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Executive Summary 

Transportation models are some of the most powerful tools commonly used by planning 
agencies in the United States. These agencies carry out their transportation planning efforts on 
numerous different scales and will regularly use their models to aid decision-making processes 
associated with various projects, such as new policies as well as the construction of new roadways.  

For example, agencies like the Federal Highway Administration (FHWA) are likely to use 
large (yet simplified) models of the whole country that also contain its interface with other border 
countries, such as Mexico and Canada. Analogously, a small city will likely focus its modeling 
efforts on capturing what happens inside the city and its interface with neighboring cities and/or 
the rest of the state it belongs to. While the latter case is narrower in scope, it is likely to contain 
greater detail when representing individual roads.  

 In an ideal scenario, one might imagine all of these agencies planning their modeling 
efforts in a strategic fashion, with all other agencies simultaneously aware of what changes were 
being made so that all models used nationally would be simultaneously updated. This, however, is 
far from the actual practice, and is likely unachievable given differences in agency priority, model 
needs, and forecasting and model updating timelines. Most commonly, agencies in overlapping 
geographic areas collaborate during their model development, but given the difference in modeling 
scope, inconsistencies between the several organizations’ models are inevitable. 

This report focuses specifically on consistency-related issues between state departments of 
transportation (DOTs) and metropolitan planning organizations (MPOs). More specifically, it 
deals with the Texas Department of Transportation (TxDOT) and how to quantify and reduce 
inconsistencies between the statewide analysis model (SAM) and all the models used by the 
various MPOs located in Texas. 

Initially, literature was reviewed in order to establish the state of the art as well as best 
practices and how other states deal with this issue. The main lessons learned were that the current 
practices of statewide and MPO model integration commonly lack integration, and frequently-used 
approaches include aggregation; stitching; excluding intra-urban trips from statewide models; and 
using common sub-modules. Most importantly, though, the clearest recommendation across all of 
the literature was that agencies should focus on developing MPO and statewide models in a 
coordinated fashion. 

The main analyses carried out in this project focus on the Austin area and how both SAM 
and the Capital Area Metropolitan Planning Organization’s (CAMPO) model are inconsistent with 
each other.  

Three classes of inconsistency measures are established as the main tools to quantify the 
inconsistencies between the two models: 

• Network consistency, measuring the difference between networks’ topologies, such as 
their average node in- and out-degree as well as lane miles per zone; 

• Input consistency, measuring differences between both models’ demands between 
origin-destination (OD) pairs; and 

• Output consistency, measuring the difference between the models’ travel times between 
OD pairs. 

After defining the three types of consistency measures, the results showed evidence of 
significant discrepancies between SAM and the CAMPO model. 
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Seven methods to reduce possible inconsistencies were then proposed. These seven 
methods are divided into three groups: 

• Methods that don’t involve inputting information back into SAM or the MPO model: 
o Simple override 
o Correction factors 
o Correction regressions 

• Methods that involve inputting information back into SAM or the MPO model: 
o Inputting the MPO model’s demand into SAM 
o Changing input parameters 

• Methods that involve substantial remodeling of SAM: 
o Efficient aggregation 
o Decentralized implementation 

 
The first and simplest set of methods to implement involved making minor adjustments in 

the models’ outputs. While reducing inconsistency between SAM and the MPO model, they caused 
substantial inconsistencies within the SAM model. This result arose because these methods do not 
feed the new information generated back into SAM for a new run of the model.  

The second group of methods involved re-running the models. While keeping the network 
consistency constant, these methods reduced the input inconsistencies to a minimum and 
significantly reduced the output inconsistencies. 

The methods in the last group involved substantial resources to implement; given the scale 
of the models analyzed (SAM and the CAMPO model), these methods were tested in even smaller 
scales. Due to the difference in scope of the tests performed, the consistency benefits associated 
with these methods are not directly comparable to the other five methods. However, they still 
showcase these methods’ potential to improve consistency. 
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Chapter 1. Introduction 

1.1 Overview 
Transportation networks are large-scale systems with complex interactions between supply 

(network) and demand (travelers). Studying these interactions is important in determining the 
success of investments made in the transportation systems. Travel demand models have been the 
best planning tools available in recent decades to assist planners and investors in determining the 
long-term benefits of transportation projects. Initially, metropolitan planning organizations 
(MPOs) started using these models for long-term planning within different cities and urban areas. 
However, these models are now being used at much larger scales in order to predict the current 
and future growth of traffic at the statewide or national levels (Horowitz 2005). 

Statewide travel demand models usually include the areas covered by several MPO models 
within the state and involve some kind of interaction with these MPO models. These interactions 
can be the statewide model providing the internal-external or external-external traffic volumes to 
the MPO models as well as the statewide models using the aggregation of the networks in MPO 
models to construct the statewide network. In the United States, 77% of MPOs with populations 
greater than one million develop models of their own, with states only providing technical 
assistance in building the model (NRC 2007). 

Hence, the statewide model and the MPO model can predict different outcomes for analysis 
of the impact of the same project or can lead to conflicting recommendations, depending on which 
one is used for decision-making. Identifying these inconsistencies and developing methods to 
evaluate and remove them are the primary focus of this research. 

The focus of this research is the Texas statewide analysis model (SAM), which is regularly 
used by TxDOT for planning purposes, mainly with the aim of investigating future scenarios in 
which roadways are added or altered, or where changes are predicted in certain demographic 
trends.  

1.2 Report organization 
The work in this project consists of four main sections: Chapter 2 contains a literature 

review that was undertaken in order to understand how other state departments of transportation 
(DOTs) deal with the interactions between statewide and regional models and potential 
compatibility issues. In Chapter 3 we create ways to measure inconsistencies that might arise 
between statewide and regional models. Chapter 4 contains methods developed to minimize these 
inconsistencies. In Chapter 5 we implement the methods developed in Chapter 4 using SAM and 
the Capital Area Metropolitan Planning Organization’s (CAMPO) model as a testbed. 
Furthermore, the measurement tools developed in Chapter 3 were used to assess the improvement 
in overall consistency between the two models; Chapter 5 contains a summary of the findings of 
the research conducted and general recommendations. Final conclusions are stated in Chapter 6. 
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Chapter 2. Literature Review 

This section summarizes our review of the foremost literature regarding statewide and 
regional modeling and how state DOTs and MPOs deal with potential inconsistencies.  

2.1 Background 

2.1.1 Approaches for modeling travel demand 
A travel demand model provides a platform to estimate the future demand by including 

different elements of a transportation network, such as roadways, transit routes, population, 
demographic, and employment data. These estimates are then used by planners to make informed 
decisions and develop efficient plans. The equations used within the models represent the behavior 
of individuals and can be used to study why people travel, where and when they start and end their 
trips, how they complete these trips, and what routes they take. 

To develop a concrete planning model, researchers have employed various methods to 
understand travelers’ behaviors. The earlier modeling approaches for travel demand included 
sketch planning models, which were meant to provide rough order-of-magnitude estimates of 
travel demand. These models relied on less data, and used simpler software tools. Strategic 
planning models were also an early demand modeling approach. These models, however, were 
very narrow in scope, and dealt with analyzing many scenarios quickly for a specific area of 
analysis.  

Earlier intercity passenger models also used direct-demand modeling technique in both 
disaggregate or aggregate manners. The trend later shifted to having sequential models, which can 
better capture the sequential behavior of choices that travelers make (Horowitz et al. 1999). One 
of the most popular sequential approaches to modeling travel demand is the four-step modeling 
process (also referred as a trip-based model). Following are the four steps of trip-based models: 

• Trip generation: In this first step, information from land use and employment are used 
to estimate the trip attraction and production rates. The trip rates are usually separated by 
trip purpose and are generated in household and zonal levels (a zone is a geographic area 
with homogeneous travel behavior). 

• Trip distribution: The second step connects the production and attraction points by 
determining the origin and destination of each trip. Trips originating from each zone are 
distributed to different zones by evaluating different aspects such as attraction rates and 
travel times. The output of this step is a demand matrix with entries defining the number 
of trips between each pair of zones. 

• Mode choice: The trips distributed in the second step are assigned to different 
transportation modes (car, transit, carpool, bicycle, walking) between their origin and 
destination zones. The mode split is performed by considering different aspects of travel 
such as cost, travel time, capacity, schedules, waiting and walking times, etc. 

• Trip assignment: The last step of a four-step process determines the routes taken by 
travelers between their origin-destination (OD) zones based on the selected mode. The 
trip assignment is done based on the Wardropian principle, which assumes that users 
have perfect knowledge about the network condition and will follow the shortest route. 
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This assumption results in a set of routes where all used routes for each OD pair have 
equal and minimum travel times. Furthermore, unused routes cannot be quicker than the 
used ones. 

 
More advanced travel demand modeling techniques include tour-based or activity-based 

models. These models offer the advantage of explicit representation of realistic constraints of time 
and space, and incorporate the linkages among activities and travel for an individual person as well 
as across multiple persons in a household (Castiglione et al. 2014). However, the present state of 
the practice in travel demand modeling utilizes four-step models, which was the focus in this 
project. 

2.1.2 MPO models: uses and limitations 
The planning process is an extensive endeavor and requires close collaboration between 

officials and citizens to ensure that the process and objective match the community’s needs and 
the planning agency’s constraints. Travel demand modeling and planning was developed almost 
50 years ago and dealt mostly with travel demand and traffic congestion in small scales such as 
urban areas (Oppenheim, 1995).  

Each state’s governor creates MPOs for urban areas or groups of adjacent areas. These 
MPOs are then responsible for planning the associated urban area(s). 

The urban models developed by the MPOs usually include short distance trips and neglect 
the long-distance trips, freight demand, and intercity travelers. The 2001–2002 National 
Household Travel Survey (NHTS) shows that less than one-third of all trips are long-distance 
(defined as distance more than 50 miles). Additionally, as verified by the 2002 Commodity Flow 
Survey, the vast majority of freight trips are long-distance trips. The study by Dargay and Clark 
(2010) showed that these long-distance and freight trips contribute to almost 31% of total vehicle-
miles traveled. This indicates that long-distance trips play a major role in traffic congestion and 
emission issues, which are not addressed well in MPO models alone. 

Some of the other shortcomings of current MPO models as highlighted in TRB Special 
Report 288 (TRB 2007) include: 

• Missing dynamic aspect from majority of these models; 

• The inability of four-step modeling to capture some of factors affecting travel behavior 
such as value of time, and value of reliability; 

• Missing non-motorized modes and trips made by them; and 

• A lack of robust and validated models to rigorously forecast freight movements. 
 
Modeling the entire state, or statewide modeling, seems to be a viable option to overcome 

the shortcoming of modeling long-distance trips. Statewide models have received more attention 
recently and many states’ DOTs have undertaken efforts towards implementing statewide models. 
The statewide forecasting model goes beyond the urban areas and predicts demand for travel by 
people and goods by all modes in the entire state. The next section provides a more detailed 
discussion on statewide modeling. 
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2.2 Statewide analysis model: best practices 

2.2.1 General modeling practices across United States 
As shown in Figure 1, more than 40 US states have a statewide model in one form or the 

other. Since 1968, when the first statewide model was established, the practices for developing the 
statewide models have become widespread. Some models have seen challenges and thus are being 
revised or considered dormant. The NCHRP Synthesis 358 report (Horowitz, 2005) highlights that 
in the last two decades statewide models have shown dramatic improvements in the socioeconomic 
and network databases, tools for accessing these databases, and the available computational power. 

The statewide models can be classified into five general categories: (1) OD table estimation 
and assignment, (2) freight only, (3) passenger only, (4) combined passenger and freight, and (5) 
integrated passenger/freight/economic activity. Some states that do not have a statewide model 
continue to work with the historical trends for the prediction of traffic and rely on regression-based 
models for planning purposes. These include the states of West Virginia, Nevada, and Wisconsin.  

