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Chapter 1.  Project Overview 

1.1 Introduction 

Crashes represent an enormous cost to society in terms of property damage, productivity 
loss, injury and even death. Identifying the factors that contribute to crashes and developing 
countermeasures is therefore a priority for transportation and safety professionals. Roadway traffic 
accidents in 2012 alone resulted in 33,561 fatalities and 2.36 million injuries in the country as a 
whole [1], and 3,398 fatalities and 230,506 injuries in Texas [2]. This translates to an average of 
one fatality every 2 hours and 35 minutes and one reportable crash every 75 seconds in Texas. In 
fact, motor vehicle crashes continue to be the leading cause of death for people aged 11 through 
33 years of age, with no deathless days recorded on Texas roadways in 2012 [2]. 

Sensors can be a critical component of an active safety system in vehicles. At present, 
automotive radars and visual cameras are the most common safety sensors found in vehicles [3], 
[4]. By sensing the existence, position, and velocity of other vehicles or objects, automotive radars 
make it possible to realize adaptive cruise control, blind spot detection, lane change assistance, 
parking assistance and more. Cameras make driving safer in several ways: eliminating blind spots, 
serving as virtual mirrors, and providing better night vision with infrared sensors. A combination 
of radar and cameras may also effectively improve vehicle safety. For example, a computer vision 
algorithm may be applied to improve the detection of a pedestrian by a visual camera after 
preliminary detection from a radar sensor.  

The number of sensors on vehicles, along with their data rate capacity, is steadily 
increasing. On average, there are roughly 100 sensors on deployed vehicles today. That number, 
however, is expected to double by 2020 as vehicles become smarter [5]. Further, recent 
developments in autonomous vehicles heavily rely on LIDARs, a detection system that works on 
the principle of radar, but uses light from a laser to generate high-resolution depth-associated range 
maps. The amount of data generated by LIDARs is similar to the amount generated by 
conventional automotive cameras, which will further increase the data generated by a vehicle [6]. 
Thus, active safety algorithms will need to be designed to process more data sources and higher 
data volumes.  

Many existing sensor technologies exhibit a limited sensing range. For example, radar, 
cameras, and LIDAR provide information only about objects within the line-of-sight of the sensor 
and fail to address all potential safety concerns, limiting the capabilities of automation in vehicles. 
An alternative is to employ wireless communication networks, permitting the exchange of 
information between vehicles. A vehicle with wireless communication capabilities is called a 
connected vehicle [7]. Various safety-related applications with improved automation capabilities 
are enabled by vehicular connectivity (despite very limited information being provided by current 
connected vehicle technologies). These include forward collision warnings, do-not-pass warnings, 
blind intersection warnings, and red-light violation warnings [8]. The development of collision 
warning/collision avoidance (CW/CA) systems has a direct connection to the improvement of 
transportation safety and may be able to reduce more than 80% of all annual car crashes [7]. Fast-
growing research on advanced driver assistance systems has resulted in various technologies now 
available on commercial vehicles. CA also has a symbiotic relationship with partial or full 
autonomy in vehicles, as both require the same hardware and investments and can either operate 
separately or cooperate. While most autonomous vehicle research centers around emulating human 
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driving, CW/CA technologies are meant to deal with cases of unusual or dangerous driving, and 
therefore require a deeper understanding of the vehicle’s surrounding environment. 

The general framework of CW/CA technology can be divided into four phases, visualized 
in Figure 1.1. First, the vehicle gathers information on itself and its surroundings, using on-vehicle 
sensors or communication with other vehicles/infrastructure. Secondly, this information is used to 
predict the future positions of this and other vehicles. Based on the predicted positions, the system 
then decides whether there is a collision or other dangerous situation imminent. Finally, the vehicle 
must decide whether to perform an action to prevent impending collisions, such as send an audio-
visual warning, force the vehicle to brake, or drive along a different route. The first phase is by far 
the most heavily researched, partially because gathering information is a difficult task and partially 
because an actual implementation of the latter phases requires implementation of the first. At the 
same time, the information-gathering phase of CA is not a goal in and of itself, and is only valuable 
as input to the next phases.  

 

 
 

Figure 1.1: Architecture of vehicle CW/CA system 

It is natural for future CW/CA technologies to integrate communication with other sensors, 
as vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communication can share detailed 
road and traffic information to improve the CW/CA algorithm. Vehicle connectivity has two 
potential benefits. First, if a suitable carrier frequency is chosen, then cars can communicate 
through non-line-of-sight channels, (e.g., around corners). Second, if a high bandwidth 
communication link is available, cars can exchange higher raw sensor data rates and achieve full 
vehicular connectivity. Fully connected vehicles will be beneficial not only for implementing 
powerful active safety applications but also for cloud-driven, fully automated driving, which has 
the potential to further improve transportation efficiency and reliability.  

The state-of-the-art protocol for connecting vehicles is referred to as dedicated short-range 
communication (DSRC) [9]. Using DSRC, it is possible to implement preliminary V2V, V2I or 
even vehicle-to-everything (V2X) communication systems. The National Highway Traffic Safety 
Administration will likely mandate that all new vehicles include DSRC capabilities by 2017 [8]. 
Although DSRC allows vehicles to exchange messages (including basic sensor information) with 
a range of up to 1000 meters (ideally), the maximum data rate in practice is only 2–6 Mbps [10]. 
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Fourth generation (4G) cellular systems could be used for V2X communication systems; however, 
the maximum data rate is still limited to 100 Mbps for high mobility, though much lower rates are 
typical. Therefore, current technologies cannot sufficiently handle the terabyte-per-hour data rates 
that can be generated in next-generation vehicles.  

Using millimeter wave (mmWave) carrier frequencies for communication, it is possible to 
exploit larger spectral channels and achieve gigabit-per-second (Gbps) data rates (mmWave refers 
to the spectrum between 30 and 300 GH). For example, IEEE 802.11ad uses 2.16 GHz of 
bandwidth in the unlicensed 60 GHz band and supports data rates up to 7 Gbps [11]. Recently, the 
Federal Communications Commission has proposed authorizing operation in the 28, 37, and 39 
GHz of the licensed band and made 64–71 GHz available for unlicensed spectra for mobile use 
[12], which would facilitate the use of mmWave for various wireless communication scenarios 
including V2X, leading to the potential for Gbps data rates and realizing raw sensor data exchange 
among vehicles and infrastructure. Since automotive radars already exploit the mmWave 
spectrum, it may be also possible to implement joint mmWave radar and communication systems 
to increase the penetration rate of mmWave V2X capable vehicle in the early deployment stage. 
Joint systems may also save space within a vehicle and reduce cost and power consumption.  

Based on the necessity of improving roadway safety (and thereby also the accessibility and 
reliability) of the travel experience of Texans, this project presents an interdisciplinary and 
multidisciplinary effort focusing on research and technology enhancement activities to promote 
the integration of cutting-edge developments in communications and radar technology with 
transportation systems. The project is directed toward (a) improving the use of wireless 
technologies to obtain data from multiple and heterogeneous sources, (b) machine learning and 
data driven information extraction capabilities that are localized and timely, and (c) bringing 
information together within traffic contexts to develop safety systems that are effective and 
customized. More specifically, this project designs a conceptual framework to harness and mature 
wireless technology to improve transportation safety, with a focus on frontal CW/CA systems. The 
framework identifies components of the technology and its capabilities, and how these components 
can be integrated to improve transportation safety. 

The project is divided into three main tasks: 

1) Develop conceptual and functional frameworks for integrated wireless safety 
systems that incorporate information derived from both communication and radar 
platforms.  

2) Advance and develop a new combined communication-radar paradigm for 
automotive applications using next-generation millimeter wave communication. 
Consider different performance metrics of radar and communication systems and 
investigate security issues in vehicular environments. 

3) Conduct preliminary tests with real data, assess the performance of the proposed 
system, and develop a Concept of Operations (CONOPS) and requirements for 
technology deployment. 

1.2 Report Structure and the Three Main Tasks 

The first task of the project develops conceptual and functional frameworks for integrating 
communications and radar technologies. It begins in Chapter 2 by analyzing models for predicting 
the future movements of vehicles. We start with standard algorithms that rely on basic information 
gathered from sensing or communication. Then we explore more advanced models that rely on 
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stored or communicated data and we compare the models using real vehicle trajectory data. We 
also study how to efficiently use these predicted movements for the detection of dangerous driving 
situations. In Chapter 3, we develop a CW/CA system for non-motorized users—pedestrians and 
bicyclists—by investigating the sensor fusion approach with a computer-vision-oriented detection 
algorithm. The use of deep-learning-based detection algorithms and sensors like LIDAR are 
investigated using a real image dataset. Chapter 4 makes use of computer simulations to analyze 
the pros and cons of different vehicular sensors. CA systems, relying on various sensor 
combinations, are simulated in action for several types of scenarios. In the last chapter of Task 1, 
Chapter 5, a distributed decision-making algorithm, Collective Intelligence, is applied to research 
cooperative CW/CA systems. This algorithm is tested through simulations of multiple vehicles 
autonomously navigating an intersection, each following the same algorithm to prevent collisions.  

Task 2 starts in Chapter 6 by providing a framework of joint mmWave radar and 
communication systems for vehicular environments. We first demonstrate the feasibility of joint 
radar and communication systems using low frequency wireless local area network (WLAN) 
systems and then demonstrate the feasibility of mmWave joint systems through numerical 
simulations. Then, in Chapter 7 we identify key scenarios in which radar and communication 
systems can significantly improve automotive safety mechanisms and demonstrate a method for 
optimizing the performance of these systems. Chapter 8 details effective methods of antenna and 
transceiver design for mmWave radar and communication systems. In this chapter we also propose 
several beamforming and communication channel acquisition techniques. Chapter 9 provides an 
overview of security issues in vehicular environments and proposes potential ways to improve 
security in mmWave systems.  

In the final task we first assess the performance of the CW/CA system through simulations 
in Chapter 10. Then, in Chapter 11 we conduct field data collection utilizing vehicles equipped 
with a joint system of DSRC, radar, and camera. In this report we present preliminary analyses of 
the collected data. The full data analysis and the CONOPS are left for the final deliverable of the 
project. Finally, in Chapter 12 we present the overall conclusions of the project and discuss future 
research. 
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Chapter 2.  Developing Improved Collision Detection and Avoidance 
Algorithms for Cars 

2.1 Introduction 

All CW/CA technologies require assumptions about the future. For instance, forward 
warning systems check for obstacles to the front of the vehicle that are getting closer, with the 
simple assumption that such obstacles may continue to get closer and collide with the vehicle in a 
short time. For more complex avoidance or self-driving tasks (such as crossing intersections or 
safely entering highways), or for vehicles with multiple, simultaneously active CW/CA tasks, it 
can be useful to view prediction of the future as a distinct and necessary task. 

Prediction of the future requires knowledge of the present, but there is currently no clear 
consensus on what knowledge will be helpful for collision-related prediction. To give two 
examples, the DSRC basic safety message includes vehicle position, heading, speed, acceleration, 
and size—in other words, information that is simple to gather using on-vehicle sensors and is also 
compact enough to communicate easily [13]. On the other hand, a state-of-the-art algorithm that 
predicts vehicle turns and lane-changes in advance [14] relies on video information of both the 
outside road and the driver. This understandably adds a lot of prediction power but also requires 
more hardware, a certain invasion of privacy, and some method of communicating the video or 
your CW/CA system’s predictions to other vehicles on the road. 

To establish a consensus on what information vehicles should gather from sensors, 
cameras, and communication systems, there must be a clearer assessment of the value of each type 
of information for predicting the future. This in turn requires development of prediction methods 
that utilize each type of information, and standardized evaluation of each of these methods. 

2.2 Predicting Future Motion of Vehicles 

Throughout this chapter we refer to a vehicle’s changing position over time as its 
trajectory. If the future trajectories of each vehicle are known, then finding any collisions between 
vehicles in the near future is simply a matter of checking each point in time. 

The most common way to predict trajectories is to assume that each vehicle follows a 
simple physics-based model. This assumption is valid in the short term (because vehicles are bound 
by the laws of physics) and easily compatible with most sensor fusion methods. Models that 
incorporate location information and/or previously recorded vehicle paths require far more effort 
to establish, but might produce more accurate predictions. This section describes and evaluates 
several physics-based trajectory prediction methods, as well as methods using two additional 
sources of information—road geometry and previously gathered vehicle data. 

2.2.1 Vehicle Trajectory Data 

The Next Generation Simulation (NGSIM) Lankershim dataset of vehicle trajectories was 
used to develop and test the prediction methods [15]. Compared to other driving datasets such as 
the Strategic Highway Research Program’s Naturalistic Driving Study (SHRP2) [16], the NGSIM 
data is all collected within a specific area. This dataset allows an exact extraction of the geometry 
of the roads, and also provides multiple observations of different vehicles in the same situation 
(which is very important for developing and testing prediction methods). Furthermore, the area 
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covered by the Lankershim dataset contains several types of intersections and high-throughput 
traffic, which we considered particularly challenging to predict. 

Two sets of trajectories from NGSIM are used in this project. One contains 1000 randomly 
selected 5-second vehicle trajectories from the dataset, most of which are travelling straight along 
a road. The other contains 5-second cuts of every trajectory that enters a certain intersection from 
the south (Figure 2.1). The choice of this area of analysis was based on the prediction challenges 
that occur in the beginning of an intersection or other road entry/exit, as vehicles may change 
direction as well as brake/accelerate depending on surrounding vehicles or traffic signals. For 
example, some predictive models perform well on vehicles following a straight and steady path, 
but fail completely at an intersection. Up to 10 seconds of previous motion are also gathered for 
each 5-second test trajectory, so that enough prior information can be given to each model. 

 

 
Figure 2.1: Google Maps view of an NGSIM intersection, and plotted trajectories crossing it 

from the south 

2.2.2 Physical Models 

The physics of vehicle motion have been extensively studied for the sake of vehicle design, 
smooth control, and high-speed driving; there are entire textbooks on the subject [17]. However, 
trajectory prediction for CW/CA is not intended to capture minute changes or high-speed driving, 
and therefore is usually achieved with simple models. Following are the three most common 
models used: 

 
(i) Constant velocity model: ݐ)ݔ + (௧߂ = (ݐ)ݔ + ݐ)ݕ	(ߠ)	ݏ௧ܿ߂ݒ + (௧߂ = (ݐ)ݕ + 		(ߠ)	݊݅ݏ௧߂ݒ
(ii) Constant acceleration model: ݐ)ݔ + (௧߂ = (ݐ)ݔ + ቀ߂(ݐ)ݒ௧ + 2ܽ ௧ଶቁ߂ ݐ)ݕ	(ߠ)	ݏܿ + (௧߂ = (ݐ)ݕ + ቀ(ݐ)ݒ ∗ ௧߂ + 2ܽ ௧ଶቁ߂ ݐ)ݒ	(ߠ)	݊݅ݏ + (௧߂ = (ݐ)ݒ + 		௧߂ܽ
(iii) Nearly coordinated turn model: ݐ)ݔ + (௧߂ = (ݐ)ݔ + න (ݑ)ݒ ൯(ݑ)ߠ൫ݏܿ ௧ା௱௧ݑ݀ 	
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ݐ)ݕ + (௧߂ = (ݐ)ݕ + න (ݑ)ݒ ൯(ݑ)ߠ൫݊݅ݏ ௧ା௱௧ݑ݀ ݐ)ݒ	 + (௧߂ = (ݐ)ݒ + ݐ)ߠ	௧߂ܽ + (௧߂ = (ݐ)ߠ + 		௧߂߱
These names were first coined by [18], but the models are based on physics abstractions 

and have been used for many trajectory prediction tasks [19, 20]. The first two models assume that 
the vehicle travels in a straight line, while the third assumes that the vehicle follows a steady 
acceleration and also changes its heading at a steady rate. Intuitively, these parameters correspond 
to the drivers’ pedaling (gas/brake) and steering wheel angle. As these are the two ways in which 
the driver controls a vehicle, it is tempting to view this model as the perfect fit for vehicle 
trajectories. However, physical models do not account for future changes in the vehicle’s motion—
for instance, if the road curves or the driver brakes shortly after the present time, these models 
continue to predict with the same parameters. 

In order to ensure that the current position, velocity, etc., of each vehicle are estimated 
accurately, the Unscented Kalman Filter was applied to the previous 5 seconds of the vehicle’s 
motion. If the physical model is valid, this filter can near-optimally capture a vehicle’s current 
state [21]. Moreover, this filter can be easily used to fuse multiple measurements of the same value 
(such as position) from different sensors, or from sensors and communication. 

Table 2.1 shows the predictive power of each model on the randomly gathered trajectories. 
The errors of the predictions are given in terms of the Euclidean (straight-line) distance in meters 
between the vehicle’s true position and the predicted position. Errors at three different times are 
displayed, as predictions farther into the future are expected to be increasingly inaccurate. Note 
that positional accuracy cannot be immediately translated to the accuracy of a collision detection 
system, though the relationship between the two is studied in Chapters 2.2 and 4. 

Table 2.1: Accuracy of physical models on NGSIM dataset 1 

Model Error predicting 1 
second ahead (m) 

Error at 3 seconds 
(m) 

Error at 5 seconds 
(m) 

Constant Velocity 0.93 3.52 7.28 
Constant Acceleration 0.83 6.53 13.28 
Nearly Coordinated Turn 1.51 5.46 10.64 

 
Given that a passenger vehicle’s length is roughly 5 m, it is clear that no model can predict 

well at 5 seconds. Fortunately, looking 3 seconds or less into the future is generally considered 
sufficient for simple tasks such as avoiding rear-end collisions. The exact amount of time needed 
for more demanding CW/CA tasks is not known, though we assume 5 seconds is an upper bound. 
The simplest physical model, the constant-velocity model, noticeably outperformed the others—
primarily because erroneously estimated accelerations or heading changes may strongly influence 
the predicted trajectory. In other words, the constant-velocity model makes a more conservative 
estimate. To determine which driving maneuvers are predicted well or poorly, the second dataset—
of vehicle trajectories from a single intersection—is used. Table 2.2 gives the predictive error on 
this dataset, categorized by maneuver through the intersection. 
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Table 2.2: Accuracy of physical models on NGSIM dataset 2 

Maneuver Model Error at 1 s (m) Error at 3 s (m) Error at 5 s (m)
Straight Constant Velocity 0.8 2.9 6.1 

Constant Acceleration 1.1 8.0 15.9 
Nearly Coordinated Turn 1.7 6.7 13.8 

Lane 
Changes 

Constant Velocity 1.1 4.0 7.9 
Constant Acceleration 1.1 8.6 17.1 
Nearly Coordinated Turn 1.8 6.8 13.3 

Turns Constant Velocity 1.3 4.6 9.3 
Constant Acceleration 1.0 7.6 18.9 
Nearly Coordinated Turn 1.5 5.2 11.5 

Don’t Cross 
(stop before 
intersection) 

Constant Velocity 2.0 7.9 15.3 
Constant Acceleration 1.0 3.24 7.5 
Nearly Coordinated Turn 1.3 4.6 8.4 

 
The constant-velocity model performs better on all trajectories except for those that stop 

before the intersection. We can also see that the trajectories that cross the intersection without 
turning are the easiest to predict. For all other maneuvers, the prediction errors from the 
intersection are higher than those from the randomized dataset. This supports the hypothesis that 
in addition to the current physical state of a vehicle, context about its possible future actions is 
needed to make accurate trajectory predictions. This context is accounted for in the next section. 

2.2.3 Road Context Models 

In addition to the current position and motion of a vehicle, there are several outside factors 
that have a clear impact on its future trajectory, which we collectively term road context. These 
include the geometry and other physical characteristics of the road, traffic signs and signals, and 
the position of other vehicles or objects on the road. We focus on road geometry. 

Road Geometry 

Petrich et al. [22] developed a trajectory prediction model where vehicles are assumed to 
move around the centerline of their respective road. This can be viewed as a change in coordinate 
systems, from one of global position (e.g., longitude versus latitude) to one of the vehicle’s 
movement along the road versus movement across it (Figure 2.2). We use a very similar model to 
Petrich, with the main difference being that we incorporate the NGSIM dataset’s labelling of 
vehicle location into the method for finding the vehicle’s current road. 

 

 
Figure 2.2: Transforming road coordinates 

In this new coordinate system, the vehicle’s motion is no longer dependent on the curvature 
of the road, making directional parameters such as heading and angular velocity unnecessary. 
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Thus, the predictive models are constant-velocity and constant-acceleration, with independent 
along-road and across-road components. 

Table 2.3 shows the results of a constant-velocity model, in the road-based coordinates, on 
the second dataset. While it performs worse than the physical models in the short term, by 5 
seconds it outperforms all of them, especially for trajectories that change lanes or turn in the 
intersection. As a caveat, this intersection has turn-only lanes, and thus there is little ambiguity 
between vehicles turning and going straight. In situations where road location alone is not enough 
to determine motion, methods to explicitly locate the correct road or motion may be needed (such 
as those in the next section). 

Table 2.3: Accuracy of road-context model on NGSIM dataset 2 

Maneuver Error at 1 
second (m) 

Error at 3 
seconds (m) 

Error at 5 
seconds (m) 

Straight 2.4 2.4 7.4 
Lane Change 2.5 2.6 6.0 
Turn 1.0 2.1 8.0 
Don’t Cross (stop before) 1.3 5.6 11.6 

 
Table 2.4 shows the results of several road-context scenarios using the first dataset. The 

first is a constant-velocity model as seen above, the second is a constant-acceleration model, and 
the third is a combination of the standard constant-velocity model from the previous section and 
this constant-velocity model. This combination is simply made by taking the average of the two 
predictions, but achieves the best results so far—possibly because the road-context models and 
physics models each perform well in different situations. 

Table 2.4: Accuracy of road-context models on NGSIM dataset 1 

Model Error at 1 
second (m) 

Error at 3 
seconds (m) 

Error at 5 
seconds (m) 

Constant Velocity 1.62 4.30 7.09 
Constant Acceleration 1.41 4.71 9.45 
Physics CV + Road CV 1.07 3.40 6.36 

 
To make a general statement, road geometry seems to be useful information for improving 

long-term (3 seconds or more) trajectory prediction. This information could be pre-stored in 
vehicles, estimated by scanning the road with LIDAR or cameras, or made available when needed 
by means of V2I or vehicle-to-satellite communications. 

Lead Vehicle Distance 

The distance to the lead vehicle is generally considered an important aspect of driving, with 
many driving models—known as car-following models [23]—based entirely around this figure. 
However, these models were usually designed for exploratory or simulation purposes, rather than 
real-time prediction. Incorporating the presence of more than one vehicle in a predictive model is 
not simple. For instance, if the trajectory prediction for a vehicle depends on the relative position 
of its lead vehicle (the closest vehicle in front of it), then the position of the lead vehicle must be 
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predicted first. If this lead vehicle follows the same model, then its lead vehicle’s trajectory must 
be predicted first, and so on. Additionally, predictions based on the interactions between vehicles 
are possibly not appropriate when the ultimate goal of our trajectory prediction is to determine 
when vehicles are interacting in an unsafe way (for instance, ignoring the safe car-following 
distance). 

2.2.4 Data-based Models 

Given the complexity of incorporating context in a trajectory prediction model, an 
alternative is to use previously gathered vehicle trajectories to train a flexible model. Some data-
based models work off physics-based models by estimating key parameters with available data. 
For instance, it is possible to develop multiple physical models and choose the best model for a 
given trajectory, by comparing the models’ accuracy on similar stored trajectories. Barrios and 
Motai [24] use this framework with the constant-velocity and constant-acceleration models, as 
well as two other models. Other data-based models forgo any assumptions about vehicle motion 
and entirely predict future trajectories by comparing them with similar trajectories. 

Motion Patterns 

Some predictive models make the explicit assumption that vehicle drivers choose their 
future motion from a set of likely trajectories, known as motion patterns [25, 26]. Figure 2.3 shows 
trajectories of various vehicles entering an intersection, and the motion patterns that can be 
gathered from these trajectories. Note that these correspond to individual lanes, as well as motions 
such as braking or changing lanes. 

 

 
Figure 2.3: Seven-second trajectories through an intersection, and motion patterns derived 

from clustering these trajectories 

The task of trajectory prediction is separated into the problems of finding the motion 
patterns from data, then deciding which motion pattern a vehicle is currently following. We have 
developed a motion pattern-finding algorithm that groups vehicle trajectories in similar clusters 
via the Expectation-Maximization algorithm. Higgs and Abbas [27] used a similar clustering of 
vehicle movements for exploratory analysis of highway driving. Once the clusters are assembled, 
the average motion of vehicles in any cluster forms a motion pattern. To predict a vehicle’s future 
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trajectory, compare its past trajectory to the beginning of each motion pattern and choose the most 
similar motion pattern. Assume the vehicle’s future trajectory is equal to the future values of the 
motion pattern. It is also possible to compromise between the motion pattern and another model’s 
prediction, in the same way that two models were combined in the previous section. 

At the moment, the motion patterns gathered mostly correspond to individual lanes on the 
road, and their prediction accuracy is very similar to that of the road-context model. The current 
algorithm also has similar weaknesses to the road-context model. In the same way that a road-
based model requires information on every lane, motion pattern gathering requires example 
trajectories from every stretch of road—in comparing the mathematical difference between 
trajectories, location is by far the most significant factor. For example, the motion pattern of a 
vehicle that will turn right in 1 second is very different (mathematically) from one that will turn 
right in 3 seconds—this is a common issue in clustering time data. Similarly, the motion pattern 
of a vehicle following a sharp curve is quite distinct from one following a shallower curve. When 
constructing motion patterns from many locations at once, they will capitalize more on location-
related differences than driver actions such as lane changes or braking.  

It is much more desirable to reframe motion patterns so that a single pattern may encompass 
a type of motion—say, a certain type of right turn, or braking a certain degree—across multiple 
location and time references. Decoupling road context from motion patterns is a goal for 
continuing research in this project. For instance, one technique that we are applying is dynamic 
time warping [28], which can measure the similarity of trajectories while ignoring shifts in time 
between them. 

Conclusion 

Road geometry information was shown to improve the accuracy of vehicle trajectory 
prediction, even when applied in a simple way. However, no models could reliably provide less 
than 5 m of error when predicting 5 seconds in the future. Additionally, the simplest model of all, 
the constant-velocity model, performed relatively well. Any significant improvement in predicting 
vehicle motion will likely require a combination of advanced modelling techniques that deal with 
location and time context. 

2.3 Extracting Collisions from Trajectories 

A CW or CA action typically does not directly depend on the exact positions or trajectories 
of vehicles. Instead it is formulated as a simple logic statement based on a) the probability of a 
collision or dangerous situation, and b) the time left until the collision/dangerous situation occurs. 
However, if only a single trajectory estimate for each vehicle is provided, collisions end up being 
considered as a deterministic phenomenon. The probability of a collision occurring can only be 
discussed if multiple trajectory predictions are made, or if the predictions have some inherent 
probability distribution. While at least one CW/CA project has considered probabilities of future 
collisions [29], most rely on a single estimate.  

Even deterministic collision detection is computationally expensive if done in the most 
straightforward manner. The potential colliding vehicles must be checked against each other for 
enough timesteps to be sure that all imminent collisions are caught. This action must be repeated 
every time new trajectories are calculated, which may be ten times a second or more. A fast 
computational method for finding collisions is therefore desirable. Several works of research have 
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shown ways to more quickly calculate the collision time, usually by relying on the simple structure 
of their prediction method [19, 20]. 

2.3.1 Quickly Approximating Time-to-Collision in Intersections via Collision Zones 

We have developed an approximation specifically for intersections, where vehicles 
travelling on different roads and lanes may collide. 

• For every pair of roads, construct simulations that move a vehicle along each road. 
Whenever the two vehicles collide, store each vehicle’s position (in terms of distance 
along the road). 

• From the stored collision cases, find the smallest and largest distance for each vehicle. 
These four numbers form the collision zone in which a collision between vehicles at these 
two roads is possible. 

