIACC)

DIMENSION RI(10)4RF(10)}

FLAGI‘&.

IF(ABS(FI)=ACC) 242sl

1F(ABS ((FIeFF)/FI)=ACCY 34307

IF(ABS(FI=FF)=ACC) 33,7

DO 6 I=1eN

IF{ABS(RI(1))=ACC) 515,4

1F(ABS ((RI(I)=RF (1))/R1(1))=ACC) 61647
IF(AES{RI(1)=RF (1)) wAlC) 60647

CONTINUE

FLAGm=2,

RETURN

END

SUBROQUTINE COGGIN

COMMON ZONE/ XoYsSoFXyoFYINsKOUNTSILINsNARVsHSIOsDELD
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DIMENSION XK(10)9Y(10)93(10)¢SIB(10)enELBL10)9HIL0e10)
FRE-INITIAL vaRIABLE VASEe ARE IR K OANBEERE 20RRedBoAB1ve

FUNCTION VALUE IS FX.

THE SEARCH DIRECTION VECTOR IS Sy AND THE INITIAL STEP SIZE STYEP,
LIN IS USED TO CoUNT THE NUMBER OF FPUNCTIon EVALUATIONS AND N IS
THE NUMBER OF VARIABLES,

FA=FBaFCaF X

DA=DBaDCx0,

STEP=1,0

DeSTEP

K==2

M=

START THE SEARCH THE BOUND THE MINIMyv

DO 2 IsleN

Y(I)ax(I)+Das(D)

CALL FUN(Y.F)

KaKel

LINs_INe}

IF(FeFA) 5,3,6

NO CHANBE IN PUNCTION yALUE, RETURN WITH VECTOR CORRESPONDING To
FUNCTION VALUE OF FAs BECAUSE IF THE FUNCTION VALUE 1S INOEPENDENT
oF THIS SEARCH DIRECTION, THEN CHANGES IN THE VARIABLE VALUES MAy
UPSET THE MAIN PROGRAM CONVERGENCE TESTING,

DO 4 IslsN

Y{I)=X(I)+DA®S(I)

FYsFA

RETURN

THE FUNCTION IS STILL pDECREASING, INCREASE THE STEP SIZE. 8Y
DOUBLE THE PREVIQUS INCREASE IN STEP SIZE.

FC=FB § FBafFA $ Faxf

DCaDBE § ODBs0A $§ DAuD

D®2,0%D+STEP

60 To 1

MINIMUM IS BOUNDED IN AT LEAST ONE DIRECTION,

IF{K) T899

MINIMUM IS BOUNDED IN ONE DIRECTION ONLN, REVERSE THE SEARCH
DIRECTION AND RECYCLE,

FB=F

DD § Dm=L $§ STEPawSTEP

60 To 1

MINIMUM IS BOUNDED IN gOTH. DIRECTIONS AFYER ONLY TwO /FUNCTION
EVALUATIONS [ONE EITHER SIDE OF THE ORIBIN}e PROCEED TO THE
PARABOLIC INTERPOLATION,

FCeFB $ FBsFA § FaeF

DC=DB $ 0B=DA $§ OaAnD

G0 TO 21

THE MINIMUM IS BOUNDED AFTER AT LEAST Two FUNCTION EVALUATIONS IN
THE SAME DIRECTIONs EVALUATE THE FUNCTION AT STEP SIZE=(DA*DB)/2,
THIS WILL YEILD 4 EQUALLY SPACED POINTS BOUNDING THE MINIMUM,
DC=0B $ DB=DA § DasD

FCsFB $& FBaFA 3 FpAuf

D®0,5%(DA+DB)

DO 11 ImleN

Y(IimX(l)eDaS(D

CALL FUN(YoF)

LINsLINe] ) )

NOW HAVE THAT Fa»FB<Fg AND THAT FA»FkrC ASSUMING THAT THE
FUNCTION IS UNIMODALe REMOVE EITHER POINT A OR POINT g IN SUCH }
WAY THAT THE FUNCTION 1S BOUNDED AND FR»FaeFC [THE CORRESPONDING
STEP SIZES ARE DA>DB>pC OR DA«<DB«DC 3,

