DOT-05-50126

OSITORY

A II_IATERAL STEERING DYNAMICS MODEL
FOR THE DALLAS/FORT WORTH AIRTRANS

¢-54
SRR A Py -
(\,\BRARy\
3 DECLOWT g

G

™

Craig C. Smith
Steven Tsao

s
s

o

AT~
T

[T

DRAFT REPORT

DECEMBER 1976

or o
“d
”
7/ A A
i - A
H.
/ = e
= \
£ :
2 3

The Univerity of Texamgborkiditig,e,

FEB 2 4 1981
NORTHWESTERN UNIVERSITY




A LATERAL STEERING DYNAMICS MODEL FOR
THE DALLAS/FORT WORTH AIRTRANS

Craig C. Smith
Steven Tsao

December 1976
RESEARCH REPORT

Document is available to the public through the
National Technical Information Service,
Springfield, Virginia 22151

Prepared for

COUNCIL FOR ADVANCED TRANSPORTATION STUDIES
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712

in cooperation with

U. S. DEPARTMENT OF TRANSPORTATION
OFFICE OF UNIVERSITY RESEARCH
WASHINGTON, D. C. 20590




NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation, Office of
University Research, in the interest of information
exchange. The United States Government and The
University of Texas at Austin assume no liability

for its contents or use thereof.




A

y4

LA Lateral Steering Dynamics Model for the _‘D‘ic‘e@e:’, ,1i76c“,
Dallas/Fort Worth AIRTRANS P e
Aywen [ RPR.M..—-4.|'OQ Ovganizetion Report No.

Zib C. Smith Jand S. Tsao '

9. Performing Orgenizetion Name and Address 10. Werk Unit Mo. (TRAIS)

Council for Advanced Transportation Studies®

The Universjty, of Texas,at Austin 1. Contract or Grant No.
| Austin, s 78712 @ ! DOT-05-50126

g

Techuical Report Documantotion Poge
T. iw Ne- F. Govermment Accession No. 3. Recipiant's Cetolog No.

voT-UT-52124

4. Title end Subtitle

S. Report Dote

13. Type of Repert and Periad Covered

12, Sponsering Agency Name and Addrass

U.S. Department of Transportation Research Report
Office of University Research
Washington, D.C. 20590 _ 14. Spomsering Agency Cade

15. Supplementery Notes

T6. Abstract

A lateral dynamic steering model of the automatically steered
AIRTRANS vehicle at the Dallas/Fort Worth Airport is developed. The
general nonlinear model is linearized and presented in a form suitable
for ride quality investigation. A set of independent, non-dimensional
vehicle parameters is identified. Basic system natural frequencies and
modes are identified, and the sensitivity of system response to basic
system design parameters is presented. It was found that vehicle steer-

ing gain and speed have a greater effect upon vehicle ride quality than
other vehicle parameters.

717, Key Werds 18. Diswibution Stetement
Steering Dynamics; Ride Quality;
Personal Rapid Transit; Lateral
Vehicle Dynamics; Automatic Steer-
ing

19. Socusity Classil. (of this sepert) . Security Clessil. (of this page) - Ne. of Peges | 22. Price
Unclassified Unclassified




EXECUTIVE SUMMARY

Abstract

A lateral dynamic steerina model of the automatically steered
AIRTRANS vehicle at the Dallas/Fort Worth Airport is developed in the
study. The general nonlinear model is linearized and presented in a form
suitable for ride quality investigation. A set of independent, non-dimensional
vehicle parameters is identified. Basic system natural frequencies and
modes are identified, and the sensitivity of system response to basic
system design parameters is presented. It was found that vehicle steer-
ing gain and speed have a greater effect upon vehicle ride quality than
other vehicle parameters.

Introduction

The acceptance of any new transportation system is affected by
the vibrations, or "ride quality," to which passengers are exposed.
Since system ride quality is closely related to system cost, however,
is important that the ride quality of any new system, with its inherent
cost implications, be defined in the planning of the system, and that
alternative methods of achieving a given level of ride quality be
evaluated.

The Dallas/Fort Worth AIRTRANS system is a "first kind" of new
transportation system and is interesting not only in its own right |
but as a prototype for possible future systems. In this work, a dynamic
model is developed which characterizes the principal lateral steering
dynamics effects of the Airtrans vehicle. This model can be used to
study vehicle design trade-offs or guideway sidewall roughness effects
upon ride quality. Simplified models developed herein are also appro-
priate for use in relating guideway sidewall roughness to ride qualtiy
for possible future automatically steered rubber-tired vehicles.

Method

A Tumped element, six-degree-of-freedom dynamic model is developed.
Equations are developed which are in general nonlinear. The equations are
then linearized and presented in both state variable (time domain) and




frequency domain form. Basic modes of vibration are identified and char-
acterized. Predicted vehicle lateral accelerations using two different
assumed inputs are compared with measured vehicle accelerations. A reduced

four-degree-of-freedom model is introduced with 1ittle Toss of model accuracy
within the frequencies of primary interest. The equations are non-dimension-
alized, and a minimum set of independent non-dimensional vehicle parameters
is identified. A sensitivity study indicates the vehicle parameteirs which
have the greatest effect upon vehicle ride quality.

Findings and Results

The vehicle acceleration spectra predicted using the model agrees
reasonably well with measured vehicle acceleration spectra at frequencies below
about 8 hertz, which include the frequencies of primary interest for ride
quality considerations. At higher frequencies, effects not included in the
model become significant. The dominant (lowest frequency) vibration modes
of the steering system include a lateral body displacement mode at about 1.6
hertz and a vehicle yaw mode at about 2.0hertz. Additional steering system
modes occur at about 4.0 hertz. The predicted vehicle output spectra also
contain multiple peaks due to "kinematic resonances" which occur when the
wavelength of the vehicle steering inputs is an even fraction of the distance
between the vehicle guidewheels.

The vehicle design parameters which most strongly affect the vehicle
output spectra and therefore the ride quality were found to be the vehicle
steering gain and the velocity or speed.

Significant Conclusions

The model herein developed can be a useful tool in the development of
new transportation systems. Vehicle parameters most closely related to ride
quality include vehicle steering gain and velocity. Additional studies
utilizing models of this type will ultimately allow determination of the
sensitivity of vehicle ride comfort and system costs.
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PART 1
INTRODUCTION

The construction and acceptance of new transportation systems involves
a variety of factors. One such factor, which itself is relatively complex,
is the vibration to which the system passengers are subjected. This vibra-
tion, commonly referred to as the system ride quality, affects the accept-
ability of the system from the passengers viewpoint. If the ride is "rougher"
than conventional modes of transportation, he is likely to rate the new sys-
tem as "poor." If, on the other hand, the ride is smooth relative to con-
ventional modes, the passenger is pleased and the new system is more likely
to be acceptable.

Perhaps the strongest motivation for studying vehicle ride quality
is its interrelationship with system cost. The specification of a maximum
level of "roughness" of the vehicle ride very strongly affects the system
costs. Both guideway and vehicle costs in many cases may be largely con-
trolled by the level of ride quality deemed acceptable for the system.

One of the first new personal rapid transit systems built in this
country is the AIRTRANS System at the Dallas/Fort Worth Regional Airport.
This completely automated system consists of rubber-tired vehicles auto-
matically steered in a U-shaped concrete guideway. Small guidewheels
contact the guideway sidewalls (or parapet walls) and act as followers,
which steer the wheels of the vehicle. Lateral vibrations, which
(from measured data) include accelerations about twice as large relative
to vertical accelerations as in typical automobiles, are therefore influ-
enced by the roughness of the parapet walls and the dynamics of the steer-
ing system.

This study involves the development of a mathematical model of the
steering dynamics of the AIRTRANS vehicle. The model considers lateral
motions only and is intended for use in studying vehicle ride quality as a
function of parapet wall roughness and steering dynamics parameters. The
vehicle acceleration spectra predicted by the model are compared with
measured vehicle acceleration spectra. Basic steering system natural
frequencies and modes are identified, and a minimum set of basic non-
dimensional vehicle parameters is defined. A sensitivity study is also
included to indicate the model output sensitivity to various model parameters.



PART 11
BASIC STEERING SYSTEM MODEL

In the development of the lateral model of the AIRTRANS vehicle,
the following assumptions are made:

1) Lateral motions and vertical motions are independent.

2) Vehicle lateral motions are small motions perpendicular
to a straight path. Use of themodel can be justified,
however, to study motions about a nominal path where
the variation in time of the nominal path of the
vehicle as the vehicle moves along the guideway is slow in
comparison to the vehicle response time and the variations
due to sidewall roughness.

General nonlinear equations of motions will be developed first and will
then be linearized for specific applications where appropriate.