• When determining whether two vehicles will collide, check the times at which they will 
be within the smallest and largest distance for their respective roads. If these time 
intervals overlap, then there is a potential collision. The intersection of the two vehicles’ 
time intervals gives the time interval in which the collision may occur. 

 
In essence, the collision-zone method simulates and characterizes all possible collision 

situations beforehand, so that in real time only a simple check is needed. Figure 2.4 gives a 
visualization of the first two steps. The method has two drawbacks: one is that each vehicle is 
assumed to follow a known road or path through the intersection. This is constricting, but 
cooperates with the road-context and motion-pattern methods in Chapters 2.2.3 and 2.2.4. The 
other is that the constructed collision zone is an approximation of the actual situations in which a 
collision will occur. However, as long as enough simulations are gathered, the constructed 
collision zone will only overestimate the true zone. Thus, this method may cause unnecessary 
CW/CA actions, but not miss actual collisions (provided the predicted vehicle trajectories are 
accurate). This method could not be tested on real data, because there are no available records of 
vehicle trajectories immediately prior to collisions. However, the method is utilized in the many-
vehicle simulations in Chapter 5, to make early collision detection more efficient. 

 

 
Figure 2.4: Visualization of creating collision zone from simulated collisions
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Chapter 3.  Develop Improved Collision Detection and Avoidance 
Algorithms between Cars and Non-Motorized Road Users  

3.1 Introduction 

Two critical differences between motorized and non-motorized users—pedestrians and 
bicyclists—must be considered in developing collision detection and avoidance algorithms. First, 
the physical motion of bicyclists and pedestrians are dissimilar to that of other road users, such as 
cars, trucks, and motorcycles. Furthermore, each type of user is endowed with different degrees of 
technology. It is not reasonable, at least at the moment, to assume that pedestrians and bicyclists 
are also equipped with DSRC, radar, speedometer, etc. Therefore, CW/CA algorithms on a vehicle 
should be developed without relying on direct information from non-motorized road users. 

Three main types of sensors can be used for assisting the interaction between automobiles 
and non-motorized road users. Sensors like radar and LIDAR can detect the position of any 
object/user relative to the vehicle’s surrounding and, therefore, may be the most important source 
of information in this situation. Communication systems, on the other hand, can be valuable in 
situations when a vehicle several vehicles away may detect the presence of a bicyclist on the road 
and send this information to other neighboring vehicles. Then, the information received from other 
vehicles can be utilized as a source of CW/CA algorithm. 

The third on-vehicle sensor to be considered in this scenario is the camera or vision sensor. 
In the field of computer vision, object detection and tracking has a long history with promising 
results. Furthermore, a great deal of computer vision research has focused on pedestrian detection 
[30, 31, 32, 33], while some other techniques consider bicyclists [34, 35]. Fusion of radar and 
computer vision has also been studied before, as radar can not only provide accurate distance and 
angle but also robustness against bad weather, which is a limitation of the vision sensors [36, 37, 
38]. Additional sensors like radar and LIDAR can be used as a supplementary source of 
information to enhance computer-vision-oriented algorithms.  

To develop improved CW/CA algorithms, we focused on incorporating additional signal 
information to improve computer vision oriented methods for detecting pedestrians and bicyclists. 
The baseline computer vision algorithm used in the project is a deep-learning-based approach, 
which achieves higher performance and has been heavily researched in the last few years. 
Specifically, we used one of the well-known algorithms, Fast R-CNN [39], which showed 
successful performance in object detection. To train and evaluate our detection algorithm, we use 
a popular and recent dataset, the KITTI Benchmark Suite [40, 41], which includes car, pedestrian, 
and bicyclist detection benchmark. Although data from both radar and cameras are scarce in public 
datasets, KITTI provides scanned points from LIDAR around car, as well as images. LIDAR is 
similar to radar in that it provides depth information for surrounding objects with high accuracy, 
which meets our goal in testing a sensor fusion model. 

3.2 Computer Vision Oriented Methods for Pedestrian and Bicyclist Detection 

3.2.1 Challenges in Pedestrian and Bicyclist Detection 

Computer vision approaches use images as an input to the detection algorithm. Even 
though a visual source includes plenty of information, pedestrian detection/tracking is not an easy 
problem because of the following reasons: 
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• Appearance of pedestrians exhibits high variability  

• Outdoor urban scenario 

o Cluttered background 

o Weather condition and illumination vary the quality of sensing 

• Highly dynamic scenes 

o Pedestrian and camera are in motion 

o Different view angles 

o Large range of distances 

• Requires high performance in terms of speed and robustness 
 

Although the overall process can be similar to pedestrian detection, the detection of a 
bicyclist can be even more challenging. First, a bicyclist comprises both the bicycle and a human 
rider, inducing confusion and high variety. Also, the bicyclist’s speed is significantly faster than 
the pedestrian’s. High variety in the image space can cause inconsistency of features extracted 
from a single class. Cho et al. [34] pointed out the integral issues in bicycle detection problems, 
which center around the bicycle/rider presenting dramatic appearance changes: 

• Camera viewpoint (e.g., a bicycle’s shape and size appear very different viewed from the 
front versus the side) 

• Class variability (e.g., mountain bikes vs. racing cycles) 

• Person riding on the bicycle 

3.2.2 Computer Vision for Pedestrian and Bicyclist Detection 

In the object detection/tracking area, computer vision focuses more on pedestrian detection 
than on bicyclist detection. Geronimo et al. [33] investigated pedestrian detection problems for an 
advanced driver system and proposed a general architecture to describe the pedestrian 
detection/tracking system for computer vision methods (Figure 3.1). This architecture is divided 
into six steps and covers the structure of most traditional computer-vision-oriented pedestrian 
detection systems: 

• Preprocessing: Process low-level adjustments like exposure/dynamic range adjustments 
of the image and calibrate coordinate system with camera. 

• Foreground segmentation: Extract the candidate portion of the image to be 
investigated—the region of interest (ROI)—from the image for the object classifier. 

• Object classification: Classify whether ROI contains pedestrian or not. 

• Verification/refinement: Filter false positive and refine segmentation. 

• Tracking: Track/follow the detected pedestrian over time. 

• Application: Apply pedestrian detection in various fields with high-level decisions. 
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Figure 3.1: Architecture of pedestrian detection system [33] 

In our study, extracting the ROI and object classification are emphasized to prove the 
effectiveness of additional information from sensors like radar and LIDAR. Extraction of ROI in 
foreground segmentation is an integral part of the object detection process. Traditional approaches 
in computer vision commonly use the sliding window technique for providing ROI. This technique 
extracts the feature from a partial rectangular region of the image and feeds it to the classifier. 
Then, it slides the rectangular box to process the algorithm again on a different portion of the 
image. Since the sliding window process applies the classification algorithm to a large number of 
rectangular parts, computational efficiency is very low. Also, providing meaningless ROI to the 
classifier can increase the possibility of erroneously identifying a pedestrian where there is not 
one. Therefore, a novel algorithm for searching candidate ROI in the image plays an important 
role in improving speed of detection and decreasing false positive rates. 

The most important step of the pedestrian detection is the object classification phase, which 
includes feature extraction and learning classifier. From the provided ROI, features are extracted 
to produce sufficient information to recognize the target in the image. Previous research efforts on 
finding effective features established the following features: Haar wavelet, SIFT (scale-invariant 
feature transform), HOG (histogram of gradients), edgelet, shapelet, etc. These features are 
extracted based on pixel difference, shape, edge in object, gradients, and other calculations among 
close pixels to capture characteristic shapes and appearances in the image. Then, the extracted 
image features become input for the classifier to learn the parameters, so that it can declare the 
class of the object in the given ROI. These approaches were later improved by the deformable part-
based model approach, which tries to model the object into different parts and build classifiers 
based on those parts. This was a natural approach, as the human body can be divided into several 
parts (like head, body, leg, and arms) and these types of algorithms achieved the best performance 
before the advent of deep-learning-based models. 

In modern object detection and image classification tasks, the Convolutional Neural 
Network (ConvNN) model is widely applied and often achieves state-of-the-art performance. It 
utilizes convolution to perform nonlinear calculation on neighboring pixels to capture underlying 
dependencies between the features. Training and testing require a large amount of data and long 
computation time, but developments in computation power, including multi-core and GPU 
computing, and plentiful sources of images like ImageNet [42] accelerated the development of 
deep-learning-based object detection. A unique advantage of the ConvNN approach is that it can 
extract effective general features from an image without applying a part-based model or other 
complicated calculation process. In practice, an existing pre-trained model can be applied to the 
new object detection task as a feature extraction module and extract general features capturing 
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characteristics of the target in the image. Results and evaluation of pedestrian detection with the 
ConvNN-based approach are presented in [43]. 

Details of the history of algorithmic development in pedestrian detection are well explained 
in the literature [30, 31, 32, 33]. Also, one report focuses on distinguishing bicyclists from 
pedestrians [35], which is actually an important distinction, as the top part of a bicyclist can be 
detected erroneously as a pedestrian. 

3.3 Deep-Learning-Based Algorithm with Sensor Fusion 

3.3.1 Fast R-CNN for Pedestrian and Bicyclist Detection 

To achieve reasonable performance in non-motorized-user detection using cutting-edge 
technology in machine learning, and to investigate the possibility of a real-world application of 
sensor fusion, we selected the Fast R-CNN algorithm as a baseline model. Region-based 
convolutional neural networks (R-CNN) were first proposed in [44], combining region proposals 
and ConvNN. ConvNN has several well-known models that achieve state-of-the-art image 
classification performance, capturing meaningful features from an image while identifying certain 
classes (such as person, car, and bicycle). By applying an algorithm that proposes interesting 
candidate regions in the image regardless of the class of the target, the number of ROIs decreases 
while meaningful regions remain. Since the original R-CNN were computationally expensive, 
improved versions were proposed later and termed Fast R-CNN and Faster R-CNN [45]. 

In this project, Fast R-CNN is used as a baseline model as it is composed of separate region 
proposal stages and ConvNN stages, allowing space for additional sensor information. Faster R-
CNN computes ROI with deep nets by sharing convolutional layers. The structure of Fast R-CNN 
is provided in Figure 3.2, extracted from the original paper. Both the original image and ROIs are 
projected to ConvNN in a fixed scale and output class posterior probabilities and predicted 
bounding-box offsets per class. 

 

 
Figure 3.2: Architecture of Fast R-CNN [44] 

3.3.2 Fusion of Radar with Fast R-CNN 

Before developing a fusion algorithm for object detection, the characteristics of radar need 
to be considered. The following points are well-known advantages and disadvantages of radar. 
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• Advantages of radar 

o Robust against bad weather (e.g., rain and fog) 

o Provide accurate distance and angle 

• Disadvantages of radar 

o Cannot provide enough data points to detect obstacle boundaries 

o Reflections from other objects (humans have low reflectance) 
 
Without considering weather, accurate distance information can play an integral role in 

fusion algorithm. Therefore, it is natural to devise fusion approaches in two ways. 

• Give an accurate distance-based estimate to a vision-based system 

• Decrease the number of candidate ROIs to decrease false positives and speed. 
 
Wan et al. [38] proposed a three-stage fusion strategy for vision and radar detection system. 

The first step is to align and calibrate coordinate systems of radar and vision. The system then 
searches for potential targets from both sensors. Finally, it detects objects on the road from those 
proposed regions. Figure 3.3 illustrates this three-step strategy. 

 

 
Figure 3.3: Fusion with mmWave radar [38] 

In Fast R-CNN code, selective search [46] is selected as the region proposal stage, which 
produces a hierarchical group of pixels based on the predefined similarity. Even though it extracts 
a number of effective ROIs quickly, it requires about 0.5s per image and includes a number of 
false positive regions. Therefore, we also tried to improve the overall system by providing 
additional information from radar in extracting ROIs. As radar can provide accurate distance 
information with higher accuracy in closer objects, ROIs extracted from selective search are 
rejected based on the radar data. A simple diagram of the radar fusion with Fast R-CNN is provided 
in Figure 3.4. 
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Figure 3.4: Architecture of Fast R-CNN with fusion of radar 

3.4 Simulation on KITTI Object Detection Benchmark 

3.4.1 KITTI Object Detection Benchmark 

The most popular pedestrian detection benchmark is the Caltech Pedestrian Detection 
Benchmark [47]. However, it doesn’t include labels for cyclists. Therefore, we decided to use a 
more recent dataset, the object detection dataset of KITTI Vision Benchmark [40], which includes 
7481 training images and 7518 test images. Seven class labels are provided: car, van, truck, 
pedestrian, person_sitting, cyclist, and tram. For evaluation, we considered only car, pedestrian, 
and cyclist, which have a relatively large number of images. One problem in development and 
evaluation of the model comes from the absence of ground truth label in the testing set. Therefore, 
we split the KITTI object detection training set into training and validation sets. In the training set, 
there are annotations of 28,782 cars, 4487 pedestrians, and 1627 cyclists among 7481 images. As 
the KITTI object detection images are extracted from several videos, the splitting procedure 
ensured that no image from the same video was present in both the training and the validation sets. 
The resulting dataset consists of 3471 images in the training set and 3470 images in the validation 
set with a balanced number of annotations between the two sets. 

Finding a public dataset providing both image and radar information is another challenge, 
but the KITTI benchmark provides depth, including point clouds collected from Velodyne LIDAR. 
LIDAR and radar operate differently but provide the same information required by our project: 
accurate distance information. The KITTI benchmark provides the necessary information to 
project LIDAR points onto the 2D coordinates of images, so the calibration process can be 
completed prior to the actual fusion step. 
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3.4.2 Analysis on Region Proposals from Selective Search 

To investigate the weak points of Fast R-CNN with selective search on RGB images, we 
analyzed the ROIs proposed by selected search in several ways. About 1000 ROIs (on average) 
are proposed per image using selective search on the KITTI object detection dataset. When training 
the network, ROI is selected as a positive sample if the intersection over union (IoU)—the overlap 
ratio with a ground truth bounding-box—is at least 0.5. Therefore, the number of images with no 
IoU exceeding 0.5 is counted to see how many images are provided with no additional positive 
ROIs. This value is critical in testing because object detection cannot be processed properly 
without good ROIs; even a perfect object classifier cannot detect an object from the ROI box 
containing almost nothing. As provided in Table 3.1, 27.7% of images in training set and 17.7% 
in validation set are proposing ROIs with only IoU less than 0.5, #(IoU+=0). From this statistic, 
we decided to harness LIDAR in improving the positive ROI proposal ability. By applying 
selective search on dense LIDAR images, 8.9% and 9.7% of images with no positive ROI sample 
(IoU≥0.5) are recovered in the training and validation sets, respectively. 

Table 3.1: Analysis on quality of region proposals provided by selective search (with and 
without LIDAR fusion) on KITTI object detection Train/Validation set 

 Input #(IoU+=0) #(IoU=0) Avg.#ROIs 

Train 
RGB 962 (27.7%) 672.3 1090.6 

RGB+LIDAR 876 (25.2%) 740.6 1278.1 

Validation 
RGB 662 (17.7%) 681.6 1138.9 

RGB+LIDAR 598 (16.0%) 733.7 1323.6 

 
In addition, the number of hard ROIs with no overlapping ground truth per image, 

#(IoU=0), and the average number of ROIs—Avg.#ROIs—are calculated to investigate the 
characteristics and possibility of improvement in Fast R-CNN with LIDAR. About 60% of ROIs 
extracted using selective search do not overlap with the ground truth objects (pedestrian, cyclist, 
and car). This finding provides another direction for research, rejecting ROIs with 0 IoU. In the 
next two sections, different approaches for LIDAR fusion in region proposal stage are suggested 
with experimental results. 

3.4.3 Fast R-CNN and LIDAR Fusion: Simple ROI Rejection 

Our first fusion approach focuses on decreasing false positives by rejecting ROIs with no 
containing object. The LIDAR ‘image’ obtained by projecting LIDAR points into the image plane 
is initially sparse (only a few points have known values). To extract meaningful depth information 
from LIDAR points, the procedures described below and shown in Figure 3.5 are applied to the 
original LIDAR points cloud. 

• Project LIDAR points onto image coordinates with depth information 

• Transform depth values ݀(ݔ, ,ݔ)to have higher weights on closer points መ݀ (ݕ (ݕ = 1/ඥ݀(ݔ,  (ݕ
• Rescale depth values መ݀(ݔ,  to 0~255 range (image value range) (ݕ
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• Use inpaint method to impute sparse depth image 
(Upper part of image is not considered as it is not covered by LIDAR due to the range 
of angle) 

• Detect edges from the imputed depth image using Canny edge detector 

 

 
Figure 3.5: Extraction of depth image and edge detection from sparse LIDAR points 

Based on the extracted edge detection and depth image, useless ROIs provided by selective 
search or another general method can be deleted if the following two conditions hold: 

• If average depth in ROI box on depth image > threshold value (140) 

• If no edge is detected in ROI box on edge detection image 
 
The Fast R-CNN model is trained on the training set and evaluated on validation set with 

average precision criterion. Training and testing of the Fast R-CNN model was conducted on a 
machine with K40 GPU and other factors, hosted by the Texas Advanced Computing Center at 
The University of Texas at Austin. The maximum number of iterations in training is 40,000 and 
we trained two types of deep ConvNN with different depths of the network: CaffeNet (Small) and 
VGG_CNN_M_1024 (Medium). The evaluation images have been divided by KITTI into three 
types: easy, moderate, and hard. Difficulty is defined based on size, occlusion, and other factors.  

Image Source 

Projected LIDAR points depth image 

Depth image a er inpain ng 

Edge detec on on depth image 
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Both models showed reasonable performance in car detection. Results from computer 
vision algorithm and sensor fusion algorithm are provided in Tables 3.2 and 3.3 respectively. The 
evaluation metric chosen was average precision (AP) in percentage, which summarizes the shape 
of the precision/recall curve, and is defined as the mean precision for a set of eleven equally spaced 
recall levels. Also, precision/recall curves for each object class and difficulty are provided in 
Figures 3.6 and 3.7. 

Table 3.2: Object detection result on KITTI validation set with only computer vision 
 Car Pedestrian Cyclist 

Net Iteration Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard 

CaffeNet 

10000 88.11 87.28 78.04 76.84 66.57 60.24 46.67 46.82 45.79 
20000 87.77 87.86 78.61 81.26 70.32 64.47 47.47 48.82 46.82 
30000 90.76 88.55 79.53 81.18 70.76 64.86 51.42 52.92 51.08 
40000 91.12 88.36 79.31 83.76 74.17 68.38 49.31 51.64 49.53 

VGG_CN
N_M_1024 

10000 92.74 88.75 79.21 78.01 67.71 60.86 47.60 50.03 47.82 
20000 91.42 89.02 79.92 82.41 72.69 66.78 54.51 55.37 53.51 
30000 93.94 89.56 80.41 81.44 74.03 68.74 54.24 55.81 53.37 
40000 91.98 89.42 80.27 83.27 75.13 70.21 55.55 55.92 53.64 

Table 3.3: Object detection result on KITTI validation set with LIDAR information 
 Car Pedestrian Cyclist 

Net Iteration Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard 

CaffeNet 

10000 87.37 84.69 75.14 74.89 65.96 59.33 42.23 43.83 40.17 
20000 86.95 86.48 77.33 78.43 69.65 64.02 45.13 47.03 45.54 
30000 87.99 87.93 78.93 82.50 72.11 66.28 46.11 48.49 46.58 
40000 87.65 88.06 79.08 82.42 72.54 67.51 47.39 49.71 47.93 

VGG_CN
N_M_1024 

10000 88.68 87.01 77.09 78.69 68.67 61.61 51.43 51.18 49.70 
20000 91.41 88.15 79.19 82.54 71.62 64.92 48.29 49.83 48.50 
30000 91.38 89.08 80.06 84.02 74.11 68.40 53.84 55.70 53.79 
40000 92.03 89.48 80.39 83.38 73.73 68.32 53.17 55.88 54.01 

 
Compared to car detection, the pedestrian and cyclist detection models performed poorly, 

especially for the cyclist case. There are several possible reasons for the poor performance, but 
one main reason is an insufficient number of images. The car class had the greatest number of 
examples to train on. Although improvement in detection process is expected from sensor fusion, 
the results show similar detection performance with the proposed fusion method. One reason for 
this is the good performance of the selective search algorithm. In fact, an additional rejection 
process could only delete approximately 10% of ROIs proposed by selective search algorithm. 
More advanced fusion algorithms in a different stage, such as the prediction step, can be 
investigated in the future to improve both accuracy and speed to apply the deep learning approach 
to an onboard system. Although LIDAR (or radar) didn’t show effective influence in object 
detection process for the CW/CA system with this approach, it can provide further advantages. For 
instance, position or distance estimation of the pedestrian and bicyclist can be enhanced by LIDAR 
and radar as they can provide more accurate relative distance. However, we could not evaluate this 
idea since there is no dataset providing the true position of the pedestrians or bicyclists recorded 
in the video or image. 
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Figure 3.6: Precision-Recall curve of KITTI object detection on validation set trained with 

CaffeNet (Small size ConvNN). Iteration number 40000. Upper: computer vision only; 
Lower: computer vision+LIDAR (Simple ROI Rejection) 

 

 
 

 
Figure 3.7: Precision-Recall curve of KITTI object detection on validation set trained with 

VGG_CNN_M_1024 (Medium size ConvNN). Iteration number 40000. Upper: computer 
vision only; Lower: computer vision+LIDAR (Simple ROI Rejection) 
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3.4.4 Fast R-CNN and LIDAR Fusion: Supplementary Region Proposal 

Our second proposed model using Fast R-CNN and LIDAR image is provided in Figure 
3.8. In the region proposal stage, ROIs are extracted from RGB images with selective search’s fast 
mode. In this model, a simple inpainting module provided by OpenCV is used to get a dense 
LIDAR image. Bounding-box locations of ROIs are extracted from this inpainted LIDAR image 
using selective search’s intensity mode to deal with gray-scale images. Next, ROIs obtained from 
both RGB and LIDAR images are provided to ConvNN, so that feature vectors can be extracted 
from the RGB image box at the location of those ROIs. Finally, a fully connected neural network 
layer provides class both probability scores from a softmax classifier and more precise object 
locations from a bounding-box regressor. 

To evaluate the effectiveness of newly extracted ROIs from LIDAR in training, results 
obtained from training only with RGB and testing with additional ROIs from LIDAR are provided 
in Table 3.4. Figure 3.9 and Figure 3.10 illustrate the precision-recall curves with CaffeNet on 
object detection, comparing both Fast R-CNN and the proposed model with LIDAR ROIs in 
Train&Test. Our model with CaffeNet outperformed Fast R-CNN with only vision data in both 
cyclist and pedestrian detection. In particular, it improved cyclist detection by 3~4 in terms of AP 
score in percentage and also gave a small improvement in the pedestrian category. Furthermore, 
the positive influence of LIDAR fusion in training a convolutional network can be identified from 
the AP score difference between the two LIDAR support levels: Test vs. Train&Test. However, a 
model based on wider ConvNN architecture, VGG_CNN_M_1024, showed a slight decrease in 
the performance for the most of tasks in pedestrian and cyclist detection. Since overall performance 
with a medium-size convolutional network shows better results, this may indicate the biased good 
performance of ConvNN on vision data. Although more positive ROIs from LIDAR are provided 
to the ConvNN, it is possible that those ROIs have poor characteristics when viewed in RGB space. 
Additional ROIs found in depth image space may become a potential confusion factor for well-
performing ConvNN architectures.  

 

 
Figure 3.8: Architecture of Fast R-CNN with fusion of LIDAR.  

Input data are separated collected from camera and LIDAR to extract region proposals. 
Convolutional network provides fixed length feature vector from those region proposals to object 

classifier and bounding-box regressor to declare class and location of object 
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Table 3.4: Cyclist and pedestrian detection AP (%) of Fast R-CNN with different LIDAR 
support on KITTI validation set.  

Method 
Pedestrian Cyclist 

Easy Moderate Hard Easy Moderate Hard 

CaffeNet 82.01 73.78 67.98 38.24 46.04 44.19 

CaffeNet+LIDAR (Test) 81.60 72.75 66.99 37.29 44.70 43.06 

CaffeNet+LIDAR (Train&Test) 82.73 74.12 67.92 42.69 49.08 47.52 

VGG_CNN_M_1024 84.69 76.50 71.49 51.54 54.03 52.58 

VGG_CNN_M_1024+LIDAR (Test) 83.90 75.67 70.11 49.91 52.79 51.47 

VGG_CNN_M_1024+LIDAR 
(Train&Test) 

84.43 74.76 69.32 52.34 52.49 50.99 

Note: (Test) represents additional ROIs from LIDAR only in Testing and (Train&Test) indicates the model 
trained with those additional ROIs 

 

 
 

 
Figure 3.9: Precision-Recall curve of KITTI object detection on validation set trained with 

CaffeNet (Small size ConvNN). Iteration number 80000. Upper: computer vision only; 
Lower: computer vision+LIDAR (Supplementary Region Proposal)  

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

o
n

Recall

Car

Easy
Moderate

Hard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8 1

P
re

ci
si

on

Recall

Pedestrian

Easy
Moderate

Hard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8 1
P

re
ci

si
o

n

Recall

Cyclist

Easy
Moderate

Hard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Car

Easy
Moderate

Hard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8 1

P
re

ci
si

on

Recall

Pedestrian

Easy
Moderate

Hard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8 1

P
re

ci
si

on

Recall

Cyclist

Easy
Moderate

Hard



25 

 
 

 
Figure 3.10: Precision-Recall curve of KITTI object detection on validation set trained with 

CaffeNet (Small size ConvNN). Iteration number 80000. Upper: computer vision only; 
Lower: computer vision+LIDAR (Supplementary Region Proposal)  

When compared to the car detection results in Table 3.5, the pedestrian and cyclist 
detection models performed poorly, especially for the cyclist case. One main reason is probably 
an insufficient number of images. The car class has the most examples to train on (approximately 
15,000), while the cyclist class contains only 0.8k examples with ground truth data. Nevertheless, 
the effect of LIDAR fusion in the region proposal stage for deep learning can be discovered using 
the reliable car detection results. The use of LIDAR fusion increased result accuracy in easy tasks 
by 2~4 AP, while results for moderate and hard tasks showed almost similar values among three 
different methods. This outcome may imply the supportive power of the LIDAR sensor if vision 
algorithms miss objects that can be easily detected by human drivers. Figure 3.11 provides 
examples of detection results, higher prediction probability or more accurate bounding-box with 
our proposed fusion method. 

Table 3.5: Car detection AP (%) of Fast R-CNN with varying levels of LIDAR support on 
KITTI validation set 

Method 
Car 

Easy Moderate Hard 

CaffeNet 86.15 88.01 79.14 

CaffeNet+LIDAR (Test) 91.04 87.76 78.86 

CaffeNet+LIDAR (Train&Test) 92.02 87.98 79.08 

VGG_CNN_M_1024 90.46 88.92 79.95 

VGG_CNN_M_1024+LIDAR (Test) 93.57 88.75 79.79 

VGG_CNN_M_1024+LIDAR (Train&Test) 92.47 88.99 80.01 
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Figure 3.11: Pedestrian (upper) and cyclist (lower) detection result examples: ground truth 

(red), CaffeNet (blue), and CaffeNet+LIDAR (lime). Numbers indicate predicted class 
probabilities. 
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Chapter 4.  Modeling Uncertainty through Simulations 

4.1 Introduction 

Each device—radar/LIDAR, communication, video cameras—has advantages and 
disadvantages. Furthermore, none will give perfect or complete information. A major open 
question in CW/CA is how much accuracy and information will be necessary to create an effective 
CW/CA system. This question is very difficult to address with real data: we cannot feasibly locate 
collisions among human drivers (before the fact), and prototyping a CW/CA system to test its 
accuracy is highly expensive/dangerous. 