IF((DC=D)*(D=DB)) 15+13918

LOCATION OF MINIMUM Is LIMITED BY ROUNDING ERRORS. RETURN WITH B,
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DO 14 IsmlyN
Y(I)=X(I)+DB#S(])
FYaFg
RETURN
THE POINT D IS5 In THE RANGE DA TO Dg.
IF(F=FB) 16513917
FCeFB §$ Fpuf
DC=DB §$ DB=D
60 To 21
FAnF
DA=D
60 To 21
THE POINT D IS In THE RANGE DB TO D¢
IF(FwFH) 19913920
FAxFB § FBOasF
DA=DE § DB=D
@0 To 21
FC=F
DC=D
NOW PERFORM THE PARABOLIC INTERPOLATION,
A=FA® (DB=DC) «FBe (DC=DA) +FC® (DA=DB)
IF{A) 22,30,22 ‘
D=Q 5% ( (DBeDB=DCeDC) *F 4¢ (DCHDC~DA®DA) #FBe (DADA~UBuDB) #FC) /A
CHECK THAT THE POINT Is GO0D, IF SO, EVAL(ATE THE FUNCTION.
IF((DA=D)»(D=DC)) 13s13+23
DO 264 IslyN
y(l)aX(l)eDaS¢(1;
CALL FUN(YsF)
LIN={ IN¢]
CHECK FQR CONVERGENCE, 1IF NQOT ACHEIVED, RECYCLE.
IF(ABS(FB)~0400001) 25,25+26
A=zl,0 $ GO TO 27
Aml . 0/F8
IF(ABS ((FB=F)®A)=,0001) 28+28s12
CONVERGENCE ACHEIVED. RETURN WITH THE SMALLER OF F AND FB.
IF(F=F8) 29413213
FY®F
RETURN
THE PARABOLIC INTERPOLATION wAS PREVENTED 8Y THE DIVISOR BEING
ZERO, IF THIS. 1S THE FIRST TIME THAT 1T HAS HAPPENED, TRY AN
INTERMEDIATE STEp SIZE AND RECYCLES OTHERW!ISE OIVE UP aS IT LOOKs
LIKE A LOST CAUSE,
IF{M) 31+31,13
MEMs ]
GO 10 10
END
BLOCK DATA ‘
COMMON ZONE/ XoY9SoFX FYoNyKOUNTSILINsNORV+H¢SI0+DELG
DIMENSION X(10)9Y(10)95(10)9SIG(10)90ELB(L10)9H(10410)
DATA X(1)740.0/74n/717
END
SUBROUTINE FUN(XsFX)
DIMENSION X(10)
FUNCTION 1
pu0,02516
TaX{l)
INSERT SUBROUTINE To COMPUTE C )
BRB3600,./ (46, 1*POTo8e] 0,54 (PaT)#%2ul,562%T)
CR{(0,2021411.,912P)oBoaysd 33eTe¢],66748)/25,0 § FXsC
PRINT 19PsT 9BeC « .
FORMAT (SXo#Pm®oF 1055y s #INITIAL TussF10,2:%Bx®rE10e29#C2#9E]0,3))
RETURN
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Optimization Method of Nelder and Mead (SIMPLEX)

Instructions to Introduce Data into the Work

The Data Cards are as follows:

7
1. 8
9

2. Punch NX, the number of variables in the objective function in format
(I5) in col. 1-5 right justified, and STEP, the step size in format

(F10.5) in columns 6-15. 1In the absence of other information select

n
STEP = min (_0_]:.12_ s d

, d,,d,...,d)
i=1 n

i 1’72

where n = no. independent variables and di is the possible region for

search for the variable xi.

3. Punch the initial guess for each variable in format (F10.5).
Cards 2,3 can be repeated changing the step size and intial variables

as desired, but after last card of type 3 must come:

4. Blank card

O 00 ~N O

The card (SUM(IN) = f(x)), the third last card in the deck, must be changed

for each different function. Allowance has been made for a 50 dimension

problem, i.e., X(1) to X(50).
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PROGRAM SIMPLEX{INPUT,quTPVUT)

CoeoaesOPTIMIZATION BY THE NELDER=MEAD METHODse,,.

(s XeNeXs NeXeNeXslele Nl e ls

lg0
998

105

193

lo2

25

3

NX IS THE NUMBER OF INDEPENDENT VARIASLES,
STEP IS THE INITIAL STEP SIZE.

x{I) IS THE ARRAY OF INITIAL GUESSES,

DATA CARDS ARE AS FOLLDWS.