General Equations

| Dynamics Equations. The basic system model is shown in Fig 1. The

| model has six degrees of freedom, including lateral displacements of the

J front (Xf) and rear (Xr) guidebar assemblies, rotation of the front wheel
assembly (Of), rotation of the rear wheel assembly (Or)’ and lateral dis-
placement (Xm) and yaw (¢) of the vehicle body. The equations of motion
are derived by drawing free-body diagrams of the Tumped masses (inertias)
associated with each degree of freedom and writing second order differen-

tial equations applying Newton's law to each free-body diagram. By so
doing, the following six differential equations are found (for details
see Appendix A):

mXe + neKane(Xe = X = dyw) - 0] + Ky [Xe = X = dqy]

1= Xl + K IXg = U] =0 (1)
X, * an3[nr(Xr Xt dzw) - 1O F K LK - X+ dydl

- K.I[U3 - Xr] + K][Xr - U4] = 0 (2)



K

> — - A/V\/U(-—-

X

Figure 1, Basic lateral vehicle model.
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K d2¢

1,06 * By (O] + Cylog = Tm 27 + rKylrp(Og + 0,))
r]K3[nf(Xf - Xm —‘dzw) - r]ef] =0 (3)
.. . Xm —dzﬁ)
Lo * B lo1 # Celop - —vy—1 ¢ r2K4[r2(Of * er)]

r1K3[nr(Xr - X+ dzw) - o
- X +.dy K - d b
m 2 m 2
M - Clog - —— - Cl6, - —y—]
- neKglne(Xe = X = dyy) = rO¢]
Kaln (X = X+ doy) - ri6.]
- Ky[Xe = X = dqyl - Kp[X,. = X+ dyyl =0 (5)

X +d,e X - dp
- m 2 m 2
Iy - d,Clo - L d,C 6, - Ty—=]

- 4K Xe - Xy - AUl + dyKy X - X+ dqul
- B, [0:1 - [Blo, - 2r oKy [ry(0g + 6,.)1
- (d]nf - r]) K3[nf(X - Xm - dzw) - 10¢l

(d]nr try ) K [nr( rm X - Dzw) - 10,1 = 0 (6)
In the above equations K], K2, K3,-K4, C, Ct and Bw are written as operators
(or functions). For instance, C[a] denotes the lateral force from the road
acting on the tires of a wheel assembly, and Ct[a] is the restoring torque,
when the instantaneous slip angle of the tires is ao. Similarly, K][X],

K2[X]’ K3[X], and K4[X] represent spring forces when each spring deflection

is equal to the argument X and Bw[w] represents the wheel assembly damping
torque as a function of the angular velocity of the wheel assembly. The
functional relationships, or constitutive relationships, denoted by the above
operators are discussed subsequently.



For computation purposes, it is conyenient to write the above equations
in state variable form. Defining a set of state variables and state vector
as

1
Xr X2

o, Xy

Gr X4

Xm x5

X = v = X6
Xg X7

Xr X8

O Xq
Oy X0

A X

L'¢ | _ X1g_ (7)

the above equations can be written in terms of the state variables as
follows: '

Xy =Xy Ky =Xg Xg=Xg Xy = X0 X5 =Xy K = Xp, (8)
. . .nf ]
f Lo - x1 -1 k. - U (9)
me ©10°1 1 me "1 2
. .nr '|
XB = -ﬁ;-K3[nr(X2 - Xg + doXe) = Xyl - ﬁ;Kz[Xz - Xg + diXc]
1 1
+ ﬁrk] [U3 - X2] = ﬁrk] [X2 = U4] (]0)



. 1 1
%9 = T By wlXgl - ‘1’w Cp Xg = gXqq + dyXp,)]

r r
2 1

1

. 1 1
Xm T, B By Xq0] - T, el - v(¥71 - doXyp)]

r r
T— Kalrp(Xg + X,)1 + 1 K3In.(Xy - Xg + dyXg) - v X1 (12)

1 1 1 1
Riq = 1 Cl¢g = glXgq + X1 + 5 CIXg = lXqq = dyXy))]
i
+ ¥ K3[nf(X] - X5 - d2X6) - r]X3]
nY‘
e K3[nr(x2 - Xg + d2X6) - r]X4]
1 1
KoKy = Xg = dqXgl + g KpDXy = Xg + dqXe] (13)
X =ij—2—C[X L0, + dX,) -?EC[X LXy = doXe.)1
12°1 vyt dXyp)l ARV
d1 d,
lB[X]+]B [X ]+2£2—K[r(x + X,)1
* 1 9 10 4lTolA3 + 2y
1
trlding - my) Kglng(Xy = Xg = dXg) - rXsl
1
- T(d]nr + rl) K3[nr(X2 - Xg * d,X ) - Xyl (14)

The above state equations can be integrated numerically using a
Runge-Kutta or other numerical integration scheme. Using a Runge-Kutta




numerical integration scheme, the acceleration of the vehicle to a step change
in the parapet wall surface is given as an example in Part II.

System Output Equations. The system equations (8~14) define the
system behavior subject to the input quideway profiles. Any variable of
interest (defined as system output) can be written as a function of the
system state variables and inputs. For the purpose of studying vehicle
ride quality, the most 1ikely variable of interest is the lateral accel-
eration of the vehicle at a passenger location. For a passenger position
located a distance £ ahead of the center (yaw axis) of the vehicle, the
lateral acceleration (for small yaw anales) is

y =X+ , » (15)
Substituting for im and ﬁ in terms of state variables,

= ¥+ 2k =(l+fﬁ)c[x - Xy + doX,)]
Y= 127 W7 37V T %M

2d
+ i = 12 CDXy - yliyg = dXyp)]

n !Ld]nf Lr

i 1
+ (M—- + I —I—)K3[nf(X] - X5 - dzxs) = Y‘]X3]

n 2d,n Lr

r 1'r 1
g - 1 - ) Kalng(Xy - Xg + doXg) - riX,]
1 44 1 A
gt ) KXy - Xg - diXgl + G - ) KolXp - Xg + diXe]
L 2 2r,
T B[] + 1 B DX gl + —7T Kalrp (X3 + %) (16)

Elemental Constitutive Relationships

The constitutive relationships or nature of the operators in the above
equations may be assumed to be very simple or very complex, depending upon the
use and accuracy desired of the model. Typical forms of these functions |
are described below. '



Guidewheel Spring, K]. The force-deflection relationship for the
spring between the guidewheel and guidebar has some nonlinearities by
necessity. When the guidewheel is not in contact with the parapet wall,
the force applied by the parapet wall is zero and is not a function of
guidebar motion. Additionally, it is desirable from a design standpoint
to have mechanical stops at each end of the spring stroke to limit the
total stroke. This causes the spring to have some preload when the
guidewheel is not in contact with the guideway, requiring that the contact

force be larger than some nominal value as the guidewheel and guidebar
~ come together before additional spring deflection occurs. At the other
end of the stroke, the effective stiffness of the spring increases sharply
as the stop is encountered. A typical force-deflection relationship
which results from this sort of action is shown in Figure 2. Additionally,
other nonlinearities could be designed into the system to attempt to im-
prove system performance, and some were examined during the development
of the AIRTRANS vehicle by LTV personne1.1 However, the relationahip
shown in Figure 2 is assumed to be a reasonable representation of the
present vehicle now in use.

Guidebar Mechanical Stops, K2. To avoid excessively large excursions
of the guidebar relative to the vehicle body, stops are provided when
deflections exceed = 1.75 inches either side of the center of the vehicle.
This effect is modeled as spring K2 and the resulting constitutive rela-
tionship is shown in Figure 3.

Steering Link Flexibility, K3. The flexibility in the steering link
is modeled i1n Figure | as K3 and is a relatively stiff spring with a
stiffness of about 40,000 1bf/in. This spring is generally linear through-
out the ranges of interest considered in this study.

Funk Spring Coupling Front and Rear Steering Assemblies. Since the
rear guidebar is located behind the rear wheels, it cannot convey informa-
tion to the rear wheels concerning where the guideway "is going" (relative

]Personal communication with F. W. Dean, LTV Aerospace Corporation,
Dallas, Texas. :




400

K, [X1(1bf) | “Z__slope = 10,000 1bf/in

200

s t

-0.25 |0 0.25 0.50
+ X (in.)
200 |

Figure 2 Force-deflection relationship of guidewheel spring K]

K,[X1(1bf) slope = 20,000 1bf/in

Figure 3. Force-deflection relationship of guidebar mechanical
stops K2.



to the rear wheels) but only where it "has been." It is therefore
necessary to couple the front and rear wheel (and/or guidebar) assemblies
to cause the rear wheels to follow the path of the front wheels. This
coupling is provided by means of the spring K4 shown in Figure 1. By
design, this spring was developed to be piecewise linear, being relatively
stiff for small deflections and somewhat softer for larger deflections.

The resulting force vs. deflection arrangement is shown in Figure 4. The
action of this spring is to provide relatively close coupling between the
front and rear steering assemblies when the motions are small. In the
event that the rear of the vehicle becomes very largely misaligned with

the guideway, however, the front-rear coupling becomes much softer relative
to the rear guidebar effect, and the larger corrective action comes through
the rear guidebar assembly.

Lateral Force in Road-Tire Interface, C{a). The lateral force
developed between a tire and the roadway is a function of the slip angle,*
i.e., the angle between the velocity of the tire and the diametral plane of
the tire.2 For small slip angles within some frequencies it is appropriate
to consider the force to be simply proportional to the slip angle. For
large amplitudes and for high frequencies relative to the rotation speed
of the tire, a simple proportionality relationship is no longer valid.