Computer simulation provides an alternative way of measuring the quality of CW/CA 
systems. Simulation provides specification (each vehicle’s motion can be chosen to address a 
certain question) and repeatability (the same scenario can be repeated with small changes, for 
instance with different CW/CA technologies). The disadvantage is that care must be taken to 
ensure that the simulated driving scenarios are realistic, as well as varied enough to reflect all 
dangerous situations for a given driving task. 

We developed simulations for three main scenarios: a) car-following on highways, b) 
unregulated intersections, and c) overtaking maneuvers on rural roads. For each of these driving 
tasks, the goal was to determine which sensor properties or issues can significantly affect the 
performance of a CW/CA system. Four sensor characteristics were studied: 

• Range – the distance and direction at which a communication is capable of detecting a 
vehicle. 

• Packet Loss – this includes any form of temporary communication failure. This is often 
caused in intersections by competition among vehicles for the wavelength. 

• Positioning Accuracy – V2V communication usually relies on GPS to gather the exact 
positions of each vehicle, while sensors such as radar or LIDAR capture the relative 
position of nearby vehicles. 

• Other information – Speed, heading, and acceleration can augment positioning 
information to provide a much more accurate prediction of the vehicle’s trajectory. Other 
potential information is the size of the vehicle. 

 
In addition, sensors with known or measured properties can be compared, to see which 

provides superior accuracy in any situation. 
The popular open-source traffic simulator SUMO [48] was used for initial simulations. 

However, this simulator is fundamentally intended to simulate normal traffic situations and is not 
flexible in allowing vehicles to break driving conventions or collide with each other. Therefore, 
we ultimately created our own simulator, which lacks some of SUMO’s built-in capabilities such 
as large-scale road creation and car-following models but is better at creating and analyzing 
collision-prone simulations. This simulator is publicly available at github.com/utexas-ghosh-
group/carstop/simulator, and will serve as a valuable resource for future CW/CA analysis. 
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4.2 Highway Simulations 

There has already been a significant amount of research on the detection and prevention of 
rear-end collisions, particularly in the context of automatic cruise control. A wide array of on-
vehicle sensors, including LIDAR, radar, and forward-facing cameras, as well as V2V 
communication, are easily capable of detecting a vehicle directly in front of them. Thus, the 
question of whether or not a lead vehicle is detected is less important than how quickly and 
accurately its distance and motion can be determined. The essence of a rear-end collision system 
lies in quickly noticing low-speed or decelerating lead vehicles and determining whether braking 
is necessary.  

In order to quantify the link between sensor quality and CW/CA, simulations of one-lane 
highway driving were constructed. Two separate sets of simulations were conducted: vehicles in 
the first engage in simple, constant-acceleration motion that can be precisely predicted, while 
vehicles in the second have periodic, random changes in speed. These may be mistaken for braking 
or cause misprediction of the vehicle’s future trajectory. Tables 4.1 and 4.2 cover the details of 
each simulation. 

Table 4.1: Details of constant motion simulation 

Environment One straight, single-lane, 1-kilometer road with two vehicles 

 Rear Vehicle Lead Vehicle 

Vehicle Shape 5 m length 

Vehicle 
Initialization 

Position 5 m 55 m 

Speed Uniformly distributed between 55 and 85 mph 

Acceleration Uniformly distributed between -1 and 1 m/s2 

Vehicle Motion Maintains its initial acceleration 

- First, maintains initial 
acceleration 

- A braking acceleration is also 
assigned, uniformly distributed 
between -2 and -9 m/s2 

- A brake time is randomly 
assigned with a mean of 35 
seconds 

- After the brake time (follows the 
braking acceleration) 

Simulation Ends Vehicles collide, or lead vehicle reaches 1 kilometer 
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Table 4.2: Details of randomized motion simulation 

Environment One straight, single-lane, 1-kilometer road with two vehicles 

 Rear Vehicle Lead Vehicle 

Vehicle Shape 5 m length 

Vehicle 
Initialization 

Position 5 m 55 m 

Speed Uniformly distributed between 55 and 85 mph 

Vehicle Motion 

 
Starting with the initial speed, accelerates to a desired speed and stays 
there for a certain time 

Desired Speed 
Normally distributed around the current speed, with a deviation of 10 
mph 

Time Period Exponentially distributed with a mean of 3 seconds 

Acceleration 

If desired speed is higher than 
current speed, uniformly 
distributed between 0 and 1 m/s2 
If desired speed is lower than 
current speed, distributed between 
0 and -1 m/s2 

If desired speed is higher than 
current speed, distributed between 
0 and 1 m/s2 
If desired speed is lower than 
current speed, distributed between 
0 and -5 m/s2 

Simulation Ends Vehicles collide, or lead vehicle reaches 1 kilometer 

4.2.1 Simulated Collision Avoidance Algorithm 

Every vehicle’s exact position, speed, and acceleration are available at every timestep in 
the simulation. To simulate a sensory device, these values can be altered or withheld from the 
CW/CA system. 

• Range: simulate by providing information from a different vehicle only if it is nearby 
and/or aligned in the right direction 

• Inaccuracy: simulate by applying randomized errors to the information. We consider only 
time-varying and zero-mean errors (a.k.a. white noise), though other types of error may 
be possible. 

• Packet Loss or High Latency: simulate by withholding information randomly, or at a 
fixed rate 

 
Trajectory prediction was performed using the assumption of constant acceleration, with a 

Kalman filter for noise mitigation. The algorithm searches for future collisions between the two 
vehicles and warns the driver (or performs another avoidance action, such as braking) once it 
detects a collision. There are two requirements imposed on the CW/CA system: it must predict the 
time of the future collision within 1-second accuracy, and it must predict a collision at least 2.5 
seconds in advance. This number was chosen based on the general consensus that up to 3 seconds 
of braking may be necessary to avoid a collision. Collisions that were predicted to occur more than 
one second earlier than they actually did are designated as Early Warnings. Collisions that were 
predicted to occur over 1 second past their actual occurrence, or not detected until less than 2.5 
seconds before the collision, were designated as Late Warnings. Note that there were many 
simulations in which no collision occurred; in these simulations any warning is considered 
incorrect. 
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Four hypothetical sensing systems were studied, the first being an ideal noiseless case. Two 
levels of noise were applied, one double the other. The values for the highest level of noise were 
chosen from worst-case assumptions about GPS accuracy [49] and speedometer calibration [50]. 
It is worth noting that the field tests conducted with GPS-equipped vehicles demonstrated a much 
higher accuracy than this worst-case. In the final system, the sensor had no noise but instead 
gathered information at 1/5 the rate of the other sensors—a change from 0.1 seconds of latency to 
0.5 seconds. This example studies the relative importance of frequency versus accuracy in 
information retrieval. 

4.2.2 Results of Highway Simulations 

Results for the constant-motion simulations are available in Table 4.3, and results for the 
random-motion variant are in Table 4.4. The main takeaway from these simulations is that, for 
ambitious collision-detection tasks, getting high-accuracy sensor information is much more 
important than gathering information frequently. Also note that CW/CA systems typically fail by 
detecting a collision too early. This is perhaps because a single timestep that erroneously points to 
a collision will immediately cause a warning, while a single timestep that erroneously ignores a 
collision will only delay the detection of this collision. 

The unpredictability of future vehicle actions in the randomized motion simulations 
strongly limit CW/CA, even when perfect sensing is available. We have not verified with real 
data/experiments whether our assumptions on the randomness of vehicle motion, but if they are 
representative of real vehicles’ unpredictable actions, then it will be necessary for CW/CA systems 
to overcome this poor performance. Predicting less far into the future, and accepting imprecise 
predictions of collision time, will help to improve the overall accuracy of the collision prediction. 

Table 4.3: Collision detection for constant-motion simulations 

Sensor Setup 
254 Collision Sims 

146 Safe 
Sims 

Correct 
No 

Warning 
Late 

Warning 
Early 

Warning 
Correct 

Ideal (no noise) 244 10 0 0 146 

Some noise (2m, 2.5 
mph) 

66 42 6 140 138 

Worst Case (4m, 5mph) 64 18 2 170 102 

No noise, 5x latency 170 32 0 32 146 
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Table 4.4: Collision detection for random-motion simulations 

Sensor Setup 
248 Collision Sims 

252 Safe 
Sims 

Correct 
No 

Warning 
Late 

Warning 
Early 

Warning 
Correct 

Ideal (no noise) 116 7 3 122 159 

Some noise (2m, 2.5 
mph) 

81 10 6 155 72 

Worst Case (4m, 5mph) 51 0 10 187 52 

No noise, 5x latency 112 10 19 107 149 
 

4.2.3 Determining the Minimum Required Time for Collision Detection 

As it has been noted that detecting collisions becomes increasingly difficult with higher 
time constraints, it is worth examining how early, and how precisely, a collision must be detected 
for a CW/CA algorithm to be successful. While it is possible to look at real drivers’ responses, 
these responses may be overly cautious due to risk adversity or human PR time limits [51]. An 
alternative is to once again simulate collisions, and focus on finding the time at which an optimal 
avoidance maneuver, such as braking or swerving, is successful. Hillenbrand et al. [52] have 
already developed a simulator framework to determine the necessary time-to-avoid metric. 

4.3 Intersection Simulations 

Avoiding collisions among vehicles entering an intersection is a difficult task for sensors 
to achieve, and a chief motivation for V2V or V2I communication. A simple four-way, single-lane 
intersection was simulated to analyze intersection collisions. There are three different ways vehicle 
routes can conflict in this intersection: straight vehicles can collide from either side, left-turning 
vehicles can collide with a straight oncoming vehicle, and right-turning vehicles can collide while 
merging with a straight vehicle (shown in Figure 4.1). Considering both vehicles’ points of view, 
the task of intersection CW/CA really requires detection of six different types of collisions. 

 

 
Figure 4.1: Three types of collision in a four-way intersection 

We assume no traffic signals or a sign, as a collision is most likely to occur in uncontrolled 
scenarios, such as unprotected left turns, or when one or more vehicles ignore the traffic signals. 
Each vehicle follows the randomized motion model specified in Chapter 4.2. The vehicles also 
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travel along fixed paths in the intersection, so the speed of each vehicle is the determining factor 
in whether or not a collision occurs. 

4.3.1 Analysis of Desirable Sensor Properties 

As in the case of the rear-end collision simulations, the goal of the intersection simulations 
is to determine how characteristics of vehicular sensing (communication included) correspond to 
capabilities in actually detecting collisions. Sensor accuracy is modelled in the same way as in 
Chapter 4.2. The visibility of each sensor is encapsulated in two parameters: the range, which 
requires that the absolute Euclidean distance between two vehicles be small enough, and the field 
of vision, which requires that the detected/sending vehicle be within a certain angle from the front 
of the detecting/receiving vehicle. Wireless communications are attractive because they typically 
have a high field of vision, while radar and cameras must usually necessitate a trade-off between 
vision and range but provide high resolution and accuracy (with the proper processing). 

Table 4.5 shows results from 500 simulations of a vehicle crossing the intersection and 
conflicting with a right-merging vehicle (scenario C in Figure 4.1). Unlike the results from Chapter 
4.2, which specified whether collisions were predicted too early or late, all detected collisions are 
considered correct. Rear-end collisions must be continuously searched for, and whether a CW/CA 
system should intervene depends on how imminent the predicted collision is. For intersection 
maneuvering, collisions can only occur within a short timeframe and any collision is worth 
immediate action (not entering the intersection yet). The timeliness requirement—that a collision 
must be detected at least 2.5 seconds before it occurs—is still maintained. 

Table 4.5: CW/CA performance with varying sensor properties 

 Sensor Properties 
Collision Scenarios 
with Warning 

Safe Scenarios 
without Warning 

Ideal: 0 noise, 100m range, field of vision 180º either side 84% 96% 

0.5 noise 95% 86% 

1 noise 100% 67% 

50 meter range 19% 99% 

25 meter range 0% 100% 

Field of vision 90º (half circle facing forward) 84% 96% 

Field of vision 45º 80% 94% 

Field of vision 22.5º 0% 100% 

 
The most interesting feature of these results is that noise actually improves the rate at which 

collisions are detected, at the cost of predicting many collisions that do not actually occur. Time-
varying noise causes the system to become more paranoid, for reasons explained in the highway 
simulation discussion. It is possible that the physics-based prediction method, which cannot predict 
random changes in speed, frequently misses accelerations or decelerations that cause collisions. A 
method that predicts more cautiously could improve performance overall. The other clear 
takeaway is that the range of a vehicle sensor must be well over 50 m, and that it must detect 
vehicles within at least 45 degrees of its heading, in order to detect conflicting vehicles at an 
intersection. 
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4.3.2 Analysis of Radar versus DSRC Communication 

Two devices, representative of in-vehicle sensing and vehicular communication 
respectively, were simulated to provide a more concrete comparison of the two methods. One is 
the Delphi ESR module [53], which contains both a short-range, wide-angle radar and a long-
range, narrow radar. The other is V2V communication device under the DSRC standard [54]. Both 
devices were assumed to obtain information about their own state through GPS positioning, 
speedometers, and accelerometers. The complete properties of each device, as researched and 
simulated, are available in the appendix. CW/CA was tested using each sensor separately, as well 
as using a fusion of the values given by each.  

The results are shown in Table 4.6 (Figure 4.2 shows which result corresponds to which 
scenario). The worst performance for each sensor, in terms of both missed collisions and false 
detections, is highlighted. The Delphi radar system is clearly insufficient for detecting vehicles 
approaching straight from either side. While it slightly outperforms DSRC in left-turn scenarios, 
it seems that DSRC communication provides far more reliable accuracy in all cases. A fusion of 
the two information-gathering methods does not unilaterally improve performance, but it 
significantly helps in scenario D, the task of collision detection while merging. 

Table 4.6: Intersection collision detection accuracy for specific sensors 

 
Radar (Delphi ESR) 

DSRC (+GPS + Speed + 
Accelerometer) 

Radar & DSRC Fusion 

Crash Safe Crash Safe Crash Safe 

A 46% 96% 91% 92% 92% 91% 

B 34% 93% 96% 81% 96% 82%

C 79% 95% 85% 91% 88% 86% 

D 35% 100% 77% 95% 90% 86% 

E 92% 89% 89% 89% 91% 89% 

F 91% 88% 88% 89% 89% 89% 

 

 
Figure 4.2: Labels of Table 4.6 mapped to their corresponding collision scenario 
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Chapter 5.  Harnessing the Power of Collective Intelligence 

5.1 Introduction and Motivation 

In the not-so-distant future, cars will become autonomous entities with the capability to 
make decisions at the individual-vehicle level to meet a particular passenger’s needs. However, 
autonomous cars will need to work collectively, collaborating so that all the vehicles in a network 
safely reach their destinations in the shortest possible time. One key research challenge is learning 
how autonomous vehicles navigate intersections. Intersections, especially in large urban centers, 
are areas of high risk for all drivers. Traffic lights at these intersections are programmed to control 
and route traffic safely. However, it is possible that when the entire fleet of operating vehicles 
becomes equipped with communication equipment, traffic lights will become obsolete. In this 
chapter, we consider how automobiles could be designed to communicate with one another and 
sense the appropriate time to execute an intersectional shift, judge the speed at which to cross, and 
comprehend the proximal distance of other vehicles without the need of traffic control devices or 
human drivers to make safe decisions.  

We adapted the Collective Intelligence (COIN) [55] framework to design an algorithm 
allowing a fully automated car to navigate safely and timely to their destination through an 
intersection. Managing a multi-agent environment is often very labor-intensive, as it requires 
tuning the interaction between the agents to make sure that they are cooperative. These techniques 
normally result in non-robust systems with limited applicability. The COIN framework is very 
useful when 

• There is little to no centralized communication or control, and 

• There is a provided world utility function that rates the possible histories of the full 
system [55]. 

 
It is easy for an agent to learn to optimize its personal utility; the crucial problem is how to 

design mechanisms that derive benefit from the personal utility functions of the agents so that they 
“cooperate unintentionally” and optimize the global utility. In large multi-agent systems, it is 
common to design a global utility function where each agent has its own private utility function 
and the objective of the system is to optimize the global utility. 

The main objective of using COIN for a large system of agents is to autonomously learn a 
set of actions in specific situations that maximize the individual private utility functions along the 
global utility, which essentially means that private utility functions need to be designed in such 
way that their maximization will maximize the global utility function. In this framework, the 
agents are trained to make independent decisions while automatically ensuring that overall 
decisions benefit all vehicles. 

5.2 Intersection Traffic Management using COIN 

Our agents in this framework are fully autonomous cars that know their location and 
destinations and communicate (perfectly) through DSRC with all nearby vehicles, gathering the 
approximated location and speed of each vehicle. These agents are trained in a simulation 
environment. It is possible to simulate realistic, less-than-ideal communication and sensing for 
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each vehicle, but this has not been explored yet because developing cooperative automation for 
vehicles is a complex task, even with ideal communication. They ideally should learn to get to 
their destination by avoiding accidents, keeping a safe distance to the car ahead of them, and also 
traverse the intersection in a timely manner and without causing issues for the other cars in the 
environment. COIN is addressing this optimization problem by decomposing it to many sub-
problems, each of which can be solved individually (car level instead of intersection level). Using 
this approach does not mean that those problems are independent of one another, but that each 
individual solution is a contributor to solving the system-level problem. 

5.2.1  System Evaluation 

The system performance evaluation function that we use in this section focuses on avoiding 
collisions, directing vehicles to their destination if it is safe to do so, keeping safe distance to the 
vehicle ahead, reducing the number of unnecessary maneuvers, and doing all this in a timely 
manner. The global utility function, G(z), is the sum of these terms. G(z) more precisely can be 
expressed by its components as follows: 

1. Speed measure: A negative reward that penalizes slower vehicles more 

o D(z)=∑ ∈ௌ(ݖ)ܦ (ݖ)ܦ	 = 2(ܵ( ܼೕ) − ܵ( ܼଵ)	)/	ܵ( ܼଵ) 
o Where ܵ( ܼೕ) is the speed of car j at the instance of t 

o Where ܵ( ܼଵ)	is the max speed allowed on that road  
 

2. Following the correct path to the destination:  

o F(z)=∑ ∈ௌ(ݖ)ܨ (ݖ)ܨ ,  = ∑ −2ܷ(ܼೕ − ܼଵ)௧  

o Where ܼೕ is the path that car j takes at instance t 

o Where ܼ is the correct path to destination for agent j  
 

3. Proximity to the closest agent based on the condition: 

o P(z)=∑ ܲ(ݖ)∈ௌ  , ܲ(ݖ) = ∑ −4ܷ(ܼೕ − ܼ)௧  

o Where ܼೕ is the proximity to another agent ahead of agent j at time instance t  

o Where ܼ is the safe distance for any agent at certain position with respect to its 
neighbouring agents 

4. Collision reward: 

o C(z)=∑ ∈ௌ(ݖ)ܥ (ݖ)ܥ ,  = ∑ −1000ܷ(ܼೕ)௧  

o Where ܼೕ is the collision incident found at instance t for the agent j 

5. Intersection priority reward to prevent deadlocks: 
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o I(z) = -12 if the vehicle enters the intersection when there is an immediate conflict 
with another vehicle already in the intersection, and if this other vehicle’s road 
currently has priority 

o I(z) = 0 in any other case 
 

The function U in all the equations above is the step function that equals 1 when its 
argument is greater or equal to zero, and has a value of zero otherwise. S is the set of the all agents 
and z is vector of state space and action of all the agents. Having defined the components of the 
global utility above, the global utility function is: 

 
G(z)= D(z)+F(z)+P(z)+C(z)+I(z) 

 
The global utility function is designed to penalize each outcome differently based on its 

seriousness, with collisions having a much higher penalty than all other results. 
D(z) provides the proximity of the running car to the maximum speed allowed on the road 

at each instance of time and charges the agent with the fractional amount of deviation from the 
max speed at that instance. F(z) negatively rewards the cars that are not in the path to their 
predetermined destinations. P(z) decreases reward of agents that choose to get close to the other 
cars, and C(z) is a one-time heavy negative reward that the agent is charged at the time of collision.  

5.2.2  Agent-Based Intersection Traffic Management 

The multi-agent approach to management we present is predicated on agents evolving 
independent solutions that maximize the system evaluation function. Encompassing a realistic 
driving environment, and ensuring that the agents can be trained with reasonable computational 
resources and time, are also concerns. This section describes significant elements of our COIN 
system. 

State Space 

One of the biggest challenges for COIN is to pick the state space cleverly enough that it is 
not so large as to make the learning task intractable, but is inclusive enough as to always give the 
necessary information to make a decision. One natural choice of the state space is the detailed 
location of each agent on the road and their speed (agents’ trajectories), but it is easy to see that 
this agent space is far too large. The full state-space environment we have picked for our system 
is available in the appendix. 

Agent Action 

The agent’s action each step consists of changing speed, changing lane, and turning (at 
the intersection entrance only). 

• Speed={+10,-10,0 (Km/h)},  

• Lane Change={Left, Right, None}and  

• Turn={Left, Right, Straight} 
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Agent Reward Structure Selection 

We use the following difference evaluation function: 
 

Ri= G(z)-G(z- zi +ci) 
 
where zi is the state space/action of agent i. Here z contains all components of all agents’ state and 
action at each time instance, and those z components that are affected by agent i (zi) are replaced 
with the fixed constant ci. In this case, the simplest ci is taking the agent i “off the grid” and 
reevaluating the global reward without the presence of agent i. There are two advantages to using 
a difference function like this. The first effect is on learnability, as the second term removes a 
significant portion of the impact of other agents in the system, which makes the evaluation function 
more agent-sensitive. Secondly, it affects the “factoredness”: since the second term does not 
depend on the actions of agent i, any action by agent i that improves Ri also improves G. 

Agent Evolution Algorithm Selection 

The objective is that each agent learns to make decisions at any given state, which will lead 
to the best system evaluation G for that specific state. Here we assume that each agent will have a 
reward function (as described in the previous section) and will aim to maximize its reward using 
its own reinforcement learner. For complex delayed-reward problems, relatively more 
sophisticated reinforcement learning systems, such as temporal difference, may have to be used. 
However, due to our agent selection, the use of state space design and agent action set (described 
earlier) is needed to utilize immediate rewards. As a consequence, a simple table-based immediate 
reward reinforcement learning approach is used. Our reinforcement learner is equivalent to an α-
greedy Q-learner with a discount rate of ϒ=0. 

At every time instance an agent takes an action and then receives a reward evaluating that 
action, with which the Q table is being updated to represent the value of taking that action in that 
state, as follows: 

 
Q0(s,a) = (1 − λ)*Q(s,a) + λ*R(s,a) 

 
where λ is the learning rate. At every time step the agent chooses the action with the highest table 
value with probability 1 − α and chooses a random action with probability α. In the experiments 
described in this paper, α is equal to 0.33 and λ is equal to 0.5. The parameters were chosen 
experimentally, though system performance was not overly sensitive to these parameters. As an 
alternative, we also have used the following update for Q-Learning:  

 ܳ(ݏ, ܽ) = (1 − ,ݏ)ܳ(ߣ ܽ) + ߣ ቀܴ(ݏା) + శݔܽ݉ ,ାݏ)ܳ ܽା)ቁ 

λ is the learning rate 
s+ is the next state, i.e. the state that was reached by performing action a 
 

Based on our experiences for described State-Action space, the former Q-learning update 
formulation is more effective and converges faster during the training. 
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5.2.3 Intersection Right-of-way 

A common challenge in multi-agent systems is that all agents learn to act the same way, 
when in some scenarios it is necessary for two agents in similar situations to each choose a different 
action. For the task of autonomous navigation, there is the possibility that two or more vehicles 
may detect a potential collision with the other(s) and stop immediately. This is especially 
problematic if each vehicle stops while in the intersection, preventing other vehicles from 
progressing, as shown in Figure 5.1. 

 

 
Figure 5.1: Example of intersection deadlock between three vehicles 

This issue was addressed by assigning each road a priority, which varied over time. 
Vehicles that caused dangerous situations when entering from a low-priority road were penalized 
more harshly than those performing the same actions in a high-priority road. This is somewhat like 
a ‘soft’ traffic light, by which vehicles are encouraged (but not required) to follow a right-of-way 
in some situations. 

5.3 Results of Collective Intelligence Training and Simulations 

5.3.1 Training Specific Maneuvers 

In this section, we describe a specific scenario for training and testing, providing some 
snapshots of simulations as well as statistical results obtained during both training and testing. 

The best way to test the learning capabilities of this system is to see if it picks up the correct 
timing of a given maneuver. Figure 5.2 depicts vehicles performing left turns, in conflict with 
vehicles coming from the other side—in other words, an unprotected left turn. After less than 100 
simulations, vehicles learn to wait when their path would cause a collision with an oncoming 
vehicle, as well as to speed up or slow down in response to the other vehicles taking the same 
route.  
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Figure 5.2: Snapshot of left-turn-training simulations 

The results in this section are presented for a symmetrical four-way intersection; training and 
testing was completed for the cars that are making left turns at the intersection against oncoming 
traffic. First, the training was performed for a specific scenario with a constant number of cars, 
fixed time spacing between the cars, and fixed starting speed. The scenario was designed so that 
every two cars mutually meet at the intersection and learn how to avoid a collision as they proceed 
to their destination. The training converged quickly for this specific scenario. 

The testing results are presented in Table 5.1. Testing results show a learned model in 
action, unlike training results, which are gathered while the model learns and thus should clearly 
perform less well. Without the existence of competing algorithms, the training results provide the 
simplest baseline to check against. For static situations (where the training examples match the 
testing examples), vehicles learn to totally avoid causing accidents while still following their 
desired path. Adding some randomness to the starting time between vehicles and without any 
further training, the number of incidents increases to 5% (rows 3 and 5 of Table 5.1). This is still 
unacceptable for actual use, but provides clear proof that the algorithm is learning basic collision 
avoidance. By comparison, the number of collisions during training exceeds 20%. 

In the next step, training was completed for two-way traffic in the four-way intersection 
with a random number of cars, random starting time, and random starting speed. Testing was 
performed with similar a setup and the same factors being randomized. The number of unwanted 
incidents under 80 episodes of training increased, but the increased episodes in training ultimately 
resulted in a decrease in the number of incidents in testing, as more possible scenarios had been 
trained for (row 7 of Table 5.1). 
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Table 5.1: Results of COIN simulations on a two-way intersection 

Scenarios 
Number 

of 
episodes 

Number 
of 

passes 

Average 
travel 

time per 
car  

Number of 
wrong paths 

taken by 
cars 

Number 
of 

collisions 

% of 
wrong 
path 

% of 
collision

1- Static Training 
Scenario 

30 180 20.31 39 64 0.217 0.356 

2- Static Testing for 
Exact Same Training 

Scenario 
80 480 16.02 0 0 0 0 

3- Static testing + Some 
Minor Randomness in 

Scenario 
80 492 16.10 19 18 0.039 0.037 

4- Randomized 
Training Scenario 

80 532 21.85 84 112 0.158 0.211 

5- Randomized Testing 
Scenario 

80 556 18.84 15 32 0.027 0.058 

6- Randomized 
Training Scenario More 

Episodes  
120 1548 27.39 97 445 0.063 0.287 

7- Randomized Testing 
Scenario Using 

Training with More 
Episodes 

80 717 19.86 28 34 0.039 0.047 

 
The second testing scenario allows traffic to enter from two sides, but travel in any 

direction, as shown in Figure 5.3. While intersection deadlocks are unlikely, this scenario covers 
most possible forms of collision, including lane-change conflicts. As shown in Table 5.2, 300 
intersection simulations, involving over 6,000 vehicles, were necessary to train the model to a 
functional level, though there is evidence that further training will further improve the model. 
Training for a full four-way intersection is currently underway. 
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Figure 5.3: Screenshot of two-entry intersection simulations 

Table 5.2: Results of COIN simulations on a two-entry, four-exit intersection 

Number 
of 

episodes 

Number of 
vehicles 

Average 
travel time 

per car  

Number of 
wrong paths 
taken by cars 

Number of 
collisions 

% of 
wrong 
path 

% of 
collision 

40 1000 11.1 13 24 0.013 0.048 
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Chapter 6.  Developing a Framework for Joint Millimeter Wave 
Communication and Radar 

6.1 Introduction 

Vehicular communication and radar sensing are the two primary means of using radio 
frequency (RF) signals to improve traffic safety and efficiency. So far, we have developed 
advanced CW/CA techniques assuming the information from automotive sensors and vehicular 
communication is given. For the rest of sections in this report, we will focus on these two 
techniques and develop advanced vehicular communication systems using mmWave. 