 

 
Figure 1 Status of the statewide models across the United States (TRB 2015) 

 
The purposes for which statewide models have been built vary from state to state. The 

primary usages of these models are intercity corridor planning, statewide system planning, and 
bypass studies (Horowitz, 2005). The states also use their model results for providing input to 
MPO models, replacing MPO models, or serving as the main forecasting means for rural projects. 
These purposes also determine the way MPO models are integrated within the statewide models. 

The majority of statewide models focus on passenger and freight components separately, 
developing separate models for the first three steps of the four-step model, and performing a 
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combined assignment for the last step. These include the statewide models in Florida, Texas, 
Michigan, and Indiana. Most of the smaller states tend to perform peak period traffic assignment, 
while otherwise the assignment step is run for a full 24-hour day.  

2.2.2 Key trends in passenger model components of statewide models 
Statewide models have been found to closely follow the MPO models in structure within 

their passenger travel components. This includes having a predefined sequential four-step 
modeling of the trips. The trips are categorized based on the purpose (home-based work, home-
based/other, long distance, etc.), time of day (morning peak, evening peak, etc.), and the choice of 
mode. Passenger components in most of statewide models consider multiple modes, always 
including the automobile mode. Other commonly found modes are intercity railroad (as in Texas); 
intercity bus (Wisconsin, Ohio); local buses (Arizona); and commuter railroad (Ohio) (TRB 2007). 

Some states have improved their modeling procedures to include advanced modeling 
techniques. Oregon and Ohio are one such example where they use combined transportation-land 
use model for the planning purposes. The primary objectives served by these integrated models 
are to provide better estimates of how transportation investments affect economic development; 
consistent forecast of land use across the state; and land use sustainability. The states of California, 
Florida, Indiana, and Texas have also considered integrated models for specific planning 
applications (Cambridge Systematics, Inc. 2010). 

For data input to the passenger models, most states have avoided data collection, relying 
instead on secondary data sources such as the Census Transportation Planning Package, NHTS, 
and MPO databases. Other common data sources providing input for passenger models are the 
American Travel Survey, in-house traffic counts, and the NHTS add-on purchased externally. 

There has been a trend of shifting towards dynamic traffic assignment (DTA) models for 
the assignment step; however, the scale of implementation and the advanced data collection 
required for scenario analysis and calibration are the largest challenges this approach faces. A 
recent panel discussion report conducted under the Travel Model Improvement Program by the 
FHWA indicated that Virginia, Arizona, and California were interested in having DTA-based 
models (Lemp 2015; FHWA 2014). The Arizona DOT has considered a multi-resolution approach 
to incorporate the details of MPO models. 

2.2.3 Key trends in freight components of statewide models 
Freight transportation plays a key role in the development of statewide models. The two 

types of freight modeling in statewide models can be either commodity based or direct vehicle 
based. The latest statewide models have moved away from truck-based freight modeling mostly 
because the commodity-based freight models make better use of the available freight databases 
(Horowitz, 2005). 

Most of the current freight models tend to avoid using mathematical expressions for 
determining mode choice within freight. Only three states had reported using mode split 
expressions for determining freight split, while the others continue to rely on historical data to 
determine the fixed percentage splits (Horowitz, 2005). 

Common data sources used in freight models include the Vehicle Inventory and Use 
Survey, freight data vendors, the Commodity Flow Survey, and the Rail Carload Waybill Sample. 
Some states have relied on external cordon forecasts to develop their OD matrices. 

Following are a few examples of freight modeling characteristics from three statewide 
models: 
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• Florida utilizes a separate freight model to predict trip tables for heavy trucks, medium 
trucks, and light trucks after categorizing them into freight and non-freight trip purposes. 
The assignment module is combined with the passenger cars 

• Virginia uses a separate freight model as well; truck OD tables are derived from Reebie’s 
TRANSEARCH database, and from systematic adjustments based on truck counts. It 
also implements two different forecasting models referred to as the micro and macro 
model. The macro model provides information on trips passing through Virginia having 
one end in Virginia, whereas the micro level operates within Virginia at the level of 
census tracts. For its four-step modeling, the Virginia statewide model uses Fratar 
factoring to get the trip table from the database, and uses a fixed share mode split between 
different types of trucks. A multiclass assignment is used to combine passenger cars and 
trucks. 

• Wisconsin uses a four-step freight model with commodity flow data for 25 commodities. 
It considers all freight modes, including truck traffic, rail traffic, air freight, and water 
freight. Tons-to-trucks payload factors, determined from Wisconsin’s Vehicle Inventory 
and Use Survey data, were used to convert commodity flows to truck movements. The 
model is validated using the Transearch county-to-county flow data. 

2.2.4 Current practices of model integration across US 
Several reports have highlighted the need for proper integration between the statewide and 

the MPO models. Proussaloglou (2004) states that the performance of MPO models can be 
enhanced by using the external forecasts from the statewide models. The NCHRP 338 Synthesis 
report (Horowitz, 2005) mentions the lack of integration between MPO and statewide models in 
the US, which still needs to be addressed. This integration has to be maintained two ways: the 
states helping the MPOs develop a uniform model consistent with the statewide objectives, and 
the MPOs providing consistent feedback to the states for accurate modeling. 

The current practices across US can be categorized into two ways: integrating statewide 
model integration into MPO models and integrating MPO models into statewide models. 

TRB Special Report No. 288 mentions the ways 30 states have played roles in developing 
or assisting in development of the MPO models. Figure 2 illustrates this interaction for three 
different groups of MPOs based on population size. The role played by the states in the MPO 
models falls in four categories: 

• The state develops models and makes forecasts for the MPO; 

• The state develops models, but the MPO makes forecasts; 

• The MPO develops models, and the state provides technical assistance; or 

• The MPO develops models and makes forecasts without state technical assistance. 
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Figure 2 Involvement of states in making the MPO models (TRB SR288) 

 
Smaller MPOs get more support from the states in developing their models. For larger 

MPOs, most states only provide technical assistance. The types of technical assistance provided 
by the statewide model range from providing the data-sources needed as inputs to developing the 
model, to providing the external-to-external trip forecasts for the MPO to capture external trips 
through their region. Also, the sensitivity analysis performed for the statewide model results are 
useful in improving the reliability of the MPO model forecasts (Cambridge Systematics 2010). 

The key recommendation made by the TRB special report (TRB 2007) is that MPO models 
should be developed in coordination with the statewide models. The report also highlights that 
state DOTs should help MPOs in evaluating their socio-economic forecasts, which is also 
important in performing sensitivity analysis, but lacking in most current MPO models. 

Currently, statewide models integrate MPO models in two general ways: 
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• Stitching MPO models: States like South Carolina, New Jersey, and New Hampshire use 
the MPO models spread across the states, and combine their models to perform statewide 
planning or investment analysis 

• Aggregating MPO models: Some models base their zone systems and network on MPO 
models, although in a simplified manner. This involves aggregation of the zones in MPO 
models to be used in the statewide model. Giaimo and Schiffer (2005) highlight that the 
majority of the participating states in their study used aggregation of urban zones to 
develop zones in statewide models 

 
Some states have considered these unique ways of using MPO models in the statewide 

model: 

• Excluding intra-urban trips: Some statewide models have benefited from not including 
intra-urban trips in their model, and have focused only on regional and rural trips to avoid 
the potential duplication of efforts with respect to MPO models. These include the 
statewide models in Louisiana and Mississippi (Cambridge Systematics 2010). The MPO 
models provide internal-external trips for the statewide models, and the statewide models 
provide MPO models with external-internal trips. This approach, however, is not 
effective when the mode of travel traverses all across the urban area. For example, the 
California high speed rail model had to include intra-urban trips to predict the accurate 
estimates of travel demand. Another important issue with this approach is that the 
accuracy of the estimates is lost in the “hard-boundary” approximations made to 
represent the urban traffic in the statewide model. Boyles (2012) explains the need to 
have soft boundaries to capture the accuracy. However, this integration provides a better 
estimate than having no interaction at all.  

• Borrowing smaller models: In order to develop statewide model components, some states 
borrow parts of the modeling procedure from the MPOs and use them in their statewide 
models. The Massachusetts DOT, for example, has borrowed the mode choice model 
component from the Boston MPO area. Such integration techniques ensure that the 
modeling procedure is consistent across MPO and states; however, without the 
consistency of inputs and the parameters, this integration is still incomplete. 

 
There is often an overlap with the estimates made by both MPO and statewide models for 

the common regions. Statewide models provide independent estimate of traffic within urban areas, 
but the results from MPO models are given a preference in case of disagreement (Giaimo and 
Schiffer, 2005). The Cambridge Systematics report (2010) highlights three recommendations on 
possible comparative assessments to improve the statewide model predictions, and one of them 
includes comparing the link flows between statewide and MPO models at the study area 
boundaries and along the isolated network links, such as bridges or mountain passes. 

2.3 Summary 
Statewide models have undergone heavy development in the last decade. They are being 

developed and used in 40 states and serve multiple purposes, such as intercity corridor planning, 
statewide system planning, and bypass studies. The four-step planning model is one of the most 
widely used travel demand models. Although more advanced models are available, such as the 



9 

activity-based models that take into account certain household and individual restraints and trip-
chaining patterns, they are not common in the statewide planning level.  

Generally, statewide models and MPO models are complementary: while the MPO models 
usually account for shorter distance trips, statewide models can be used to model longer distance 
trips as well as freight movement. Statewide models account for planning at the larger scale, and 
tend to incorporate MPO models in either of two ways: a) the stitch approach, where the MPO 
models are “stitched” together to form the statewide model; and (b) the aggregation approach in 
which the network and demand of the MPO model is aggregately represented in the statewide 
model. 

The passenger travel components of statewide models usually follow the MPO models in 
structure, relying heavily on the traditional four-step model with segregated trip purposes. Some 
states, like Oregon and Ohio, have shifted to using integrated land use and economic activity model 
along with the four-step model. These shifts are governed by the purposes for which the statewide 
models are used. The freight component of statewide models is usually performed in one of two 
ways: commodity based or direct vehicle based. More than three-fourths of the states with 
statewide models incorporate freight modeling using the commodity-based approach as it makes 
accurate use of the available databases. 

The methodology of integrating statewide and the MPO models has been another focus of 
this report. Given the difficulties of integrating the two planning levels, efforts have been put into 
the development of multi-resolution modeling. This consists of a unifying framework under which 
different parts of a system are described at different levels of details. This approach is a trade-off 
between the model accuracy and complexity. In it, urban areas are represented in a simple and 
easy-to-set-up fashion. Currently, a majority of US states rely on aggregation-based approaches to 
incorporate MPO models within the statewide model.  

It is widely recommended that statewide and MPO models be developed in a coordinated 
fashion, under the cooperation of both state and MPO agencies. This coordination usually goes 
beyond using common data sources, as described in the remainder of this report. 
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Chapter 3. Quantifying Inconsistencies between the Models 

This project defined three different categories of consistency measures: consistency in 
network, consistency in inputs, and consistency in outputs. The consistency measures were chosen 
based on their practicality, quantitative relevance, unambiguous definition, objectivity, and 
continuity (as opposed to binary with a yes/no answer). 

• Network consistency: Depending on the planning purpose and the resolution of the 
model, travel forecasting models may use different networks representing the same area. 
The network structure is mainly defined in terms of the number of traffic analysis zones 
(TAZs), TAZ size, number of links, and number of nodes. To measure consistency in 
networks, visual inspection of the networks and an analysis of the networks’ topologies 
were proposed (average node in- and out-degree and lane miles per zone). Due to 
implementation difficulties with visual inspection, network topology analysis was 
selected as the preferred measure of consistency for the networks. 