CARD NO. PARAMETERS FORMAT COLUMNS
1 NX 15 1 THRU' 8
1 Step FloeS & THRY 18

2 X(1) P1045 1 THRY 10

CARD 3 I$ BLANK,

TO OPTIMIZE THE OBJECTIVE FUNCTION FOR ANOTHER SET OF PARAMETERS
REPEAT CARDS 1 AND 2 ONLY.

FOR PROPER PRINTOUT OF DESIRED X{I) ARRAY, FORMAT STATEMENTS 103
AND 101 MUST BE REVISEZD ACCORDINGLY,

DIMENSION X1(50450)¢ X(50)s SUM(50)

COMMON/1/ XoX1aNXoSTEP,K1sSUMsIN

FORMAT (I5:F1045)

READ1y NXs+STEP

IF(NX) 998,999:998

READ 24 (X(I)sIlml,yNX)

FORMAT(10F10.5)

ALFAw],0

BETAR0,5

GAMARZ,0

DIFER = Q.

ANX = NX

IN s ]

CALL SUMR

PRINT 102sSUM{1) o (X{I)sInmlosnX)

PRINT 1002,STEP

CALL SECOND (TIME,

PRINT 105sTIME

FORMAT (/80X L1HTIME IS NOWsF10,3+4BH SECONDS/)

PRINT 103

FORMAT (4X ¢ 14HFUNCTION yALUE1SXeIHX we20X93NX2m920 s IHXINs20X93IHx4
1ms16Xs12HFUNCe CHANGE) ,
FORMAT (1M1 12X923HFUNCTION STARTING VALUE,F10,89/90THE X ARRAY Ige
1e/795%410¢{E11e%92X))

1002 FORMAT (12X, #STEPa®1F6,2)

Kl = NX ¢ 1

K2 = NX ¢ 2

K3 = NX ¢ 3

Ké = NX ¢ &
CALL START

DO 3 I = ]y Ki
DO & J = 1o NX
X)) & XD o)
IN= ]

CALL SUMR
CONTINUE

SELECT LARGEST VALUE OF SyM(I) IN SIMPLEX

28

7

SUMH = SUM(1])

INDEX = )

DO T 1 = 2y Ki

IFI(SUM(I) sLEeSUMH) BO TO 7
SUMM = SUM(I)

INDEX = ]

CONTINUE.

SELECT MINIMUM VALUE OF SuM(l) IN SIMPLEX

SUML = SUM(1)
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KOUNT = ]

00 8 1 v 2y K1
IFUSUMLLE,SUM{I)) GO 1O 8
SUML = SUM(])

KOUNT = 1

CONTINUE

FIND CENTROID OF POINTS wiTH I DIFFERENT THaN INDEX

10

D09 J = 1le NX

SUM2 L] 0.

D010 I = 1y Kl

SUMZ = SUM2 + X1(I+J)

X1(K20J) ®1,/XNX®# (SUM2 = X1 {(INDEX9J))

FINDO REFLECTION OF HIGH POINT THROUGH CENTROID

9

X1(K3sJ) ® (le ¢ ALFA)#X1(K2yJ) = ALFA®XY](INDEXsJ)
X(J) B X1(K3sJ)

IN = K3

CALL SUMR

IFU{SUM(K3) (LTeSUML) GO TO 11

SELECT SECOND LARGEST VALUE IN SIMPLEX

IF (INDEX.EQ.1) 60 TO 38

SUMS = SyM(l)

60 To 39

SUMS = SyM(2)

DO- 12 I » 1y Ki

IFA CINDEX « J)oEQ.0) 8¢ TO 12
IF{SUM{]) +LE.SUMS) GO TO 12
SUMS = SUM(])

CONTINUE-

IF(SUM(X3),8T«SUMS) GO YO 123
60 TO 14

FORM EXPANSION OF NEW MINIMUM IF REFLECTION HAS PRODUCED ONE MINIMUM

11

15

13

18
17

19

DO'ISJOIQ NX ,

XL(Kéo ) m (1 « GAMA}#X1(K2,J) + BaMa®X) (X3 y)
X{J) & X1(KérJ)

IN = K&

CALL SUNMR

IFUASUM(K&) LTeSUMLY BD TO 16

60 TO 14

IFUSUM(KD) 4BT+SUMM) GO TO 17

DO 18 U = 19 NX

X1(INDEXyJ) = X1 (K3edJ)