Automotive radars on a source vehicle derive information about the environment (e.g., 
location and velocity of the surrounding target vehicles) by first sending a special waveform, 
typically a frequency-modulated continuous waveform (FMCW), and then receiving and 
processing the reflected echoes [56, 57]. Long-range radar (LRR) operates in the 76–77 GHz 
mmWave band and is used for adaptive cruise control. In the newer 77–81 GHz mmWave band, 
medium-range radar (MRR) will be used for cross traffic alert and short-range radar (SRR) will be 
used for parking aid and pre-crash applications. LRR is used for adaptive cruise control, MRR is 
used for cross traffic alert, and SRR is used for parking aid and pre-crash applications. The radars 
provide a high-resolution point-map for continuous automatic detection, but use proprietary 
waveforms and are expensive. They are already deployed in many luxury vehicles [5]. 

V2V communication allows vehicles to achieve real-time cooperative detection and 
ranging using standards-based waveforms and protocols [58]. DSRC is a low-latency wireless 
communication protocol that operates using a WLAN-based physical layer in the 5.9 GHz 
microwave band [9]. It is used to send short, low-latency messages about the status of a vehicle 
for applications such as cooperative forward CW and cooperative adaptive cruise control [58]. 
DSRC can only support data rates in the range of 3–6 Mbps in practice [9]. The low data rate may 
restrict novel applications and enhanced active safety functions, which would require sharing raw 
sensor data at low latency [12, 59]. One such application is vehicular cloud-based autonomous 
driving, where vehicles generate around 1 Gbps of data from sensors [60].  

One potential means to realize the next generation of high-data rate connected vehicles is 
to exploit the large bandwidths available in the mmWave spectrum. There are several ways to 
connect vehicles using the mmWave band [61]. A modification of the mmWave consumer WLAN 
standard, i.e., IEEE 802.11ad, is one of the means for high data rate V2V connectivity. The 
forthcoming mmWave 5G standard could be another way to provide vehicular connectivity either 
directly using device-to-device or through future employed cellular infrastructure. The 
effectiveness of vehicular communication is, however, dependent on its wide-scale deployment.  

Although both radar and communication technologies have applications to driver-assist 
and autonomous driving, they have their own domain-specific challenges and limitations. A joint 
communication and radar system that shares the same spectrum and hardware will, however, lead 
to an increase in the penetration rate of communication and radar in commodity vehicles. It will 
also reduce size and cost of the hardware with efficient spectrum usage and enhanced security. 
Additionally, using both technologies simultaneously in an integrated unit will allow vehicles to 
reap the advantage of each technology (e.g., radar for non-communicating traffic and V2V for 
distances beyond the line-of-sight constraints of radar) and enhance their performance by sharing 
information with each other.  
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In the past half-decade, a number of approaches for joint radar and communication that 
exploit existing radar and communication waveforms have been considered [62]. The approaches 
can be mainly classified into a joint system, where a single-carrier or a multi-carrier waveform is 
used for both communication and radar simultaneously, and a time-domain duplex system, where 
radar and communication will operate in different time cycles. In most of the earlier approaches, 
the waveforms are designed in a non-standardized fashion. We, however, leverage the mmWave 
WLAN standard for developing a joint vehicular communication and automotive radar system. In 
particular, we develop an IEEE 802.11ad V2V-radar, which is an IEEE 802.11ad-based joint V2V 
communication and LRR paradigm that can be implemented with a low-cost IEEE 802.11ad chip. 
Our work in [63] is the first to propose the idea of using IEEE 802.11ad for a joint V2V and 
automotive radar system. This approach motivates a common standard for automotive radar and 
vehicular communications at the mmWave band. Indeed, the most prevalent V2V standard, DSRC, 
is based on IEEE 802.11p, which is an evolution of a WLAN standard known as IEEE 802.11a. 
The most similar work to ours is [64], which analyzed the IEEE 802.11p V2V communication 
standard for automotive radars. IEEE 802.11p, however, operates at 5.9 GHz and not at the 
mmWave frequency bands. Using a mmWave standard will provide significant advantages in 
terms of higher data rates for communication and better accuracy/resolution for radar operation 
than IEEE 802.11p. The mmWave standard will help simultaneously achieve ultra-low latency 
and high range of operation for automotive safety applications with minimal hardware size and 
cost.  

6.2 Radar System using Low-Frequency WLAN Signals 

6.2.1 Forward Collision Vehicular RADAR with IEEE 802.11 

In the beginning of this project, we expected that mmWave equipment would be available 
during the project. The equipment, however, is not ready for commercialization from any vendor 
yet. Since mmWave equipment is not yet available, we explored the experimental development of 
a joint radar and communications framework using low-frequency WLAN signals. Our goal was 
to develop a radar system that integrates directly into the DSRC standard, enabling joint radar and 
communication on any vehicle equipped with DSRC. A feasibility demonstration was performed 
using existing IEEE 802.11 devices with minimal modification through algorithm processing on 
frequency-domain channel estimates. The results of our work showed that our solution delivered 
similar accuracy and reliability to mmWave radar devices by increasing allocated spectrum from 
the 10 MHz DSRC standard to 20 MHz, indicating significant potential for industrial devices with 
joint vehicular communications and radar capabilities at DSRC frequencies. 

6.2.2 Prototype 

Initially, we tested the performance of this design via simulation. Results demonstrated 
accuracy up to 5 m for a 10 MHz channel and meter-level accuracy for a 20 MHz channel. We 
extended the results of our simulation to a radar and communications framework prototype (Figure 
6.1) using a universal software radio peripheral (USRP) reconfigurable I/O transceiver, which 
enabled us to directly extract IEEE 802.11 channel estimates. We also used two broadband patch 
antennas for our transmitter and receiver, and developed our code using a desktop machine. 
Processing was performed in real time on the desktop machine using data from the radio 
transceiver, enabling single-target range detection. 
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Figure 6.1: IEEE 802.11 joint radar and communications link setup for measurements.  

During measurements the antennas were not as close as in the configuration shown. The edges 
of these antennas were separated by a minimum of 0.5 m. 

6.2.3 Results 

We tested our prototype for single-target localization at a local parking lot, using a 2002 
Toyota Camry as the target vehicle. Initially, we positioned the prototype at a distance of 30 m 
from the target vehicle. To collect measurements, we transmitted IEEE 802.11 beacon messages 
every 250 milliseconds. After a sufficient number of channel estimates were obtained at 30 m, we 
moved the prototype 5 m towards the target. This process was repeated until measurements were 
obtained at all 5m target distance increments. Our results are shown in Figure 6.2. The results show 
that the developed radar system using WLAN signals can achieve m-level range estimation 
accuracy. 

 

 
Figure 6.2: RMS range error using IEEE 802.11 packets in a 20 MHz channel with one target. 

The target has variable range from 5 to 30 m. 

(m)

(m
) 
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6.3 MmWave Joint Radar and Communication System 

6.3.1 Framework for Joint System 

In this section, we formulate the conceptual framework for the joint automotive radar and 
V2V communication system based on the IEEE 802.11ad standard. First, we discuss the traffic 
scenario of interest and the transmit signal model. Then, we model the one-way communication 
channel and the two-way radar channel to derive the received signal model for both communication 
and radar systems. 

We consider a traffic scenario where a source vehicle sends a waveform, s(t), to a target 
vehicle using the IEEE 802.11ad-based V2V communication service. The IEEE 802.11ad 
waveform may get reflected back from the target vehicle and the other surrounding scatters (e.g., 
trees, road, and the other remote vehicles) as shown in Figure 6.3. Then, the source vehicle receives 
these reflected echoes from the scatterers and derives information about the target vehicle. We 
assume a multiple antenna joint communication-radar system with NT co-located transmit (TX) 
antennas and NR co-located receive (RX) antennas mounted on all vehicles under consideration. 
The TX and the RX antenna arrays on the source vehicle are closely separated such that both arrays 
will see the same location parameters (e.g., azimuth/elevation angle and range) of a scatter. We 
also consider that the TX/RX beams of the source vehicle are pointed towards the target vehicle 
without blockage and that the 3-dB beamwidth of the TX and RX beams are narrow during 
mmWave V2V communication [65]. Although a very narrow beamwidth will lead to less clutter 
interference and long range of operation, it can yield poor performance with vehicle mobility and 
blockage. Hence, we assume that the TX/RX beams are narrow enough to meet the link budget 
requirement of V2V communication but are wide enough to illuminate all the scattering centers of 
a far target vehicle within their resolution. Therefore, we represent the target vehicle as a single 
point target, as in [66, 67]. 

 

 
Figure 6.3: Illustration of a traffic scenario for joint automotive radar and vehicular 

communication systems using IEEE 802.11ad 

We now consider a single coherent processing interval (CPI) of T=MKTs duration, which 
is composed of M frames of an IEEE 802.11ad single carrier physical layer (SCPHY), each of K 
samples with a sampling interval of Ts, as shown in Figure 6.4. An IEEE 802.11ad SCPHY frame 
is composed of a short training field (STF), a channel estimation field (CEF), a header, and data 
blocks. The preamble of the IEEE 802.11ad frame is composed of the STF and the CEF and is 
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generated from a 128-sample Golay complementary pair (GCP) of two 128-chip Golay 
complementary sequences (GCSs), termed Ga128 and Gb128, as shown in Figure 6.5 and Figure 
6.6. The STF is used in communication for frame synchronization and frequency offset estimation. 
The CEF is used to estimate the communication channel parameters and to indicate the modulation 
of the packet (e.g., SCPHY or OFDM [orthogonal frequency division multiplexing] physical 
layer). 

 

 
Figure 6.4: Illustration of a CPI that consists of M frames, each of K samples.  

The end positions of the STF, the CEF, and the header are Ks-1, Kc-1, and KH-1, respectively. 

 

 
Figure 6.5: Extracted short training field for a SCPHY frame 

 

 
Figure 6.6: Extracted channel estimation field for a SCPHY frame 

The composite ambiguity function of the 128-sample GCP, shown in Figure 6.7, motivates 
its suitability as a radar waveform [68]. The zero-Doppler cut of this function indicates that the 
GCP has a perfect auto-correlation with no sidelobe along the zero Doppler axis. This 
characteristic makes it ideal for target detection in radar applications, which does not exist in 
FMCW signals typically used in LRR [69]. This figure also shows that the GCP is less tolerant to 
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large Doppler shifts. These sequences, however, seem to be appropriate for LRR due to its low 
Doppler shift requirement. 

 

 
Figure 6.7:  (a) The composite ambiguity function of the 128-sample GCP used in the preamble 

of IEEE 802.11ad. (b) The zero-Doppler cut of the composite ambiguity function of (a). 

The mmWave sensing channel during a CPI is composed of a few scattering centers [70] 
that represent reflections from the target vehicle and the other surrounding objects. The vehicular 
channel has a key characteristic of temporal variability and inherent non-stationarity [71]. The 
description of channel in azimuth and elevation directions is also critical for mmWave arrays used 
in vehicular radar and communication applications [19], [26]. Therefore, we model the mmWave 
channel for a single CPI as a doubly selective (time- and frequency-selective) mmWave channel 
with a few Np dominant paths and 2D TX and RX steering vectors. Each pth path is described by 
five physical parameters: its azimuth and elevation angle of arrival (AoA) pair (ϕR,p,θR,p), AoD 
pair (ϕT,p,θT,p), delay τp, complex gain αp, and Doppler shift ϑp.  

Without loss of generality, we assume that the line-of-sight two-way path from the source 
vehicle to the single point target (the target vehicle that is also the user of the V2V communication 
link established by the source vehicle) is represented by the uth path. The point target is assumed 
to be at an arbitrary range ρu(t) with a two-way round-trip propagation delay of τu(t) from the 
reference point on the TX array of the source vehicle to its reference point on the RX array. In 
vehicular applications, a target vehicle is a slowly moving target compared to the speed of light c 
and hence, a quasi-stationary assumption can be made. This assumption implies that the range 
change during the short path of any particular point in the waveform from the transmitter to the 
receiver is negligible. With this assumption, the two-way round-trip propagation delay at time t is  

 

      (6.1) 
 
We assume that the target velocity relative with respect to the source vehicle is small enough to 
allow for constant location, that is, constant ρu(t) and τu(t) (we drop t from ρu(t) and τu(t) because 
they are assumed to be constant for the time of interest), and azimuth and elevation angle pair 
(ϕu,θu), during the CPI [27]. We also assume that the target vehicle has an arbitrary relative radial 
velocity of v with respect to the source vehicle. It remains constant within the CPI because of small 
acceleration. The Doppler shift, therefore, can be represented by 
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     (6.2) 
 
where λ is the carrier wavelength. In the channel model, we only consider far targets whose ρu(t) 
is large compared to the distance change during the CPI. Hence, we assume a constant complex 
gain αu for the target vehicle [73]. 

IEEE 802.11ad supports multiple antenna communication with a single data stream. Spatial 
multiplexing as found in IEEE 802.11n/ac is not supported. Therefore, we incorporate the TX/RX 
analog beamforming vectors into the baseband model even though the actual beamforming may 
happen at an intermediate frequency or RF.  

We assume that the source vehicle attempts to align its TX/RX beams towards the target 
vehicle using the IEEE 802.11ad beam training approach while establishing the communication 
link between them. Hence, once the link has been established, the TX and RX beams of the source 
vehicle are assumed to be pointing towards the (ϕu,θu) direction with a small beam alignment error. 
At the same time, the RX beam of the target vehicle will also point towards the (ϕu,θu) direction 
with some beam misalignment to receive the V2V communication signal from the source vehicle. 
Assuming same IEEE 802.11ad-based beamforming codebook at the source and the target 
vehicles, wT and wR denote the TX and RX analog beamforming vectors both at the source vehicle 
and also at the target vehicle that depends on (ϕu,θu) direction. 

The received communication signal at the target vehicle due to the one-way path depends 
on one-way target delay τu/2, target range ρu, Doppler shift corresponding to the relative velocity 
of the source vehicle with respect to the target vehicle – ϑu , and receiver noise. The echo reflected 
from the target vehicle, y(t), when received at the source vehicle, depends on two-way target delay 
τu/2, target round trip distance 2ρu, Doppler shift corresponding to the relative velocity of the target 
vehicle with respect to the source vehicle ϑu, and receiver noise. This received radar signal, y(t), 
also depends on the radar cross section of the target vehicle and is affected by the unwanted clutter 
from the surrounding environment and self-interference factor due to the inherent full-duplex 
assumption at the source vehicle. We assume that the full-duplex system we are using has a good 
enough self-interference cancellation mechanism; therefore, we can ignore self-interference 
effects inherent in the joint system. Due to variability of small-scale fading with scatter 
distribution, location and orientation, it is reasonable to assume that the small-scale fading 
corresponding to the communication channel is independent of the small-scale fading 
corresponding to the radar channel and the receiver noise. For each received frame, the phase shift 
corresponding to the training sequence is very small due to small relative velocity of the target 
vehicle; therefore, we can assume the channel to be time invariant within a single frame. 

6.3.2 Proposed Receiver Processing Techniques for Enabling Radar Functions  

We consider three primary types of radar processing: 1) vehicle detection using a constant 
false alarm rate algorithm; 2) range estimation using a time synchronization technique; and 3) 
velocity estimation using a frequency synchronization technique.  

Radar processing exploits the special structure of GCP/GCS in the preamble of 802.11ad 
frames and leverages the communication preprocessing to detect and estimate its parameters of 
interest, as shown in Figure 6.8. Indeed, the algorithms used in the radar module are based on the 
pulse-Doppler radar processing and developed by extending the methods used in communication 
techniques over a single frame to multiple frames [74]. This approach enables the realization of a 
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joint vehicular communication and radar paradigm using a conventional low-cost IEEE 802.11ad 
scheme with minimal receiver modifications. 

 

 
Figure 6.8: The flowchart represents the processing techniques for target detection and 

range/velocity estimation using IEEE 802.11ad V2V-radar.  
The processing techniques leverage the special structure of GCS and GCP present in the STF 

and the CEF of multiple frames in one CPI for desired automotive radar performance. 

In IEEE 802.11ad, the training sequences of a single frame are used for time and frequency 
synchronization and channel estimation [75]. This is achieved in several steps: 1) coarse time 
synchronization based on preamble detection techniques using the STF; 2) frequency offset 
estimation using the STF; 3) fine time synchronization using the CEF symbol boundary detection 
and the STF/CEF peak detection techniques; and 4) channel estimation using the CEF.  

The first step of the preprocessing is to detect the IEEE 802.11ad frame using the STF. The 
frame start detection technique applies a threshold on the normalized auto-correlation of the 
received STF to coarsely estimate the starting sample of the preamble. The fine range estimate of 
the time-delay can be obtained either by using an amplitude-based method or a phase-based 
method. The amplitude-based method estimates the fine time-delay, by detecting the peaks of 
cross-correlation between Ga128 and multiple GCSs in the STF sequence. The amplitude-based 
fine timing synchronization can be performed by applying the peak detection technique on the 
CEF instead of the STF in the coarse range estimation. Both the peak detection methods perform 
well at low signal-to-clutter-plus-noise ratio (SCNR). The timing synchronization can also be fine-
tuned by performing phased-based symbol boundary detection (SBD) using the CEF [73]. This 
method, however, does not perform well in the presence of Doppler shift at low SCNR. After the 
fine time synchronization, we extract the received CEF signal to estimate the channel using a 512-
sample GCP.  

Reflected echo from the target vehicle is detected using the constant false alarm detection 
based on the typical WLAN non-zero channel tap detection [76]. In this technique, the decision is 
based on a simple thresholding function based on constant false alarm probability PFA and the 
variance of the clutter-plus-noise received at the source vehicle. Figure 6.9 shows the probability 
of detection PD using different false alarm probabilities. It indicates that PD grows with increasing 
PFA. For a PFA of 10-4, we achieve radar detection rates greater than 90% above the received SCNR 
of 0 dB. 
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Figure 6.9: Probability of detection using different constant false alarm detection rates 

The relative velocity of the target vehicle is estimated by applying (6.2) with the calculated 
Doppler frequency of the target echo. To estimate the Doppler shift corresponding to the target 
vehicle, we use the least squares (LS)-based frequency-offset estimation method over 
single/multiple frames. The resolution and accuracy of frequency-offset estimation will be 
significantly enhanced when we choose to use multiple frames (similar to pulse-Doppler radar) as 
compared to a single frame (traditionally used in frequency synchronization algorithms of a 
standard WLAN receiver) because of larger integration time. The theoretical performance of LS-
based frequency-offset estimation can be evaluated using Cramer Rao lower bound (CRLB) of the 
velocity estimate. The CRLB expresses a lower bound on the variance of velocity estimators based 
on the preamble of M frames. If the CRLB is above the LRR’s desired mean square error (MSE) 
for velocity estimation, then it indicates that the requirement for LRR velocity accuracy cannot be 
met in any case.  

Figure 6.10 shows MSE of the estimated relative velocity using the STF of a single frame 
and using the preamble of two frames with K = 41285 symbols. The performances of velocity 
estimation techniques increase linearly (in dB scale) with the SCNR. The LS-based estimation 
technique that we have used is comparatively better than the one proposed in [75]. The accuracy 
of LS-based estimation techniques is very close to its CRLB bounds. Using double frames enables 
us to achieve much better velocity estimation accuracy than using a single frame for all SCNR 
values. At low SCNR (less than 10 dB), however, even the use of double frames does not enable 
us to achieve the desired velocity accuracy of 0.1 m/s. 
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Figure 6.10: MSE of the velocity estimation using the STF of a single and the preamble of the 

double frames. The numerical results of proposed estimation techniques closely match to 
the CRLB bounds. 

For unambiguous velocity estimation, the accuracy and resolution of velocity estimation 
grow with the increase in the total training sequence duration and the numbers of frames within a 
fixed size CPI. The number of communication data symbols, however, decreases with an increase 
in the training sequence duration. Thus, there is a system trade-off between target velocity 
estimation accuracy and communication data rate for the number of frames within a CPI. 

Once the target vehicle is detected, the range of the target cell from the source vehicle is 
calculated from (6.1) by estimating the corresponding delay-shift. The range estimation algorithms 
are applied on the STF and the CEF and can be categorized into two main types: coarse range 
estimation, using a frame start detection estimate with an error of less than 30 m, and fine range 
estimation based on SBD boundary detection, and the STF/CEF peak detection technique based 
on the fine time estimate with an accuracy of 0.1 m, which meets the LRR specifications [77]. The 
theoretical CRLB bound for velocity estimation signifies that it is possible to achieve cm-level 
resolution/accuracy using a single frame of IEEE 802.11ad with a bandwidth of 2.16 GHz for 
SCNR above 0 dB. We can also see from the numerical results in Figure 6.11 that we can achieve 
the desired range resolution/accuracy of < 0.1 m using the time-delay estimate calculated via 
communication-based processing. 

 

 
Figure 6.11: MSE of the range estimation using the preamble in a single frame based on coarse 

and fine range estimation algorithms 
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Using numerical simulations, we compare the performance of various proposed range 
estimation algorithms and the CRLB bound using a single frame, as shown in Fig. 2.11. The 
desired range MSE for automotive radars is 0.01m [77]. We observe from Figure 6.11 that the fine 
range estimation achieves the desired accuracy using the STF/CEF peak detection for SCNR above 
0 dB, and using the CEF symbol boundary detection for SCNR above 6 dB. The poor performance 
of range estimation using the CEF symbol boundary detection at low SCNR can be attributed to 
the fact the performance of the phase-based estimation gets affected by Doppler shift. The figure 
also shows that the performance of the frame start detection using the preamble degrades due to a 
constant threshold, which does not adapt to the increasing SCNR. The amplitude-based peak 
detection technique using the STF/CEF, however, meets the desired automotive range accuracy of 
0.1 m using a single frame without incurring significant complexity. 

6.4 Summary 

In this chapter, we demonstrated feasibility for IEEE 802.11-based radar in a vehicular 
environment. Our design can be implemented on existing IEEE 802.11 WLAN devices with 
minimal modification to the physical layer, supporting a secure and extremely cost-effective 
design. Although our study was performed using a 20 MHz channel, it is expected that with a more 
refined algorithm, we can achieve meter-level accuracy with only 10 MHz of bandwidth, the 
standard for DSRC. This may lead to direct integration of IEEE 802.11p-based radar into the 
DSRC protocol. Additionally, the results in this study provide insight on various techniques and 
improvements that can be made for a joint radar and communications framework at mmWave 
frequencies. The details of this work can be found in [78]. 

For mmWave spectrum, we developed an automotive radar system using the low-cost IEEE 
802.11ad standard, which exploits mmWave. We showed that the proposed radar system can 
achieve the performance of a commercial automotive LRR with minimal modifications on the 
IEEE 802.11ad system. To be specific, the proposed radar system can simultaneously achieve 0.1 
m range and 0.1 m/s velocity estimation accuracies with Gbps data rates. The details of this work 
can be found in [79]. Using obtained results, we will build prototypes to demonstrate our joint 
mmWave radar and communication system.  
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Chapter 7.  Optimizing the Joint Waveform to Meet Different 
Objectives 

7.1 Introduction 

Surface transportation safety can be enhanced by the use of wireless technologies, mainly 
automotive radar and V2V communication. Automotive radar, which requires line-of-sight, 
provides a high-resolution low-latency approach for automatic detection and ranging of the local 
area around the vehicle. V2V systems can establish collaborative communication between vehicles 
that may be hundreds of feet away to achieve a real-time cooperative detection and ranging. By 
mutually sharing their sensor data, especially lightly processed radar, camera, and LIDAR 
information, vehicles can overcome the line-of-sight limitation of radar and improve their 
awareness of the surrounding environment. However, exchanging raw data could easily require 
hundreds of megabits per second or even gigabits per second, which becomes a challenging task 
for current V2V communication systems. This is the main thrust of the developed framework on 
mmWave wireless technologies, which aim to provide a high data rate for communication with 
low latency as well as better accuracy and resolution for radar operation.  

Due to the limited spectrum resources of wireless systems, exclusive allocation of the 
spectrum resource for either communication or radar may neglect the benefit of the other 
technology. Combining both functionalities on a common hardware platform brings the 
advantages of efficient spectrum usage, reduced cost and size, and better performance for the 
vehicles of tomorrow. A number of joint communication-radar approaches have been considered 
that exploit the existing radar/communication waveforms. However, these waveforms are usually 
ad-hoc designed and are not completely integrated as they rely on time [80], frequency [81], or 
code division ideas [82]. In a fully integrated communication and radar system, optimizing 
parameters to meet different performance objectives is an important part of having a timely and 
meaningful wireless system for transportation safety purposes. Depending on the traffic scenarios, 
we investigate how the resources, such as spectrum and power, can be dynamically allocated to 
maintain a balanced performance trade-off between the communication and radar functionalities. 

7.2 Defining Different Traffic Scenarios 

In this section, we present three different traffic scenarios: at urban intersections, at rural 
roadways (specifically during passing maneuvers), and at university-based or similar locations 
with substantial pedestrian and bicycle traffic. In all of these instances, the optimal fusion of 
information from these different sources will be a key issue. These scenarios can be used to 
benchmark different joint waveform optimizations for communication and radar. The optimization 
will have to be dynamic based on vehicular and communication traffic. For example, if many 
vehicles have communication and radar capability, their signals may create interference. This 
means that additional considerations are needed to provide both communication and radar 
efficiency. For example, resources might have to be shared among different neighboring vehicles 
in a distributed fashion. Such functions are common in wireless communications (a key role of the 
medium access control protocol) but have never been developed for a waveform that also includes 
radar. 
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Scenario 1: At urban intersection 
Among all traffic accidents in Texas, intersection and intersection-related crashes make up 

about 40% of total crashes. In addition, 60% of serious crashes (those involving one or more 
fatalities) occur at urban intersections. It is important for a joint communication and radar system 
to prevent collisions even if this leads to uncomfortable driving situations. For example, sudden 
stops or accelerations between two vehicles based purely on radar systems can have a cascading 
negative safety impact on other vehicle movements. In the context of urban intersections, there are 
a variety of geometric roadway configurations, such as three-way angular, four-way perpendicular, 
and four-way angular. Radar system alone will not be able to detect vehicles coming from other 
traffic directions, if the radar signal and echo are blocked by buildings and other vehicles. This is 
where communication may play a more important role than radar due to the possible non-line-of-
sight propagation of communication signals. In this case, more information can be derived from 
communication through other vehicles to expand the sensing range and understand the situation 
several car lengths ahead. Therefore, more resources should be devoted to communication and the 
joint waveform should be optimized to maintain a certain minimum communication throughput. 
The radar functionality of the joint waveform would bring additional benefits for collision 
detection. The comparison between radar and communication systems for this scenario is 
summarized in Table 7.1. 

Table 7.1: Requirements for joint radar and communication waveforms at urban 
intersections 

 Purpose 
Required 
Resources 

Required Performance 

Radar 
Line-of-sight 
detection of traffic 

Moderate Short range detection of traffic 

Communication 
Expansion of 
sensing range with 
shared radar signal 

High 
Detection of potential hazards at 
several car lengths ahead or traffic 
coming at different directions  

 
Scenario 2: At rural roadways 

The rural setting represents an extreme case where there are few vehicles around. 
Therefore, the majority of system resources might be devoted to radar to look for pedestrians, 
bicycles, or animals. Nevertheless, communication might play an extremely important role to 
prevent collisions in overtaking maneuvers on rural roads, which accounts for 82% of head-on 
fatal collisions in Texas. While radar can prevent collisions between a passing vehicle and other 
vehicles, the resulting abruptness of preventive maneuvers can cause dangerous downstream safety 
consequences.  