For the purposes of this study, the slip angle should remain small, in
which case the relationship should remain linear. If the frequencies of
interest warrant closer refinement of the model, the range of applicability
can be extended by including a second order (which makes C a second order
differential operator) model for this interface. This procedure would
therefore add two more state variables to the system model and will be
investigated should it be deemed necessary as the study progresses. 1In

any case, the function C[a] in the equations above is the combined force
on two tires, each assumed to share half the load.

*Camber, caster, and vertical and tractive forces on the tire also
affect the lateral force but are here considered to be constant.

25. K. Clark, Editor, "Mechanics of Pneumatic Tires," NBS Monograph
122, November 1971.
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Figure 4, Force-deflection relationship of funk spring K4
coupling front and rear steering assemblies,
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Tire Aligning Torques Ct[a]. The restoring torque applied to a
tire by the roadway 1s also considered to be a function of the tire slip
angle, the mechanism being similar to the generation of the lateral force
above. Again, Ct[a] is the combined torque applied to both tires in an
assembly, each having the same s1ip angle and sharing half the Toad.
Steering Assemb]y,Damping,,Bw[é]. Damping of the steering assembly
is accomplished through a dashpot connected between the steering drag Tink
and the vehicle chassis. This damping is primarily viscous damping and
is linear (torque proportional to angular velocity of the wheel assembly)
for small angles of the wheel assembly, Additionally, some dry or coulomb
friction should be expected at pivot joints, etc., and these effects could
also be lumped into the function Bw[é].

Linear Equations

For many studies, it is appropriate to use a linear approximation to
the above equations to facilitate study of basic effects and ease of
solution of equations. The linear model can be considered a reasonable
approximation for motions small in amplitude and limited in frequency
content, the ranges and limitations depending upon the nature of the
mode1.

Making the assumptions that K][X] = k]X, KZ[X] = 0, K3[X] = k3X,

Ke[X] = KgX, Clal = ca, Clal = cy0, Bw[é] = bwé, (17)

equations 1 through 6 can be written in the matrix form

Mz + Cz + Kz = Gu | ~(18)
X¢
e |
Y1
0
f u
where z = o, s us= 2 |
43
Xm
u
) e )
L

The M, C, K, and G matrices are tabulated in Appendix B.1.
12



For computational purposes, it is often convenient to write the
second order matrix differential equation (18) in the first order form

£.=.ﬂ£ +‘§E_ ‘ (19)
where the state vector
z

and where the system matrix

.

B ={—‘_’ —} (22)
MG

are formed using the matrices in (18) as appropriate partitions. Additionally,
substituting the Tinear relationships,(17),into the output equations(16),

yields the linear output equation:

(2 2

y = ["f%3 4+ (dinf - l’1)"1r£'<3]x1 + (kg (dyng + vqdngdks)y
W T | m T 2

r

and input matrix

) 2 2, ]

c nfr1k3 + £d2c - £d1nfr1k3 + £r1k3 + 2£r2 4 X3
M I

L - 4

[ 2 2,
+ ¢ - nrr‘]k3 + -£d2c + £d1nrr‘1k3 + £r1k3 + 2£r2k4 X4
\ M T

J

2 2 2 2
- .(nf + nr)k3 + d](nf - nr)zk3 - r](nf + nr)tk3 WXS
W I

#

(2 2 Dl 2
_ (nf - Tﬁ)d2k3 + d1d2£(nf +n kg 4 d2r1£(nr - nekg Xe
1

wa 2 2cd2£

\
wa
T Y* 1T X - X -1 X2 (23)
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which can be written in the matrix form

y = ¢'x (24)

where gT is tabulated in Appendix B.1.

Comparison of Linear and Nonlinear Model Responses to a Step Input

Solution of the equations representing the system model for the pur-
pose of studying ride quality can be accomplished by a variety of methods.
Selection of any particular method depends upon the type of input to be
considered, the required accuracy, and the desired form of the output;
thus, some trade-off is involved. If the system nonlinearities must be
fully represented, the only alternative is to numerically integrate the
system equations for any desired input. If,on the other hand, a linear
form of the system model can be considered adequate within the range of
consideration, a variety of more convenient and efficient solution tech-
niques present themse]ves.3 Since the guideway roughness profile inputs
and motion acceleration outputs typically of interest in simulation of
. ride quality are lTimited in both amplitude and frequency content, a
linear model is expected to be adequate for many situations. The range
of validity of the linear model can be investigated by comparison of
the calculated responses using the Tinear and nonlinear models with some
selected types of inputs. Here the response of the linearized model
with parameters listed in Table 1,which were estimated from the constitutive
relationships defined previously,is compared with the response of the
nonlinear model for an input consisting of a 0.25-in. step in the guide-
way parapet walls. In other words, both Teft and right walls were assumed
to have a 0.25-in. step at the Tocation of the front guidewheel at t = O.
With the vehicle traveling at 25 ft. per second, the rear guidewheels ap-
proach the step at about t = 0.72 sec. The resulting lateral acceleration
at a point 48 inches ahead of the vehicle center for both linear and non-
linear simulations is shown in Figure 5. As can be seen the two agree

3Mike Pen-Mu Kao, "Vehicle Ride Quality Simulation - FFT vs. Time
Domain," Master's Thesis, Nepartment of Mechanical Engineering, The
University of Texas at Austin, 1975.
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TABLE 1 LINMEAR SYSTEM PARAMETERS FOR AIRTRANS VEHICLE

600 1bf/deg = 34,400 1bf/rad

2000 in 1bf/deg = 114,600 in 1bf/rad
108 inches

85 inches

197,700 1bf in sec?

323 1bf in sec?

400 1bf/in

0

40,000 1bf/in

400 1bf/in

48 inches

14,500 1bm 37.5 1bf secz/in
510 1bf = 1.32 1bf sec’/in
510 1bf = 1.32 1bf sec?/in
0.35

0.35

8 inches

8 inches
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Figure 5. Comparison of passenger position acceleration responses of linear:
and nonlinear models to a 0.25-inch step change in the guideway.
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reasonably well. The basic frequency content of the step response of the
linear model appears to be slightly lower than the frequency content of

the nonlinear response. Although it is possible that the linearized
parameters could be chosen such that the linear and nonlinear responses
shown in Figure 5 were in even better agreement, it is noted that the

values of the parameters for the "best" agreement is in general a func-

tion of the input. The results shown in Figure 5 do serve to give some com-
parison between the linear and nonlinear models, however, and lend some
Justification to the use of the linear model in ride quality simulations.

Non-Dimensionalization of System Equations

When dealing with systems with the number of system parameters of
the one here considered, it is useful to examine the problem to determine
the minimum number of basic independent parameters. This is accomplished
by non-dimensionalization of the system equations. At the same time it
is useful to normalize the system variables to allow easy comparison be-
tween corresponding excursions of the variables.

With the definition of x* - ™f9 and basic frequency w* = /k1/mf,
k1
the system normalized non-dimensional variables are defined in Table 2

and are functions of non-dimensional time t = w*t. The linear system
equationss(18)sare then found in the non-dimensional form

Mg + C4 + Kq = &n (25)
where g is the vector of normalized non-dimensional variables:
( 3
Xf
Xr
3
f
q = 5 (26)
r
X
1
L P

where the variables are as defined in Table 2 and where n is the vector of

17




TABLE 2 NORMALIZED NON-DIMENSIONAL SYSTEM VARIABLES

Variable ~ Definition
R Xel %
XY‘ Xr/x*
B, (6,rm)/x*
Xm X/ x*
(:5 (wd] )/X*
x* = mfg
kK

18



inputs in non-dimensional form

s (Pu (27)
and where the M, C, K, and § matrices are the non-dimensional mass, stiff-
ness, and input matrices defined in Appendix B.2 and are functions of the
system basic non-dimensional parameters listed in Table 3. In the deriva-
tion of the basic non-dimensional parameters listed in Table 3, it has
been assumeg that m,=Mes rp =ry=r, and ng =n.=n. These twelve
basic non-dimensional parameters represent a minimum set of independent
system parameters which describe the system,

Four Degree-of-Freedom Model

Since the stiffness of the steering links, represented by the
springs K3 in Figure 1,is relatively high, the order of the model can be
reduced by assuming K3 to be rigid (infinite stiffness). This can be
done with Tittle loss in accuracy at Tow frequencies (i.e., frequencies
below 10-12 hertz,as will be shown later). Assuming Ky to be rigid,
appropriate constraint equations are written as

"

X¢ = ﬁ;'ef * Xyt dyy (28)
"
and X, = n- 0.+ X - doy (29)

Substituting these two constraint equations and appropriately modifying the
derivation of equations (see details in Appendix C.1), the linear four-degree-
of-freedom system equations can be written in the form

Mz + Cz + Kz = Gu (30)

where for this case the vector of system coordinates

, N

z = (31)




TABLE 3 BASIC NON-DIMENSIONAL SYSTEM PARAMETERS

Parameter

Steering Link Stiffness Ratio
Coupling Stiffness Ratio

Guidewheel Spacing Ratio
Steering Link Radius Ratio

Steering Lever Ratio

Wheel Assembly Inertia Ratio
Vehicle Inertia Ratio
Steering Damping Ratio

Mass Ratio

Comering Coefficient Ratio
Torque Coefficient Ratio

Velocity Ratio

wr = Jk /mf'

1

= e T T - T -= R I T B =V I

20

Definition

K/
K4/|(.|
d]/dz
r/d2
/%

2
I/ ; me)
I/(r mf)
bw/(rszw*)
M/mf
(cdz)/(rszw*z)
ct/(rszw*z)
V/(dzw*)



u is the vector of sidewall profile inputs as defined previously, and where
the M, C; and K matrices are the 4 X 4 mass, damping, and stiffness matrices

defined in Appendix C.2. In normalized non-dimensional form, these equations
can be written

Mg + Cq + Kg = &N (32)
where ( _
O¢
8
q = - (33)
X
n
P
\

and the 4 X 4 non-dimensional matrices M, €, K, and & are as defined in
Appendix C.3. These equations can also he written in first order form,
as indicated in equations 19 throuch 22.
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PART III
SYSTEM RESPONSE AND RIDE QUALITY SIMULATION

Introduction

The major objective of the model developed herein is to make
possibTle the prediction of the AIRTRANS vehicle ride quality and to
allow investigation of the effects of various parametric changes upon
the ride quality as well as the effects of ride quality specifications
upon system costs.