DO 19 J = 1y NX .
X1(KéyJ) = BETA®X](INDEXeJ) + (1o = BETAyoxl(K20J)
X(J) = X1(Kéyd)

IN = K&

CALL SUMR

IFI{SUMMeBT SUM(K4)) GO YO 16

REDUCE SIMPLEX BY HALF IF REFLECTION HaPPENS TO PRODUCE A LARGER VAL
LUE THAN THE MAXIMUM

20

30

29

21

DO 20 J = 1o NX
DO 20 I = 1y Kl
X1iI4d) = 0,5%(X1(1sd) & XI(KOUNT3J))

D0 29 I = 1, Kl
DO- 30 U = 1y NX
X(J) 3 XY(Isd)
IN = 1

CALL SUMR

CONTINUE

80 TO 26

DO 21 J m 1s NX

LI {INDEXsJ) & X1 (KéeJ)
X{J) = XI(INDEX,J)
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IN = INDEX
CALL SUMR
G0 To 26

14 DD 22 J = 1y NX
XLUINDEXodJ) = X1 (KJosJ)

22 X{J) = X1{INDEXsJ)
IN = INDEX
CALL SUMR

26 DO 23 J & 1, NX

23 X(J) & X1{K2+J}
IN = K2
CALL SUMR
ODIFER = 0,
DO 264 1 = ]y K1

24 DIFER = DIFER * (SUM{]) « SUM(K2))%e2
DIFER ml,/XNX®SQRT(DIFER)

~ PRINT 101v SUMLs (X1(KOUNTsJ3s J= leNx)y DIFER

101 FORMAT(2(2X1E1648) 13 (TXsEL1H46)912X1EL646)
IF: (DIFER,GE.+000)) 60 TO 28
CALL SECOND(TIME)
PRINT 10%,TIME
G0 To 100
999 CONTINUE

END
SUBROUTINE START
DIMENSION A(S5098p)s X1 (8509501 X(50)s SUM(S0)
COMMON/Ll/ XeK1oNXsSTEP,K1sSUMyIN
YN NX
STEP] m STEP/(VN#SQ@RT (2,))%(SQRT{VN * 141 o ¥N = 1,)
STEP2a STEP/ (VN#SQRT (2, ))1*(SQRTI(VN. + 1) = l4)
DOl J = 1y NX

1 Aflsy) = 0,
DO 2 1 = 2y K}
DO 2 J = 1y NA
Allsl) = STEPZ
L= 1]
A{liL) = STEPL

2 CONTINUEI

DO 3 1 = 1y Kl
DO 3 J m 1y NX
3 x1{Ied) m X(J) & A{LIe)y

RETURN

END

SUBROUTINE SUMR

COMMON/L/ XoX1oNXySTER, K1 +SUMsIN

DIMENSION X1(80,80)s X(50)s SUM{S0)

Bl = x{(l1)

B2 = x{(a)

83 = X{3)

D ® X(#4) A
INSERT SUBROUTINE Tp COMPUTE C

SUM(IN) = C

RETURN

END
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SUBROUTINE TO CALCULATE THE OBJECTIVE FUNCTION
FOR 2-SPAN DOUBLE BOUX GIRDER BRIDGE

NOTATION

CONSTANTS
B TOTAL WIDTH
B6 WIDTH OF CAST-IN-PLACEF STRIP
T4 WEB THICKNESS

VARIABLES FROM MAIN PROGRAM
Bl WIDTH OF CANTILEVER OVERHANG
B2 FIRST INTERIOR SPAN OF DECK
83 WIDTH OF BOTTOM SLAB
D DEPTH OF SECTION

QUANTITLIES CALCULATED
A AVERAGE SECTION AREA
AS CABLE AREA
C OBJUECTIVE FUNCTION

B = 50
B6 = 2
T4 = 140833
GO TO 5

2 PRINT 200Cs Bls B2s» B3s D
2000 FORMAT (*Bl B2 B3 D =%y 4E12.2)
CALL EXIT
5 CONTINUE
T11l = o7
10 F1 = 4025%(14+T11)*¥B1%¥%2 + 26e%(B1-2,)/(B1+2.6875)
IF (BleLEs8s) GO TO 20
F1 = F1 + 26+%{B1-84)/{B1-3.3125)
20 T1 e167 + L1268%5GRT(F1)
E = ABS{T1I-T1D)
IF (E=eu01l) 40940430
30 T1i1 = T1
GO TO 10
40 IF (TloLToo5) T1='5
W = B=2e%Bl=4.%T4