In the context of passing maneuvers as illustrated in Figure 7.1, while the radar 
functionality of the car in front (passed car) is pivotal to detect the incoming traffic, the follow-up 
car (passing car) may have its radar signal blocked. Using the long-range communication link 
between vehicles, the passing car can avoid a collision course with the incoming traffic well before 
a collision is indicated on its radar alone. Information about different types of vehicles (including 
trucks) and vehicle kinematics, alternative roadway sight distance configurations, as well as 
different types of drivers (in terms of age, height, PR times, etc.) can also be transferred via the 
communication link and considered in the decision-making process of the overtaking maneuver. 
Although the V2V communication burden may not be as high as in urban intersection scenario, 
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the rural roadway scenario requires a reliable warning signal mechanism for the passed car. Thus, 
the joint waveform should be optimized to reserve the communication bandwidth for longer range 
“talk,” improve reliability, and reduce false alarms. The comparison between radar and 
communication systems for this scenario is summarized in Table 7.2. 
 

 
Figure 7.1: The passing maneuver on a rural road where the radar signal of the passing car is 

blocked by the car in front (passed car). In this case, the communication link between the 
passed car and the passing car can help the latter to detect the incoming traffic. 

Table 7.2: Requirements for joint radar and communication waveforms at rural 
roadways 

 Purpose Required Resources Required Performance 

Radar 
Detection of 
incoming traffic 

High (passed car) 
Low (passing car) 

Long range detection of 
incoming traffic 

Communication 
Expansion sensing 
range with shared 
radar signal 

High (passed car and 
passing car) 

Reliable transmission and 
reception of warning 
signals 

 
Scenario 3: At locations with substantial pedestrian and bicycle traffic 

Pedestrian and bicyclist fatalities make up about 14% of all Texas roadway fatalities, which 
is a significant fraction of all fatalities. Locations with high levels of non-motorized traffic should 
be particular opportunities for reduction of pedestrian and bicyclist fatalities using radar systems. 
Since pedestrians and bicyclists will not have the communication gadgets installed on vehicles, 
radar is essential to improve the collision detection and avoidance. Fortunately, mmWave radar 
provides a high-resolution (range, velocity, and angle), low-latency, compact (small antenna), and 
single packaging solution to meet the requirements of driver assist functions. In this context, the 
joint waveform in the mmWave band must be also optimized for multi-target detection with 
tracking capability. The V2V communication functionality of the joint waveform, however, should 
not be neglected, as it allows the vehicles to overcome the blockage of radar signal, thus facilitating 
collaborative detection and tracking of multiple pedestrians and bicycles several car lengths ahead. 
The comparison between radar and communication systems for this scenario is summarized in 
Table 7.3. 

 

 

 

 

! 
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Table 7.3: Requirements for joint radar and communication waveforms at locations with 
substantial pedestrian and bicycle traffic 

 Purpose 
Required 
Resources 

Required Performance 

Radar 
Detection and tracking of 
pedestrian and bicycle traffic

High 
Multi-target detection with 
tracking capability 

Communication 
Expansion sensing range 
with shared radar signal 

Moderate 
Reliable sharing of radar 
signal for collaborative 
detection and tracking 

7.3 Optimizing between Data Rate and Radar Performance 

We develop a joint framework of LRR and V2V communication at 60 GHz by exploiting 
the special preamble structure (repeated GCSs) of an IEEE 802.11ad SCPHY frame. This 
framework leverages the signal processing algorithms used in the typical WLAN receiver for time 
and frequency synchronization to perform radar parameter estimation. In particular, we consider a 
traffic scenario where a source vehicle sends M multiple frames to a target vehicle using the 
SCPHY layer of IEEE 802.11ad-based V2V communication service within a CPI. The IEEE 
802.11ad waveform may get reflected back from the target vehicle and the other surrounding 
scatterers (e.g., trees, road, and the other remote vehicles). Then, the source vehicle receives these 
reflected echoes from the scatters and derives information about the target vehicle. In this 
framework, there is a system trade-off between velocity estimation accuracy and the 
communication data rate of the target vehicle for the number of frames within a fixed size CPI. 

For unambiguous velocity estimation, the accuracy and resolution of velocity estimation 
grow with the increase in the total training sequence duration and the numbers of frames within a 
fixed size CPI. This dependence can be evaluated using the MSE of the velocity estimation for the 
P sample preamble across a variable number of frames, M, within a fixed size coherent processing 
duration. Increases in M will leader to a longer duration of the training sequence and thus decrease 
the MSE of the velocity estimation, i.e., better radar performance. 

The number of communication data symbols, however, decreases with an increase in the 
training sequence duration; therefore, it decreases with an increase in M. This dependence can be 
evaluated using achievable data rate as the performance metric of the communication system.  

To evaluate the dependence of velocity estimation on the number of frames within a CPI 
and investigate its simultaneous effect on the communication data rate of the system, we have 
performed simulations over several CPI intervals with a varying number of frames at 10 dB 
received SCNR at the source vehicle, as shown in Figure 7.2.  
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Figure 7.2: Trade-off between communication data rate and velocity estimation for a fixed size 

CPI. By increasing the duration of training symbols within a CPI, velocity estimation 
becomes more accurate with reduced data rate. 

We consider the radar cross-section of the target vehicle as 10 dBsm (decibel relative to 
one square meter) [83], receiver noise figure as 6 dB [84], transmit EIRP (equivalent isotropically 
radiated power) of 82 dBm (the average EIRP for 60 GHz devices with antennas located outdoors 
[85]), waveform bandwidth of 2.16 GHz [86], and a target range of 60 m (which falls within the 
typical span of long-range radar range specifications [87]). For a fixed CPI duration, the number 
of frames is varied from one to the maximum limit within a CPI. We observe from the simulations 
that as the number of frames increases within a fixed CPI, the communication data rate degrades 
while enhancing the velocity estimation accuracy. In linear scale, the communication data rate 
decreases linearly with a linear increase in the number of frames. In logarithmic scale, the velocity 
estimation decreases linearly with logarithmic increase in the number of frames. The decrease in 
velocity estimation is, however, steeper than the growth in communication data rate for a given 
increase in the number of frames. In spite of this trade-off, we observe that it is indeed possible to 
achieve Gbps communication data rate and cm/s-level accurate target velocity estimation 
simultaneously.  
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7.4 Summary 

In this chapter, we identified three key traffic scenarios, i.e., urban intersections, rural 
roads, and at locations with substantial pedestrian and bicycle traffic, where we can harness the 
full benefit of the joint radar and communication systems. Because the performance metrics of 
radar and communication systems are different, joint mmWave radar and communication systems 
should be optimized depending on specific traffic scenarios. The optimization can be performed 
by dynamically allocating resources, e.g., time, spectrum, and power, to the system that needs 
better performance. We investigated the impact of frame (i.e., time) allocation on the performance 
of radar and communication systems in this study. The details of this work can be found in [79]. 

The dynamic allocation of radar frames and data communication frames becomes 
especially beneficial at the urban intersection scenario, where more data frames can be allocated 
to meet the high performance requirement of communication. Further optimization between radar 
and communication performance is possible depending on other traffic scenarios. For example, at 
rural roadways where LRR is needed, dynamic power allocation allows the joint system to transmit 
radar signal at higher power and expand the radar detection range. At locations with substantial 
pedestrians and bicycles, the waveform optimization with radar signal, for example, using FMCW, 
is important to improve the capability of multi-target detection. We will further investigate 
possible optimization techniques for the joint mmWave radar and communication systems. 
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Chapter 8.  Incorporating Antenna Arrays 

8.1 Introduction 

Antenna arrays are important in mmWave communication systems. The antennas allow the 
transmitter and receiver to form sharp beams with high gain. This is useful in providing higher 
throughput and lower interference in communication, and also aids in determining position in 
radar. There are many trade-offs to be made in antenna arrays development. For example, a vehicle 
may point its beam to another vehicle to communicate more data, but scanning that beam around 
may lead to better detection about the environment. Another important aspect of antenna arrays is 
the trade-off between power consumption and performance. The use of a mixture of analog and 
digital beamforming, which is often called hybrid beamforming, can dramatically reduce the power 
consumption associated with beamforming in the communications application. 

In this chapter, we proposed possible antenna array designs and developed hybrid 
beamforming algorithms for the joint mmWave radar and communication system. Since 
communication systems may require channel state information between the vehicle that is 
transmitting and the vehicle that is receiving the information, we also developed algorithms to 
acquire mmWave channel state information using lower frequency channel information. 

8.2 Alternate Array Design 

In a joint mmWave radar and communication system, it is essential to have a large number 
of antennas at the transmitter and the receiver (in communication perspective) to form sharp 
transmit and receive beams and establish good link quality. Due to small wavelengths of mmWave 
frequencies, it is possible to deploy a large number of antennas in a small form factor. Because of 
the large number of antennas, however, it may not be cost efficient to have high-quality signal 
processing components for all antennas. Therefore, analog beamforming (with one RF chain) and 
hybrid beamforming (with a few RF chains where the number of RF chains is far less than that of 
antennas) have drawn a significant interest for mmWave communication systems. There has been 
much work demonstrating that the performance of hybrid beamforming is similar to that of full 
digital beamforming. We refer to [83] for details about general mmWave communication 
technologies.  

For the joint mmWave radar and communication system, there should be multiple 
mmWave transceivers to overcome the blockage of mmWave signals by nearby vehicles or even 
pedestrians, as shown in Figure 8.1. This concept is similar to current automotive radar systems. 
For example, a vehicle may have mmWave transceivers on front and rear bumpers and sides for 
V2V and radar, and on its rooftop for V2I communications, because infrastructure will be placed 
in high positions to ensure good link conditions. The blockage effect in the mmWave V2V scenario 
might be mitigated by using the gap under vehicles as waveguard, which allows a vehicle to 
communicate with vehicles other than adjacent ones. Although blockage is usually considered a 
defect, it can be beneficial for mmWave V2V communications because the effect (combined with 
narrow mmWave beams) can reduce inter-vehicle interference and enable better spatial packing. 
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Figure 8.1: The conceptual figure of mmWave vehicular communications. Multiple mmWave 

transceivers are deployed on a vehicle to simultaneously establish V2V and V2I 
communication links. 

It is well known that antenna array is strongly related to beamwidth in mmWave. With 
more antennas, it is possible to design beams with small beamwidths and focus transmit and 
receive power to certain directions. These directional beams can increase the channel coherence 
time, which is defined as the time duration over which the communication media between the 
transmitter and the receiver is considered to be not varying [88], [89]. In lower frequencies, the 
incoming signals arrive uniformly over all the 360-degree angular range, which holds under rich 
scattering environments with omni-directional reception. To compensate for the increased path 
loss due to the shrinking antenna size at the mmWave frequencies, transmit and receive 
beamforming with directional beams, which is often called beam alignment, is widely accepted as 
a necessary component in enabling mmWave communication systems [90]. With beam alignment, 
the incoming signals at the receiver are limited to a given range of angles. Each angle can be 
mapped to a Doppler frequency shift, which also means that the Doppler frequency shifts are 
limited to a certain frequency range with directional reception. Since the average frequency shift 
can be corrected using standard frequency offset correction methods, this leads to reduced Doppler 
spread and thus an increased coherence time. The conceptual example of this phenomenon is 
shown in Figure 8.2. This property has been exploited in [89] and [91] to mitigate the Doppler 
spread. Small beamwidths, however, will lead to frequent beam misalignment between the 
transmitter and the receiver due to the movement of vehicles. Therefore, there is a trade-off 
between the channel coherence time and the received signal strength in vehicular environments. 

We analytically modeled the received signal using directional beams and analyzed the 
trade-off in terms of beamwidths. The results are plotted in Figure 8.3. The plot “Exact” is the 
result without any approximation, the plot “Approximation” is our derivation, and the plot “No 
angular difference” is the case without taking any mobility into account. It is clear that “Exact” 
and “Approximation” follow the same trend of coherence time, i.e., there is an optimal beamwidth 
that maximizes the coherence time. The result also shows that considering mobility is critical to 
accurately analyze the coherence time in terms of beamwidths. These results will guide us in 
designing beams, and eventually antenna arrays, in the joint mmWave radar and communication 
system. Full derivations and more simulation results can be found in [92]. 



63 

 
Figure 8.2: Doppler effect in terms of beamwidths 

 

 
Figure 8.3: Channel coherence time vs. beamwidth using directional beams 

8.3 Beamforming Design 

Phased array antennas consist of multiple-antenna systems where multiple antenna 
elements can be configured in different ways to, for example, allow beam scanning over a wide 
area or form sharp beams. The direction of the beam can be electronically steered, thus eliminating 
the need for any mechanical rotation. These capabilities made phased arrays favorable in a broad 
range of applications like V2X communications and MIMO radar [9], [93]. 

Traditionally, each antenna element was allocated a complete RF chain in conventional 
MIMO systems. The high power consumption of the mixed signal components at the mmWave 
band, however, makes it difficult to allocate a complete RF chain for each antenna. To reduce the 
power consumption, hybrid analog/digital precoding architectures, which use a small number of 
RF chains and divide the precoding/combining processing between RF and baseband domains, 
have been proposed for MIMO mmWave systems [94–97]. The RF precoding circuit was 
implemented using networks of variable phase-shifters in [94–96], and switches in [97]. Despite 
their good performances, these techniques were primarily designed for cellular systems and 
generally require large number of RF chains to realize good beam patterns. While a larger number 
of RF chains might be justifiable for cellular systems, the high power consumption and cost of 
these arrays might limit their use in vehicular systems.  
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Here, we propose a new hybrid analog/digital architecture that requires fewer RF chains 
but yields results comparable to those of fully digital solutions, developing an algorithm that 
designs the beamforming/combining vectors for this architecture. 

8.3.1 Hybrid Beamforming Architecture and Precoder Design 

The proposed mmWave transceiver architecture consists of  antennas and  chains, 

as shown in Figure 8.4. Each RF chain is connected to the  antennas via a network of phase-

shifters and antenna switches. The antenna switches are used to modify the array geometry and 
improve the far-field radiation pattern. Unlike the work in [93–96] that uses only a network of 
phase-shifters, and the work in [97] that only uses one antenna switch per RF chain (without phase-
shifters), we will show that the combination of phase-shifters and antenna switches will result in a 
performance comparable to fully digital solutions with fewer RF chains than required by phase-
shifters-only and switches-only based hybrid architectures. To design the hybrid precoder, we first 
design the optimal digital precoder for a desired range of angles. In the second step, we design the 
hybrid analog/digital precoder (with a few RF chains) that approximates the fully digital precoder.  

 

 

Figure 8.4: Proposed hybrid analog/digital architecture with  antenna and <<  RF 
chains 

Digital precoder design 

Let the set ℛ define the range of target angles. The unconstrained digital beamforming 
vector (or precoder) is designed such that the beamforming gain is maximized at the desired range 
of angles and minimized in all other directions. This can be easily achieved using LS techniques, 
as shown in [94]. 

 
Hybrid analog/digital precoder design 

Due to hardware constraints, the transmitter may not be able to apply the unconstrained 
entries of the digital precoder to form its beams. As discussed in [94–96], the number of RF 

chains , and the RF phase shifters are usually quantized to b bits. One possible solution 

is to use the limited number of RF chains together with the quantized phase-shifters to form a 
hybrid analog/digital design. To design the hybrid precoder, we set , where the 
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subscript h refers to hybrid precoding,  is an  analog RF precoder, and  is an 

 digital (baseband) precoder. Consequently, the design of the precoder is accomplished by 

solving Eq. (8.1), 

(8.1) 
 
where is an  matrix that carries all set of possible analog beamforming vectors due to 

the angle quantization constraint on the phase shifters. Given the matrix of possible RF 
beamforming vectors , the above optimization problem can be reformulated as a sparse 

approximation problem that is solved using matching pursuit algorithms as proposed in [94] to 

estimate the analog and digital precoders and . One drawback of this solution is that the 

columns of the matrix are constrained by the number of the phase-shifter quantization bits. 

This results in spectral spillover by the grid mismatch. The grid mismatch arises because the 
unconstrained digital precoder is designed using a matrix  with an infinite number of columns 

(or RF beamforming vectors). This grid mismatch destroys the sparsity of the above optimization 
problem and, as a result, requires the number of RF chains to scale with the sparsity of the system 
in order to obtain good beam patterns. 

 One way to minimize the grid mismatch is by letting the analog beamforming matrix  
carry multiple beamforming vectors that cover wide sector. This can be achieved by modifying the 
array geometry using antenna switches as shown in Figure 8.4. Based on the target beamforming 

gain and covering sector, the number of antennas can be selected as , 

where  is the length of angle interval . This choice of ensures that the number of 
antennas increases for narrow beam applications, and decreases for wide beam applications. Since 
wider beams do not necessarily require high angular resolution, the number of antennas can be 
reduced to result in an RF matrix with “virtually grouped” columns. This reduces the sparsity of 
the optimization problem and as a result, the required number of RF chains. 

In Figure 8.5, we plot several beam patterns with different beamwidths when using a fully 
digital architecture and a hybrid architecture. As shown, the resulting beam pattern when using the 
hybrid architecture with just five RF chains is similar to that achieved by the fully digital 
architecture. Figure 8.5(c) shows that the hybrid architecture with fixed array size does not fully 
cover the desired angular range, especially for wide beams; nonetheless, the pattern can be 
improved by increasing the number of RF chains. For narrow beams, both hybrid architectures 
provide similar beam patterns when compared to the fully digital architecture. The reason for this 
is that only a few columns of the RF matrix could be used to approximate a narrow digital beam. 
However, multiple columns, and hence more RF chains, are required to approximate wider digital 
beam patterns.  
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(a) Digital beamforming covering 180-, 90-, and 15-degree sectors 

 
(b) Hybrid beamforming with antenna switches and phase-shifters covering 180-, 90-, and 15-degree sectors 

 
(c) Hybrid beamforming with phase-shifters only covering 180-, 90-, and 15-degree sectors 

Figure 8.5: An example of resulting beam patterns for a 32-element uniform linear array 
antenna when using: (a) a fully digital architecture, (b) a hybrid architecture with 

antenna switches and  RF chains, and (c) a hybrid architecture without antenna 

switches and  RF chains 

8.4 MmWave Channel Acquisition 

In mmWave communications, configuring the large antenna arrays, which may be done 
through channel estimation or beam training, is a significant source of overhead [83], especially 
in high mobility V2X applications. The training overhead can be reduced by leveraging the 
structure in channel, e.g., sparsity [83]. Estimating the mmWave channel or the spatial correlation 
of mmWave systems is challenging as the channel is not directly accessible due to hardware 
constraints. 

MmWave V2X systems will likely be deployed in conjunction with lower frequency 
systems, such as DSRC, to provide wide area control signal. We exposed what might be learned 
about the mmWave channel from sub-6 GHz channel measurements. Specifically, we investigated 
the possibility of using the spatial correlation matrix of a sub-6 GHz system as out-of-band side 
information about the mmWave channel. The spatial correlation matrix can be used to reduce 

RF 5N =

RF 5N =
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training overhead [98], and may help in the precoder and combiner design [99]. Translating 
statistical information from one frequency to another appears in work on beamforming reciprocity 
in frequency division duplex systems [100–104]. These studies highlight that although the 
propagation channels in uplink and downlink are not reciprocal, the spatial information is 
consistent [100]. Several strategies have been proposed to translate spatial correlation, based on 
least squares [100], [102], and minimum variance distortion-less response [101]. In [105], a spatio-
temporal correlation translation strategy was proposed based on two-dimensional interpolation. 
These translation strategies work under a key assumption about the congruency (or agreement) of 
spatial information at the two frequencies under consideration. This is reasonable when the duplex 
gap is small (e.g., 190 MHz in [103]); however, it was not clear to what extent the spatial 
information of sub-6 GHz and mmWave agree. Furthermore, sub-6 GHz to mmWave correlation 
translation involves antenna arrays with different number of elements, requiring a transformation 
from a smaller to larger spatial correlation matrix. 

We proposed to use spatial correlation of a sub-6 GHz channel as a side information for 
mmWave channel estimation. With the help of ray-tracing, we showed that many but not all paths 
at sub-6 GHz and mmWave overlap, and hence sub-6 GHz spatial correlation can be leveraged for 
mmWave channel estimation. Second, we proposed two translation strategies for the specific case 
of a narrowband single-input multiple-output (SIMO) system model with comparable apertures at 
sub 6-GHz and mmWave. The first translation strategy extends [55] to the case where the known 
and translated correlation matrices differ in size. The second translation approach is based on the 
parametric estimation of the mean AoA and angle spread, and subsequently using them in 
theoretical expressions of spatial correlation to complete the transformation.  

Previously out-of-band measurements had been proposed and validated for mmWave beam 
steering in indoor 60 GHz WiFi [106]. The directional information was retrieved from legacy WiFi 
to reduce the beam steering overhead for the 60 GHz WiFi, and the results confirmed the value of 
out-of-band information. We, however, focused on the congruency in the spatial correlation 
(targeting specifically the V2I setup), whereas [106] considered primarily the line-of-sight 
channels.  

8.4.1 Spatial Congruency in Sub-6 GHz and mmWave 

We used 3D ray-tracing to demonstrate spatial congruency in sub-6 GHz and mmWave 
channels. Ray-tracing has been reasonably successful at predicting site-specific mmWave 
propagation in the past [107]. We used Wireless Insite® software [108], to simulate the V2I 
communication setup shown in Figure 8.6. There are two lamp posts separated by 30 m, serving 
as infrastructure. Further, there are two vehicles, a car equipped with five antennas, and a van with 
four antennas. Multiple antennas (at different locations) on the vehicles are meant to provide 
diversity to prevent the dramatic effects of blockage. 

In Figure 8.7, we show the fraction of paths with same AoA as a function of frequency. 
We considered 25 strongest paths at each frequency, per transmitter/receiver pair (i.e., from each 
lamp post to every antenna at car and van). We used five logarithmically spaced test frequencies 
from 900 MHz to 900 GHz, with 900 MHz as the base case (i.e., the commonality of angles at 
different frequencies is tested against angles at 900 MHz). We averaged the fraction of common 
paths (truncated to degree level) across both lamp posts and across all antennas on both vehicles. 
From the result, we see that as expected, the fraction of common paths decreases with increased 
frequency separation. That said, the percentage of paths with same angles at frequencies far apart 
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is still over 90%. This implies good agreement in spatial information, and we exploit this 
agreement through spatial correlation translation from sub-6 GHz to mmWave. 

 

 
Figure 8.6: The simulated ray-tracing setup 

 
Figure 8.7: The fraction of common paths as a function of frequency 

8.4.2 Correlation Translation from Sub-6 GHz to mmWave 

Consider a sub-6 GHz communication system, and an mmWave communication system 
such that the two systems have co-located horizontally aligned receiver antenna arrays, and further 
that the physical size is same for both arrays, as shown in Figure 8.8. The comparable physical 
size for both arrays is well motivated—due to smaller wavelengths at mmWave, more antennas 
can be packed into the same space. 

 

 
Figure 8.8: A depiction of collocated Sub-6 GHz and mmWave antenna arrays  
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Based on this configuration and the spatial similarity as demonstrated in Sec. 8.4.1, we 
proposed to use two correlation translation strategies (discussed next). In the following 
discussions, we assume that the waves impinging on the arrays have a certain mean AoA and also 
a certain angle spread around the mean. Note that given the antenna array configuration, the 
correlation of the channel is completely parameterized by the mean AoA and angle spread. 

 
Non-Parametric Approach 

In prior work [100–104], the same array was used for both frequencies; thus, the only 
source of discrepancy was the slight differences in the wavelength of the received signals in the 
uplink and the downlink. In our case, the differences come from both the wavelength and 
differences in the number of elements (more elements in the mmWave array). Along these lines, 
the first translation approach is a generalization of [105], and we call it the non-parametric 
approach. The idea is to first note the Toeplitz structure (and Hermitian symmetric nature) of the 
correlation matrix, as this permits us to estimate only a few unknowns. Then, based on the observed 
values of the correlation via sub-6 GHz spatial correlation matrix, we interpolate and/or extrapolate 
to get the mmWave correlation matrix. The correlation matrix is typically complex and there are 
two possibilities to interpolate complex numbers: (i) interpolate the real and imaginary parts and 
(ii) interpolate the magnitude and phase functions separately. In this work, we 
interpolate/extrapolate the magnitude and the phase of the correlation separately. 

 
Magnitude: The correlation magnitude is typically smooth and spline interpolation 
suffices for interpolation. Good quality extrapolation, however, is more challenging. Based 
on our experiments, we concluded that the quadratic spline provides good extrapolation 
accuracy. The quadratic spline extrapolation, however, requires end point information, 
which we propose to estimate by linear extrapolation truncated at zero. 

 
Phase: Note that the phase can be unambiguously determined only in the interval (-π ,π ). 
Note that, however, the phase increases linearly and hence the jumps of 2π can be observed 
when the phase leaves this interval. For interpolation of phase, the actual linearly increasing 
phase needs to be reconstructed. Hence, the observed phase is first unwrapped and then 
linearly interpolated (or extrapolated) before it is re-sampled for correlation translation. 
Based on the phase structure of the correlation, the phase interpolation should have little 
error if done correctly. 
 
After the magnitude and phase are translated, they can be combined to obtain the translated 

matrix. The translated matrix, however, may lack positive-semidefiniteness, i.e., a defining 
characteristic of correlation matrices. Therefore, given the matrix obtained by the aforementioned 
translation strategy, we project it onto the set of the positive definite matrices, to obtain the final 
translated covariance matrix.  

 
The Parametric Approach 

As a second translation strategy, we proposed a parametric approach. Note that the 
correlation is a function of only a few parameters. As an example, these parameters could be the 
mean AoA of the incoming waves, and/or the angular spread of the waves around the mean. Prior 
work has considered the specific problem of estimating both the AoA and the angle spread jointly 
from an empirically estimated spatial correlation matrix (e.g., maximum likelihood estimation 
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[109], covariance matching estimation [110], and spread root-MUSIC estimation [61]). We 
propose to use spread Root-MUSIC [111] algorithm for mean AoA and angle spread estimation 
due to its low complexity. We use the estimated mean AoA and angle spread (by the root MUSIC 
algorithm) to construct the mmWave correlation. Typically, the closed form expressions of the 
correlation (in terms of AoA and angle spread) result after making some assumptions about the 
distribution of AoA. As such, it is expected that the performance of the parametric approach will 
degrade if the actual and postulated distributions did not match. 

The correlations obtained by the translation strategies presented can be used for minimum 
mean square error (MMSE)-based channel estimation and Eigen-beamforming, among other uses. 
We use the translated correlation for mmWave channel estimation based on linear-MMSE 
(LMMSE). 

8.4.3 Performance Evaluation 

To test the performance of the proposed translation schemes, we measure the distance 
between the true mmWave correlation matrix and the correlation matrices obtained by the 
proposed translation approaches. This distance is called the correlation matrix distance (CMD) 
and the results for CMD are shown in Figure 8.9. This metric is computed for various values of 
angle spread σθ. As expected the correlation matrix distance increases with frequency. Further, the 
non-parametric approach seems to perform conversion to a lesser CMD compared to parametric 
approach. 