• Input consistency: The main inputs to a travel planning model are the data used for trip 
generation and calibration parameters, such as population, household size, income, 
employment, auto ownership, and parameters of the gravity or logit models. To measure 
consistency in inputs, both models’ demands were compared, and the differences 
between them quantified.  

• Output consistency: The outputs of a travel forecasting model include the flow assigned 
to different links, and subsequently, the travel time along different links, corridors, and 
zone-to-zone travel times. To measure consistency in output, analyses of link flow 
consistency, travel time consistency, and model prediction consistency were proposed. 
The comparison of demand and the travel time were selected as the preferred measures 
of consistency. 

 
The next sections illustrate the results of the analysis of the consistency measures that was 

performed on a testbed comprising of the Austin metropolitan area. It compared both SAM and 
the regional CAMPO models. 

3.1 Network consistency 
To test whether the network of the statewide model is consistent with the MPO model, the 

following methods were used: visual inspection of the network and network topology measures. 

3.1.1 Visual inspection of the network 
This measure analyzes the network of the statewide model in the geographical area where 

the MPO model is located. The measure looks at the boundary of the TAZs and locations of nodes, 
links, and centroids in both the models. 

The performance of the four-step transportation planning process depends heavily on how 
the boundary of a TAZ is defined. The four-step process, in its simpler form as used within the 
statewide and the MPO planning models, assumes that the demand from (or to) a particular zone 
originates (or terminates) at the centroid of the TAZ. Baass (1980) highlights several criteria to be 
kept in mind while determining the boundaries of the TAZs, among which the primary one 
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“achieves a maximum of homogeneity inside the newly created zones.” The boundaries of TAZs 
determine how the demand is aggregated and thus play a crucial role in how the model results are 
used in planning and prioritizing different transportation projects. 

The statewide model TAZs are larger in size than the MPO model TAZs because of the 
aggregation made to simplify the model. A consistent system of models is, therefore, one where 
the boundaries of the TAZs in the statewide and the MPO model match with each other. This match 
ensures that both models have used similar criteria for aggregating the demand and ensuring 
homogeneity within different zones. 

Visual inspection of the overlap of the TAZs in both the models can be performed using 
any GIS-based software. Figure 3 shows the similar analysis done for the SAM model where the 
TAZ boundary in the CAMPO area is compared with that of the SAM model. The inspection 
shows that since the boundaries more or less match, the network criteria for the consistency is 
satisfied. Similar analysis can be performed by comparing the geographical location of the links 
used in both the models.  

 

 
Figure 3 Visual inspection of TAZ boundaries for the SAM and the CAMPO model 

 
However, the visual inspection technique suffers from the primary disadvantage that it is 

hard to quantify the level of mismatch between the boundaries. Hence, this consistency measure 
isn’t a practical approach for large-scale networks where the mismatch may extend to a larger scale 
and in different geographical locations where the visual inspection is hard to perform. 

The direct comparison of both networks also proved to be extremely difficult, mostly 
because of the difference in complexity of the two networks. Figure 4 displays the area close to 
the intersection of Loop 1 with Lake Austin Boulevard, West 5th Street, and West Cesar Chavez 
Street. The difference in detail is quite evident: while the CAMPO model contains all the different 
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possible turns and is, in general, much more complex and detailed, SAM’s network is drastically 
simplified and only uses about ten links to represent the same connections.  

 

 
Figure 4 Complexity difference between SAM and CAMPO 

 
The difference in detail also makes it impossible to identify pairings of the links between 

the networks. In other words, it is not possible to automatically point out which links from 
CAMPO’s model are represented by each link in SAM. This may, in some instances, be done 
manually, but extending this operation to the whole network (or even to just the test bed) would 
be impractical. 

3.1.2 Network topology measures 
Topology of a network defines how the connection between different elements of a network 

is established. The elements of a transportation network include nodes, links, TAZs, centroid, 
centroid connectors, etc. Different topology measures can be established and compared across both 
the statewide and the MPO models to test the consistency of the network. The following measures 
are defined for purposes of this study: 

• Average node in- and out-degree: The in-degree of a node in a network is defined as the 
number of incoming links for a node. The out-degree is analogous, but considers 
outgoing links for a node. This measure compares the average in- and out-degrees of the 
nodes in the statewide and the MPO model. 

• Total lane miles in a zone: This measure sums the lane miles for all the links contained 
within a zone in a model, and compares it across the statewide and the MPO model for 
same geographical location of the zone. 

• Total capacity of the links in a zone: This measure computes the total cumulative capacity 
of all the links contained within a zone in a model, and compares it across the statewide 
and the MPO model for same geographical location of the zone 
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3.1.2.1  In- and out-degree of nodes 

For this part, we extracted the topology of SAM and CAMPO networks, and used it to 
evaluate the network consistency by measuring the out-degree (number of links originating from 
a node) and in-degree (number of links ending at a node) of nodes. Figure 5 shows the histogram 
of out-degrees. The horizontal axis indicates the out-degree value and the vertical axis is the 
percentage of nodes with each out-degree number for both the CAMPO and SAM networks. Figure 
6 plots the same statistics as plotted in Figure 5, but for in-degree. Even though the out-degree 
values are similar, the in-degree values show a more significant difference. From Figure 6, one 
can see that in-degree 1 is dominant in the SAM network, while in CAMPO the highest percentage 
belongs to in-degree 2. This was expected: the SAM network is an aggregated version of CAMPO 
network in which the minor roads are removed and just the major roadways are modeled. This will 
decrease the degree of nodes. 
 

 
Figure 5 Histogram of node out-degree values 

 
The average degree across the network, computed by summing up all node degrees and 

dividing it by the number of nodes, for SAM and CAMPO networks are 1.484	and 1.378, 
respectively. This number shows that, on average, the networks have some consistency in node 
degrees. This is consistent with the results described in Figure 5 and Figure 6.  
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Figure 6 Histogram of node out-degree values 

3.1.2.2  Lane-miles and road capacity by zone 

The advantage of these measures is that they are easy to quantify and can be easily extracted 
from the network data available with the models. One way to measure network consistency is by 
comparing link lengths within each zone. The concept is that since both models represent the same 
real-world transportation network, they might have similar link lengths within the same areas, 
especially if the less-detailed network was designed by aggregating links from the more detailed 
network.  

Figure 7 and Table 1 provide an example of how the calculations were performed.  
 

Figure 7 Example – links and TAZ 

 

Table 1 Example – link characteristics 

Link Length Length within TAZ Lanes Capacity 
A 5 3 2 6000 
B 10 10 2 8000 
C 10 5 2 10000 
D 5 3 3 6000 
E 4 0 3 9000 

 

For each zone, we calculated the total link lengths in three different ways: 

• Simple link length within each zone, not accounting for number of lanes or capacity; 

• Link length within each zone considering the number of lanes; and 

A B

D

C

E
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• Link length within each zone considering number of lanes and weighted by capacity. 
 
The equations for the three methods used are: ܵܮܮ =ܮܮ ܹ ܮܮܮ =ܮܮ ܹ ∙ ܥܮܮ ܮܰ = ܮܮ∑ ܹ ∙ ܮܰ ∙ ܥ∑ܥ  

These equations use the following notation: ܵܮܮ : Simple link length ܮܮ ܹ : Length of link ݅ within the analyzed zone ܮܮܮ : Link length with lanes ܰܮ : Number of lanes for link ݅	 ܥܮܮ : Link length with lanes and capacity ܥ : Capacity of link	݅ 
 
For links with unknown capacity, the default value considered was 3000 vehicles per hour 

per lane. Furthermore, for links with an unknown number of lanes, the default value considered 
was 1. 

Therefore, in this example, we would have: ܵܮܮ = 3 + 10 + 5 + 3 = ܮܮܮ 21 = 3 ∙ 2 + 10 ∙ 2 + 5 ∙ 2 + 3 ∙ 3 = 6 + 20 + 10 + 9 = ܥܮܮ 45 = 6 ∙ 6000 + 20 ∙ 8000 + 10 ∙ 8000 + 9 ∙ 60006000 + 8000 + 8000 + 6000 = 11.67 
 
These values were calculated for the CAMPO TAZs and then aggregated into the larger 

SAM TAZs. The values for SAM were also calculated and then compared to CAMPO’s aggregated 
results. Figure 8, Figure 9, and Figure 10 illustrate the dispersions of the errors for each of these 
three measures. The errors were calculated with respect to the values in SAM. 

 

Figure 8 Errors in SLL Figure 9 Errors in LLL 
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Figure 10 Errors in LLC 

 
The three figures show us that errors larger than 100% are extremely common. The average 

errors for SLL, LLL, and LLC are 226%, 189%, and 662%, respectively. This is a strong indication 
that there is very little consistency between both networks being analyzed with respect to the link 
lengths. 

3.2 Input consistency 
Demand tables were used to evaluate the consistency in inputs between the SAM and the 

CAMPO model. To this end, the demand in CAMPO was aggregated to match the TAZ level used 
in SAM. Assume that TAZ ݎ in SAM represents two TAZs ܣ and ܤ in the CAMPO model, and 
that TAZs ܥ and ܦ in CAMPO belong to the aggregated TAZ ݏ in SAM. These associations in the 
actual networks can be obtained using any GIS software. Figure 11 shows this configuration. 

 
Figure 11 Aggregated SAM TAZs ݎ and ݏ (solid black) and their associated TAZs in CAMPO 

(dashed red) 

 
Let ܦ௦ௌ  denote the total trips between zones ݎ and ݏ in SAM. Furthermore, let ܦ௦  denote 

the demand between the same two zones ݎ and ݏ computed by aggregating the CAMPO demand. 
The value of ܦ௦  is given by: 
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௦ܦ = ݀ + ݀ + ݀ + ݀	
where ݀௫௬ refers to demand between zones ݔ and ݕ in CMAPO model. This process is repeated 
for all SAM TAZs. The percentage error in demand for each TAZ ݎ −  in SAM, with respect to ݏ
CAMPO demand, is given by: ݁௦ = ௦ܦ| − ௦ௌܦ ௦ܦ| 	
where |. | is the absolute value operator. Note that if ܦ௦ = 0, then an error of 100 is assumed, i.e., ݁௦ = 1. 

Figure 12 shows the histogram of the errors, where the horizontal axis indicates the error 
and the vertical axis is the percentage of OD pairs falling into each category.  

 

 
Figure 12 Distribution of absolute errors of OD pair demand1 

 
The errors were scattered, with 4.1% of OD pairs presenting absolute errors between 100% 

and 200%, and 11.5% of them being 200% or larger. The absolute percentage error was on average 
9,020% and had a median of 87.81%. The total difference was 871,700 minutes. This is substantial 
evidence of significant input inconsistency between both models with respect to the total demand 
in the Austin area. 

3.3 Output consistency 
As observed from the network-level consistency results, identifying common links 

between the SAM and the CAMPO network was challenging, and thus comparison of link flows 
wasn’t used to determine the output consistency. 

Zone-to-zone travel time was used as a measure for output consistency. Similar to what 
was performed for OD pair demands, the travel times between zones in SAM were compared with 
the aggregated travel times between the zones in the CAMPO model contained within the SAM 
zones. 