Since most ride quality specifications consist of Timits upon the
acceleration(s) of the vehicle as a function of frequency, it is con-
venient to consider the vehicle acceleration response in the frequency
domain. Therefore frequency domain solution techniques are the most
natural to use for these simulations. Since this approach relies upon
linear system theory, the linear versions of the model are used.

System Natural Frequencies and Mode Shapes

Basic system behavior is largely characterized by the system's
natural frequencies and mode shapes. Since the system under considera-
tion is damped, normal modes* for the system do not exist in the true
sense. For systems with damping which is not too severe, however, it
is instructive to look at the normal modes of a system which is identical
to the system under study except that all damping terms have been set to
zero. Such a system will have roughly the same magnitudes of vibration
associated with corresponding modes and provides insight into system
behavior without the complication of the coupling due to damping. Be-
ginning with the matrix equation (18) or (30) and setting the damping matrix
C = 0 and the input u = 0 results in

Mx + Kx = 0 (34)

*Normal modes in theory generally only exist for undamped systems. When
a system is damped, that damping usually provides coupling between modes,
allowing energy transmission between modes. The modes are therefore not
"normal" or orthogonal in the mathematical sense.
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Assuming a periodic solution,

X = -wlx (35)

where w2 is the square of the undamped system natural frequency, results
in

(-w™M + K) 0

36
2I+D)=0 (36)

>  [><
"

where D = M'1K is the dynamical matrix. Equation (36) represents a classi-
cal eigenvalue problem, where the values of w2 which satisfy (36) are the
eigenvaluesof the matrix D and where the vectors X which satisfy (36) are
the eigenvectors of D. The square roots of the eigenvalues of D are
therefore the undamped system natural frequencies, whereas the eigenvectors
of D are the undamped system normal modes. In the following, the terms
"undamped natural frequencies" and "mode shapes" refer to quantities cal-
culated as just described.

When examining the system mode shapes, it is also advantageous to
use the mode shapes corresponding to normalized system variables 1isted
in Table 2 and represented in the non-dimensional equations (25) and (32).
This allows direct comparisons between corresponding terms in the mode
shapes.

The non-dimensional parameters and normalization factors corresponding
to the dimensional parameters listed in Table 1 are listed in Table 4. For
these values of system parameters, the undamped natural frequencies and
normalized mode shape for the six-degree-of-freedom and four-degree-of-
freedom models are listed in Tables 5 and 6 respectively. The first of
the six system modes represented in Table 5 consists of a 1.6 hertz mode
in which Tateral body motion dominates, with fairly large motions of the
wheels. The wheel motion associated with this mode is characterized by
both front and rear wheels rotating in phase with each other but out of
phase with the vehicle body motion, i.e.,the direction of the wheels at any one
time would tend to steer the vehicle in a direction opposite to its displacement
at that time. The second mode is a 2.0 hertz mode dominated by vehicle yaw
motions. The wheel motion for this mode is also fairly larae, with the front
and rear wheels out of phase with each other and out of phase with the vehicle

23



TABLE 4 NOMINAL VALUES OF NON-DIMENSINNAL PARAMETERS AND
NORMALIZATION FACTORS FOR AIRTRANS VEHICLE AT FULL SPEED

Parameter
R3 = 100
K4 = 0.75
a1 = 1.27
r =0.094
Tw = 3,82
T = 2340
Bw = 0.814
M =28.4
¢ =228

= 8.86
Ct
Vv =0.20
n =0.35

24

Normalization Factor

x*

w*

1.28 in.
17.4 rad./sec.



TABLE 5

> ><1

e
ost]

> fasl]

<t

W] = 0.585

*
(f, = wi(5) = 1.62

W, = 0.711

(f2 = 1.96 hertz)

UNDAMPED NATURAL FREQUENCIES
AND NORMALIZED MODE SHAPES,
SIX-DEGREE-OF-FREEDOM MODEL

Front guidebar lateral motion
Rear guidebar lateral motion
Front wheel rotation
Rear wheel rotation

Vehicle body lateral motion

Vehicle body yaw rotation

0.14
0.35
-0.62
-0.52
1.0

L 0.08

Lateral
mode

=
—

hertz)

( -0.35
0.35
-0.61
0.61
0.00
1.00

Yaw mode

25
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TABLE 5. (Continued)

~-h
i

1.46 (4.05 hertz)

= 1.46

X1
1

(f3 = 4,04 hertz)

w4 = 1.51

(f4 = 4.18 hertz)

f5 = 6.43 (17.82 hertz)
w5 = 6.43

(f5 = 17.8 hertz)

We = 6.45

(f6 = 17.9 hertz)

0.66 1
- .66
1.00
-1.00
0.00
- .34

0.78
0.78
1.00
1.00
-0.24
0.0005

-0.46
0.07
1.00

Ug =

0.008

0.016

[ 0.46
-0.46
| -1.00
1.00
0.00
-0.016

\

Out of phase wheel mode
with some out of phase
yaw*

In phase wheel mode with
some out of phase lateral
motion*

Steering link resonance
mode*

Steering link resonance
mode*

*Since modes three and four have (almost) the same frequency, their mode
shapes are not independent, and any linear combination of the mode shapes
The same is also true of modes five and six.

listed is also a mode shape.
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TABLE 6 UNDAMPED NATURAL FREQUENCIES
AND NORMALIZED MODE SHAPES,
FOUR-DEGREE-OF-FREEDOM MODEL

O¢

er _
y_: _ -

Xm

P

L )

W] = 0.601

- W* _
(f, = ()
w2 = 0.725
(f2 = 2.00 hz)
ﬁ3 = 1.46
(f3 = 4.05 hz)
w4 = 1.51
(f4 = 4,18 hz)

Front wheel rotation

Rear wheel rotation

Vehicle body lateral motion

Vehicle body yaw rotation

= 1.66 hz)
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-0.65

0.63
0.0n
1.00

1.00
-1.00
0.00
-0.34

1.00
1.00

0.00

Lateral body
displacement mode

Yaw mode

Out -of -phase wheel
mode

In-phase wheel mode




yaw motions. The third and fourth modes are at practically the same frequency
(4.1-4.2 hertz) and are modes dominated by wheel motions with some body dis-
placement and yaw. Since these two modes are at practically the same frequency,
they are (nearly) indistinguishable,and any linear combination of the two
mode shapes listed is also (nearly) a mode shape. They have been listed
as an out-of-phase wheel mode and an in-phase wheel mode. Modes five and
six are also of approximately the same frequency and represent resonances
of the guidebar steering links. The motion associated with these modes is
primarily motion of the wheels and guidebars, the motion of each wheel as-
sembly (front or rear) being out of phase with the corresponding guidebar
assembly (front or rear).

When the effects of damping on the system are taken into account,
the frequencies of the modes described above are changed somewhat, and
some coupling is introduced between modes. Thase effects are relatively
small, however, and the same general behavior is expected. The eigenvalues
of the damped system are found by determining the eigenvalues of the matrix A
defined in equation (21). The damped natural frequencies and critical
damping ratio for each complex conjugate pair of system eigenvalues are
tabulated in Table 7. The damped natural frequency is here defined as
the magnitude of the imaginary part(s) of the corresponding complex
conjugate pair of system eigenvalues, and the damping ratio is defined as
the ratio of the absolute value of the real part(s) to the magnitude(s).
Comparing the damped frequencies from Table 7 with the undamped frequencies
in Tables 5 and 6, it is noted that the damped frequencies differ somewhat
from the undamped natural frequencies, with the effect of damping being
greatest in the lower frequency modes.