We perform another experiment to test the error incurred in LMMSE estimation of the 
channel using translated correlations. Note that even in the presence of perfect correlation 
knowledge, the channel estimation is not perfect, and there is some MMSE (not to be confused 
with the estimator LMMSE). Further, when the correlation knowledge is not perfect, there is 
additional error up on the usual MMSE, and this error is termed excess mean squared error 
(EMSE). The EMSE for the proposed translation strategies are shown in Figure 8.10. The EMSE 
is also evaluated for several angle spread values. As expected, the EMSE decreases with signal-
to-noise ratio (SNR), and further the non-parametric approach performs better than the parametric 
approach. 
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Figure 8.9: CMD as a function of frequency 

 
Figure 8.10: EMSE as a function of SNR 

8.5 Summary 

In this chapter, we identified possible antenna structures for joint mmWave radar and 
communication systems. Similar to automotive radars, the joint systems should have multiple 
mmWave transceivers to mitigate blockage. We also proved that there is an optimal mmWave 
beamwidth that maximizes the performance of joint systems. The result can be exploited to design 
appropriate mmWave antenna structures for the joint system. This work has been submitted to 
IEEE Communications Magazine [61] and IEEE Transactions on Vehicular Technology [92]. 

Because beamforming, which focuses transmit power to certain directions, is essential in 
mmWave systems to mitigate pathloss, we also developed a flexible beamforming technique. The 
proposed solution minimizes the number of RF chains (and consequently, complexity and power 
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consumption of transceivers) by using antenna switches. Using the proposed solution, it is possible 
to efficiently create different beamwidths that maximize the performance of joint mmWave radar 
and communication systems, as discussed in Section 8.2.  

To optimize communication performance, it is well known that channel information 
between the transmitter and receiver is critical. The channel information can be also useful for 
joint radar and communication systems because it will allow adaptive signal transmission 
techniques. In this study, we showed that sub-6 Ghz channel information can be exploited to 
acquire mmWave channel information. Because sub-6 Ghz channel information can be obtained 
through conventional DSRC systems, the proposed techniques will significantly lower mmWave 
channel acquisition overhead and facilitate joint mmWave radar and communication systems. 
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Chapter 9.  Dealing with Security Issues 

9.1 Introduction 

Many new RF technologies are being deployed to make driving safer and more automated. 
Automotive radar is one such technology, where RF signals are used for adaptive cruise control, 
forward CW, or blind spot detection. Going forward, many vehicles will be connected using DSRC 
for active safety applications. The abundance of bandwidth in the mmWave band could also be 
exploited to enable much higher data rate communication between vehicles to exchange the 
raw data from LIDAR, radar, and other sensors to support advanced driver-assisted and safety-
related functionalities. Each technology, however, comes with its own security risks. Even isolated 
security breaches could have a dramatic impact on consumer confidence, resulting in the 
discontinuation of such technologies.  

In this chapter, we present an overview and comparison of security risks associated with 
both automotive radar and DSRC systems. We make a suggestion about how the industry should 
respond to these known threats, such as through joint radar and communication. Furthermore, we 
describe an instance of a past successful attempt to hack a vehicle and speculate on future hacking 
attempts. Lastly, we suggest several techniques to improve security in both automotive radar and 
communication. 

9.2 Security Risks of Automotive Radar 

There are three principal attacks (i.e., intentional disruption of a vehicular system by a third-
party) on automotive radar [112], [113]. 

• Jamming is the transmission of RF signals to interfere with a radar signal by saturating its 
receiver with noise. 

• Spoofing is the replication and retransmission of radar transmit signals designed to provide 
false information to a radar to corrupt received data. 

• Interference is the intentional or unintentional modification or disruption of a radar signal 
due to unwanted signals, such as signals from different automotive radars. 

9.2.1 Jamming 

Automotive mmWave radar experiences limited range due to the small wavelength and 
inability to pass through solid objects consistently [114]. Most radars use a substantial amount of 
directivity in the system to overcome this effect. This gives automotive mmWave radar more 
resistance to jamming compared to devices that operate at low frequencies. Additionally, since the 
purpose of jamming is to deny the victim service, it is moderately difficult to perform an effective 
jamming attack on automotive radar in a highly mobile environment. If the jammer has a static 
location, even a successful breach will disrupt the automotive radar for as long as the target is in 
range, which could be a matter of a few seconds in highly mobile environments (i.e., highways). 
Although the potential consequences of losing a few seconds of operation are significant (i.e., loss 
of collision detection for that time frame), it is incredibly difficult for a malicious attacker to 
predict exactly where and when the jammer needs to operate to cause an accident. As a result, the 
attacker is limited to jamming in environments with low mobility (i.e., downtown areas) and does 
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not have the ability to focus an attack on a single radar system. An illustrative example of two 
different types of attacks as a result of jamming is shown in Figure 9.1. 

 

 
Figure 9.1: Illustration of two different types of attacks as a result of jamming 

If the jammer is mobile, much more damage can be inflicted. A jammer located on a vehicle 
that is currently following the target may be able to continuously jam the target. Executing a 
continuous jamming attack requires two major components to be successful. First, the vehicle with 
the jammer must stay within a certain range of the target vehicle without attracting suspicion to 
itself. Second, the operation requires a jammer that can accurately scan the wireless channel in a 
highly mobile environment, which is notably complex. To perform the attack, the jammer must be 
able to scan the target vehicle from any direction and distinguish the target vehicle’s radar signals 
from any other wireless signal. It must also transmit a strong jamming signal in the direction of 
the target vehicle. Overall, although jamming attacks have the potential for inducing major 
collisions in the future, current jammers do not have the necessary adaptability for performing in 
a highly mobile environment, making it very difficult for malicious attackers to target a single 
vehicle. 

9.2.2 Spoofing 

Figure 9.2 provides an illustration of a spoofing attack. Distance- and velocity-falsifying 
attacks on commercial automotive radars have been shown to be feasible [115, 116]. Automotive 
radar exploits a specific signal structure that performs well as a radar signal (i.e., has strong 
autocorrelation properties) but exhibits no inherent authentication, leaving it vulnerable to 
spoofing attacks. Without a means for checking signal integrity, the receiver is unable to verify 
the spoofed sequences, making it possible to analyze and replicate the signal. Unlike a jamming 
attack, a spoofing attack is designed to confuse the target victim. Ideally, a spoofing attack only 
needs to breach the target radar for a short period of time to severely influence the behavior of the 
target vehicle, potentially causing it to stop, change direction, or in the worst case, collide. Based 
on this, a successful spoofing attack can have a devastating effect on automotive radars on the 
market today. Despite this, there has been no publicized report of a spoofing attack on a vehicle. 
We believe that this is due to the relatively high implementation complexity of designing an 
effective and robust spoofing system. Overall, spoofing is the primary security concern for 
automotive radar due to its potential consequences and feasibility. 
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Figure 9.2: Illustration of an attack as a result of spoofing 

9.2.3 Interference 

FMCW automotive radars can exploit advanced signal cancellation techniques to reduce 
the effect of interference (including jamming) [117]. There are some forms of interference, 
however, such as a chirp or sweep signal, that cannot be isolated as detailed in [118], resulting in 
performance degradation in the presence of heavy interference. Due to the limited use of 
automotive radar, interference is not a problem in vehicular environments today. As automotive 
radars become more widespread, however, we predict that interference between automotive radars 
of different vehicles will become a major issue. 

9.3 Security Risks of DSRC 

Current implementations of vehicular communication systems are modeled after existing 
Wi-Fi communication systems (i.e., IEEE 802.11p, the standard used in DSRC, is a subset of the 
IEEE 802.11 standard). Thus, in general, DSRC technologies are susceptible to similar types of 
attacks used against traditional Wi-Fi, which include jamming, spoofing, and interference [119]. 
In addition to these attacks, DSRC technologies are also susceptible to attacks on user 
confidentiality. 

9.3.1 Jamming 

In contrast to automotive mmWave radar, DSRC devices operate at relatively low 
frequencies of 5.9 GHz, improving their maximum range of detection but making them more 
susceptible to jamming attacks. Research has shown that constant, random, and intelligent 
jamming attacks can deny service to DSRC applications to the point of disabling their entire 
functionality [120]. In addition, DSRC may potentially experience denial-of-service attacks 
designed to jam the system from within the vehicular network, such as malware, spamming, and 
black hole attacks [121]. All these attacks have the potential to disable vehicular communications 
for an extended period of time, putting the targeted vehicle and its occupants in danger if the 
vehicle relies on DSRC for CW. 

To combat these potential attacks, considerable research has examined solutions such as 
implementing additional authentication, physically separating networks within the same vehicle, 
switching frequencies when denied service, and communicating with legitimate DSRC devices to 
blacklist rogue devices [120–122]. Despite these efforts, jamming is still a major security concern 
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for DSRC systems due to the ease of carrying out an attack and the potential consequences it has 
on targeted systems. 

9.3.2 Spoofing 

DSRC is a subset of the IEEE 802.11 standard and has a predefined packet sequence that 
incorporates packet authentication within its packet headers. Therefore, spoofing a DSRC device 
requires knowledge of the specific sequences used in the packet headers. In addition, the DSRC 
standard is capable of incorporating public key cryptography during transmission, further 
improving the security of these devices. 

Despite these advantages, DSRC is still vulnerable to specific types of spoofing attacks. 
These include attacks from within the network itself and attacks that modify the signals sent 
throughout the network. If the attacker is able to somehow determine or obtain the necessary 
credentials for authentication, then it may be able to impersonate a legitimate device, enabling the 
attacker to send false information to the target device [123]. In contrast, spoofing attacks such as 
replay attacks or man-in-the-middle attacks may allow an adversary to modify signal information 
by intercepting a transmitted signal and retransmitting a slightly modified version of the signal. 
Overall, although DSRC technology is ultimately susceptible to spoofing, its inherent robustness 
due to predefined packet authentication mitigates the severity of this security risk. Furthermore, 
several supplementary measures can be implemented to provide additional security such as 
additional authentication. 

9.3.3 Interference 

DSRC has been allocated a 75 MHz frequency band at 5.9 GHz by the Federal 
Communications Commission. Due to this allocation, DSRC does not experience any (legal) 
interference from non-DSRC devices, such as Wi-Fi devices that operate at the 5 GHz band. 
Currently, there are relatively few DSRC devices implemented in vehicles on the road, rendering 
interference as a non-issue. In the future, however, when DSRC devices become widespread, 
interference between mutual devices will be a concern, especially in congested environments such 
as downtown areas. Although current strategies for reducing mutual interference (such as 
interference cancellation, power and frequency adaptation, and improved MAC [Medium Access 
Control] layer protocol design) can decrease the effect of interference on DSRC, mutual 
interference is still a notable security concern that has yet to be completely addressed [124, 125]. 

9.3.4 Confidentiality 

DSRC devices must maintain information privacy and ensure that unwanted third parties 
cannot covertly track the location of the device over an extended period of time. Potential threats 
to confidentiality include eavesdropping, masquerading, and traffic analysis [126]. Maintaining 
confidentiality is one of the more discussed security topics in vehicular networks. This is due to 
the exceptionally low complexity of conducting an attack on confidentiality. For naive DSRC 
technologies, such attacks can be performed by listening to the data transmissions within a network 
and analyzing the traffic. Furthermore, even if the data itself is encrypted, modern traffic analysis 
techniques can examine traffic patterns of a specific device and extract location information from 
the analysis. As a result, DSRC technologies need to be designed intelligently in order to prevent 
attacks on confidentiality. Currently, there are various measures for preventing attacks on 
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confidentiality such as device cloaking; however, these solutions introduce considerable 
complexity to the entire network and are sometimes undesirable. 

9.4 Comparing Automotive Radar and DSRC Security 

In summary, both automotive radar and DSRC technologies have inherent security flaws, 
as summarized in Table 9.1. On the one hand, DSRC devices are more susceptible to jamming 
than automotive radars since they are subject to jamming attacks from within the vehicular 
network. On the other hand, automotive radars are considerably more susceptible to a spoofing 
attack than DSRC technologies due to their lack of signal verification. Currently, both automotive 
radar and DSRC devices are not significantly impacted by interference. In the future, when the 
technologies become more widespread, interference will become an important security concern 
that needs to be addressed. In addition, DSRC technology must account for attacks on 
confidentiality due to its nature as a communications system. Overall, although there are more 
types of attacks on DSRC systems, DSRC is more secure than automotive radar due to its built-in 
security mechanisms and its ability to communicate with other legitimate DSRC sources. This 
does not mean that DSRC equivalents can replace automotive radar, since the functionalities of 
both technologies are crucial for a variety of vehicular applications. 

Table 9.1: Security comparison between automotive radar and DSRC 

 Automotive Radar DSRC 
Jamming Moderate High 
Spoofing High Moderate 
Interference Low Low 
Confidentiality None Moderate 

 

Note: ‘High’ indicates a security risk with a high potential for major consequences, ‘moderate’ indicates a security 
risk with a moderate potential for major consequences or a high potential for minor consequences, ‘low’ indicates 
a security risk with a small potential for both major and minor consequences, and ‘none’ indicates no security risk. 

Our research on developing a joint radar and communication framework, as described in 
the sections above, will address the security concerns detailed above. This framework can improve 
target localization, increase system reliability, and supplement automotive radar with an extra layer 
of authentication, dramatically reducing the device’s vulnerability towards a spoofing attack. 

9.5 Hacking a Vehicle 

In 2014, security researchers published a paper describing a strategy for a remote 
automotive attack at an international hacker convention [127]. A year later, they took a step further 
and demonstrated a wireless attack on a Chrysler Jeep being driven on a public highway, posting 
the footage in a YouTube video [128]. By exploiting a major oversight in Chrysler’s network 
design, they were able to brute force their way into the system and exploit the Linux operating 
system. From there, they were able to remotely control steering at low speeds, engine status, the 
air conditioning system, and radio via the Internet. 

Upon the release of the video, the public reacted quite negatively towards this 
demonstration. Their angry complaints prompted several changes in the automotive industry, one 
of them being the release of a best practices paper by Intel (McAfee) [129]. This paper outlines all 
the known ways vehicles can be hacked and the most effective countermeasures, including but not 
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limited to attacks from wireless V2V and V2I receivers, Bluetooth systems, and the engine control 
unit. 

Despite the paranoia caused by the video, wireless malicious hacking of a vehicle has been 
virtually nonexistent. Though the idea has been popularized in movies (such as Disney’s Tron) or 
video games (such as Ubisoft’s Watch Dogs), there has only been one documented instance of 
malicious hacking of a car. In 2010, an angry former employee bricked (rendered inoperable) 
hundreds of cars at a dealership [130], [131], destroying several million dollars’ worth of cars, but 
injuring no one in the process. Additionally, although [127] provided a substantial list of vehicle 
models susceptible to the same type of attack they performed, there have been no reported attacks 
on any of these vehicles. 

The public’s concern is understandable, given the potentially tragic consequences of 
allowing vulnerable vehicles to drive on public roads. Although the threat of hacking vehicles is 
real, with the proper precautions, these threats can be avoided altogether. Like any other 
networking protocol, vehicular networks will always be subject to attacks. But as long as security 
concerns are addressed in an ethical, appropriate, and timely manner, there is no reason to prevent 
or delay the integration of communication networks in vehicles. 

9.6 Incorporating Antenna Arrays to Enhance Security in mmWave 
Communication Links 

The security techniques discussed so far for vehicular communications are implemented in 
higher layer protocols, and are based on digital signature methods that require vehicles to store 
a large number of public/private key pairs. Additionally, these keys must be regularly exchanged, 
hence creating, in addition to the processing overhead, an additional communication overhead 
[8], [132]. Here, we exploit the large dimensional antenna arrays available at mmWave systems to 
produce direction dependent transmission. This results in coherent transmission to legitimate 
receivers and artificial noise that jams potential eavesdroppers with sensitive receivers. This 
technique also provides a low complexity solution that makes it difficult for an eavesdropper to 
intercept signals from other vehicles or to spoof a vehicle. 

9.6.1 Proposed Security Technique 

In this section, we propose a security technique for vehicular mmWave communications 
that does not require the exchange of keys between vehicles. We assume a single transmitter 
communicating with a single receiver in the presence of one or more potential eavesdroppers as 
shown in Figure 9.3. The proposed technique uses an antenna architecture with a single RF chain 
(instead of multiple RF chains), and performs analog beamforming with antenna selection. To 
transmit an information symbol, a random set (called a subset) of M antennas are co-phased to 
transmit the information symbol to the receiver, while the remaining antennas are co-phased 
such that a noise like signal is generated in all other directions. The indices of these antennas 
are randomized after every symbol transmission. Although the target receiver would observe gain 
reduction, malicious eavesdroppers will observe non-resolvable interference. The variance 
(power) of this interference term is a function of the subset size M used for data transmission. 
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Figure 9.3: V2V communication with a possible eavesdropper. The transmitting vehicle is 

communicating with a target vehicle while the eavesdropper tries to intercept the 
transmitted data. 

In Figure 9.4 we plot the variance of the interference power of an eavesdropper located at 
an angle of 60 degrees, while the legitimate receiver is located at 100 degrees relative to the 
transmitting vehicle. From the figure we observe that variance decreases with increasing 
transmission subset size M. This is mainly due to the fact that as M increases, the random number 
of antennas used to generate the interference decreases. Nonetheless, this decrease in the variance 
results in increased beamforming gain towards the receiver, and hence, there is a trade-off between 
the interference power at the eavesdropper and the beamforming gain at the target receiver. 

 

 
Figure 9.4: Variance of the interference at an eavesdropper located at a transmit angle of 60 

degrees relative to the transmitting vehicle when using different transmission subset sizes 
M and number of transmit antennas NT 

In Figure 9.5, we plot the secrecy throughput achieved by the proposed technique versus 
the eavesdropper’s angular location. We also plot the secrecy throughput achieved by conventional 
array transmission methods (when using all antennas). The secrecy throughput is defined as the 
amount of information that can be sent reliably to a target receiver. From the figure we observe 
that the secrecy throughput when using the proposed technique is high at all angular locations 
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except at the target receiver’s angular location (100 degrees). We also observe that conventional 
array transmission techniques provide poor secrecy throughputs. The reason for this is that 
conventional array transmission techniques result in a constant radiation pattern at an eavesdropper 
while the proposed technique randomizes the radiation pattern at an eavesdropper, thereby creating 
unresolvable interference. For the proposed technique, no randomness is experienced at the target 
receiver, and the secrecy throughput is minimal when the eavesdropper is located in the same angle 
with the target receiver, which is not possible in practice.  
 

 
Figure 9.5: Secrecy throughput versus the eavesdropper’s angular direction. 

 Number of antennas at transmitter is , number of antennas at receiver is , 

number of antennas at eavesdropper is , and the transmission subset size is M = 24. 

The system operates at 60 GHz with a bandwidth of 50 MHz and an average transmit power 
of 37 dBm. The distance from the transmitter to all receivers (including the eavesdropper) is 

set to 30 m, and the path loss exponent is fixed to 2. 

Finally, in Figure 9.6, we examine the impact of the transmission subset size M on the 
secrecy throughput. We observe that as the subset size M increases, the secrecy throughput 
increases, plateaus, and then decreases. The reason for this is that as M increases, more antennas 
are co-phased for data transmission. On one hand, this increases the beamforming gain at the target 
receiver. On the other hand, increasing M decreases the variance of the interference at the 
eavesdropper. Therefore, there is a trade-off between the beamforming gain at the receiver and the 
interference power at a potential eavesdropper and there exists an optimum value of M that 
maximizes the secrecy throughput. 
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Figure 9.6: Secrecy throughput versus the transmission subset size M; receiver is at a 

transmission angle of 100 degrees and the eavesdropper is at a transmission angle of 95 
degrees relative to the transmitter. 

9.7 Summary 

The studies in this chapter showed that security is important for automotive radar and 
communication systems. Even a small security breach for automotive radar or communication 
systems could have a dramatic consequence for transportation safety. To improve the security of 
joint mmWave radar and communication systems, we implemented a beamforming technique that 
randomizes transmit signals to all directions except to the legitimate receiver. The randomized 
signals are seen as noise-like signals to possible eavesdroppers, which can significantly improve 
communication security. This work has been submitted to Microwave Journal [134] and the IEEE 
Vehicular Technology Conference [135]. 
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Chapter 10.  Preliminary Field Test of Automotive Radar and 
Communication Systems 

10.1 Introduction 

This chapter describes the data collection and the preliminary analysis conducted to evaluate the 
complementarity of automotive radar and communications. The data was collected with the 
objective of providing real input to test the architectures and algorithms developed in Task 1, but 
also with the objective of visualizing the advantages of having a system that joins the capabilities 
of the radar and the communication devices instead of using single technologies.1 As discussed in 
previous tasks, radar is used to estimate the location of objects and motion trajectory of other 
vehicles relative to the sensing vehicle, while V2V communication relies on on-vehicle sensors 
such as GPS receivers to determine each vehicle’s absolute location and motion. Figure 10.1 
presents the capabilities and limitations of these technologies as well as other technologies 
mentioned in previous technical memoranda, such as cameras and LIDAR. The sensing 
technologies have the advantage of accuracy but have limited field of view, sensitivity to weather 
conditions such as heavy rain, fog, and snow, and can simultaneously track only a limited number 
of objects. In contrast, V2V devices rely on GPS positioning, which usually is less accurate than 
the sensors, but are not affected by weather and have a 360-degree field of view.  

Traffic scenarios and situations have great variability and the isolated technologies may 
not be enough to ensure a safe CW/CA system. For example, in the context of urban intersections, 
radars’ lines-of-sight may be obstructed by prominent slopes, buildings, walls, and other large 
objects, so other sources of information would be required to provide the location of oncoming 
vehicles. Additionally, sudden stops or accelerations between two vehicles based purely on radar 
systems can have a downstream (in time), cascading negative safety impact on other vehicle 
movements. This is where communications, in addition to radar, can have a substantial benefit. 
Radar may also be a good complement to communications, as roadway users such as pedestrians 
and bicyclists would not be outfitted with vehicular communication devices, and thus radars (and 
cameras) become essential sensing gadgets.  

In the following sections of this chapter, we analyze different scenarios that were 
considered for the data collection as well as the equipment and software that were designed for 
this activity. First, we describe the data collection effort and its limitations. Then, we conduct a 
simplified analysis of the accuracy of the sensing and communication technologies and observe 
the advantages of using both types of technologies simultaneously. Finally, we perform simplified 
quantitative and qualitative analyses of the sensor fusion and trajectory prediction techniques 
proposed in Chapter 2 using the collected data.  

                                                 
1 Note that in Task 2 the research team developed a framework for joint mmWave radar and communication systems 
that functions within a single device by using the same waveforms. However, in this task, we explore the use of 
communication and radar technology through the use of devices that are already available in the market (DSRC and 
automotive radar units). Therefore, the objective is to analyze the complementarity of these types of technology and 
not the joint technology per se.  



84 

 
Figure 10.1: Collision avoidance sensor summary [159] 
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10.2 Data Collection Scenarios 

To accomplish the two objectives of the data collection—providing data for testing the developed 
algorithms and visualizing the advantages of having a system that joins the capabilities of the radar 
and the communication devices instead of using single technologies—the researchers used a three-
stage process to define the scenarios and routes. In the first stage, the research team evaluated the 
advantages and disadvantages of radar and DSRC and developed a comprehensive list of situations 
that could be used to test the complementarity of the technologies (Table 10.1). In the second stage, 
the group selected variables related to transportation infrastructure and traffic that should be 
addressed by a robust CW/CA system. In the final stage, the group identified streets within the 
University of Texas campus area that would present characteristics related to the selected 
variables. The list of variables and locations is presented below: 

 
a. Traffic Volume and Road User Mix 

i. Vehicle Types: Cars, Heavy Trucks, Buses, Motorcycles 
1. High volume of cars/buses/motorcycles found on the major streets 

and high volume of heavy trucks found near construction sites:  
a. San Jacinto Boulevard 
b. Red River Street 
c. Guadalupe Street 
d. Dean Keeton Street 
e. W. MLK Boulevard 

2. Low volumes found on minor streets within campus: 
a. Speedway between W. Dean Keeton Street and 21st Street 
b. 24th Street 
c. 21st Street  

ii. Pedestrians and Bicyclists 
1. Low volumes:  

a. San Antonio Street 
b. Red River Street 
c. Trinity Street 
d. Manor Road 

2. High volumes:  
a. Guadalupe Street 
b. Dean Keeton Street 
c. All minor streets on within campus 

b. Road Characteristics 
i. Intersections 

1. Four-way intersections: 
a. W. Dean Keeton Street & University Avenue 
b. W. Dean Keeton Street & Speedway 
c. 24th Street & Speedway 
d. 24th Street & Guadalupe Street 
e. 21st Street & Speedway 
f. Robert Dedman Drive & E. Dean Keeton Street  

2. T-intersections: 
a. W. Dean Keeton Street & Guadalupe Street  
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b. E. 23rd Street & Robert Dedman Drive 
3. Traffic circle: 

a. E. 23rd Street 
4. Atypical intersection (skewed): 

a. W. MLK Boulevard & Guadalupe Street 
5. Variation in profile grade: 

a. 27th Street & Speedway (quasi-blind intersection). 
b. MLK Boulevard & Red River Street 

ii. Construction Sites  
1. College of Communication (BMC, CMA, CMB): 

a. Guadalupe Street between 25th Street and 26th Street  
2. Norman Hackerman Building (NHB): 

a. Speedway Plaza & 24th Street 
3. Engineering Education Research Center (EERC): 

a. San Jacinto & Dean Keeton 
4. Robert B. Rowling Hall Graduate School of Business: 

a. Guadalupe Street & MLK Boulevard 
5. Medical District Utility Infrastructure: 

a. Robert Dedman Drive between E 20th Street and Red River 
Street 

b. Red River Street between Robert Dedman Drive and MLK 
Boulevard 

6. Dell Medical School District (DMS): 
a. 23rd Street and Robert Dedman Drive  

c. Geometry  
i. Alignment 

1. Straight: 
a. Guadalupe Street 
b. MLK Boulevard 

2. Curved (no radius distinction): 
a. San Jacinto Boulevard 
b. Dean Keeton Street between Red River Street and San 

Jacinto Boulevard 
ii. Profile 

1. Plane: 
a. Guadalupe Street 

2. Sloped: 
a. Dean Keeton Street 
b. MLK Boulevard 
c. Red River Street 

d. Speed Limits 
i. < 20 mph 

1. San Jacinto Boulevard (inside campus) 
ii. 20–45 mph  

1. Dean Keeton Street 
2. Guadalupe Street 
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iii. 45–60 mph (not available in the area of study) 
iv. > 60 mph (not available in the area of study) 

Table 10.1: List of traffic situations relevant for assessing the developed technologies 

Situation Relevance 
Basic car following—both 
vehicles equipped with radar 
and DSRC 

Determine which data source is more accurate for position, speed, 
acceleration, etc., in general circumstances. 

Lead vehicle stopped 
Determine radar capability of detecting stopped vehicles if the 
vehicle is stopped before coming into range of the radar. 

Blind spots and vehicle out of 
line of sight  

Identify situations in which the radar is not capable of identifying an 
approaching vehicle or pedestrian/bicyclist duet to angle of 
approximation or distance. 

Test to what extent DSRC can compensate radar blind spots. 

Vehicles out of range  Test in which situations DSRC messages stop being exchanged. 

Inclement weather 

Identify reductions in sensing accuracy of radars in situations of poor 
visibility. 

Test to what extent DSRC can compensate radar limitations in such 
situations. 

Close range Identify if radars detect close range objects accurately. 

Low speeds 
Compare the accuracy of radar and GPS (DSRC) positioning when 
the vehicles are moving at low speeds. 

Left turns and blind 
intersections 

Demonstrate how vehicles entering an intersection to make a 
permissible left turn may not be able to use radar (limited field of 
view) to detect oncoming vehicles. 
Evaluate the use of DSRC communication to identify oncoming 
vehicles. 

Interaction with non-connected 
vehicles 

Visualize the information that will be captured by the system when 
interaction with both connected and non-connected vehicles 
simultaneously. 
Evaluate the use of communication when a vehicle equipped with 
DSRC stops many vehicles ahead of another vehicle equipped with 
DSRC.  

Tracking large number of 
vehicles 

Radars can track only 17 objects simultaneously, so this situation 
will evaluate what is being missed by the radar in situations with 
more than 17 moving objects.  

DSRC can track over 200 vehicles simultaneously—but for that to 
happen, all vehicles must be equipped with compatible devices. 