For each SAM zone ܵ, let ܼெைௌ  be the set of all CAMPO zones contained within this ܵ. 
The aggregated CAMPO travel time between two zones r and s is the average of travel time 
                                                 
1 This figure does not contain errors larger than 200% for better visualization. 
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between each pair of CAMPO zones contained within ܼெை୰  and ܼெைୱ . For example, for the 
zones shown in Figure 11, the aggregated CAMPO travel time (߬௦ ) between two zones ݎ and ݏ, 
is given by: ߬௦ = ݉݁݀݅ܽ݊(߬ெை , ߬ெை , ߬ெை , ߬ெை ) 
where ߬ெை  is the travel time between CAMPO origin zone ܣ to CAMPO destination zone ܥ. 
The SAM travel time between two zones ݎ and ݏ is given by ߬௦ௌ . The absolute error between the 
travel times and the percent error were then defined as below, where the percent error is evaluated 
keeping CAMPO model travel time as the base. ݁ݐݑ݈ݏܾܣ	ݎݎݎ݁ = 	 |߬௦ௌ − ߬௦ ݎݎݎ݁	ݐ݊݁ܿݎ݁ܲ | = 	 |߬௦ௌ − ߬௦ |߬௦ ∗ 100 

This process provided us with the travel time between each pair of SAM zone and 
corresponding aggregated travel time from CAMPO network. The absolute and the percent 
difference between the travel times (using CAMPO travel time as the base) were then calculated 
for each OD pair. Figure 13, Figure 14, and Figure 15 respectively show the distribution of the 
error, the average absolute error, and the average percent error further aggregated with respect to 
the free-flow travel time between SAM zones. The free-flow travel time gives an approximate idea 
of the distance between two zones. 

 

 
Figure 13 Distribution of absolute errors of OD pair travel times 
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Figure 14 Average absolute error in travel time in minutes between the SAM and the CAMPO 

model with increasing free-flow travel time between SAM zones 

 

 
Figure 15 Average percent error in travel time between the SAM and the CAMPO model with 

increasing free-flow travel time between SAM zones 

 
The analysis indicates that the total difference in travel times is 2,239,211.92 minutes and 

there is an average absolute percentage error of 32.93% in travel time over all OD pairs.  
The absolute error between travel time predictions increases as the distance between SAM 

zones increases. For example, for two SAM zones separated by 160 minutes at free-flow, the 
average absolute error between SAM and the CAMPO model is 90 minutes, while for two SAM 
zones separated by 20 minutes at free-flow, the average absolute error is 10 minutes. When the 
error is presented as a percentage of the CAMPO model travel time, it is observed to be more or 
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less constant. The primary summary statistic is thus the average percent error between the travel 
time predicted by SAM and CAMPO models and is found to be 32.21% for the selected testbed. 

Figure 16 shows the plot of the percent error in travel time for a particular origin zone 
(20685), located in the center of the CAMPO area, to all destination zones. The plot indicates that 
some geographical locations in the SAM model have higher percentage error in travel time as 
compared to the CAMPO model. Such plots can provide visual information about the areas where 
the models are more inconsistent than the other locations. 

 

 
Figure 16 Percentage error in travel times predicted by SAM relative to the CAMPO model for 

the origin zone located in center of the region to each of the destination zone 
 
The total system travel time predicted by both the models was also calculated. The total 

vehicle-hours traveled were 680,000 minutes for the CAMPO model, and 370,000 minutes for the 
same region within SAM, and thus SAM underestimated the travel times in the Austin area by 
approximately 45.66%. These results indicate that SAM and the CAMPO model are slightly 
inconsistent with respect to the output travel time measure. 

3.4 Inconsistencies within SAM  
Overcoming the inconsistency between SAM and the MPO models requires making 

changes to the demand and travel time values in SAM. However, changing these values can create 
inconsistencies within SAM itself. These inconsistencies arise when either the adjusted demand or 
the adjusted travel time between an OD pair does not match the demand and travel time originally 
obtained by SAM using its internal trip distribution and trip assignment steps.  

Some of the proposed methods in the next section do not require running SAM again after 
adjusting the demand and travel time values. The consistency measures proposed in this section 



21 

quantify the mismatch between the demand and/or travel time obtained by SAM and those 
obtained using the corrections provided by the MPO model’s results. 

Let ݀௦ and ݐݐ௦ be the demand and travel time, respectively, between OD pair (ݎ,  (ݏ
obtained through SAM’s standard four-step procedure. Let ݀௦(ௗ௨௦௧ௗ) and ݐݐ௦(ௗ௨௦௧ௗ) be the 
adjusted demand and adjusted travel time (respectively) between OD pair (ݎ,  calculated using (ݏ
one of the first three methods proposed in Chapter 4. Finally, let ݐݐ௦(௨) be the travel time 
between OD pair (ݎ,  obtained by feeding an updated demand matrix containing ݀௦(ௗ௨௦௧ௗ) for (ݏ
all OD pairs (ݎ,  .within the MPO region (ݏ

The demand inconsistency within SAM can be measured by determining the difference 
between ݀௦ and ݀௦(ௗ௨௦௧ௗ) and calculating the mean absolute percent error and the total absolute 
error over all OD pairs. 

When only the demand is updated, the inconsistency within SAM regarding travel times 
can be measured through the difference between ݐݐ௦(ௗ௨௦௧ௗ) and ݐݐ௦	 . When dealing with methods 
that update both demand and travel times, the travel time inconsistency within SAM can be 
measured through the difference between ݐݐ௦(ௗ௨௦௧ௗ) and ݐݐ௦(௨). In both of these cases, we 
calculate the mean absolute percent error and the total absolute error over all OD pairs. 

Even though the first three methods proposed do reduce inconsistencies between SAM and 
the MPO models (as is shown below), these methods for adjusting demand and travel times will, 
in turn, generate inconsistencies within SAM. 
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Chapter 4. Methods for Improving Consistency 

In this chapter, we propose seven approaches that could potentially improve consistency 
between multiresolution network models. These approaches can be used by TxDOT to improve 
consistency between SAM and regional MPO models. The approaches are ordered in increasing 
level of effort required by TxDOT and are split into three groups. The first three methods (Sections 
4.1 – 4.3) provide simple guidelines for improved analysis and do not require feeding any 
information back into SAM or the MPO models. The second group (Section 4.4 & 4.5) involves 
some interaction with either SAM and/or the MPO models. The methods in  the third and last 
group (Section 4.6 & 4.7) are expected to provide greater benefit in terms of consistency between 
models because they involve a substantial remodeling of SAM. 

An underlying principle in the analysis is that where models overlap, the higher-resolution 
model is more likely to give the better prediction. For instance, the CAMPO model is assumed to 
give a better reflection of Austin-area transportation than the same portion of SAM. 

4.1 Simple override 
The simplest method for addressing inconsistencies is to choose results from the higher-

resolution model, wherever there is geographic overlap. In practice, this entails using results from 
the MPO model in its area of coverage, and results from SAM elsewhere in the state. 

Since the MPO model will usually have smaller TAZs, an association table is required to 
determine the MPO TAZs contained in each of the larger SAM TAZs. Figure 17 and Table 2 
illustrate this association using CAMPO as an example. In Figure 17, we can see that the CAMPO 
TAZs 685, 686, 688, 689, 699, and 848 belong to SAM TAZ 20576. 

Given these different zone sizes, a method to aggregate the MPO model’s results is required 
in order to compare them with the results obtained from SAM. For travel times, the aggregation 
used was the median, since it represents the center of the distribution and is also robust to outlying 
observations. For the demand, the aggregation method used was the sum. 

 
Table 2 Association between MPO and SAM TAZs 

CAMPO TAZ SAM TAZ
1 20708
2 20709
3 20708
4 20701
5 20702
6 20698
… …
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Figure 17 Association between MPO and SAM TAZs 

 
In order to illustrate the override procedure, consider the case of OD pair demand in SAM 

and an MPO model. Since both models will likely have different types of demand, a conservative 
approach is to force consistency between the OD pair totals, but retain the distribution for each 
type of demand (e.g., home-based work [HBW], home-based non-work [HBNW], non-home-
based [NHB]). Tables 3 and 4 illustrate this concept with an example. 

 
Table 3 Example of OD pair demand before override procedure 

Origin Destination SAM HBW SAM HBNW SAM NHB SAM Total MPO Total
1 2 55 (55%) 40 (40%) 5 (5%) 100 200
1 3 35 (70%) 10 (20%) 5 (10%) 50 120
2 1 5 (8%) 60 (92%) 0 (0%) 65 20
2 3 60 (60%) 10 (10%) 30 (30%) 100 500
3 1 0 (0%) 0 (0%) 0 (0%) 0 60
3 2 10 (29%) 15 (43%) 10 (29%) 35 15

 

Table 4 Example of OD pair demand after override procedure 

Origin Destination SAM HBW SAM HBNW SAM NHB SAM Total MPO Total
1 2 110 (55%) 80 (40%) 10 (5%) 200 200
1 3 84 (70%) 24 (20%) 12 (10%) 120 120
2 1 2 (8%) 18 (92%) 0 (0%) 20 20
2 3 300 (60%) 50 (10%) 150 (30%) 500 500
3 1 0 (0%) 0 (0%) 0 (0%) 0 60
3 2 4 (29%) 6 (43%) 4 (29%) 15 15
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Note that the distribution between the types of demand remains the same while respecting 
the new totals. However, this does not guarantee full consistency due to the occurrence of zeroes 
in SAM. This problem does not arise when dealing with OD pair travel times since the travel time 
will never be zero, regardless of the OD pair or the model at hand. 

Of the observations, 1.7% presented errors in the demand after the simple override 
procedure due to the occurrence of zeroes. Aside from these cases, all other OD pairs have 
matching demands. Furthermore, all OD pairs presented matching travel times after the procedure. 

Although the simple override method almost eliminates the input and output 
inconsistencies between SAM and the CAMPO model, it creates inconsistencies between SAM’s 
demand and its own travel times. The simple override method runs both models and “picks” the 
results from the more disaggregate model in geographically overlapping areas and does not take 
into consideration the different procedures each model uses. In other words, the travel time 
associated with the demand in these overlapping areas are not travel times produced by SAM, 
rather they are simply travel times created by the CAMPO model.  

In order to measure inconsistencies within SAM for this procedure, we use the method 
proposed in Section 3.4. For the travel times, the absolute mean percentage error is 39.65% per 
OD pair and the total absolute error is 31,000 hours. For the demand, the absolute mean percentage 
error is 399.45%2 per OD pair and the total absolute error is 871,700 trips. 

4.2 Correction factors 
The objective of this method is to correct the predicted travel time from the traffic 

assignment step or the predicted OD demand from the trip distribution step by using a single 
numeric factor that updates the travel time and demand in SAM to that of the MPO model. 

To correct a variable produced in SAM, we plot the variation of variables in the MPO 
model that are analogous to the variable of interest from SAM and fit a regression line with no 
intercept, which minimizes the least squared error of the prediction. 

A fundamental difference between the simple override method and the correction factor 
method is that the former method requires running both SAM and the MPO model for all years, 
while the latter method only requires a single run of the MPO model where the correction factors 
are calculated. From this point onwards, the values from SAM can be adjusted using the same 
correction factors initially calculated. 

4.2.1 Input correction factors 
The input correction factor updates the demand between origin and destination in SAM. 

This factor is useful when looking at the changes in the demand matrix and is an important 
component of the project evaluation process. For example, consider the construction of a new link. 
If the agency has an estimate of the new demand between two zones (created using surveys before 
construction) and wants to compare it to the base demand, this factor can be applied to the base 
demand to report correct changes in the demand before and after the facility construction. Applying 
the correction factors will result in corrected demands. The travel times associated with these new 
demands, however, will not be readily available—running SAM with the updated demand might 
be required, which may or may not be desirable according to the agency’s needs. 