System Transfer Functions

Since it is convenient to use the frequency domain for ride quality
investigation, the system transfer functions are of primary interest.
There are found by substituting g_= Jwx into equation 19, yielding

] T (37)
or (jwL-A)X = Bu
Solving for x,
x = (wI-A)"'Bu
= 2:.02v=1,.
= -(w'I+A") " (jwI+A)Bu (38)
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TABLE 7 DAMPED NATURAL FREQUENCIES AND DAMPING RATIOS

Six-Degree-of-Freedom Model ‘Four-Degree-of-Freedom Model
Mode wd(rad/sec) f4(hz) z wd(rad/sec) f(hz) z

1 0.557 1.54 0.38 0.571 1.58 0.39]
2 0.695 1.93 0.42 0.710 1.97 0.43
3 1.34 3.72 0.16 1.33 3.68 0.16
4 1.46 4.02 0.11 1.45 4.02 0.17
5 6.43 17.8 0.009 - - -
6 6.45 17.9 0.007 - - -

Definitions: Wy non-dimensional damped frequency

-4
|

d= ﬁd(%%) = damped frequency in hertz

damping ratio

e
]

w* = 17.4 rad/sec. f* = wk/2n = 2.77 hz.
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The later form of (38) is used for computational purposes since the matrix
which requires inversion is real valued. The output of interest is the
acceleration at the passenger location of interest and can be written

=d'x=d (dwx (39)
where
d =[00000000007 2]

for the six-degree-of-freedom model and gT =[000000 1 &] for the four-
degree-of-freedom model and where & is the position of the passenger
location ahead of the mass center of the vehicle.

~ Substituting (38) into (39),

~d(3w) (wP1+A%) "1 (jwI+A)Bu

<
I

21482)" 1 (w21- jwA)Bu

4" (Wr+A) " (w

,qT(jw)g (40)
where

g (W) = d"(wW2rA?) T (wP1-5un)B
is a row vector of transfer functions relating each of the inputs and the

output. Since there are four inputs, gT(jw) has four individual terms,
and (40) expanded takes the form

y = [6) G, G3 6] up |

! (41)

where, it is recalled that Uy and u, are left and right front quidewheel
displacements, respectively, and us and uy are left and right rear gquide-
wheel displacements, respectively. Because the vehicle is symmetrical, the
effect on the output of a right front (or rear) guidewheel displacement is
identical to the effect of a left front (or rear) guidewheel displacement.
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This being the case, the terms G1 and G2 are identical, as are the terms
G3 and G4, so that

y=1[ G] G] G3 G3]g_ (42)
Additionally, it is noted that if the passenger location of interest is
at the vehicle center, i.e.,if 2 = 0, G3 = -G] because the vehicle is
antisymmetric about the centerline between the front and back.
Using the six-degree-of-freedom model with parameters as defined
in Table 1, the magnitudes of the transfer functions G] and G3 are plotted

in Figure 6 for a passenaer location at the vehicle center (2=0) and for a

passenger location 48 inches ahead (2=48 in.) of the vehicle center.
Further combination of the transfer functions above is accomplished

by noting the relationship between front and rear inputs. Assuming that
the input to the rear guidewheel on either side of the vehicle is just
the input to the front guidewheel on the same side delayed for the period
of time it takes the vehicle to travel the distance between the guide-
wheel,

2d2
- -dw(——
uz = u e v (43)
2d
. 2
- - Jw(—~)
Uy = u, e V (44)

2d
where (—vl) is the time delay between guidewheels. Substituting (43) and
(44) into (42), ‘

r

= [6; G, G3 631 | u

<
I

U2 2d
_J'w(_.l
u1e vV
v
s 2d
. 2d . 2
- -JweZ 2 -Jw(—)
= [(G] + G3e ( v ))(G'I + G3e v ] U-I

e W

u
\ 2

Uz

[6 6] u;
Up ' (45)
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Figure 6. Transfer functions relating inputs from various
guidewheels and outputs at vehicle center and a
passenaer point 48 in. ahead of vehicle center
(six-degree~-of-freedom model)
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where

.24
6= G + G3e‘3"‘(T2) (46)

is the transfer function relating the output and the left (or right) sidewall
profile, and where the rear guidewheel is assumed to follow the same profile
as the front guidewheel (only delayed) on each side. This transfer func-
tion using the six-degree-of-freedom model is shown for a passenger position
at the vehicle center (2=0) in Figure 7 and for a passenger position 48 inches
ahead of vehicle center (2=48 in.) in Fiqure 8. It is noted that in addition
to the modal resonances corresponding to the natural frequencies tabulated in
Tables 5 and 6, there are multiple kinematic resonances (and anti-resonances)
present. These kinematic resonances correspond to input frequencies or wave-
lengths which are related to the distance between the front and rear auide-
wheels. In examining Fiqure 7, the transfer function for a passenger location
at the vehicle center, it is noted that the kinematic resonances correspond
to frequencies for which the motion inputs to the front and rear gquidewheels
are in phase. The dips in the curve between peaks, or the "anti-resonances,"
correspond to input spatial frequencies for which the motions of the front
and rear guidewheels are 18N° out of phase. When this occurs, the vehicle
pitch motion is excited predominantly, and there is very little motion of

the vehicle center. This is further understood by notina that the transfer
function for the passenger point 48 inches ahead of center (Fiqure 8) has
kinematic resonances peaks in the same places and of about the same magni- .
tudes as the vehicle center transfer function, but the "anti-resonant" dips
are not nearly as significant since the passender in this case is located
away from the pitch center. At this location, the excited pitch motion con-
tributes to the passenger point motion at these "anti-resonant" freauencies.

The transfer functions for the four-degree-of-freedom model with the
output at the vehicle center and with the output at a passenger location
48 inches ahead of the vehicle center are shown in Figures 9 and 10, re-
spectively. The four-degree-of-freedom transfer functions are very nearly
the same as the six-degree-of-freedom transfer functions, except in the
immediate vicinity of the 17 hertz guidebar resonance. Since this
resonance is 1ightly damped, it represents a fairly sharp peak in the
six-degree-of-freedom transfer function which is not represented in the
four-degree-of-freedom model.
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Predicted Spectra of Vehicle Output

For ride quality assessment of a transportation vehicle, most
criteria are based upon the vehicle acceleration spectra. Since the
model which has been developed predicts only the lateral spectrum, the
vehicle output of interest is the Tateral acceleration spectrum at a
given passenger location. Since there are two (right and left) sidewall
inputs, the system is a two-input-single-output system as defined by
equation (45), and the spectrum of the output is related to the spectra
of the inputs by the equation

Py(f)

6(f) 6(-F) Py, (f)

+ G(-f) G(f) Cujuy(f) + G(f) G(-F) Cupuq(F)

+ G(f) 6(-F) Pyy(f)

= G(f) G(-f) [Py (f) + Cuquy(f) + Cupuqy(f) + Pyy(f)]
= 6(F)|2(Pup(F) + Cuqup(f) + Cupug () + Pyy(F))

(47)
where Pu](f) is the autospectral density of Uys Cu1u2(f) and Cu2u1(f) are
the cross spectral densities of uy and Uss and Puz(f) is the autospectral
density of Uy.

When guidewheels on both sides of the vehicle are in contact with
the guideway, calculation of the output spectrum usina (47) requires knowl-
edge not only of the character of each of the sidewall profiles themselves
(their autospectral densitjes) but also information about their relation-
ship to each other, including phase (cross spectral densities). Luckily
from a computational point of view, it has been observed that in many
situations the guidewheels are in contact with only one sidewall, with
the opposite guidewheels freely "floating." This is the case partic-
cularly around corners, where the vehicle is in contact with the outside
wall only. (In straight sections of guideway, the vehicle effectively
wanders from side to side, making contact with one side and then the other.)
When this is true, the input on the side with no contact is zero, and (47)
reduces to

PYE) = [6(F)]2 Py(F) (48)
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where P,(f) is the autospectral density of the sidewall in contact.

It has heen suggested hy some authors that typical guideway
profile.spectra for guideway floors (vertical inputs) are of the form
P(Q) = %2, where Q is the spacial frequency (inverse of the wavelength)
of the guideway irregulatities and A is a constant.4 A vehicle traveling
at a velocity V therefore sees an input of the form

AV
f) = = 49
(M - 5 (49)

where f = VQ is the time-based frequency (cycles/sec.) of the input.
Typical values of the constant A vary from about 10'7 to 10-3 feet,
depending upon the surface roughness. Assuming that the guideway side-

wall roughness is of the same form as here suggested for sidewall floor
roughness, substitution into (48) yields

PP = [G(F) | (AV/F?)
> P () a(f) 2
(—— = 15 (50)

Figure 11 shows Py(f)/AV as represented in (A0) for lateral acceleration
output at the vehicle center using the six-dearee-of-freedom model. Since this
plot is on log-log coordinates, it is applicable to any values of the constants
A and V. The form of the actual output spectra, Py(f), for differing surface
roughness A and velocities V will be identical 1n.form but shifted along
the logarithmic ordinatefrom each other. The only restriction is that the
input be of the form represented in (49). For comparison purposes, the
lateral acceleration spectra measured at the vehicle center, represented
as an ensemble average of data measured in 800-ft.-radius curves, is plotted
also in Figure 12.5 The level is adjusted so that the levels of the two curves

4See for example, H. H. Richardson, et al, "Dynamics of Simple Air-
Supported Vehicles Operating over Irreaular Guideways," Report DSR 76110-4,

Massachusetts Institute of Technoloay, Clearinahouse No. PB 173655, June
1967, p. 9.