Urban canyons, tunnels, and 
heavy foliage areas 

These locations obstruct GPS signal, which affects the accuracy of 
the location data exchanged through DSRC.  

Irrelevant objects 
Identify situations that provide erroneous detections by radars that 
could cause false positive warnings. 
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For the preliminary data collection, two main scenarios were designed based on the 
analysis in Table 10.1. Both were planned to be executed with two vehicles equipped with DSRC 
and at least one vehicle equipped with radar and camera (ideally both vehicles should have all 
equipment). The first scenario (Figure 10.2) consisted of one vehicle following the other around 
campus and completing the same loop five times. In the first two laps, the tail vehicle stayed behind 
the leading vehicle in the same lane without intervening vehicles. In the following laps, the tail 
vehicle would change lanes, allow different spacing from the leading vehicle, and allow other 
vehicles to drive between them. This scenario was planned to pass through streets with curves and 
changes in slope, different types of intersections as well as areas with high density of pedestrians 
and construction areas subjected to traffic of heavy vehicles. In the second scenario (Figure 10.3), 
the vehicles met in a blind intersection. Each vehicle approached from one side at least two times. 
The chosen intersection (27th and Speedway) was the only blind intersection found in the campus 
area and the vehicle approaching from 27th was on a descending slope. 

 

 
Figure 10.2: First data collection scenario—basic car following 

 
Figure 10.3: Second data collection scenario—blind intersection 
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10.2.1 Equipment 

The equipment used for data collection is divided into three categories—hardware, software, and 
vehicles—as detailed below.  

Hardware 

The combined DSRC/radar system contained a Cohda Wireless DSRC On-Board Unit (MK5-
OBU), a Delphi Electronically Scanning Radar (see Figure 10.4 for specifications), and a 
simulated CAN (Controller Area Network) bus made from a Kvaser CAN-to-USB interface 
adapter, an OBDII connector, and an Ethernet cord. A CAN bus is a specialized internal 
communications network used to interconnect electronic components and to allow 
microcontrollers and devices to communicate with each other in applications without a host 
computer inside a vehicle.  

As explained earlier, the function of the DSRC unit is to allow the system to transmit and 
receive DSRC messages to/from other DSRC-enabled devices (main communication device), 
while the Delphi radar module is used to sense the surroundings of the vehicle and perceive objects 
with sub-meter accuracy. The DSRC is accompanied by a GPS antenna that is placed in the vehicle 
roof. The simulated CAN bus is used to send radar information from the Delphi Radar module 
across a CAN bus without having to connect the system to the vehicle. The Kvaser CAN-to-USB 
interface adapter allowed regular laptops to read information from the CAN bus (rate of 8,000 
messages per second) and the OBDII connector was used to connect the combined DSRC/radar 
system to the vehicle. Finally, the Ethernet cable allowed us to create a local network between 
computers and the Cohda Wireless DSRC unit so that information from the DSRC could be read 
on the laptops. 

 

 
Figure 10.4: Delphi Electronically Scanning Radar (2.5) specifications. This equipment can 

identify up to 64 objects simultaneously [141]. 

Software: DSRC/Radar Parsers 

The software DSRC/radar parsers took in information coming from the data streams of the 
DSRC/radar modules and converted it into a Python data structure that could be processed by the 
algorithms developed. Specifically, the radar parser took in information from the simulated CAN 
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bus and formed a coherent data structure by using the Kvaser CAN-to-USB reading device. The 
DSRC parser took information directly from the Cohda module and sent it to the combined 
DSRC/radar system using a dedicated UDP (User Datagram Protocol) socket. The collection of 
data coming from both the DSRC and radar modules and the conversion of CAN/DSRC messages 
into a Python data structure were the first steps for processing the data that was being collected.  

The combined DSRC/radar system used a robust logging framework that outputs combined 
DSRC/radar data into text files. Each process logs its output to its own text file. After the data was 
collected by the loggers, it was sent through a normalizer to help the combined DSRC/radar system 
filter out data from the radar or DSRC modules that had been deemed unnecessary. Having each 
process write logs to a different file avoided the concurrency issues of multiple processes writing 
to the same file, which could result in information loss. In addition, keeping the raw version of the 
data and replaying it in real time allows us to use the same data to improve the software that we 
are developing (to combine DSRC and radar data).  

Vehicles 

Two vehicles were used for the data collection. The first vehicle was a rental sedan, a 2016 
Chevrolet Malibu (Figure 10.5). The vehicle was equipped with DSRC and radar; however, the 
battery of the vehicle did not provide enough energy for the radar to function properly. The energy 
provided was enough for the radar to send information to the computer, but not to sense objects. 
This issue may have been a consequence of the vehicle being a type of hybrid vehicle. The research 
team did not investigate the issue further, because it was out of the scope of the research, but this 
experience indicated that the implementation of multiple radars/sensors in hybrid or even electric 
vehicles may still require further development in both the vehicles’ and the radar’s technologies.  

 

 
Figure 10.5: First vehicle used in the data collection 
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The second vehicle was an SUV, a 2013 Hyundai Tucson (Figure 10.6). This vehicle had 
a radar module, a DSRC, and a GoPro camera installed and functioning. The camera was installed 
in alignment with the radar, such that the horizontal relative position of the identified objects would 
coincide. Since only the second vehicle had an operating radar, during the basic car following 
scenario we always kept the first vehicle as the leading vehicle, and the vehicle with the radar as 
the following (tail) vehicle so that we could compare the GPS position information of the lead 
vehicle sent by DSRC to the position sensed by the radar.  

 

 
Figure 10.6: Second vehicle used in the data collection 

10.3 Preliminary Data Analysis 

In the basic car following scenarios, the two vehicles completed five laps around the defined loop, 
yielding 53 minutes of uninterrupted data collection and approximately 15,000 messages 
exchanged per vehicle though the DSRC equipment. The blind intersection scenario was 
performed four times (each vehicle approached 27th Street twice) and resulted in 25 minutes of 
data (including the time necessary for the vehicles to maneuver back to their initial positions) and 
approximately 7,500 messages per vehicle. In the following sections, some quantitative analyses 
are made, however in most cases only qualitative analyses could be performed due to the limited 
amount of data collected and the absence of the ground-truth position of the vehicles.  

10.3.1 Equipment Performance and Accuracy in Uncontrolled Environments 

Table 10.2 shows the DSRC message latency for both scenarios. The results suggest an overall 
smaller latency for the tail vehicle. Specific testing with each of the DSRC units will be necessary 
to determine whether the difference in latency was specific to the equipment unit. If both units 
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present the same latency in a controlled environment, then we will discuss in future research 
whether the DSRC functioning is affected by the vehicle type.  

Figures 10.7, 10.8, and 10.9 are plots of the ratio of messages that were successfully 
received by the communication equipment over the distance between the vehicles. There is a 
significant variation in the success rate of the lead and tail vehicle in the basic car following 
scenario, but high rates were maintained up to 300 meters. For the blind intersection scenario there 
is a drastic reduction in the success rate when vehicles are more than 100 meters apart, probably 
due to the many obstacles (e.g., buildings, hills, and trees) in the environment. Again, further data 
collection, including more controlled environment scenarios, will be necessary to investigate the 
causes of these results. 

Table 10.2: DSRC message latency 

Message Latency (seconds) 

Basic car following scenario Mean 99th percentile Maximum 

Lead vehicle 0.15 0.35 0.5 

Tail vehicle 0.02 0.03 0.6 

Intersection Mean 99th percentile Maximum 

Both vehicles 0.08 0.16 0.39 

 

 
Figure 10.7: DSRC reception success rate for the leading vehicle 
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Figure 10.8: DSRC reception success rate for the following (tail) vehicle 

 
Figure 10.9: DSRC reception success rate for both vehicles in the blind intersection scenario 

The above plots do not allow us to distinguish between occasional packet loss and large 
gaps where communication has failed. Therefore, we identify “skips,” which are the periods when 
communication was not successful. They are classified as long skips, which are greater or equal to 
one second, and short skips, which are less than a second. The skips for both scenarios are 
presented in Table 10.3. For the basic car following scenario the period of time in which 
communication is missed is very short and inferior to 7 percent of the total time. In this scenario, 
the overall total duration of short and long skips are similar. On the other hand, for the intersection 
scenario, one of the vehicles did not receive messages during approximately 43 percent of the time 
tested. As mentioned before, in this scenario there were many obstacles between the vehicles and 
at some points, while returning to the scenario start point, vehicles stayed more than 400 meters 



94 

apart, which may have contributed to the long skips. Again, more tests are necessary in order to 
identify the true limitations of the DSRC equipment in real world environment.  

Table 10.3: Message skips (periods when communication was unsuccessful) 

Skips 

Scenario Vehicle 
Number of  
long skips 

Total long  
skips time(s) 

Number of  
short skips 

Total short  
skips time(s) 

Basic car 
following 
scenario  

(53 minutes) 

Lead vehicle 16 0.30/min 122 3.84% 154 2.90/min 66.0 2.07% 

Tail vehicle 17 0.32/min 132 4.15% 1388 26.19/min 60.1 1.89% 

Intersection 
(25 minutes) 

First vehicle 16 0.64/min 634 42.27% 30 1.20/min 13.8 0.92% 

Second vehicle 11 0.44/min 369 24.60% 38 1.52/min 18.6 1.24% 

 
Figure 10.10 shows scatter plots of short and long skips for the intersection case. The blue 

points show how far apart the cars were before the skip began, and the red points show their 
distance once communication was restored. Short skips occurred even when the vehicles were less 
than 25 meters apart; however, they were more frequent at distances between 100 and 150 meters. 
The majority of long skips was just above one second and they occurred only when the vehicles 
were more than 100 meters apart (Figure 10.11). 

 

 
Figure 10.10: Distances in which short skips occurred 
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Figure 10.11: Distances in which long skips occurred 

Besides analyzing the performance of the message exchange, we also checked the GPS 
accuracy. For this analysis, we picked a 45-second interval in which both cars are waiting in an 
intersection and remain still for the most of the time. The RMS error of the leading vehicle’s GPS, 
during this period was 0.22 meters and for the tail car’s GPS was 0.28 meters. The maximum errors 
were 0.31 meters for the lead car and 0.76 meters for the tail car. Any error in the sub-meter range 
should be considered acceptable. However, it is not guaranteed that GPS accuracy will not degrade 
when vehicles are in motion. Merging the video data with the DSRC and radar data, we were able 
to capture moments in which the GPS precision was adequate and moments in which it was very 
poor (indicating that the sensed vehicle was in a different lane than its actual lane). Figure 10.12 
and Figure 10.13 depict both situations respectively. The green squares represent the objects 
identified by the radar, while the blue square represents the GPS position of the leading vehicle. 
In Figure 10.13, the GPS informs that the vehicle is in the neighboring lane from its actual lane, 
an error of approximately 3.5 meters.  
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Figure 10.12: Accurate GPS data (blue square) sent through DSRC coincides with  

radar position detection (green square) 

 
Figure 10.13: Inaccurate GPS data (blue square) sent through DSRC shows vehicle  

in wrong lane 

Another aspect that can be evaluated regarding the GPS data is the variation in the logged 
relative distance and angle of the vehicles during the 45-second period that both cars are waiting 
in an intersection. In Figure 10.14, we can see that the variation in the angle measurement is about 
3 percent (we can assume that the vehicles did not change their true relative angle in this time 
period), while the distance increases then goes back to roughly its old value (this occurs because 
both cars move less than a meter after 10 seconds, when the front car starts the movement and the 
tail car follows it). 
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Figure 10.14: Distances in which long skips occurred 

While the positioning does show some error induced by motion (otherwise the upper plot 
would be much more block-like), it does capture the major movements at the right times. The lead 
vehicle moves forward at 12 seconds, and the tail car begins to move shortly after. At around 22 
seconds, the lead car shifts forward again very slightly. The extraneous motion given by the GPS 
accuracy is on the order of 0.2 meters or less. The relative direction of the vehicles gets a slow 
shift in measurement, on the order of 0.1 radians (5 degrees), which seems to be acceptable. Again, 
it is not possible to determine if this angle measurement error increases when the vehicles are in 
motion.  

We also used the same 45-second interval of data to evaluate the accuracy on the radar 
readings (Figure 10.15). We can observe that the radar data presents more noise than the DSRC 
data. Instead of a continuous type of error, the radar presents occasional peaks of 
mismeasurements. In this interval, 17 percent of measurements were “missing,” meaning that the 
vehicle stopped in front of the radar was not detected and the longest period of time without 
missing measurements was 0.85 seconds. Filtering out the noise peaks, we can consider that the 
radar error remained close to 1 and 2 meters during most of the time.  
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Figure 10.15: Accuracy of radar readings 

10.3.2 Qualitative Analysis of the Joint Detection System 

Using the fully merged data that includes the video, DSRC, and radar data, it is possible to 
qualitatively analyze the performance of the joint system in identifying moving objects and 
approaching vehicles in the blind intersection scenario. Figures 10.16, 10.17, and 10.18 show the 
field of view of the vehicle approaching Speedway from 27th Street. In the first figure of the 
sequence, we observe some green squares that represent objects identified by the radar. In this 
case, non-moving objects are identified by the radar. This street approach is a descending slope. 
The ground in the center of the intersection is in the line-of-sight of the radar and generates 
erroneous detections (radar false positives). The blue square represents the position of the 
oncoming vehicle equipped with DSRC. In this situation the DSRC proves to be an important 
source of information to identify vehicles obscured by buildings or objects. Figure 10.17, shows a 
vehicle not equipped with DSRC being identified by the radar (green squares) while the vehicle 
with DRSC is still out of sight but is recognized through DSRC. This is a clear example of the 
complementarity of both technologies in situations where there is a mix of vehicles using and not 
using the communications technology. Finally, in Figure 10.18, the approaching vehicle appears 
in the visual field of the driver; however, due to the angle and slope, the vehicle is still not sensed 
by the radar but continues to be identified through DSRC (the square is vertically misaligned with 
the vehicle only because a simplified algorithm was used to merge the three sources of data). 

The last situation we looked at in this preliminary data analysis was the recognition of 
pedestrians by the radar. Figure 10.19 shows that the radar identifies a limited number of 
pedestrians (as mentioned earlier, this type of automotive radar identifies up to 64 targets but in 
our data collection it hardly ever identified more than 20 objects simultaneously) and the ones that 
are more than 10 meters ahead of the vehicle seem to be prioritized (long-range seems to be 
prioritized over mid-range; see Figure 10.4 for radar specifications), while the ones that are closer 
are missed. This problem was identified multiple times along the video, proving that using cameras 
and developing algorithms to assist pedestrian- and bicyclist-sensing is indeed necessary, as shown 
in Chapter 3. A video containing the images of the situations described in this section is available 
at https://www.youtube.com/watch?v=BnujYSEJ26I&feature=youtu.be.  
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Figure 10.16:  Blind intersection—DSRC detects approaching vehicle equipped with  

DSRC (blue square) and not visible to radar system. Radar false positives in green due  
to light reflex. 

 
Figure 10.17: Blind intersection—DSRC detects approaching vehicle equipped with  
DSRC (blue square) and not visible to radar system. Radar detects vehicle without  

DSRC equipment (green squares). 
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Figure 10.18: Blind intersection—DSRC detects approaching vehicle equipped with DSRC. 

Approaching vehicle is already in the field of vision of the driver but radar does not identify it. 

 
Figure 10.19: Pedestrian detection by radar fails to detect pedestrians that are closer  

to the vehicle 

10.3.3 Quantitative Analysis of Sensor Fusion and Trajectory Prediction 

The previous sections examined the consistency of both V2V information and radar, but not their 
accuracy in terms of the distance between each vehicle’s estimated position and its true position. 
The accuracy of each sensor, the synthesized position estimate from both sensors, and the predicted 
future position of vehicles are quantified in this section. Unfortunately, it is not feasible to calculate 
the vehicles’ true positions for the entire experiment. The vehicles moved through many locations 
and there are no references (planted placemarks, etc.) with which to automate this calculation. 
Thus the accuracy is shown for a few locations that were visited several times by the vehicles. 
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The test vehicle both receiving DSRC communication and using radar is denoted the ego 
vehicle, while the other is denoted the alternate vehicle. In the first situation for which accuracy is 
calculated, the ego vehicle is stopped behind the alternate vehicle. In the second situation the 
vehicles pass each other on different sides of the road. At this point the alternate vehicle is out of 
the range of the ego vehicle’s radar. In the third situation the vehicles have both stopped at the 
entry of an intersection, with the ego vehicle turning to the right and the alternate vehicle moving 
straight from the ego vehicle’s right. The ego vehicle’s camera view for each situation is shown in 
Figure 10.20. 

 

Figure 10.20: Examples of the vehicles in situation 1 (above) and situation 3 (below). In 
situation 2, the alternate vehicle is out of view of the camera. 

For the data fusion, we adopt the premise that the vehicle equipped with radar and V2V 
communication to detect vehicles should combine both sensors’ information whenever possible, 
and rely on one when the other is not available. One difficulty that was not anticipated in Task 1’s 
study of DSRC/radar fusion—but became evident when analyzing the collected data—was the 
radar’s propensity to detect extraneous objects (frequent radar false positives). To solve this issue, 
these objects are removed in two steps during the data processing: objects that are detected for less 
than 200 milliseconds are removed; then detected objects that are more than 6 meters (distance 
that is greater than the maximum GPS error) from the position identified by the GPS are also 
removed2.  

The accuracy of the sensor fusion in each situation is shown in Table 10.4. The error in 
position estimation is expressed as the error in the distance between the two vehicles, in meters, 
and the error in the angle where the alternate vehicle is with regard to the ego vehicle, in radians. 
In the stopped situation, the fusion of radar and DSRC is seen to provide significant improvements 
over prediction using either individual information source. This is because radar often makes false 
detections or misses the object for a short time, and the GPS information sent through V2V is more 

                                                 
2 Note that the algorithm being tested is for detection and trajectory prediction of a single object, therefore we are 
only interested in the radar’s detection of this specific object.  
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stable but often incorrect by several meters (as previously seen in Figure 10.13). The sensor fusion 
incorporates a radar estimate if, and only if, it matches closely enough to the V2V estimate, thus 
using the strengths of each sensor. 

Table 10.4: Worst recorded errors at the three situations 

  DSRC Radar Fused 

Situation 1 Worst Error in Angle Est. 20º 10º 6º 

Situation 2 
Worst Error in Distance Est. 1.3 meters --- 1.6 meters 

Worst Error in Angle Est. 58º --- 54º 

Situation 3 
Worst Error in Distance Est. 4.7 meters --- 4.5 meters 

Worst Error in Angle Est. 11º --- 11º 
 
Even in the situation wherein radar is available, it gives less worst-case accuracy than the 

fused result. This is partially because radar jumps a lot and the fusion method incorporates past 
measurements from both sources as well as present measurements. For similar reasons, the fused 
method outperforms DSRC in the situations where radar is unavailable, but is less accurate for 
judging the distance between adjacent (moving) cars. The degree to which to incorporate past 
measurements is an important parameter of the fusion method that can be adjusted by using more 
testing data. It is also shown, numerically this time, that the fusion method can combine the 
information from radar and DSRC to provide a more accurate measurement of vehicle position 
than either individually. The situation in question is estimation of the angle at which a stopped 
vehicle is in front of you: while ten degrees of error may be acceptable, a higher degree of error 
could cause the vehicle to assume that it can pass by the alternate vehicle, or that braking is 
unnecessary. Because it takes effort to determine the actual significance of a numeric error, and 
because the situations in which we can calculate numeric errors are limited, the next section 
describes a different approach to determining sensor fusion effectiveness. 

10.3.4 Qualitative Analysis of Sensor Fusion and Trajectory Prediction 

As an alternative analysis, we used the driver's-view video that was recorded during testing. The 
estimated location of the vehicle is inserted into this video and can be visually compared to the 
actual position of the vehicle. For this analysis we focus on the blind intersection scenario. 

The sensor fusion technique used in this analysis is the simplest trajectory prediction model 
studied in Task 1—the constant-velocity model—to combine present and past GPS/radar 
measurements into a cleaner estimate of the oncoming car’s position. Figure 10.21 shows several 
examples of this sensor fusion. The vehicle position detected by DSRC is represented as a blue 
square and radar-detected objects are represented as green squares, as in the previous section. The 
final estimate (using the joint information) of the car’s position is shown as a cyan circle. This 
circle is larger when the two vehicles are closer to each other. Note that the vertical displacement 
of the vehicles is not estimated. GPS and radar do not give accurate vertical information (note that 
the camera and the radar are not positioned at the same height), and vertical positioning is unlikely 
to significantly interfere in collision detection. 
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Figure 10.21: Snapshots of video with sensor detections and combined-position estimate 

The same physical model can be used to predict the vehicles’ future positions. It was shown 
in Task 1 that road-fitted trajectory prediction models are more accurate. However, these 
experiments were set up so that the paths the vehicles follow do not cross, so there is no chance of 
collision if both vehicles follow the road. A physical trajectory prediction system is used to 
highlight dangerous situations if the vehicles followed other paths, or veered out of their lane. 
Figure 10.22 shows snapshots of increasing time as both vehicles approach an intersection. The 
cyan circle represents the current estimate of the vehicle’s position as before, and the green circle 
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represents the expected position of the oncoming vehicle two seconds in the future. The future 
movement is overestimated as the vehicle stops before entering the intersection. 

 

 
Figure 10.22: Snapshots of video with the future predicted position of the vehicle as a green 

circle. The snapshots are one second apart from each other. 
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The subject vehicle’s motion is also predicted, and a red bar appears on the bottom of the video if 
the two vehicles are predicted to be dangerously close in the near future (within two seconds), 
emulating a collision warning. Figure 10.23 shows this occurring at the same intersection (triangles 
are used to represent the detected vehicle when it is out of the camera line of sight).  
 

 

 
Figure 10.23: Snapshot of video when there is a collision warning. (In the top image the 

oncoming vehicle is out of camera sight and the triangle on the left shows that the  
vehicle is off screen to the left). 

10.3.5 System Limitations  

This experiment showed several gaps with the current sensor fusion and trajectory prediction 
systems. The first is that radar gives very noisy information, and provides more value when present 
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for a steady period of time such as when detecting another car driving in front. For intersection 
cases where the vehicle may appear only briefly, vehicle communications are much more reliable. 
In general, an optimal sensor-fusion method should recognize situations in which radar or 
communications are more reliable and adjust its operation accordingly. This is a goal for sensor 
fusion in Phase II. The second phase will also involve more complex vehicle experiments, and this 
phase has shown that would be extremely valuable to gather true vehicle positions throughout the 
experiment. For instance, cameras on the side of each vehicle and markers with known positions 
can give meter-level accuracy. The second finding is that, in some cases, physical predictive 
models provide greater subjective value than road-based models because they consider only time 
and distance and do not incorporate rules such as lane division. In the current experiments the 
vehicles did not cross paths (there was no left turn, for example) and, therefore, collision between 
the vehicles was only possible from rear-ending, unless the vehicles were to deviate from their 
lane or direction (then a side collision could happen). Thus a road-based model as shown in 
Chapter 2 will not detect any dangerous activity (because it will assume that each vehicle stays 
within its lane limits). However, considering that, especially in intersections, crashes can happen 
because one vehicle deviates from its lane, the knowledge that another vehicle is approaching the 
intersection may be appreciated on its own, and a combination of physical predictive models and 
road-based models might be required. 
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Chapter 11.  Assessing the Performance of the CW/CA System 
through Simulations 

11.1 Introduction 

The simulator developed in the initial chapters was used for a detailed analysis of overtaking 
maneuvers, as performed on two-lane rural roads. These maneuvers are responsible for 54 percent 
of traffic fatalities on rural highways [136], yet research on preventing such collisions through 
collision avoidance/warning is still in the beginning stages [137, 138]. Collision 
warning/avoidance for overtaking maneuvers faces some different challenges than typical CW/CA 
tasks, such as determining whether a gap is considered safe for overtaking, given the trajectory 
information of the vehicles in the vicinity. During an overtaking maneuver, oncoming vehicles 
will be travelling toward the passing vehicle rapidly enough that braking may not be sufficient. In 
addition, until the lead vehicle has been completely passed it is not possible to switch back to the 
correct lane. The ultimate effect is that, when overtaking, CW/CA systems cannot expect to safely 
abort a maneuver midway, and must instead decide beforehand whether or not a maneuver is safe. 
This requires predicting vehicle paths up to 10 seconds in the future, far more than for other 
CW/CA algorithms. Additionally, analysis of an overtaking maneuver requires modelling at least 
three vehicles, while for most scenarios any pair of vehicles can be modelled separately. Finally, 
sensory requirements are different. In urban areas vehicular sensors must detect many surrounding 
vehicles simultaneously. On the other hand, overtaking is expected to occur on sparsely populated 
roads where the number of moving objects to be detected is much lower, but these objects move 
much faster and may not necessarily be in the overtaking vehicle’s line-of-sight. Therefore, 
determining the location of oncoming traffic (i.e., traffic in the opposite lane) is usually not a task 
that radars, lasers, or cameras have been able to achieve successfully, mainly because the reported 
detection ranges of these sensors are shorter than the safe overtaking sight distances (or passing 
sight distances) recommended in the transportation literature [139, 140, 141, 142]. Thus, V2V and 
V2I communications are much better suited for this task than standard sensors.  

11.2 Phases of the Overtaking Maneuver and Definition of Unsafe Maneuvers 

Per the terminology of Hegeman et al. [139], we consider a simple, normal overtaking maneuver 
involving three vehicles on a two-lane rural roadway: passing vehicle, lead vehicle, and oncoming 
vehicle. In Figure 3.1, the passing, lead, and oncoming vehicles are represented by the white, green, 
and red colored vehicles, respectively. All three vehicles are considered passenger vehicles, each 
of length 5.8 meters (19 feet).  

The simulation is assumed to begin when the passing vehicle indicates its desire to overtake 
the lead vehicle traveling ahead of it. At the beginning of the simulation (t = t0 = 0), the passing 
vehicle is assumed to be traveling behind the lead vehicle at a constant speed (i.e., no acceleration, 
or ap = 0 as in Figure 11.1) in its travel lane; the speed of the passing vehicle is assumed to remain 
constant for the duration of its driver’s PR time (tpr). (As discussed later, we allow this PR time to 
be heterogeneous in the population of drivers.) During the perception/reaction time (0 ≤ t < tpr), 
the driver is assumed to perceive and process information on the lead vehicle and oncoming vehicle 
and determine whether the gap available is safe for completing the overtaking maneuver. At the 
end of the PR time (t = tpr), the passing vehicle is assumed to accelerate and move into the opposite 
lane. This is considered the start of the overtaking maneuver.  
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Figure 11.1: Depiction of overtaking maneuver simulations 

Once in the opposite lane, the passing vehicle is assumed to travel at a constant acceleration 
(ap > 0) until it overtakes the lead vehicle and gains a one second headway ahead of the lead 
vehicle. In this context, the term headway refers to the time the lead vehicle will require to traverse 
the gap between the front of the lead vehicle and the back of the passing vehicle (i.e., the time 
required for the lead vehicle to travel dl distance shown in the bottom part of Figure 11.1). This is 
equivalent to the time until collision between the lead vehicle and a (hypothetical) stationary object 
at the rear end position of the passing vehicle in the bottom part of Figure 11.1. At the time instant 
that the passing vehicle’s headway becomes one second ahead of the lead vehicle, the passing 



109 

vehicle is assumed to have returned to the original lane to complete the overtaking maneuver, if 
the maneuver were a successful one.  

At the moment the passing vehicle’s headway becomes one second ahead of the lead 
vehicle (t = tfin), the time-to-collision may be calculated between the passing vehicle and the 
oncoming vehicle. The term time-to-collision refers to the amount of time in which the passing 
vehicle would collide with the oncoming vehicle had it continued traveling in the opposite lane. 
To be precise, if the passing and oncoming vehicles maintain their speeds and accelerations at time 
t = tfin, time-to-collision is the time in which the two vehicles would together travel the distance 
between their front bumpers (denoted by do in the last part of Figure 11.1). If the time-to-collision 
is less than one second, we deem this overtaking maneuver as unsafe, as in Harwood et al. (2008), 
and label it as resulting in a collision.3 On the other hand, if the time-to-collision is greater than 
one second, we deem the overtaking maneuver as safe (and resulting in no collision). 