Hot

B5 = W—2,%B82
T5 = Q.
IF (B5«LEa.B2) GO TO 70
T51 = «5
50 F5 = (0125%T51%#35%%2 + o52%(B5+2e)
T5 = 2167 + +1268%*SGQRT(F5)

E = ABS(T5-T51)

IF (E=evQ1l) 70970960
60 T51 = T5

GO TO 50
70 CONTINUE
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TZ1 5
BU F2 = oUl25%T21#B2¥*%*2 + (52%(B2+42.)
ST2 = T21%#%#3/B2
S = SQRT((D=T21-e5)%%24+((B2-B3)/2e+T4)%%2)
STh = ¢T5#T4u*%3/5
F2 = (ST4*F2+ST2%F1)/(ST2+ST4)
T2 = o167 + 41268%SQRT(F2)
E = ABS(T2-T21)
IF (E~«0C01) 10045100490
90 T21 = T2
GO TO 80
100 JF (T24LTee5) T2=e5
IF (T2eLTeT5) T2=T5
AAl = Bl*(T1+e5)/2

Z1 = (T1¥%2+,5%T1+e25)/(T14+e5)/30
AA2 = ((B-B6)/2.-B1)*T2

22 = T2/2e

AAT = AAl1 + AA2

AZT = AAL*¥Z1 + AA2%Z2

AA3 = B3#,5

23 = D—e25

AAL = 24%#5¥ T4

24 = (D—e5+T2)/2

All = AAT + AA3 + AA4

AZ AZT + AA3¥Z3 + AAL*Z4
DC1 = AZ/All

H = D=e5%¥DC1-1,005

AS = All/(19+2%H)
Al = 2.%A11 + B6*T2
BMD = 820e%(Al+4113%(B-24))
BMS = B50e#A11*¥(1e—(DC1l-eb67)/H)
BMU = BMD + 25260 - RMS
T31 = 1.
J =0
110 DM D=e5%#T31-467

T3 = BMU/(1322.%DM*B3)
E = ABS(T3-T31)
J = J+1
IF (JeGTa20) GO TO 2
IF (E=eU01) 13041309120
120 731 = T3
GO TO 110
130 IF (T3ebLTee5) T3=e5
ASU = BMU/(31100+%DM)
IF (ASU«GTeAS) AS=ASU
Q le/12e
140 Q Q+1le/36e
DM = D=e92-1+7#Q¥(D-1e34)
BMU 6614%¥DM%B3
BMX BMD*(1e=5e%¥W+4 o #¥Q¥%2) 4+ 12630e%(1e=Q) — BMS*¥(1e-Q)
IF (BMXeGT«BMU) GO TO 14C
AA3 = B3#T3
S = SQRT((D-T2-T3)##2+((B2-B3)/2e+Tl)¥%2)
AAL = 2.%5%T4
AT 2e¥AAT + Bo#*T2
A2 AT + 2.*¥ (AA3+AA4L)

H u



Al + (A2-A1)%*Q/2.
5e345%A + 3434%AS +

eOD31%*(R+F4¥D+106) %D

227
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SUBRUUTINE TU CALCULATE THE OBJECTIVE FUNCTION
FOR 2-SPAN MULTI-CELL BOX GIRDER BRIDGE

NOTATION
CONSTANTS
B TOTAL WIDTH

NW NUMBER OF WEBS
T4 WEB THICKNESS

VARTABLES FROM MAIN PROGRAM
B1 WIDTH OF CANTILEVER OVERHANG
Be FIRST INTERIOR SPAN OF DECK
B3 WIDTH OF BOTTUM SLAB

D] DEPTH OF SECTION
QUANTITIES CALCULATED
A AVERAGE SECTION AREA
AS CABLE AREA
C O3JECTIVE FUNCTION
B = 50
NW = 4
T4 = 1eu0833
GO TOU 5