                                                 
2 The top and bottom 20% were removed when calculating the absolute mean percentage error for the demand 
inconsistency within SAM. 
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Figure 18 plots demand data of the CAMPO model with respect to SAM. The demand data 
is spread widely, and it is difficult to predict CAMPO demand using SAM demand by using a 
single correction factor. 
 

 
Figure 18 Variation of demand in CAMPO model with respect to SAM 

 
Nevertheless, to quantify the approximate behavior, a line with zero-intercept is fit through 

the data points. The slope determined from the regression analysis is 0.7824, i.e., on average a 
CAMPO demand is 78.24% of the SAM demand between the same two zones. Hence, this factor 
can be multiplied by the  SAM demand to correct it towards CAMPO model demand. 

The adjusted R-squared value for the predicted correction factor is 0.4913, which does not 
indicate a good fit. This is because of the spread of the data. The percentage improvement in the 
total absolute error in demand was found to be 4.69%. 

4.2.2 Output correction factors 
The output correction factor updates the travel time output between an origin and a 

destination in SAM. This factor is useful in updating the output of planning models and in 
evaluating projects based on the corrected measures. 

Figure 19 shows the distribution of CAMPO travel time to that of SAM travel time. 
Compared to the demand data distribution, the travel time data has a much lower spread and 
follows a uniform trend. 
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Figure 19 Variation of travel time in CAMPO model with respect to SAM 

 
To quantify the correction factor, a line with zero-intercept was fit. The slope determined 

from the regression analysis is 1.54, i.e., on an average CAMPO travel time is 1.54 times greater 
than SAM travel time between any two zones. The adjusted R-squared value for the predicted 
correction factor is 0.981, which indicates a very good fit. The total absolute error in travel time, 
after applying correction factors to all zones within the CAMPO region lead to a 66.78% reduction 
in total travel time error. Thus, this correction factor can be used to improve the travel time 
predicted by SAM for evaluating future projects. 

The correction factor method is better than the simple override method because it calculates 
a single factor to update SAM demand and travel time, which can then be applied to correct SAM 
demand and travel time towards that of the MPO. Thus, a project requiring an evaluation a few 
years into the future will not require an updated run of the MPO model to override SAM demand 
and travel time for the future year; instead, the correction factor obtained from the previous runs 
can be used to model this impact. The disadvantage of the correction factor method is that it can 
cause internal inconsistency within the SAM model, where the updated demand and travel time 
values may not satisfy the trip distribution and traffic-assignment equilibrium criteria. As 
described earlier, this inconsistency is generated because the SAM model is not re-run from scratch 
using these updated values. 

The inconsistencies within SAM this method generated represent 222,839.41 trips and 
2,643,749.89 minutes. The mean percentage errors within SAM were 21.76% and 69.53% (for 
demand and travel time, respectively.) 
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4.3 Correction regressions 
The objective of this method is to develop regression equations that can predict changes in 

the input/output of SAM with respect to parameters of SAM itself (i.e., without relying on the 
demand and travel time information from the MPO model). Similar to correction factors, we can 
develop separate regression equations for improving the inputs and the outputs. 

The regression models for improving OD pair travel time predictions generated by SAM 
and the CAMPO model can be a function of different input parameters. Two types of regression 
equations are developed, which vary in the amount of input required for each of them: single input 
regression and multi-input regression 

4.3.1 Single-input regression model 
This model carries a simpler framework. Similar to the correction factor method, the input 

used for this regression is the travel time or demand from SAM. The hypothesis is that the error in 
the travel times or demand can be explained just by looking at its magnitude. This hypothesis is 
logical for the travel time case because for the CAMPO testbed, SAM was consistently predicting 
lower travel times and the error in the travel time depended on the magnitude of the observed SAM 
travel time. For the demand case, no apparent correlation was found within SAM and CAMPO 
demand, yet the regression model was built. The results shed more insight into this lack of 
correlation. 

The regression equations are developed by fitting a linear regression model between the 
predicted values from the CAMPO model and SAM model. The CAMPO model’s predictions are 
considered the true predictions that SAM should have reached. There are 72,630 OD pairs in SAM 
that overlap with the CAMPO model. The travel time and demand between each OD pair was 
made available from SAM. For the CAMPO model, the travel time and demand between those OD 
pairs was estimated using the aggregation methods described in Chapter 3. Of those OD pairs, 
90% were randomly selected and were used to develop the regression model and the remaining 
10% (7263 data points) were used to validate the model. The unit of travel time in both models is 
seconds while of demand is number of vehicles. 

Equations 1 and 2 show the regression equation parameters for travel time and demand 
respectively.  

Table 5 shows the statistics of residual errors evaluated after applying the obtained 
regression equations on the validation data, which are defined as the difference between predicted 
value using the regression model and the original value obtained through the CAMPO model: 

݈݁ݒܽݎݐ	݀݁ݐܿ݁ݎݎܿ	ܯܣܵ  ݁݉݅ݐ = −1.688 + 1.565 ∗ ܯܣܵ  (1) ݁݉݅ݐ	݈݁ݒܽݎݐ

݀݊ܽ݉݁݀	݀݁ݐܿ݁ݎݎܿ	ܯܣܵ  = 6.176 + 0.777 ∗ ܯܣܵ ݀݁݉ܽ݊݀ (2) 
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Table 5 Single-input regression model summary 

Residuals summary (travel time in seconds)
Min 1st quartile Median 3rd quartile Max
-59.330 -8.050 -0.954 6.613 64.677 

Coefficients
  Estimate Std. Error t-value 

(Intercept) -1.688 0.118 -14.23 
SAM_TT 1.566 0.002 850.36 

  Adjusted R-squared 0.92  
Residuals summary (demand)

Min 1st quartile Median 3rd quartile Max
-1816.9 -6.200 -6.100 -4.600 5030.1 

Coefficients
  Estimate Std. Error t-value 

(Intercept) 6.176 0.262 23.55 
SAM_demand 0.777 0.003 244.65 

  Adjusted R-squared 0.48  
 

As observed, a high t-statistic for the SAM_TT variable indicates that it is significant in 
the regression model and a high value for adjusted R-squared indicates a good fit. The distribution 
of residuals around zero is also reasonable with the first and third quartile values being reasonably 
close to the median value. For the demand case, the R-squared value is low, indicating a poor fit. 

The histogram plot of the residual errors of the validation dataset is shown in Figure 20. 
The model predictions for travel time are within a reasonable range to the true predictions of the 
CAMPO model ranging within an absolute difference of 50 seconds. For the demand case, the 
residuals have a high spike near -6.1. 

The coefficients for the travel time regression indicate that corrected travel time is 
approximately 1.5 times the original SAM travel time, which is consistent with the travel time 
correction factor. The total absolute error in travel time after applying the single input regression 
were found to reduce to 12,300 hours, leading to a percentage improvement in consistency of 
66.95%. This model can thus be used to correct travel times produced by SAM to that of the 
CAMPO model. 

Conversely, the total absolute error in demand was found to increase to 1,080,000 trips, 
which is a 23.98% increase in inconsistency. This increase and the skewed distribution of residual 
errors in Figure 20 show that regression equations are not useful to correct SAM demand to that 
of CAMPO demand. This is because of the inconsistent relation between the demand of SAM and 
the CAMPO model. This issue may not be there for other MPOs, in which case the regression 
equations can be used. 

Another disadvantage in using a regression model is that it requires building separate 
regression models for each MPO’s region. The equations may not be transferable from one MPO 
to the other as MPOs develop their planning models separately. We next explore multi-input 
regression models to identify other variables that may influence the variation of travel time or 
demand. 
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(a) 

 
(b) 

Figure 20 Single-input regression model: histogram counts of residual errors on validation data 
for (a) travel time and (b) demand 

4.3.2 Multi-input regression model 
For this model, we predict the error in travel time and demand, defined as the difference 

between the values from CAMPO and SAM model, as a function of different inputs characteristics 
of SAM. We use the following inputs (with the shorthand notation for each of them inside the 
parentheses): 

1. Free-flow travel time between the OD (SAM_freeflowTT) 
2. Total demand originating from the origin zone (origin_production) 
3. Total demand destined at the destination zone (dest_attraction) 
4. Total length of lanes in miles weighted by capacity of the link for all links inside the origin 

zone (origin_lane_miles) 
5. Total length of lanes in miles weighted by capacity of the link for all links inside the 

destination zone (dest_lane_miles) 
6. An indicator variable indicating if either origin or destination zone is at the boundary. If 

yes, then the variable takes the value 1, else 0 (is_boundary) 
 
The variables were chosen because of the following observations: 

1. As the distance between SAM zones increases, the difference between travel times 
produced by SAM and the CAMPO model increased. Thus, free-flow travel time was 
chosen as a proxy variable for the distance between the zones. 

2. The errors in travel time and demand were more pronounced if the origin or destination 
nodes were located at the city centers. Thus, the total number of trips originating and 
terminating in each zone was used. 

3. The models displayed some counter-intuitive behaviors. There were OD pairs where SAM 
predicted higher demand levels than the CAMPO model, but produced lower travel times. 
This behavior was attributed to the error in network aggregation. Thus, to quantify this 
difference in network aggregation, we included lane-miles as the network property for both 
the origin and the destination zone in the regression model. 

4. We also used an indicator variable for the boundary location of the CAMPO model’s region 
to account for differences in network or demand aggregation at the boundary of CAMPO 
model. 
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The results in this section consider all six variables for the regression model. These 
variables were obtained directly from SAM or were calculated using basic processing of the data. 
Variables origin_lane_miles and dest_lane_miles were estimated using the method described in 
Section 3.1.2.2. Similar to the single-input case, 90% of the data points were randomly selected 
and used to fit the model. The other 10% were used to validate the model. 

Equation 3 and 4 show the regression equations: 
 

 

=ܶܶ	ܯܣܵ	݀݁ݐܿ݁ݎݎܥ 	−9.433 + 2.251 ∗ ܶܶݓ݈ܨ݁݁ݎܨ_ܯܣܵ − 0.00023∗ ݊݅ݐܿݑ݀ݎ_݊݅݃݅ݎ + 0.0009 ∗ ݊݅ݐܿܽݎݐݐܽ_ݐݏ݁݀ + 0.000067∗ ݏ݈݁݅݉_݈݁݊ܽ_݊݅݃݅ݎ − 0.000070 ∗ ݏ݈݁݅݉__݈݁݊ܽ_ݐݏ݁݀ − 2.596∗ ݕݎܽ݀݊ݑܤݏ݅ (3) 

  

 

=݀݊ܽ݉݁ܦ	ܯܣܵ	݀݁ݐܿ݁ݎݎܥ 	20.95 − 0.861 ∗ ܶܶݓ݈ܨ݁݁ݎܨ_ܯܣܵ + 0.002∗ ݊݅ݐܿݑ݀ݎ_݊݅݃݅ݎ + 0.003 ∗ ݊݅ݐܿܽݎݐݐܽ_ݐݏ݁݀ + 0.00018∗ ݏ݈݁݅݉_݈݁݊ܽ_݊݅݃݅ݎ + −0.0001 ∗ ݏ݈݁݅݉__݈݁݊ܽ_ݐݏ݁݀ + 6.214∗  ݕݎܽ݀݊ݑܤݏ݅

(4) 

  
The residual error statistics is shown in Table 6. 
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Table 6 Multi-input regression model summary 

Residuals summary (travel time) 
Min 1st quartile Median 3rd quartile Max 
-63.636 -8.987 -1.243 6.89 67.577 

Coefficients 
  Estimate Std. Error t-value 

(Intercept) -9.433 0.168 -56.140 
SAM_freeFlowTT 2.251 0.003 717.670 
origin_production 0.000 0.000 -18.190 

dest_attraction 0.001 0.000 85.670 
origin_lane_miles 0.000 0.000 48.750 
dest_lane_miles 0.000 0.000 -39.780 

factor(isBoundary)1 -2.596 0.142 -18.300 
  Adjusted R-squared 0.900   

Residuals summary (demand) 
Min 1st quartile Median 3rd quartile Max 

-141.4 -22.3 -7.9 7.6 4540.8 
Coefficients 

  Estimate Std. Error t-value 
(Intercept) 20.950 0.925 22.650 

SAM_freeFlowTT -0.861 0.017 -49.900 
origin_production 0.002 0.000 34.070 

dest_attraction 0.003 0.000 53.060 
origin_lane_miles 0.000 0.000 17.850 
dest_lane_miles 0.000 0.000 10.460 

factor(isBoundary)1 6.214 0.781 7.960 
  Adjusted R-squared 0.130   

 
As observed, the demand regression equation has a very low R-squared value, indicating a 

poor fit and thus the results are not reliable in predicting corrected SAM demand using these input 
variables. For the travel time case, all the variables have high t-statistics, indicating that they are 
all significant in the regression model. The large difference in the magnitude of the estimated 
coefficients is due to the difference in the order of the magnitude of those variables and the travel 
time. 