5Hea]ey, A. J., "Ride Quality Assessment for the AIRTRANS System,"
Report No. MEUT-1, under contract no. DOT-0S-50126, Mechanical Engineering
Department, The University of Texas at Austin, 1976.
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correspond at the frequency f = 1.0 hertz. This would correspond to a value
of AV = 1.4 in® bz, or, since V = 25 ft/sec, A = 5.7 x 1074 in%/ft = 4.0
x 1078 ft.

Murray and Smith have shown that a more accurate representation of
the guideway sidewall roughness for the AIRTRANS guideway is of the form

_ K
Pu() = —— (51
u 278 )

where Kis a constant depending upon the roughness level and Q is again the
spacial frequency.6 Converting to the form of a function as "seen" in time
by a vehicle moving at a velocity V,

1.8

P,(Ff) = K;g.g (52)

where f is the time based frequency (hertz). Substituting (52) into (48)

2
kyl-8 A6(f) [© (53)

Py(f) = 2.8
or p (f)
y ' e))?
T8 fz.% (54)

Figure 12 shows (Py(f)/KV]'S) from (52) for a passenger point at the
vehicle center. Letting V = 25 ft/sec and K = 5.7 x 10'5 1'n2/ft]'8 for
800 ft. radius curves and K = 1.2 x 10-4 1'n2/ft]'8 for 150-ft.-radius curves
as given by Murray, measured lateral acceleration spectrum is converted to the
form Py(f)/KV]'8 and also plotted in Figure 13.7 As can be seen from the
figure, the predicted spectrum aarees reasonably well with the measured spec-
trum in the lower frequency (below about 8 hz) range. The measured spectrum
shows definite peaks correspondina to the kinematic resonances, however the peaks
are not nearly as sharp as those in the predicted data. Additionally the
"anti-resonances” in the measured data are much shallower. These effects

6w. R. Murray and C. C. Smith, "Guideway Sidewall Roughness and
Guidewheel Spring Compressions of the Dallas/Fort Worth Airtrans,f Research
Report RR-42, Council for Advanced Transportation Studies, The University
of Texas at Austin, 1976.

"Ibid, p. 37.
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are to be expected, since non-rigid body effects in the actual vehicle and

the resolution 1imitations of the measurement instrumentation and data
processing would tend to "flatten" the measured data relation to the predicted
data.

In the higher frequency region (above 8 hz.) the measured spectra are
much higher in level than the predicted spectrum. This is to be expected
since many effects not included in the model have appreciable effects in
this region. Onboard compressor vibrations, vibrations due to wheel and
driveline unbalances, panel resonances, and vehicle body bending modes are
a few of the things which may contribute to the measured spectra in this
region but would be extremely cumbersome to include in the model.

Response Sensitivity to Changes in Parameters

In examination of the vehicle model, it is instructive to investigate
the effect upon ride quality of changing the basic vehicle parameters. To
do this, a 1limited sensitivity study was undertaken considering the seven
basic non-dimensional parameters listed in Table 8. In this study, the
predicted output spectra subject to an input spectra of the form Pu(f)
= AV/f2 was used, although the general trends are applicable to other forms
of input. Using the parameters previously used as reoresentative of the
present AIRTRANS vehicle as a base case, each of the parameters in Table 8
were varied individually to values lower and higher than its nominal value
while holding all other variahlesconstant at their nominal values. The
effects upon the output spectra for each case are shown in Figures 13-19.

As can be seen from the figures, changes in the damping ratio Ew (Figure 13)
had almost no effect. Chances in the couplinc stiffness ratio R4 (Figure

14)> the cornering coefficient ratio C (Figure 15), and the torque coefficient
ratio Ct (Figure 16), had relatively small effects upon the spectra and,

hence, the ride quality. The parameters in which changes most effect the

output spectra include the steering link radius ratio r (Figure 17), the
steering lever ratio N (Figure 18), and the velocity ratio V (Figure 19).

Both r and n affect the steering gain, which apparently is the critical

effect. The most effecitve methods of changing the ride quality by vehicle
parametric changes therefore include the steering gain and the vehicle velocity.
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TABLE 8 SENSITIVITY ANALYSIS OF THE POWER SPECTRAL DENSITY
OF THE ACCELERATINN OUTPUT TO CHANGES IN THE NON-
DIMENSIONAL PARAMETERS

Perturbed Values

Non-Dimensional Used in
Parameter Nominal Value Sensitivity Study
Kg 0.75 0.5 2
r .094 0.04 0.15
n n.35 0.25 0.6
é;, 0.814 N.573 1.07
c 228 172 287
tt 8.86 5.73 13.4
v N0.203 0.1 0.6
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PART IV
CONCLUSIONS AND RECOMMENDATIONS

A Tateral vehicle dynamics model has been developed which fairly
accurately predicts low frequency lateral vehicle motions subject to side-
wall guiding surface roughness for automated guideway transit system ve-
hicles similar to the Dallas/Fort Worth AIRTRANS. A general nonlinear
model has been developed which includes the nonlinear constitutive rela-
tionships of some of the elements built into the vehicle quidance system.
The model has then been linearized for ease of ride quality simulation
and study. Predicted outputs of the linearized model usina two different
guideway roughness models for inputs have been compared with measured ve-
hicle accelerations and found to agree reasonably well below about 8
hertz. Motions at frequencies above this contain components due to drive
train and equipment imbalance, bending and other non-rigid body modes, and
other effects not included in the six-degree-of-freedom model used.

The model equations of motion have been non-dimensionalized, and a
set of twelve basic independent vehicle non-dimensional parameters has
been identified. Basic vehicle modes have been determined and frequencies
and motions for each mode have been characterized. The lowest frequency
mode occurs at about 1.6 hertz and is primarily a lateral body displace-
ment mode. The yaw mode appears at a frequency of about 2 hertz, only
a little higher.

A sensitivity study utilizing the basic non-dimensional vehicle
parameters indicates that the ride quality is most sensitive to three:
the steering radius ratio, the steering lever ratio, and the velocity
ratio. This would indicate that the greatest effects upon the general
ride quality of the vehicle can be made by chanaes in the vehicle steerina
gain and the vehicle velocity.

It is recommended that further studies be developed to include vertical
motions. it is also suaaested that other automated guideway transit systems
be examined to determine the applicability of the model to other systems.
Additionally, it is suggested that this model be coupled with studies of
guideway roughness parameters and costs and with studies of ride quality
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criteria and passenger sensitivity. The model may be used to relate quide-
way roughness and cost and vehicle parameters to ride quality criteria and
passenger comfort. This will ultimately allow the determination of the
relationships between passenaer acceptability and gquideway and vehicle
costs. At that time, intelligent decisions can be made regarding ride
quality and construction specifications for new systems.
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APPENDIX A -
DERIVATION OF EQUATIONS OF MOTION

The equations of motion for the vehicle are derived on the basis

of Figure 1. Consider the front guidebar and assume lateral motion only:

fl—] MK .«

Figure A.I

Applying Newton's Second Law, gives
MX = fq - f, - f3 - f, (A7)

where f] and f2 are spring forces from the guidewheels, f3 is the spring

force of the mechanical stop, and f4 is the reaction force of the connecting

rod. Next
f, = Ky LU - X¢] (A.2)
fp = K [Xf - U2] (A.3)
fy= Ky [Xp - Xpq] (A.4)
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where Xb1 is the displacement of the point where the mechanical stop attaches

to the vehicle. For small motions

Xpp = Xp + dy¥

where ¢ is the angular rotation of the vehicle body.

Consider the rod connecting the front guidebar and the steering link

as shown below:

Pac 4 ) |
—_— —

Fiqure A.II
X¢ - X2 = X5 ~ %pp
) o
or rearranging
2 2
= (Zy - (CL + X (A.5)
Xs (zz)xf (22)Xb2 b2

Now
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where ef is the steering angle of the front wheel, and

fg = K3lXg - Xyl
) o
= KB[(Q)X‘F = (2—2)be = r]ef] (A'G)
Again,
sz =X + dzw
o % 2
s fy = |<3[(2—2-)xf - (z—z)xm - (g)dzw - 0] ®.7)

Similarly, one can find that
L
1
= (f
4 22 5

9

4 o 4
= (EE)KB [(E;)Xf = (EE)Xm = (E;)dzw - r1ef] (A-8)

Therefore:
MeXe = KLUy = Xel - KyDXe - Upl - KolXg - Xy - gyl

o o 2 2
- EE'KB[(E;)Xf - (I;)Xm - (E;)dzw = rlef] (A'g)

Next, consider the motion of the front steéring assembly, which includes two
pneumatic tires, cranks, steering links,and so on. Pneumatic tires produce
a lateral force and self-aligning torque on a tire. Each of them is a
function of the tire slip angle. The slip angle is defined as the angle

between the velocity vector of the wheel and the wheel's diametral plane.
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The lateral force and the aligning torque acting on the inside tire,

respectively, are given by

f, = C[9 (A.10)

T

. Et[a] (A.11)

where the direction of the force and torque in each case acts to
decrease a. It is assumed that C and Et are the same for all four tires.
The s1ip angle for both front tires is considered to be the same and is
found by referring to the figure below, where V is the forward velocity of

the vehicle and Vt is the velocity of the tire.