PRINT 2000s Bly B2y B3y D

FORMAT (*Bl1 ©2 B3 D =%y 4E1242)
CALL EXIT

CUNTINUL

T11 = &7

Fl = o025%(1e+T11)¥B1%*2 + 26.¥(R1=24)/(P142,687%)
IF (BleLEsBs) GO TO 20

Fl F1 + 26+%¥{B1-84)/(R1-3,3125)
T1 el67 + J1268%SQRT(F1)

E = ABS(T1-T11)

IF (E=eUU1) 40,40,530

T1l1 = T1

GO TO 10

IF (TlelLTee5) Tl=05

W = B=2e¥Bl=-NW¥#T4

BS = (W—2.%¥B2)/(NW=3)

T5 = Qe

IF (B5eLEs«B2) GO TO 70

T51 = «5

F5 eQ125%¥TH1#BS*%2 + (52%(B5+2)

Hon

15 el167 + 1268%SQRT(F5)
E = ABS(T5-T51)

IF (E=eQO0L1) 70970460

T51 = To

GO TO 50

CONTINUE
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T21 = &5
80 F2 = <OLl25%T21#B2¥*2 + 452%(P2+2.)
ST2 = T21%%3/B2
S = SQRT((D=T21-5)¥#2+((B-B3)/2-B1l)#¥2)
ST4 = (75#T4L4%%3/5
F2 (STL4¥*F2+ST2%*F1) /(S5T2+5T4)
T2 el167 + L1268%SQRT(F2)
E = ABS(T2-T21)
IF (E=eu0l) 1004100,90
90 T21 = Te
GO TO 8V
1uO IF (T2eLTee5) T2=4e5
IF (T2.LT&T5) T2=T5
AAl = Bl#*(T1+.5)
Z1 = (TLl¥#*24 ,5%T1+425)/(T1l+e5)/30

AA2 = (B-2.%B1)%#T2

22 = T2/2

AT = AAl + AA2

AZT = AAL*Z1 + AA2¥22

AA3 = B3%,5

23 = D=e25

AAG = ((NW=2)*¥(D-T2=e5)+2%5)*T4
Z4 = (D=e5+T2})/2

Al = AT + AA3 + AA4

AZ = AZT + AA3%#Z23 + AA4L¥Z4
DC1 = AZ/Al

H = D-e5%¥DC1-1,005
AS = Al/(38e4%H)

BMD = 820e¥(Al1+,113%(R~24))
BiIMS = 425¢%¥A1%*(1e=(DCl=e67)/H)
BMU = BMD + 25260 - BMS

T31 = le

J =0

110 DM = D= e5%T31-e67
T3 = BMU/Z (661 «*¥DM¥B3)
E = ABS(T3-T31)
J = J+1
IF (JeGTe2u) GO TO 2
IF (E-«001) 13041305120
120 T31 = T3
GO TO 110
130 IF (T3elTee5) T3=e5
AsSU = BMU/(311004%DM)
IF (ASU«GT<AS) AS=ASU
Q = 1le/1l2e
140 Q = Q+1le/36.
DM = D—e92=1e7%Q%(D~1e34)
BMU = 330,5%DM#B3
BMX = BiMD*(1le-5e*Q+4e*¥Q¥%2) + 12630s%(1e-Q) — BMS*¥(1e-Q)
IF (BMXeGTeBMU) GO TO 14C
AA3 = B3%T3
S = SART((D=T2-T3)#*2+( (B-B3)/2.-B1)¥¥2)
AAL = ((NW=2)%*(D-TZ2-T3)+2*5)%T4
A2 = AT + AA3 +AA4
A Al + (A2-A1)%*¥Q/2.
C 5¢345%A + 343¢%AS + (C31#(B+3e%*¥D+106)%D

non
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SUBROUTINE TO CALCULATE Tht CBJECTIVF FUNCTION
FOR 3-SPAN DOUBLF BOX GIRNDFR BRIDGE

NOTATILOUIN
CUNSTANTS
B TOTAL WIDTH

B6 WIDTH OF CAST-IN-PLACF STRIP
T4 WEB THICKNESS

VARIABLES FROM MAIN PROGRAWNM
Bl WIDTH OF CANTILEVER OVERHANG
BZ FIRST INTERIOR SPAN OF DECK
B3 WIDTH OF BOTTOM SLAB

L DEPTH OF SECTION
WUANTITIES CALCULATED
A AVERAGE SECTION ARLCA
AS AVERAGE CABLE AREA
C O8JECTIVE FUNCTION
B = 56
B6 = 2e
T4 = 1o
GO TO 5