The variables with positive coefficient estimates lead to increase in travel time with 
increase in the variable value. This is true for free-flow travel time variable, which is consistent 
with our observation. Regions with high origin and destination demand have higher values of travel 
time between them. The location of zones at the boundary leads to a 2.5-second reduction in the 
travel time error, which is very minor. The increase in lane miles at the origin and destination (or 
equivalently, denser concentration of roads near the origin and destination) increase the travel time 
between zones. 
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The residual errors for the validation data for the travel time case is shown in Figure 21. 
The histogram is similar to the one obtained for the single regression model, indicating a good 
performance of the regression model on the validation dataset. 

 

 
Figure 21 Multi-input regression model on travel times: histogram counts of residual errors on 

validation data 

 
The total absolute error in travel time is found to reduce by 64.3%. This reduction in 

inconsistency is lower than the one obtained from single input regression indicating that having 
more inputs is not further useful in predicting SAM travel time as compared to a single input. For 
the demand case, the total absolute error in demand is found to increase by 135.8%, which is 
because of the poor fit of data to the choice of explanatory variables. 

In addition to the disadvantage of repeating the efforts of developing regression models for 
different MPOs, the multi-input regression model is more complicated to estimate as it requires 
significant preprocessing of the network and demand data to extract the values for the explanatory 
variables. Given its poor performance against the single-input regression and the simplicity of the 
single-input regression, we recommend using single input regression for predicting SAM travel 
time. For the demand case, the correction factor method performs the best and thus its use is 
recommended. 

4.4 Inputting MPO demands into SAM 
The simple override method, as stated previously, is based on the idea of relying on the 

higher-resolution model wherever this is possible—mainly where there is geographic overlap. 
However, given that the travel times between zones can be seen as a function of the demand 

in the four-step modelling framework, another consistency-improving alternative is to use the 
demand matrix obtained during the simple override method and feed it into SAM. The assumption 
is that we are reducing the discrepancies between SAM and the MPO model by using demand 
matrices that are more similar to each other in each model’s assignment procedure. This will likely 
produce more consistent travel times between the MPO and SAM models. 

Figure 22 is a histogram illustrating the distribution of the errors after applying the demand 
input procedure.  
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Figure 22 Error distribution of travel times after demand input procedure 

 
Figure 22 displays a clear improvement in consistency after the demand input procedure 

when compared to the histogram presented in Figure 13—the errors are more tightly concentrated 
around zero after the procedure is applied. 

After feeding the new demand matrix into SAM and running the assignment procedure, the 
total absolute error reduced to 30,688 hours (17.77% reduction) and the average mean percentage 
error reduced to 27.41% (reduction of approximately 6.78 percentage points) 

Even though this consistency improvement is lower than that of previous procedures, this 
method is more robust regarding its implementation. In other words, while the first three methods 
mostly focus on treating data and finding relationships between the different models, this method 
allows for inputting those changes back into SAM. Also, when there are significant changes to the 
network (e.g., construction of new highways), the correction factors and regressions will likely 
have to be recalculated, while this method will not. Both levels (the MPO model and SAM) will 
have to incorporate the information of the new infrastructure, but the procedure itself will be the 
same. Furthermore, this method eliminates inconsistencies within SAM. 

4.5 Changing input parameters 
MPO and SAM models are usually implemented in TransCAD, with specialized 

procedures that expect files formatted a specific way. Although these models implement the 
traditional four-step planning scheme, they have different requirements and perform these tasks in 
substantially different ways. Figure 23 illustrates the main interfaces for the CAMPO and SAM 
models. 
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Figure 23 Comparison of SAM (left) and CAMPO (right) model interfaces 

 
One way to improve consistency is to alter the high-level model parameters. It is not explicitly 
clear how these parameters should be adjusted to improve consistency, since the two models 
implement the four-step process differently. However, properly chosen adjustments to these 
parameters may be successful in improving consistency. 

In the next sub-sections, we examine what high-level model parameters are available to 
adjust to improve result-consistency between CAMPO and SAM. 

4.5.1 High-level parameters in CAMPO 
CAMPO allows users to specify any combination of the demographics and network years 

by the use of master multi-year network and TAZ files, as well as the option to develop alternative 
networks or demographics to define a scenario. There are also pre-loaded scenarios with all 
required information readily available. These high-level parameters are available in each stage:  
 
1. Trip Generation Stage Parameters: This section involves five parameters, which are shown 

in the parameters tab of the model scenario manager dialog box (Figure 24). These parameters 
are all scalars, and include the number of internal zones (M), the total number of zones 
including externals (N), the number of sectors, the number of generation areas (Area Types), 
and the Consumer Price Index based on 1967.  
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Figure 24 Model scenario manager for Trip Generation Stage 

 
2. Trip Distribution Stage Parameters: This section involves one parameter: a flag field to 

activate the warm start option as shown in Figure 25, which is optional for the Trip Distribution 
stage. If warm start is selected under the Initialization stage, then a value of 1 as a distribution 
parameter will cause the initial skims to use loaded values. A value of 0 starts the skims with 
free-flow time.  

 

 
Figure 25 Model scenario manager for Trip Distribution Stage 

 

3. Mode Choice Stage Parameters: The parameters tab does not exist for the Mode Choice 
section. Instead, the parameters can be accessed through the mode choice parameters input file 
“Parameters.bin”. It is possible to modify the parameters (coefficients) for mode choice 
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variables such as in-vehicle travel time, parking cost, and average cost-per-mile based on 
previous studies.  

 
4. Trip Tables Stage Parameters: The Trip Tables section (Figure 26) has two parameters: 

Austin-San Antonio external zone ID for which commuter rail trips are subtracted from or 
added to IH 35, and Combine Flag, which reflects how the highway OD vehicle trips are to be 
tabulated: 1-Merge All Purposes, 2-Separate Purposes, 3-Combine to HBW, HBNW, and 
NHB. These parameters are mostly related to how results are displayed and seem to have little 
impact on the whole. 

 

 
Figure 26 Model scenario manager for Trip Tables Stage 

 
5. Assignment Stage Parameters: The Assignment section has nine parameters that are 

operational in the CAMPO Planning Model (Figure 27). Seven of these parameters are toll-
based parameters and the remaining two parameters are functions of the multi-class assignment 
model stopping criteria, which contain the maximum number of iterations and convergence 
criterion for the assignment step. All of these parameters are used directly in the highway 
assignment procedure. Specifying a different convergence criterion might lead to results closer 
to SAM and similarly toll-based parameters might affect the traffic induced on toll roads rather 
than arterials and could provide results closer to the aggregate analysis of SAM.  
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Figure 27 Model scenario manager for the Assignment Stage 

4.5.2 High-level parameters in SAM 
The SAM-V3 is a traditional four-step travel demand model that includes a feedback loop 

between the traffic assignment step and trip distribution. The model interface in SAM is pre-loaded 
with base and forecast scenarios, which cannot be modified unless new ones are created. In any 
new scenario created we can fine-tune the following parameters to get results closer to that of 
CAMPO:  

• Average Passenger Vehicle Mileage 

• Average Truck Vehicle Mileage 

• Maximum Feedback Iterations 

• Time Period AM End MD Start 

• Time Period MD End PM Start 

• Time Period NT End AM Start 

• Time Period PM End NT Start 

4.5.3 Results 
Extending this method to the whole state of Texas would involve dealing with the models 

of multiple MPOs, and it is unlikely that the parameters in SAM could be changed in a way to 
simultaneously reduce inconsistencies with all of the MPO models. Therefore, the strategy 
undertaken for this measure was to perform changes to the MPO model and quantify how these 
changes reduced overall inconsistencies. 

Changing the parameters related to the trip distribution and assignment stages proved to 
yield more positive results out of several preliminary tests that were run. The results for this 
method are summarized in Table 7. 
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The changes made to the trip distribution parameters included activating the warm start. 
This led to an increase of 0.35% in the travel time’s absolute error as well as a 0.16% increase in 
the demand’s absolute error.  

Similarly, changing the passenger car equivalents for commercial vehicles from 2 to 2.5 
and allowing the use of single-occupant vehicles on high-occupancy vehicle lanes (charging tolls) 
decreases the travel time’s absolute error by 1.00% and the demand’s absolute error by 18.00%.  

When reducing the maximum number of iterations required for convergence and, 
simultaneously, increasing the tolerance for the convergence criterion, we observed decreases of 
1.45% and 25.00% in the travel time’s and the demand’s absolute errors, respectively.  

The final attempt included changing the toll-based parameters (high-occupancy toll lane 
flag and car equivalents) parameters as well as the convergence criteria parameters (maximum 
number of iterations and convergence tolerance). In this case, the decreases in the travel time’s 
and demand’s absolute errors were, respectively, 2.35% and 24.97%.  

Changing the assignment parameters causes significant changes in the demand because the 
new costs (which include tolls) affect the initial costs between OD pairs, which will in turn affect 
the distribution stage and, therefore, change the final OD matrix.  

 
Table 7 Changing high-level parameters—results of multiple runs 

Changes made in the CAMPO model 

Absolute error 
in Demand 

Absolute error 
in Travel Time 

(% change in 
absolute error) 

(% change in 
absolute error) 

Before making any changes 871,686.51 2,239,211.92 
    

Changing parameters in distribution stage 873,078.64 2,247,062.60 
+0.16 % +0.35 % 

Changing 
parameters in 
Assignment 

Stage 

Changing toll based  
parameters 

2,216,782.41 713,554.43 
-1.00 % -18.14 % 

Changing assignment/  
stopping parameters 

2,206,689.02 653,732.85 
-1.45 % -25.00 % 

Changing both parameters 2,186,502.22 654,030.23 
-2.35 % -24.97 % 

 

4.6 Efficient aggregation techniques 
An alternative method to address inconsistencies is to identify network aggregation 

schemes that result in a statewide model that better reflects constituent MPO models. Specifically, 
the objective is to provide an approach for network aggregation that allows the state to estimate 
the resulting inconsistency and correct for the estimated errors. This is a more significant departure 
from the existing SAM setup, and would require reconstructing the statewide model in a different 
way. A portion of the Austin network highlighted in Figure 28 was used to evaluate alternative 
aggregation schemes. 
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Figure 28 Portion of the Austin network used for testing aggregation schemes 

 
Network aggregation may lead to errors on link flow values in the statewide aggregate 

network. This procedure involves removing links that belong to lower functional classes upon 
aggregation. Therefore, vehicles using the lower class links in the disaggregate network would 
shift to alternative links in the aggregated model. Measuring the average link flow bias that results 
from network aggregation provides an estimate on the correction factor needed to obtain the flow 
in the disaggregate network. This section evaluates different aggregation schemes that could be 
used by the state to construct the statewide network model and to calculate the average bias in link 
flows.  