.
Xm ¥ Zw

//‘%1_,_.diametra1 plane of tire

=<4

velocity of tire, Vt

Figure A.III

From the figure
dy + X
tanq):,z_.v_m
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and for small angles

d2L+)'(m
¢:__V_
X +d,y
Therefore ‘xf =0p-¢=06;- —ELTT—jl— (A.12)

By a similar development, one also obtains the slip angle for the rear

wheels:

X - dp
- m 2
a =g - M (A.13)

Substituting into (A.10) and (A.11), one obtains the following for the

front wheels: \

) +d &
fe = (o =Clo - ETZ—} (A.14)
X +d,y
Tf=c[ef- mVZ} (A.15)

where Tf is counterclockwise and ff is in the positive X direction
C and Ct are double the values they would be for a single tire since
the two tires on the assembly are assumed identical. Similarly, one has,

for the rear wheel

-
]

X -dy
C[Gr L 2—] (A.16)

X_-di
m 2
r Ct[er' v ]

—
n

(A.17)
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Next, consider the motion of the front steering assembly:

X +dy
m 2
Celog - —v—

T

— f

0 Figure A.IV

.. . %1+d£h
' + - =
Teoe +Be[Oc] + ¢y Jo - Ty j + Fgry= firy (A.18)
fe = Kg [rp(ee + 6,01 (A.19)
X +dy

1¢0p + Bloc] + G [ef - ‘m_v—gp“]+ roalrpbg + 6,)]

2
LS ol
- Y‘-IK3 |:I2— (Xf - Xm - dzw) -Y‘1ef] =0 (A.20)

Next, consider the dynamic equilibrium of the rear steering assembly.

/ :

e . ‘
Irer * Br[er] \\‘\ )

X -d, y

+ Ct[er _m "2 ]

v

Figure A.V
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. : X - d.y
m 2 _
Ior+ Br[er] +C, [er + —V—J + fgry + for, = 0 (A.21)
Consider the connecting rod as shown
L
f8 3
°
2y
b » X
r fg +—/
Figure A.VI

- 23

where XQ is the motion of the end of the rod relative to the pivot point.
Now Xb3 = Xm - dzl’J
*3
XQ:Q [Xrn - dov - Xr]
Since fg = K5[XQ + RG]
) %3 4
f8 = K5 (T—)Xm -(2—) dzlp - (R_)XY‘+ Y‘-l er (A.ZZ)
4 4 4
'3 L L. L
= (3 By - (3 (=3
and f9 = (E)K5 |:(24)Xm (24)d2¢ (24)Xr+ rlerw (A.23)
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Putting (A.19) and (A.22) into (A.21), one has
. X - dyu
m 2
1.6, +B[6] +cT[er-——V——]
L L
4 4 |
+1,Ky [rz(e1c +9)]1=0 (A.24)

Next, consider the rear guide bar

] M ~—F1

Figure A.VII

where

-4
—
N
!
-~
—
L |
><
-
—

-
]
<
N
i
><
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X %3 % 23
M.Xp = (EZ)KS (Ezﬂxm - (119d2¢ - (EZ)Xr+ t]e”
+ K1[U3 - xr] - Kz[xr - X+ d]w] - K][xr - U4] (A.25)

Now consider the motion of the vehicle body as diagrammed below.

f3 f4
e —pe
— e _.r_‘T
d
.
| d,
vam .-
- ——— Y- ———
| i

f10 9
Figure A.VIII
where the forces f3, f4, fg,and f]O are as previously defined, and where the
forces Rf and Rr and torques Tf and Tr are the forces and torques applied to
the vehicle by the front and rear wheel assemblies. Summing the forces

shown on the diagram yields

Xp = Re + R+ fa 4+ f4-1g (A.26)

My
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and summing the moments yields
IV v - d-l(f3 + f4 + f9 - f.lo) ~ d2(Rf - Rr‘) +Tf + Tr‘= 0 (A.27)

The forces Rf and Rr are simply equal to the external forces applied to the

wheels minus the mass of the wheels times their acceleration:

).(m + dzw - .
Re = C (8 - o2 |- M (X + dop) (A.28)
) I X - dzqf .. ..
R.=C o, - o2 |- M (X - dyp ) (A.29)

Similarly, the torques Tf and Tr are equal to the torques applied to the
wheels externally Tess the torques associated with the angular acceleration
of the wheels. By examination of equations (A.20) and (A.24) it can be
seen that

Te ==Be[61=r,K,lry(0, + 6 )]

e
1
+r1K3 [(-g) (Xf - Xm - dzw) -r‘ﬁi{l (A.30)
and

T, ==B.[68, 1= K, Irp(6, + 6,)]

')
+ r]K3[ (J_L];)(Xr‘ - Xm + d21p-r‘.| erJ (A.31)




Substituting (A.28) through (A.31) into (A.26) yields
.. X + dzw
(MV + ZMW)Xm - C 6

X = dob 2
-C er i T E— (2 )K3 )(Xf - X - dzll)) " ef
Z-I Z-I
- (TE)K:& (Q'E)(Xr - Xm + dz‘l’) - e;l

- K2[Xf - Xm - d-lll)] - KZ[Xr - Xm t d-lw] =0 (A.32)

and into (A.27) yields

. X+ d,u
2 _ m 2
(Iv + 2d2Mw)lP d2C [Gf -V :l

Xn - d2¢
+d2C Gr-———v——— —dK[X Xm-d-lll)]

+ d1K2[Xr " Xt d1w] - Bw[ef] - Bw[er]

- 2r2K4[r‘2(er +0.)]

2, %
- (dy EE- UL (EE)(Xf i da¥) - 119
) )
+ (d, —12 ) K3[ (-,z];)(xr " X * dg¥) "’19% =0 (A.33)

2,
Substitution of the parametersn.= (2 —)» n. = (23) M= (M, + 2M ), and

I= (Iv + 2d2 M ) results in the equat1ons (2. 1 - 2.6) defined in Chapter 2.

62




APPENDIX B

SIX-DEGREE-OF-FREEDOM LINEAR SYSTEM MATRICES

B.1 DimensionaT'Sygtem

Mass Matrix M

m(1,1) =m

m(3,3)
m(5,5)

A11 terms not specified are equal to

f

I
W

M

(6x6 matrix)

Damping Matrix C (6x6 matrix)

c(3,3)
c(3,6)
c(4,5)
c(5,5)

c(6,4)

A11 terms not specified are equal to

-"t72

¥
ot
v
c

[

v

-b
W

Stiffness Matrix K (6x6 matrix)

k(1,1)
k(1,5)
k(2,2)
k(2,5)
k(3,1)
k(3,4)

k(3,6)

2
nfk3 + 2k.I

2

2
nrk3 + 2k]

2

~roneky
2

rokg

r]nfdzk3

63

m(2,2)
m(4,4)
m(6,6)

zero

c(3,5)
c(4,4)
c(4,6)
c(6,3)
c(6,6)

zZero

k(1,3)
k(1,6)
k(2,4)
k(2,6)
k(3,3)
k(3,5)

k(4,2)

-nfr]k3

—nfd2k3

-nrr]k3

-ndoky

2
ct + r2k4 + r]k3

FiNeks

“rnks




k(4,3)

k(4,5)

k(5,1) =

k(5,3)
k(5,5)
k(6,1)
k(6,3)

k(6,5)

i 1]
-
—
=]
-~

|
1
S
— N
oyl
w

-c + nfr]k3

2 2
ne + nrk3

2

2
2r2k4 - r]d]nfk3 + d2c

2 2
d1(nr - nf)k3

+

r](nf * nr)k3

k(4,4)
k(4,6)
k(5;2)
k(5,4)
k(5,6)
k(6,2)
k(6,4)

k(6,6)

I

2 2
Ct + r2k4 + r]k3

-r]nrdzk3

2
-nrk3

-c + nfr1k3

(n? - n%)d,k,
-(dns + ryn kg
2rok, + ridin K,
(ni + nf_)d]dzk3
(ny. - nglrydiky

A11 terms not specified above are equal to zero

Input Matrix G (6x4 matrix)

a(1,1)

q(2,3)

=k_|

=k_|

9(1,2)

9(2,4)

Ky

Ky

A1l terms not specified above are equal to zero

Output Matrix QI_ (row vector, dimension = 12)
2
(1} - nfk3 . (d]nf - r])nr!?,k3
M I
2
n“k (dyn_ + ry)n_2k
- _r3 1r 17 r3
C(2) - M - I
2 2
) c - nfr]k3 ldzc - ld]nfr]k3 + 2r1k3 + erzk4
c(3) = —w I
2
c -nr.k =2d,c .+ .2d + rik, t 2ersk
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2 2 2 2
i _(nf.+ nr)k3 d1(nf - nr)lk3 - r1(nf + nr)zk3
c(5) = M . ’ i
2 2 ‘ 2 2 '
i (nr - nf)d2k3 d1d22(nf + nf)k3 + d2r12(nr - nf)k.3
c(6) = M - I
c(7) =0
c(8) =0
2b
C(g). = TW
b
c(10) = <%
c(11) = —ﬁ%
2cd22
C(]Z) = -T
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B.2_ Non-Dimensional System Matrices (six-degree-of-freedom mode1)

Non-Dimensional Mass Matrix M (6x6 matrix

m(1,1)
m(3,3)
m(5,5)

1
I,

M

)
m(2,2) =1
n(4,4) =T
7(6,6) = T

A1l terms not specified are equal to zero.