2 PRINT 2000s E1s B2s B3s D
2uvu FORMAT (#B1 B2 B3 D =%, 4F12.2)
CALL EXIT
5 CONTINUE
T11 = &7
10 F1l = «025%(1e+T11)X#B1I*¥¥D + 26 % (R]=24)/(R1+2.6875)
IF (BlelLEe8es) GO TO 20
Fl Fl + 260*(81‘8.)/(“1—3031?5)
20 T1 el67 + o1268*¥SURT(F1)
E = ABS(T1-T11)
[F (E-eU01l) 40,40,30
30 T11 = T1
GO TO 1V
40 [F (TIOLTOOS) T1=05
W = B=2e¥Bl=44%T4
BS5 = W—2.%B2

T8 = Qe
IF (B5eLEeB2) GO TO 70C
T51 = &5

50 F5 = (0L125%TS51*B5*#2 + #52¥%¥(B5+2)
TS = 6167 + «¢1268%¥SQRT(FS)
E = ABSI{T5-T51)
IF (E=eCO1) 70570560
60 T51 = T5
GO TU 50U
70 CONTINUE
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T21 = &5
F2 = o0125%T21%B2##2 + +52%(B2+2s)
STZ2 = T21%#3/B2
S = SGRT((D=T21-e5)%¥2+((B2-B3)/2e+T4)%%2)
ST4 = o T5#T4%*%3/S
F2 (ST4®F2+ST2#F1) /(ST2+4S5T4)
T2 el67 + 41268*SQRT(F2)
E = ABS(T2-T21)
IF (E-e001) 100,100,590

T21 = TZ
GO TO 80
IF (TZCLTOCS) T2=.5

IF (TZ.LT.TS) T2=T5
AAl = Bl¥(T1+e5)/2e

21 = (T1¥#2+,5%¥T1+e625)/(T1l+e5)/30
AAZ2 = ((B~B6)/2.-B1l)*T2

22 = T2/2.

AAT = AA1 + AA2

AZT = AA1%*Z1 + AA2%Z2

AA3 = B3%,5

23 = D—e25

AAL = 2%5%Ty4

24 = (D=e5+T2)/2

All = AAT + AA3 + AA4

AZ = AZT + AA3¥*23 + AAL¥*Z4
DC1l = AZ/All

BMU = 1012.5%A11 + 5344,
T31 = 1.

J =0

DM = D=e5#T31-e46

T3 = BMU/(661+%¥DM*B3)

E = ABS(T3-T31)

J o= J+l

IF (JeGT42C) GO TO 2

IF (E=~e001) 1305130,120
T31 = T3

GO TU 110

1IF (T3eLTee5) T3=4e5

ASU = BMU/(31100.%DM)

DM = D-e71

BMU = 330,5%DM*B3
Q@ = 405

Q = Q+.U5

BMX = 10U12e5%A11%(1le~Q)%¥2 + 56254%(,95=Q)
IF (BMX+GToBMU) GO TO 140

AA3 = B3%*T3

23 = D-T3/2

S = SQRT((D=T2-T3) *¥*¥2+((B2-B3)/2e+T4) ¥%*2)
BAG = 24%5*T4

24 = (D-T3+4T72)/2,.

A21 = AAT + AA3 + AA4

AZ = AZT + AA3%*Z3 + AA4*Z4

DC2 = AZ/A21

Al 2¢%¥A11 + B6*T2

A2 2¢%A21 + B6*T2

A = Al + (A2-A1)*Q/2.



232

AS5]1 = +0386%A11/(DC2-e46])
[F (ASU«GT«AS1) AS1=ASU
AST = <43%AS1

DEC = D-45-DC1

AS21 = .15
J =0
150 BMS = 8980¢%AS21*DEC
BMU = 445,5%(Al+,113%(B-2+)) + 16850 - 3964%A11 + BMS

DM = D=e5-26+%AS521/B
AS2 = BMU/(34340,%DM)
E ABS((AS2-AS21)/AS21)
J J+1
IF (JsGT42VU) GO TO 2
IF (E=«¢002) 17051705160
160 AS21 = AS2
GO TO 150
170 ASB = +475%AS2
AS = AST + ASB
C = DHe345¥%A + 343 4.%AS
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