Bovy and Jensen (1983) compared assignment results from three network levels (fine, 
medium, and coarse) with traffic count data and empirically evaluated the difference in link flows 
between abstracted links and their disaggregate counterparts in a test network. It was shown that 
the relative error between assignment results and count data for primary roads was reduced from 
87% to 45% when the medium level network was used instead of the coarse network. This is due 
to shifting vehicles that originally used disaggregate links to the aggregate links. 

4.6.1 Link aggregation: extraction 
Network extraction is a hierarchical aggregation approach in which links of a lower 

functional class are removed from the network. This method maintains the characteristics of the 
links such that the links in the abstracted network are identical to their counterparts in the 
disaggregate network. Figure 29 shows link extraction implemented for a portion of the Austin 
network. The links in blue represent the links in the abstracted network. Meanwhile, the links in 
blue and orange combined represent the full disaggregate network. In other words, the link 
extraction was implemented by removing the orange links (lower functional class) from the 
network. The lower class links were identified by assessing the speed limits in the network. Links 
with lower speed limits typically belong to lower functional classes. 

The impact of link extraction on the link flows was obtained by constructing hypothetical 
OD pairs. However, the subsequent approach for measuring the bias on the link flows could be 
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used for any OD matrix. The origins are shown in Figure 30, and the destinations include multiple 
nodes within the considered section and near its periphery.  

A traffic assignment algorithm was used to obtain the link flows in the disaggregate and 
the abstracted networks. The percentage error between the link flows after removing outliers is 
shown in Figure 31. This corresponds to an average percent error of 6.5%, which implies that the 
link flows in the abstracted network were, on average, 6.5% greater than their counterparts in the 
disaggregate network.  

 

 
Figure 29 Link extraction for a section of the Austin network 
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Figure 30 Location of origins used for testing aggregation schemes 

 

 
Figure 31 Variation in link flows: link extraction 
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4.6.2 Link aggregation: abstraction 
The same analysis was repeated for an alternative aggregation scheme referred to as link 

abstraction. The aim of this aggregation scheme is to preserve the level of service between zones 
in the aggregate network (Chan, 1976). The level of service could be measured using the travel 
time, which is obtained after running the traffic assignment on the aggregate network. However, 
modifying the aggregate link characteristics to obtain a specific value of travel time (after running 
traffic assignment) is challenging due to the dependence of the routing procedure on alternative 
paths. An alternative approach could be to improve the capacity on aggregate links that are adjacent 
to the removed disaggregate links.  

For example, as shown in Figure 32, the capacity on San Antonio Street in the north-south 
direction within the black circle would be added to the capacities on Guadalupe and Rio Grande, 
and the capacity on West 17th Street would be distributed to Martin Luther King Boulevard and 
West 15th Street. This is motivated by the observation of Bovy and Jensen (1983) that the network 
loses capacity after the aggregation process due to shifting vehicles that originally used 
disaggregate links to the aggregate links. The aggregation results did not indicate a significant 
difference as compared to link extraction (approximately 6.5% bias in link flows). This is due to 
the low values of OD demand assumed earlier. However, the method could be applied for different 
combinations of OD demand to test the bias in link flows associated with each OD matrix variation.  

 

 
Figure 32 Distribution of capacity to aggregate links 

 
This section described two different link aggregation strategies: link extraction and link 
abstraction. The percent error on the aggregated link flows in a portion of the Austin network was 
obtained to be approximately 6.5% for both aggregation methods. However, this value corresponds 
to a hypothetical OD demand matrix. In practice, TxDOT could follow the same procedure using 
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a different OD matrix to measure aggregation errors resulting from the aggregation techniques. 
This will give an indication of which aggregation method is best (i.e., less error). The percent error 
on link flows could also serve as a correction factor for link flows obtained from the aggregate 
network. Note that constructing the OD matrix in the abstracted network requires aggregating 
demand by zones. In other words, this refers to adding the demand from the disaggregate zones to 
form an aggregate zone, and connecting the aggregated demand to the abstracted network. This 
process is shown in Figure 33.  
 

 
Figure 33 Zone aggregation (Jeon, 2012) 

 

4.7 Decentralized implementation 
A decentralized implementation of traffic assignment, called DSTAP and described in 

Jafari et al. (2017), is used for solving traffic assignment problems on large-scale networks such 
as the Texas statewide model. Decentralized implementation replaces the MPO models in a 
statewide model with their aggregated version, where the aggregation is done using the user 
equilibrium sensitivity analysis. In a decentralized implementation, the MPOs will have their own 
independent functionality, and the aggregated statewide network communicates with the MPO 
models to solve the traffic asignment problem. There are two types of data exchnage between the 
MPOs and statewide model. First, the information from the output of MPO models will be used to 
update the aggregated statewide network. This ensures that the statewide network is up to date 
with the current MPO models. Second, the output of the statewide model, mainly flow assignment, 
will be used to update the external trips to the MPOs. These update steps are performed iteratively 
after the occurrence of any change in MPO models or the statewideP model. The direct result of 
the decentralized implementation in conjunction with these updates would be a consistent model 
with an acceptable run time that still preserves the independent operation of the MPOs.  

This section evaluates the properties of the proposed decentralized algorithm on planning 
networks. Due to lack of sufficient data from all MPOs in Texas, we implemented DSTAP on a 
subnetwork representing Central Texas. This subnetwork includes the Austin regional network 
(the “full network”), which has 6349 nodes, 18,696 links, 1117 zones, 231,497 OD pairs, and total 
demand of 687,690 vehicles. This extracted subnetwork includes three counties: Williamson 
County, Travis County, and Hays County. In the following discussion, we refer to the Austin 
regional network as the full network, the aggregated version of the Austin regional network as the 
statewide network, and the southern and northern partitions as southern and northern MPOs. 

Williamson County and Hays County are tightly coupled with Travis County with a clear 
partitioning at the Colorado River. Because of this special topology, we partitioned the network 
into two subnetworks: the northern subnetwork (Williamson County and the part of Travis County 
to the north of the Colorado River) and southern subnetwork (Hays County and the part Travis 
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County to the south of the Colorado River). Figure 34 shows the extracted subnetwork and the 
selected partitions. Each subnetwork has 20 boundary nodes, and there are a total of 27 links 
connecting these 2 subnetworks through boundary nodes. There are no regional nodes in the 
proposed network decomposition.   
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Table 8 provides the statistics for the extracted network, Austin regional network (full 
network), statewide network, and subnetworks introduced in the DSTAP algorithm.  

 

 
Figure 34 Austin network decomposed into two subnetworks: northern and southern 

subnetworks 
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Table 8 Statistics of the Austin network solved in centralized approach and DSTAP statewide 
network and subnetworks 

Network Nodes Zones OD pairs Demand Physical  
links 

Artificial  
links 

Austin regional network 6349 1117 231497 687690 18696 0 
Statewide network 1854 907 67329 127695 27 24536 

Southern subnetwork 3283 490 57557 185979 6863 0 
Northern subnetwork 3966 627 106611 374016 11806 0 

4.7.1 Implementation 
Although convergence of the DSTAP algorithm was shown in Jafari et al. (2017), efficient 

performance on practical networks requires further implementation choices to be made. This 
subsection discusses our findings based on the experiments we performed in the Austin network. 
All tests were run on a 3.3 GHz Linux machine with 8 GB RAM. 

In our implementations, better performance was obtained when the convergence criterion ߳ௗ was decreased gradually. Obtaining highly converged solutions in the initial iterations does 
not appear to be an efficient use of computational time, which is intuitive. For the Austin network, 
we started with maximum excess cost value of 5 minutes for the subproblems and simply 
decreased it by a factor of 0.9 every iteration. This improves the convergence rate by solving the 
subnetworks faster, especially at the first iterations where solution from iteration to iteration may 
change significantly. For termination criterion in the master problem (problem dealing with the 
statewide network), we selected maximum excess cost of 1 minute.  

The master problem starts with the flow assigned to the statewide network at previous 
iteration, and re-equilibrates this flow based on the new artificial regional link parameters to obtain 
the new flow assignment. In addition, after solving the statewide network at each iteration and 
updating the subnetwork OD demands (external demand to the MPOs), the subproblems need not 
be solved from scratch. Warm-starting the subproblems with the solution from the previous 
iteration—proportionally inflating or deflating the path flows for OD pairs whose demand 
changed—provided solutions with a good initial gap and a better convergence rate.  

4.7.2 Convergence properties 
Figure 35 plots the maximum excess cost values for the statewide network, northern and 

southern subnetworks, and also the excess cost on the Austin network in a logarithmic scale for a 
termination criterion of 0.8 minute, and initial step size of 0.2. The maximum excess cost for the 
Austin regional network was calculated by constructing a feasible path flow solution on the Austin 
network from the DSTAP path flow solution. The DSTAP algorithm converged in 90 iterations 
with a maximum excess cost of 0.76 minute on the statewide network, and 4.28E−4 minute and 1.74E−4 minute on southern and northern subnetworks, respectively. The maximum excess cost 
on the full network was always within 10% of that of the statewide network, and upon 
convergence, the full network had a maximum excess cost of 0.816 minute.  
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Figure 35 The maximum excess cost of the full network (blue), statewide network (red), and the 

subnetworks (green and purple) 

 
Figure 36 shows the average excess cost and relative gap values for the Austin network, 

statewide network, and northern and southern subnetworks. For any general network ݑ with set of 
OD pairs ܹ_ݑ, the average excess cost and relative gap measures may be defined as: 

Average excess cost= ∑ ∑ ഏ( ഏ்ି்್ೢ)ഏ∈ೢೢ∈ೈೠ ∑ ௗೢೢ∈ೈೠ  

Relative gap= ∑ ∑ ഏ( ഏ்ି்್ೢ)ഏ∈ೢೢ∈ೈೠ∑ ∑ ഏ ഏ்ഏ∈ೢೢ∈ೈೠ  

where ܶೢ is cost of the shortest path for OD pair ݓ. Upon convergence, the average excess cost 
and gap value of the DSTAP solution applied to Austin network were 1.16E−6 and 8.74E−11, 
respectively. 
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(a) Average excess cost 

 
(b) Relative gap 

Figure 36 (a) The average excess cost (b) and relative gap of the full network, statewide 
network, and the northern and southern subnetworks 

4.7.3 Correctness 
To examine the accuracy of the DSTAP algorithm, we solved for equilibrium on the Austin 

network using the traditional gradient projection method, to a gap value of 1E−10, and measured 
the percentage error in the equilibrium OD travel times as: 
   ߳௧(ݓ) = |௧ವ(௪)ି௧(௪)|௧(௪) ݓ	∀				, ∈ ܹ 
where ߳ ௧(ݓ) is the relative error in travel time of OD pair ݓ, and ݐ(ݓ) and ݐ(ݓ) are respectively 
the equilibrium travel times from DSTAP and the centralized method, computed as the average 
travel time of all used paths at equilibrium. Figure 37 shows the average percentage OD travel 
time error ∑ ఢ(௪)ೢ∈ೈ|ௐ|  against the iteration number of DSTAP algorithm in the final assignment. 
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The average travel time error, expressed in Figure 37, decreases and has a value of 0.006% upon 
termination.  
 