Non-Dimensional Damping Matrixji (6x6 matrix)

c(3,3
c(3,6

)
)
c(4,5)
c(5,5)

)

c(6,4

- 6

W
-CtF/nV

= -C F/nV

'Fz/v
-nbw/r

c(3,5) = -C.r/n¥
c(4,4) = b,,
c(4,6) = Tyr/n¥
c(6,3) = -nb /7
c(6,6) = 2¢/V

A11 terms not specified are equal to zero.

Non-Dimensional Stiffness Matrix K (6x6 matrix)

k(1,3) = -n°R,

R(1,6) = -n°R,

k(2,4) = -n2K3

R(2,R) = n2k3

k(3,3) = Ct + R4 + R
k(3,5) = R3

k(2,2) = -K3

k(4,4) = T, + R4 + R3
k(4,6) = -R3

A1l terms not specified are equal to zero.
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Non-Dimensional Input Matrix & (6x4 matrix)
g(1,1) =1 9(1,2) =

}
—

I}
—

A1l terms not specified are equal to zero.




APPENDIX C

THE FOUR-DEGREE-OF-FREEDOM MODEL

C.1 Derivation of reduced set of equations

As mentioned in the text the steering Tink is a relatively stiff
spring with a stiffness, k3, of about 40,000 1bf/in. It thus can be
modeled as a rigid massless bar connecting the guide bars and wheels.
From Figure A.IT and equation A.5, one has

X5 = X2 > X5 - X2 =0
Therefore, anf - anbZ + sz - sz - r1ef =0
"
Now sz = Xm + dzw

Hence, one has the first geometric constraint
r
_ 1

Xf"n_'e

- Xt du (c.1)

f
By similar reasoning, the second geometric constraint for the rear steering
assembly is

2

r n_

- er + Xm - d2¢ (c.2)

Since the steering link is considered rigid, the expression (A.7) is no
longer appropriate for the force f5 in the steering 1link. Substituting
f4 = nffs, together with equations A.2-A.4 and the constant equation C.1
into A.1 and rearranging, gives

. r1 . . . r1 r1
— Melmr 0 + X+ ) + Kol5 0 = ky(uy = 77 05 = X = dy¥)
f f f
r
1 = .
+ k1(n—f 0p + X+ dyb = uy) Ky (C.3)
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Substituting C.3 and A.19 into A.18 and rearranging yields

ne ; )i.(m.+ dzfp STy
Wt R v BBl + r] cplog - —y——1 + ng 7, Kalra(0p + 0,)]

Y‘.I . . . r.l -
e O * iy * 8] + kol o]

+

r T
:
k][u] —n—f-ef— - dzw]+k[—-f-ef+xm+d2¢ - uz]

=0 (C.4)

By similar development, substituting fq =n f8 into A.25 with the expressions

on page 59 for f]], f12’ and f]O and constraint equation C.2, and combining
the results A.21 yields

EI'é +-rl—rB[é]+i'icre -u]+n Iﬂ—zk[r(e +0.)]
ry Wy wer r]t-r v rr142f r
ry - . . r,
* mr(ﬁ; Op * X - dzw) * kZ[ﬁ; er]

2 r
- k][u3 R T dZWJ * k1[ﬁ;'er Xy dZw - u4]

-

=0 (C.5)

Substituting the constraints (C.1) and (C.2) into equation (5), the
equation becomes

>

- + dy X -d v n -~ N
m 2 m 2 f f .
MXm - C[ef - ——V ] - C[er - 'V—] - -YT Iwef -?]- Bw[ef]

ne m+ dzw r n. -
-r—]ct[ef-——v-—-] -n : k4[r2(9f+ er)] 'ﬁlwer
n n X -d @ ro
r s r m 2
- ?ﬁ'Bw[er] - ?; Ct[er N _——V—__—J R r] kg Cr (ef + er)J
Y‘-I r.l

Similarly, substitution of the constraints into equation (6) yields

1y - dyclog - g1+ dyclo, - Ty - dykyl 0]
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"

+ dikoli - 0] - Bu[BeT - BI8.] - 2rpkglrp(eg + 6,)]
Mg - . Xm +.d2¢
- (d1 ?; - 1)(IWe]c + Bw[ef] + ct[ef - ———V——] + r2k4[r2(ef + er)])
n. . . Xm“-‘dzi
* (d1 rou 1)(Iwer * Bw[er] + Ct[er - "“xr"'J * r2k4[r2(ef * er)])

]

=0 (C.7)

In the above equations, k1, k2, k3, k4, Cs Ct and Bw are written as operators
(or functions). Equations (C.4) through (C.7) form a complete set of state
equations for the reduced four-degree-of-freedom model.

C.2 Linearized system matrices in dimensional form

‘Mass Matrix M (4x4 matrix)

_ ne r1
m(1,1) = Pl - P m(1,3) = me
1 f
n. r
m(1,4) = mfdz m(2,2) = ?f'Iw *—m,
1 r
m(2,3) = M. m(2,4) = -mrd2
n n
m(3,1) = - 2L 1, m(3,2) = - S 1
1 1
d]nf
m(3,3) = M m(4,1) = (1 - =),
1
d]"r

n(4,2) = (1+ 01, m(4,4) = I
A11 terms not specified are equal to zero.
Damping Matrix C (4x4 matrix)

n nec

_ f _ f-t
c(1,1) = b, c(1,3) = - —
1 1

n.c,d n

c(1.4) = 2 o(2:2) = -,
1
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n.c
t nc,d
c(2,3) = - L-L - rt2
(2,3) = - 74 RS
n n
f r
,] = — = —
c(3,1) F, bw c(3,2) " bw
~2¢cry . nc, t.n.c .d.nb
¢(3,3) = —L _f_rt c(4,1) = - LI¥
r]V ry
.dyn b .. 2¢
-1 rw = . _t
C(4’2) = "'1 C(4’3) = V
2
c(4,8) = 2691y * nedydycy + npdidycy
E]V
A1l terms not specified above are equal to zero.
Stiffness Matrix K (4x4 matrix)
2 2
2r.k, + . rik,  rongk, + . ngc ronck
f 1 1
k(1,3) = 2k] k(1,4) = 2k]d2
2 2
r,n_k 2rok, + rok rsnk, + nc
_2r4 _ 27 272 2'r4 r-t
k(2,1) = = k(2,2) = - + -
1 r 1
k(2,3) = 2, k(2,4) = -2k,d,
2 2
ne, + rongk, + ron k r.k
K(3,1) = - (c + f-t 2 f 4 2'r 4 + 2
r n
1 f
: 2
nec, +(n.+ n)rsk r.k
k(3,2)='(c+ r-t f r 24+ ]2)
r n
1 r
2
) (nr - nf)d]rzk4 + ct(r] - d1nf) r]d]k2
k(4,1) = - - d,c
r ne 2
(n., ng)d rlk, + (rqy +dyn)c
_tr—="f/712"4 1 1 'r’ ™t
k(4,2) = =
r,d-k
+ 17172 + d2c
Ne
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C.3

A11 terms not specified are equal to zero.

Input Matrix G (4x4 matrix)

|
~

t
~

form

g(]9]) = k'l 9(192) -
9(2,3) = k'l 9(294) -
Linearized system matrices in non-dimensional
Non-Dimensional Mass Matrix M (4x4 matrix)
f(1,1) = T+ 1 m(1,3) =
m(1,4) =1 m(2,2) =
m(2,3) =1 m(2,4) =
- ) - 2 _
m(3,1) = -n“T m(3,2) =
m(3,3) = A m(4,1) =
m(4,2) = nI (r + dqn) m(4,4) =

A11 terms not specified are equal to zero.

Non-Dimensional Dampina Matrix T (4x4 matrix)

&(1,1) = -n% &(1,3) =
c(1,4) = nC,r/V &(2,2) =
c(2,3) = nCtF/V c(2,8) =
c(3,1) = n25w &(3,2) =
-=2 -
¢(3,3) = ~2(er” * nCyr) c(4,1) =
v
E(492) = -nza]Bw 6(4’3) =
&(4,8) = -2(F + T, d,nf) /T

A11 terms not specified are equal to zero.
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Non-Dimensional Stiffness Matrix K (4x4 matrix)

K(1,1) = - (n%Ry+ T, + 2) k(1,2) = -n%k,
k(1,3) = -2 k(1,4) = -2
k(2,1) = -nR, k(2,2) = - (n°R, + n%C, + 2)
4 t
k(2,3) = -2 k(2,4) = 2
k(3,1) = nrc + n2Ct + 2n2T(4 k(3,2) = nrc + nzﬁt + 2-n2K4
k(4,1) = nrc + Ctn(a1n -r) k(4,2) = - (nrc + nCt(a1n +r))

A1l terms not specified are equal to zero.

‘Non-Dimensional Input Matrix G (4x4 matrix)
g(1,1) =1 -9(1,2) =
9(2,3) = 1 9(2,4) =

A11 terms not specified are equal to zero.

1 |
— —
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