 
Figure 37 The average percentage error in OD travel times of DSTAP compared to centralized 

algorithm solution 

 
A similar measure was proposed to evaluate the accuracy of the link flows. Let ߳(ܽ) 

denote the percentage error in flow of link ܽ given by: ߳(ܽ) = (ܽ)ݔ| − (ܽ)ݔ|(ܽ)ݔ ,				∀	ܽ ∈  ܣ

where ݔ(ܽ) and ݔ(ܽ) denote the flow assigned to link ܽ  in the DSTAP and centralized methods, 
respectively. The average link flow error is plotted in Figure 38. The DSTAP algorithm terminated 
with an average link flow error of 0.067%, and more than 98.9% of links had an error less than 1%. 
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Figure 38 The average percentage error in flows assigned to links in DSTAP compared to 

centralized algorithm 

4.7.4 Computational effort 
This section investigates the computational requirements of the DSTAP algorithm, 

compared with the centralized approaches. Here we used relative gap as the measure of 
convergence, and both the DSTAP and centralized approaches were used to solve the network to 
a relative gap of 1E−5. The simulations were implemented on one machine and the Thread class 
in Java was used to solve the subproblems simultaneously. More specifically, one thread is created 
for each subproblem and if one of the threads ends earlier, it waits for the other thread to finish 
before calling the next task. The traditional, centralized approach resulted in a run time of 1780 
seconds while the proposed DSTAP algorithm, with described parallel implementation, could 
solve the Austin network to the same level of relative gap in 1128 seconds: a savings of almost 36%.  

To get a broader understanding of the computational performance of DSTAP, we 
conducted a sensitivity analysis of the overall demand level in the network, scaling the OD matrix 
by factors ranging from 0.2 to 2. Figure 39 plots the runtime of DSTAP algorithm (statewide 
network in red and parallelized subnetworks in green) compared to a centralized approach (black). 
Figure 39 shows that the computational savings of DSTAP are more significant in absolute terms 
for congested networks: more than 8500 seconds when demand is doubled. Almost independent 
of the demand level, roughly four times as much computational time is expended on the 
subproblems as on the master problem. 

Figure 40 plots the percentage time saving for different demand levels. For low congestion 
cases, the saving varies between 35% − 55%, increasing slightly as demand increases: the savings 
are almost 70% when OD demands are doubled. Also note that in our simulations, the time spent 
to perform the sensitivity analysis and estimate the artificial links for each subnetwork is between 15% − 20% of total subnetwork computational time. 
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Figure 39 Computational time of the master (red) and subnetworks (green) in DSTAP compared 

to centralized run time (black) for different demand levels 

 

 
Figure 40 Computational savings of DSTAP algorithm 

4.7.5 Concluding remarks on decentralized implementation 
Here we implemented the proposed spatial decomposition approach for the traffic 

assignment problem from Jafari et al. (2017) on a subnetwork extracted from the Texas SAM. The 
DSTAP algorithm distributed the assignment task between the statewide network, an equilibrium 
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assignment over a simplified version of the full network, and subproblems, each solving for 
equilibrium on a smaller subnetwork (MPO models).  

Artificial regional and subnetwork links were created based on linear approximations 
obtained through sensitivity analysis. These artificial links essentially carried out the network 
aggregation task and were critical components of the algorithm, because they allow for both the 
statewide network and subproblems to anticipate the response from the other networks they 
interact with.  

The subproblems (MPO models) were modeled in the statewide network using some 
artificial regional links, which were updated each iteration. The assigned regional demand to these 
artificial regional links was then used to update the OD demands in subproblems (external demand 
to MPO models). This exchange of information between the statewide and subproblems was 
implemented in an abstract way to ensure an accurate and fast assignment process. Experiments 
on the Austin network showed the computational advantages of DSTAP, and its convergence to 
the correct equilibrium solution. 
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Chapter 5. Summary and Recommendations 

In this research we have highlighted seven different procedures for improving consistency 
between SAM and MPO models and quantified the improvement as best as possible using 
measures established in previous tech memos.  

The simple override method, although almost eliminating the input and output 
inconsistencies between SAM and the CAMPO model, creates inconsistencies between SAM’s 
demand and travel times. The data required from each MPO for this method are the OD pair 
demands and travel times and the geographic TAZ data. Even though it is the least complex of the 
methods proposed, the effort required in implementing the simple override is not negligible.  

The correction factor and regression methods give the planner tools that allow for the 
correction of demands and travel times after a single run of SAM and the MPO model. After 
obtaining the equation describing this relationship, the MPO model need not be run further in order 
to acquire estimates of the corrected OD pair demands and/or travel times. Similarly to the simple 
override method, though, these approaches also generate SAM-SAM inconsistencies. They also 
require the same information as the simple override method, but involve more effort due to finding 
the best regression specification. 

The inputting demand procedure attempts to solve a part of the problem of generating 
inconsistencies within SAM by aligning both models’ demands where they overlap and then re-
running SAM. This did indeed produce an improvement in consistency, and had the benefit of not 
generating SAM-SAM inconsistency. There is, however, added complexity here due to difficulties 
with handling the software in which SAM was developed.  

Table 9, Table 10, and Table 11 summarize the main results of these first methods.  
 

Table 9 Reduction of inconsistencies between SAM and the CAMPO model—Demand 

Method 

Demand Errors 

Average  
Percent Error 

Median  
Percent 
Error 

Absolute  
Error Change 

Original Model 9020% 87.81% 871,200 ---
Simple Override 1.74% 0.00% 0.05 -100.00%
Correction Factor 7070% 88.47% 830,800 -4.69%
Regression 2558000% 1057% 1,080,000 +23.98%
Inputting MPO demand into SAM 1.74% 0.00% 0.05 -100.00%
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Table 10 Reduction of inconsistencies between SAM and the CAMPO model—Travel Time 

Method 

Travel Time Errors 
Average 
Percent 
Error 

Median 
Percent 
Error 

Absolute 
Error Change 

Original Model 32.93% 33.61% 2,239,000 ---
Simple Override 0 0.00% 0.07 -100.00%
Correction Factor 13.83% 10.34% 743,900 -66.78%
Regression 13.39% 10.22% 740,100 -66.95%
Inputting MPO demand into SAM 27.41% 27.59% 1,842,000 -17.77%

 
Table 11 Inconsistencies generated within SAM 

Method 
SAM-SAM Inconsistency 

Demand 
Absolute 

Demand 
Average % 

Travel Time 
Absolute 

Travel Time
Average % 

Simple Override 871,700 399.5% 1,841,000 39.65%
Correction Factor 222,800 21.76% 2,643,000 69.53%
Regression 548,900 2267% 1,936,000 21.79%
Inputting MPO demand into SAM 0.00 0.00% 0.00 0.00%

 
The method of altering the high-level parameters of both models produced minor 

improvements in the demand inconsistency (approximately 2%) while considerably reducing the 
travel-time inconsistency (approximately 25%). This method, however, involves a substantial 
effort by TxDOT, mainly due to the fact that it requires running all of the MPOs’ models multiple 
times in order to find which make all of the models consistent. This method requires access to all 
over the MPO models within the state. 

In an attempt to bring both statewide and MPO models closer on a more fundamental level, 
the efficient aggregation and decentralized implementation methods propose changes to how SAM 
is structured. Even though they are the most complex procedures presented and will take the 
longest to develop, they hold the keys to the greatest improvements in consistency. These methods 
require not only the OD pair demands and travel times for all the MPOs’ models, but also their 
networks. 

It should be noted here that the results presented in this research are specific to the 
relationship between SAM and the CAMPO model. The effectiveness of each of these methods 
might be different for other MPOs’ models.  

 



55 

Chapter 6. Conclusion 

Statewide models have undergone heavy development in the last decade. They are being 
developed and used in 40 states across the US and serve multiple purposes, such as intercity 
corridor planning, statewide system planning, and bypass studies. Transportation models, 
however, are not just developed on the state level. Many MPOs develop smaller-scale models in 
order to address local transportation-related issues.  

The difference in scope between the statewide models and the MPO models can generate 
different outcomes for analysis of the impact of the same project or can lead to conflicting political 
agendas depending on which one is used for decision-making. Identifying these inconsistencies 
and developing methods to evaluate and remove them are the primary focus of this research. 

Statewide travel demand models usually include the areas covered by several MPO models 
within the state and involve some kind of interaction with these MPO models. These interactions 
can be the statewide model providing the internal-external or external-external traffic volumes to 
the MPO models as well as the statewide models using the aggregation of the networks in MPO 
models to construct the statewide network. 

Generally, statewide models and MPO models are complementary: while the MPO models 
usually account for shorter distance trips, statewide models can be used to model longer distance 
trips as well as freight movement. Statewide models account for planning at the larger scale, and 
tend to incorporate MPO models in either of two ways: a) the stitch approach, where the MPO 
models are connected to form the statewide model; and (b) the aggregation approach, in which the 
network and demand of the MPO model is aggregately represented in the statewide model. 

The passenger travel components of statewide models usually follow the MPO models in 
structure, relying heavily on the traditional four-step model with segregated trip purposes. Some 
states, like Oregon and Ohio, have shifted to using an integrated land use and economic activity 
model along with the four-step model. These shifts are governed by the purposes for which the 
statewide models are used. The freight component of statewide models is usually performed in one 
of two ways: commodity based or direct vehicle based. More than three-fourths of the states with 
statewide models incorporate freight modeling using the commodity-based approach, as it makes 
accurate use of the available databases. 

It is recommended across different literatures that statewide and MPO models should be 
developed in a coordinated fashion, under the cooperation of both state and MPO agencies. This 
coordination usually goes beyond the mere consistency of data being used. Rather, the 
coordination should also be in the development of the network itself, the software in which the 
networks are modeled, and the methods and internal procedures used. 

The methodology of integrating the statewide and the MPO models has been another focus 
of this report. Given the difficulties of integrating the two planning levels (statewide and MPO), 
efforts have been put into the development of multi-resolution modeling. This consists of a 
unifying framework under which different parts of a system are described at different levels of 
detail. This approach is a trade-off between the model accuracy and complexity. In it, urban areas 
are represented in a simple and easily set-up fashion. Currently, a majority of US states rely on 
aggregation-based approaches to MPO models within the statewide model.  

We presented several ways to measure inconsistency, divided into three categories: 
network, input, and output inconsistencies. We also showed that the both SAM and the CAMPO 
model present significant levels of inconsistency. 
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Furthermore, we proposed seven methods to reduce inconsistency, each of them with their 
own data requirements and implementation complexities. These methods were divided into three 
groups of ascending complexity.  

The first three methods (simple override, correction factors, and correction regressions) are 
the simplest to implement and are effective in reducing inconsistencies between the two models, 
but generated inconsistencies within SAM.  

In the second group, changing high-level parameters seemed promising for travel-time 
improvement. Its results with respect to demand inconsistencies, however, were lacking and 
proved to be somewhat cumbersome, especially considering the application of this technique for 
all MPOs’ models. Still in the second group, the method of inputting aggregated MPO demand 
into SAM yielded positive results and also eliminated the inconsistencies within SAM.  

The third and last group of methods proposed involve a substantial amount of effort from 
TxDOT but will likely generate the largest benefits in terms of consistency. 

The most relevant conclusion drawn from this study is that there are no one-size-fits-all 
solutions for inconsistencies, and the relationship between SAM and the MPO models should be 
studies on a case-by-case basis. Furthermore, it would be advantageous to both MPOs and TxDOT 
if their network modeling efforts were combined and performed in a collaborative fashion. One 
example of this would be if, for the regions where there is overlap with an MPO, SAM focused on 
the external-to-external and external-to-internal trips, while the MPO focused on the internal-to-
internal and internal-to-external trips. This information about these trips would then be exchanged 
between the MPO and TxDOT. In this way, inconsistencies would be solved by a different 
approach: each model focuses on different types of trips, therefore eliminating the chance of 
inconsistencies arising in the first place.  
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