Throughout the discussed duration (i.e., from the beginning to the end of the simulation), 
the lead vehicle and the oncoming vehicle are assumed to travel at their respective constant 
acceleration rates in their respective lanes, regardless of the position, speed, and acceleration of 
the passing vehicle. While it may be considered a bit too conservative, we did not want the assistant 
to rely on the oncoming vehicle’s braking because the maneuver may err toward a collision if the 
oncoming vehicle does not brake (but the assistance system assumed it would). The crash statistics 
mentioned in the introduction make it clear that other vehicles will not always notice or avoid an 
overtaking vehicle in time. 

11.3 Simulation Setting 

We performed simulations to evaluate the accuracy of the CW/CA system based on V2V 
communication. Two thousand randomized simulations of overtaking maneuvers were conducted. 
After obtaining the datasets of maneuvers, we tested the effect of different levels of equipment 
accuracy on the performance of the CW/CA system. 

11.3.1 Distributions of Simulation Variables 

The passing vehicle’s driver PR time after he/she indicates a desire to overtake is drawn from a 
triangular distribution between one to four seconds with a mode of 2.5 seconds. Since PR times 
vary depending on the driver’s state (e.g., alertness or fatigue), complexity of the driving situation, 
and the type of highway [143], assuming a maximum of four seconds captures that drivers might 
need longer PR times in rural settings than in urban settings, and in passing maneuvers than in 
simpler driving tasks.  

The initial speeds (i.e., speeds at the beginning of each simulation; denoted by vp, vl, and 
vo in Figure 11.1) for the three vehicles are generated from a truncated normal distribution with a 
mean value 70 mph, minimum value 55 mph, and maximum value 90 mph. Typical speed limits 
for rural interstates in the US range from 55 to 80 mph [152]. We simulated scenarios over the 
typical speed limits on rural two-lane highways to capture excessive speeding situations.  

The passing vehicle’s acceleration is assumed to be zero at the beginning of the simulation. 
After the perception/reaction time, the passing vehicle is assumed to accelerate at a constant rate 

                                                 
3 Of course, not all situations where the time-to-collision is less than one second may result in collisions. To be precise, 
a collision happens only when the time gap goes to zero or beyond. However, since it is not safe to be within such a 
small time-to-collision window, we deem all such collision-prone situations (with less than one second time-to-
collision) as collisions.  
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and move into the opposite lane. This acceleration is drawn from a truncated normal distribution 
with mean 3.6 ft/sec2 and truncated at 1 ft/sec2 and 8.2 ft/sec2 (see [144] for empirical data on 
accelerations in rural roads). The accelerations for the lead and oncoming vehicles (denoted by al 
and ao in Figure 11.1) are drawn from another normal distribution with mean zero and truncated 
at 3.2ft/sec2 on both sides of the distribution [144]. Deceleration was allowed only for the lead 
and oncoming vehicles because the passing vehicle cannot typically overtake the lead vehicle 
while decelerating. 

The vehicular dynamics in the simulation begin with positioning the passing vehicle in the 
right lane at initialization ( ). Subsequently, the lead vehicle is positioned in the right lane at an 

arbitrary location (drawn from uniform distribution) ahead of the passing vehicle’s initial location 
as long as its position is within 15 feet of a one second headway in front of the passing vehicle. 
The oncoming vehicle’s initial position is set to be uniformly distributed between a lower bound 
and an upper bound such that the passing and oncoming vehicles are neither too close at the 
beginning of the overtaking maneuver nor very distant at the end of the maneuver. The lower 
bound of the allowed distance between the passing and oncoming vehicles was taken as the 
minimum distance needed for a vehicle (taking the fastest possible maneuver) to successfully 
overtake, minus one second of headway. In other words, a scenario with an initial passing-
oncoming distance at or below the lower bound would never result in a safe maneuver. The upper 
bound was obtained from the speed-dependent passing sight distance (PSD) guidelines from 
AASHTO [146].4 It is worth noting here that the initial vehicle-to-vehicle spacing and other 
parameters were set such that a considerable proportion of simulated overtaking maneuvers are 
difficult (but not unrealistic) to complete, since one of the objectives of this research was to assess 
the usefulness of communications in preventing overtaking crashes. Since the focus of this 
research study is to evaluate DSRC’s effectiveness in an overtaking safety application, some 
outliers were excluded from the simulated data. Scenarios where the lead vehicle is travelling more 
than 10 mph faster than the passing vehicle at PR time were discarded, as an overtaking maneuver 
is very unlikely to occur in such circumstances. Scenarios where the overtaking vehicle failed to 
pass the lead within 0.621 miles (1 kilometer) were also considered unrealistic and discarded. 
Finally, scenarios in which the oncoming vehicle passes the lead vehicle before the PR time were 
discarded. 

11.3.2 Communication Range 

For the CW/CA system to estimate the trajectory of the lead or oncoming vehicles, the two vehicles 
must be within communication range of the passing vehicle to receive the CAMs containing 
position, speed, and acceleration information of the lead and oncoming vehicles. The 
communication range, in turn, depends on the maximum transmit power of the DSRC devices. The 
Federal Communications Commission defines four classes of DSRC devices depending on their 
maximum allowed transmit powers as: Class A, Class B, Class C, and Class D. DSRC devices are 
normally in the Class C category, with a maximum transmit power of 20 decibel-milliwatts (or 
dBm (dBm is a logarithmic scaled unit of milliwatts) [145]. On the receiving side, devices are only 
guaranteed to correctly receive messages above a certain power, which is referred to as the 
minimum sensitivity. IEEE requires the minimum sensitivity of VANET (Vehicular Ad-hoc 

                                                 
4 The PSD calculations from the AASHTO Green Book are used to set the upper bound on the initial distance between 
the passing vehicle and the oncoming vehicles, because these PSD values are considered to be very conservative in 
the literature [140]. 
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Network) systems to be at least -85 dBm. A wireless signal’s loss in power over distance is 
measured by its path loss exponent, which has a value of two in free space. We opted to set the 
path loss exponent to 2.1 due to the low density of vehicles on rural roads. For these 
communication strength settings, the communication range in our simulations was approximately 
600 meters (2000 feet)5. This doesn’t necessarily imply that V2V communication is fully present 
before 600 meters and becomes completely absent right after 600 meters. Rather, the reliability of 
the communication is likely to taper continuously (but quickly) beyond 600 meters.  

If an oncoming vehicle is out of communication range when the overtaking begins, there 
would be no communication of information between vehicles. In such situations, there would be 
no warning issued by the overtaking assistant, even if the passing maneuver would lead to a 
collision. Therefore, to ensure timely onset of communications between vehicles involved in 
overtaking maneuvers, it is useful that the communication range be more than the design-speed 
dependent safe passing distances given in AASHTO’s Green Book [146]. At the least, the passing 
and oncoming vehicles must come within the communication range before the passing vehicle 
driver’s PR time. However, increasing the communication range has not been a major focus in the 
development of DSRC devices since the allocated spectrum is designed to support many other 
applications [145]; and, widely researched applications such as collision warning at intersections 
or platooning require a much shorter range [147].  

In addition to 20 dBm transmit power, we also simulated scenarios with transmission 
powers of 17 and 23 dBm, which are close to half and double the power of 20 dBm and roughly 
equate to maximum communication ranges of 430 and 860 meters (1,400 and 2,800 feet) 
respectively. Note that other factors such as minimum sensitivity and path loss were kept constant, 
as they have a very similar effect on communication range.  

11.3.3 Packet Error 

When the vehicles are within communication range, the receipt of speed and acceleration 
information may be affected by communication errors called packet errors that lead to the loss of 
some CAMs without their receipt. One major cause of these errors is latency, or the delay between 
a message’s initial broadcast and complete reception. The DSRC standards for the US specify 
communication every 100 milliseconds [145], so a message with latency greater than 100 
milliseconds will be abandoned as the next message is sent. Latency is not constant and is 
determined by many factors, such as congestion caused by high vehicle density and the data size 
of each message. Other miscellaneous issues, including physical interference from precipitation or 
obstacles and software errors, could also prevent a single message from being received. The term 
packet error encompasses all the reasons (other than vehicles being outside communication range) 
why timely communication may not be established between vehicles and why, therefore, potential 
collisions may not be detected by the CW/CA system. 

Communication protocols are generally designed to maintain an acceptable rate of packet 
errors for a given application. Congestion control methods, for instance, focus on minimizing the 
bandwidth used by each broadcasting vehicle while ensuring that all important information is 
transmitted reliably. Advanced DSRC communication protocols are still an active area of research 

                                                 
5 The limited data collection performed in this task did not include rural road scenarios. In the urban environment, we 
observed a reduction in reception rate starting from when vehicles are 150 meters apart. The loss becomes more 
significant when the distance is greater than 300 meters. However, since our data collection was very limited, the 
following simulations are based on results available in the literature such as the ones reported by [148].  
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(for instance, see 149, 150, 151). While Veins is capable of simulating many protocols and error 
sources, the exact nature of these error sources for overtaking applications is not known. For 
instance, high-density traffic is uncommon on rural roads and less likely to permit overtaking in 
the first place. Rather than make arbitrary assumptions on each case, we encompass all errors into 
a single packet error rate. For each message successfully received by the overtaking vehicle (within 
the Veins simulator), with a certain probability this message will be removed and not reported to 
the overtaking assistant. This probability number is termed the packet error rate. Simulations were 
performed with the following packet error rates: 0 percent, 50 percent, 75 percent, and 87.5 
percent. 

11.3.4 Sensor and Estimation Inaccuracy 

In DSRC-enabled connected vehicles, many in-vehicle sensors are used to determine the position, 
speed, and acceleration of the vehicles. Such sensor measurements are, of course, subject to 
sensing error (or inaccuracy), which in turn influences the accuracy of the trajectory prediction. 
To capture this, each simulated measurement of the vehicle position, speed, and accelerations was 
subject to random noise to represent sensor error (or inaccuracy) of the variables used for trajectory 
prediction. That is, while the values of the position, speed, and acceleration variables used for 
simulating each scenario were assumed as “true” values, the corresponding values used for 
trajectory prediction were subject to sensor error. This is one reason why the trajectory predictions 
could differ from the simulated trajectories.  

The magnitude of sensor error for all variables was controlled by a single noise parameter 
η. When η is 0 percent, information used for trajectory prediction is assumed to be known perfectly. 
That is, the values of the vehicle state variables used for trajectory prediction are exactly the same 
as the simulated values. For nonzero η, normally distributed noise is added to each value, the 
magnitude of which depends on η. For a variable X with a measurement x (i.e., a simulated value 
x), the after-noise measurement ݔ	ෝ , which is used for trajectory prediction, is considered to be 
normally distributed as: ݔො ∼ ܰ ቀߤ = ,ݔ ߪ =  100ܺቁߟ

In the above equation, Xrange is 2 meters for position variables, 0.5 m/s for speed variables, 
and 0.25 m/s2 for acceleration variables6. As vehicle positioning is typically achieved by a 
combination of GPS location and reckoning/filtering, the Xrange value position error was taken as 
half the standard RMS of error for GPS [153]. For the velocity and acceleration sensors used within 
vehicles, the Xrange values are chosen such that the sensor error is in the similar range as in standard 
commercial devices (see [154] for an accelerometer example).7  

In addition to the above discussed sensor errors, it is important to note that the passing 
vehicle's behavior variables—driver’s PR time and acceleration during overtake—cannot be 
known with certainty before the beginning of the overtaking maneuver. Therefore, the overtaking 
assistant has to estimate the driver’s PR time and acceleration for trajectory prediction purposes. 
To capture such uncertainty (or errors) in estimation, these two variables were subject to a random 

                                                 
6 Again the data collected in this task was insufficient to be used as a reliable source for the simulations. However, 
what we observed in the field is not significantly different from the assumptions adopted herein. 
7 The error bounds on each variable are relative to its assumed possible error, not the overall range or significance of 
its values. A separate study with a different variable to represent error on each of the eight sensed variables is outside 
the scope of this paper. 
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noise, using the same control parameter η used for sensor error. The parameters should still follow 
all previously outlined assumptions on realistic driving parameters (i.e., the maximum and 
minimum threshold values). Thus, for a variable X with a measurement (or simulated value) x and 
the threshold values ܺ௫	and	ܺ, the estimated value ݔො is distributed as a truncated normal: ݔො ∼ ܰ ቆߤ = ,	ݔ ߪ = 	2 100ߟ (ܺ௫ − ܺ)ቇ	, ܺ ≤ ොݔ ≤ ܺ௫ 

In our simulations, multiple settings are tested for the sensor/estimation error rate (η) in 
conjunction with the packet error rate. These are: 0, 25, 50, and 100 percent for the sensor and 
estimation error parameters (η); and 0, 50, 75, and 87.5 percent for the packet error rate. 

The simulations include nine distinct combinations of transmission power, packet error 
rate, and sensor/estimation error rates, as itemized in the bottom right of Table 1. Note that some 
of these settings, particularly those with high packet error (higher than 50 percent) or high sensor 
inaccuracy rates (higher than 50 percent) may not be realistic vis-à-vis the current performance of 
DSRC devices, but are considered in the simulations to allow for worst-case communication 
settings. 

11.4 Simulated Data for V2V Communication 

The simulated dataset to investigate the use of V2V communication for the CW/CA system 
includes 2,000 unique overtaking scenarios in terms of vehicle dynamics. Each scenario is used to 
test nine different settings of the CW/CA system. This results in 18,000 overtaking assistance 
simulations, with 14,121 collisions (78.8 percent) and 3,879 (21.6 percent) non-collisions. It is 
worth noting here that we purposely simulated a higher than realistic proportion of collisions to 
obtain a sufficient sample of collisions to study. 

Of the 14,121 collisions, the DSRC-enabled CW/CA system detected collisions in a timely 
manner (i.e., detected collision before driver’s perception reaction time) for 9,496 cases (67 
percent successful) but did not detect collisions for the remaining 4,625 cases. Among all the 3,879 
simulated successful overtaking maneuvers without a collision, passing vehicles took an average 
of nine seconds to complete the overtaking maneuver, which is consistent with the overtaking 
maneuver times reported in previous literature [155, 156]. The warning system detected collisions 
(i.e., unnecessary or false warnings) for less than 4 percent of the 3,879 successful (or safe) 
overtaking maneuvers.  
 Table 11.1 presents the inputs used across all the overtaking maneuver scenarios studied 
in this research. These include driver behavior and vehicular dynamics (i.e., PR time, initial speed 
and acceleration of all the three vehicles—passing, lead, and oncoming vehicles) and V2V 
communication settings. In addition, initial distances between (1) passing and lead vehicles and 
(2) passing and oncoming vehicles are presented to give a sense of relative positioning of the 
vehicles in the beginning of the simulation. As can be observed, the descriptive statistics of the 
driver behavior and vehicular dynamics parameters are consistent with the assumptions made on 
these parameters in Section 11.2. The parameters defining V2V communication settings include 
the frequency of CAM messages, power setting parameters (transmission power, minimum 
sensitivity, and path loss exponent, packer error rate, and sensor/estimation inaccuracy rates. As 
discussed in Section 3.3, the frequency of CAM messages and some power setting parameters were 
fixed across all simulations, while the transmission power, packet error rate, and sensor and 
estimation inaccuracy rates were varied.  
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Comparison of Table 11.1’s descriptive statistics between simulated collisions and non-
collisions provides insight into how driver behavior and vehicular dynamics might influence 
collision and non-collision outcomes. Within driver behavior and vehicular dynamics, a higher 
proportion of passing vehicles with a longer driver PR time ended up in collisions. This result 
demonstrates the importance of quick and correct decisions in overtaking maneuvers and 
highlights the need for V2V technologies that can potentially assist in making quick decisions. It 
can be seen that passing vehicles in the highest speed category (> 80 mph) show a greater chance 
of avoiding a collision, despite the notion that fast driving is more dangerous. Yet, this result needs 
to be interpreted with caution, because in our simulations the maximum allowed distances between 
the passing and oncoming vehicles are speed-dependent (see Section 11.2.1). So fast passing 
vehicles often start farther away (from oncoming vehicles) than slower vehicles, and therefore 
might lead to safer simulated maneuvers. Lead vehicles in the slowest speed category (< 70 mph) 
are also represented in greater proportions in non-collisions than in collisions. A larger proportion 
of non-collisions started with a larger initial gap between the passing and oncoming vehicles 
(> 750m). A different trend is seen in the case of collisions, where the largest proportion of 
collision scenarios start with an initial gap of 600 to 750 meters.  

One may note that the V2V communication parameters have no influence on simulated 
collision or non-collision outcomes. This is because the simulations allowed all the overtaking 
maneuvers to complete despite any warning from the overtaking assistant. Such simulation 
outcomes are compared with the trajectory prediction outcomes (which depend on the V2V 
communication settings) to understand the performance of the CW/CA system. 
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Table 11.1: Descriptive statistics of the simulated data 

 All 
Scenarios Collisions 

Non-
Collisions 

  All 
Scenarios Collisions 

Non-
Collisions 

No. of observations 2000 1569 431 No. of observations 2000 1569 431 

Driver Behavior & Vehicular Dynamics Driver Behavior & Vehicular Dynamics (continued) 

Passing Vehicle   Initial Distance between Vehicles 
 Perception/Reaction Time (Seconds) Passing and Lead (m)   
  Min 1.01 1.01 1.11  Min 18.9 18.9 25.2 
  Max 3.98 3.98 3.78    Max 44.6 44.6 44.5 
  <= 3 seconds 80% 80% 79%    < 30 m 22% 26% 8% 
  > 3 seconds 20% 20% 21%  30-40 m 71% 68% 78% 
 Initial Speed (mph)   > 40 m 7% 6% 14% 
  Min 49.1 49.1 63.5   Passing and Oncoming (m)   
  Max 90.0 89.9 90.0    Min 390 390 513 
  < 70 mph 29% 34% 8%  Max 1153 1101 1153 
  70-80 mph 44% 44% 41%    < 600 m 20% 24% 5% 
  > 80 mph 28% 22% 51%  600-750 m 42% 47% 27% 
 Overtaking Acceleration (m/s²)  > 750 m 38% 30% 68% 
  Min 0.306 0.306 0.332 V2V Communication Settings, Fixed 

  Max 2.50 2.49 2.50  Frequency of Cooperative Awareness Messages – 100 ms 
  < 1 m/s² 34% 37% 26%  Minimum Sensitivity – -85 dBm  
  1-1.5 m/s² 43% 44% 41% Path Loss Exponent – 2.1  

  > 1.5 m/s² 28% 26% 37%     

Lead Vehicle    V2V Communication Settings, Combinations  

 Speed (mph)      
Transmission 
Power (dBm) 

Packet 
Error Rate  

Sensor and Estimation 
Inaccuracy Rate (or Noise)

  Min 55.0 55.0 55.0   20 0% 0%  
  Max 89.9 89.9 87.5   20 50% 0%  
  < 70 mph 47% 42% 68%  20 75% 0%  
  70-80 mph 37% 40% 27%   20 87.5% 0%  
  > 80 mph 16% 19% 5%  20 0% 25%  
 Acceleration (m/s²)   20 0% 50%  
  Min -0.998 -0.890 -0.998   20 0% 100%  
  Max 0.972 0.972 0.632   23 0% 0%  
  <= 0 m/s² 51% 47% 64%   17 0% 0%  
  > 0 m/s² 49% 53% 36%      
Oncoming Vehicle       
 Speed (mph)        
  Min 55.0 55.0 55.1     
  Max 89.8 89.6 89.8       
  < 70 mph 49% 47% 55%      
  70-80 mph 36% 37% 33%       
  > 80 mph 15% 16% 12%      
 Acceleration (m/s²)       
  Min -0.979 -0.979 -0.840       
  Max 0.931 0.931 0.765       
  <= 0 m/s² 53% 51% 59%      
  > 0 m/s² 48% 49% 41%      
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Figure 11.2 shows the cumulative distribution of the distance between passing and 
oncoming vehicles, at the starting time of an unsafe (ultimately collision-causing) overtaking 
maneuver. This is the final, and minimum, distance at which these two vehicles may communicate 
to enable an automated warning. Therefore, the distribution of this value provides insight into the 
essential range of communication for reliable overtaking assistance: for any given distance, this 
figure displays the proportion of overtaking maneuvers that could have had sufficient 
communication at the matching DSRC communication range—excluding other factors such as 
congestion-related packet error. In order to capture nearly every unsafe overtaking maneuver, 
vehicular communication will have to operate over roughly 900 meters. This is a tall order for 
DSRC, as it is usually designed for other goals (see 147, 157, 158 for typical assumptions of the 
maximum necessary distance for urban ADAS). Using more typical long-range DSRC settings, 
which achieve less than 700 meters, an overtaking assistant may not detect at least 10 percent of 
unsafe maneuvers. 

 

  
Figure 11.2: Cumulative distribution of collision maneuvers versus initial distance 

This insight is matched by simulation results. In total, out of 4,625 undetected collisions, 
4,555 (98.5 percent) occurred because communication was not established between the passing 
and oncoming vehicles. For 4,498 (98.7 percent) of the undetected collisions where 
communication was not established, the passing and oncoming vehicles had still not come within 
communication range before the passing vehicle driver’s PR time.8 This suggests that 
communication range is the primary factor in the performance of the overtaking assistant. 

Figures 11.3 and 11.4 both categorize the scenarios by four assisted overtaking outcomes—
undetected collisions, correctly detected collisions, no-collision scenarios without warning, and 
no-collision scenarios with a false (or unnecessary) warning. Figure 11.3 shows the distribution of 

                                                 
8 As discussed earlier, the three DSRC power settings employed in our simulations imply communication ranges of 
about 430, 600, and 860 meters respectively. However, this doesn’t necessarily imply that V2V communication is 
fully present before 430 meters and becomes completely absent right after 430 meters. Rather, the strength of the 
communication is likely to taper continuously (but quickly) beyond 430 meters. 
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the actual time-to-collision - i.e., the time it took for the passing vehicle to collide with the 
oncoming vehicle after the passing vehicle achieved 1 second headway ahead of the leading 
vehicle. For the majority of simulations with an actual time-to-collision greater than 1 second and 
a warning from the assistant – in other words, a false warning – the time-to-collision is less than 
2, suggesting that the majority of false warnings are issued for scenarios that were relatively close 
to collision. Therefore, the issue of false warning does not appear to be a severe issue in the context 
of DSRC-assisted collision warning systems for overtaking scenarios on rural highways. On the 
other hand, the ratio of warnings for collision scenarios (with time-to-collision less than one 
second) appears unrelated to the time-to-collision. 

 

 
Figure 11.3: The actions of the overtaking assistant versus the actual time-to-collision between 

passing and oncoming vehicles 

Figure 11.4 presents descriptive statistics to understand the influence of packet error and 
sensor/estimation error rate (or noise) on the performance of the overtaking assistant. The 
information is presented separately for scenarios that resulted in collisions and scenarios that did 
not lead to collisions. For the collisions, the figure presents the distribution of the scenarios 
between undetected collisions and detected collisions for different levels of packet error and sensor 
and estimation error rates. Similarly, for non-collisions, the figure presents the distribution of the 
scenarios between cases where no warning was issued and cases where a false warning was issued 
by the overtaking assistant. 

As can be observed from the bars representing “undetected collisions,” when transmission 
power was set to 20 dBm and both packet error rate and noise were set to 0 percent, 26.8 percent 
of the collisions were undetected. All of these undetected collisions may be attributed to lack of 
communication due to vehicles being out of communication range before the passing vehicles’ PR 
time. An increase or decrease in transmission power critically affects the level of undetected 
collisions, reducing them as low as 1 percent for 23 dBm communication or as high as 78 percent 
for 17 dBm. 
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As the packet error increases from 0 percent to 87.5 percent, the percentage of collisions 
that were not detected increases and the percentage of collisions that were detected decreases (see 
the column titled detected collisions). However, the increase in the percentage of undetected 
collisions is less than 5 percent for packet error rates of up to 75 percent. It is only beyond 75 
percent packet error rates that the percentage of scenarios with undetected collisions increases 
considerably. In reality, as discussed earlier, packet errors of DSRC devices are rarely as high as 
75 percent or more. Therefore, these results suggest that the influence of packet error rates on 
missing the detection of a potential collision is not as strong as that of the vehicles being out of 
communication range. Next, note from the bars representing “false warning” that increasing packet 
error rate did not influence whether or not a false warning is issued for overtaking scenarios that 
did not end up in collisions. This is expected because packet errors influence only whether 
communication is established or not, not the accuracy of trajectory prediction itself.  

 

 
Figure 11.4: CW/CA system accuracy measures 

The rightmost segment of the figure corresponds to the influence of sensor and estimation 
error rates (i.e., the noise parameter) on the performance of the overtaking assistant. As can be 
observed from the collision bars, increasing the sensor and estimation error rate leads to a small 
decrease in the ability to detect collisions. Specifically, the percentage of collisions that were not 
detected increases from 26.8 percent at zero noise to only 28.3 percent at 100 percent noise. On 
the other hand, the percentage of no-collision scenarios that had a false warning issued by the 
overtaking assistant rises to 7.2 percent at 25 percent noise and 9.0 percent at 50 percent noise. 
These trends suggest that the sensor and estimation errors, as simulated, are more likely to cause 
the overtaking assistant to be overly conservative, leading to false warnings, than to be overly 
optimistic, leading to undetected collisions or false negatives. This is expected because the sensor 
and estimation errors simulated in our experiments were symmetric around the true values (i.e., 
not biased toward the right or left of the true values) and sensor errors varied with every V2V 
message sent. Furthermore, only a single prediction of collision is needed at any time between the 
beginning of the scenario and the PR time of the passing vehicle. While the predicted time-to-
collision is equally likely to be conservative or optimistic (because sensor and estimation errors 
are symmetric), the collision warning is issued on the first instance the predicted time-to-collision 
is less than one second. Therefore, sensor and estimation errors combined with our collision 
warning protocol primarily increase the likelihood of false warnings. It’s worth noting that 
symmetric and time-varying noise is likely to have a stronger effect on the overtaking assistant’s 
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performance than constant or one-sided noise for the same reason: the assistant can overreact to 
one point in time with exceptional noise. 

11.5 Performance of the CW/CA System based on V2V Communication  

The descriptive analysis of the simulated data provides useful insights on the influence of V2V 
communication parameters on the effectiveness of DSRC-enabled warning systems in predicting 
and preventing rural road overtaking collisions. Nevertheless, a univariate descriptive analysis 
cannot conclusively isolate the influence of different factors on the performance of the DSRC-
enabled warning systems. One reason is that the safety of an overtaking maneuver, or even whether 
a simulated overtaking maneuver is realistic in the first place, depends on multivariate 
relationships in the vehicle dynamics. As an example, the speed of the passing vehicle might be 
related to the effectiveness of an overtaking assistant. A univariate analysis requires simulations 
of varying speed while all other vehicle parameters are kept constant (otherwise correlation effects 
can lead to false conclusions). However, depending on the distance to and speed of the lead vehicle, 
a passing vehicle’s speed may not be high enough for an overtaking maneuver to occur, or may be 
so high that the driver must slow down before his perception/reaction time is complete. Thus, it is 
not possible to fix the environment while analyzing the overtaking assistant. Therefore, the next 
section provides a multivariate analysis to isolate the influence of each of the above factors while 
controlling for the influence of vehicular dynamics and driver behavior variables. The simulated 
data discussed above were used to estimate three binary discrete outcome models. 

The first model, called collision occurrence model, was estimated on all 18,000 simulated 
overtaking maneuvers to examine the influence of driver behavior and vehicular dynamics on 
collision occurrence (i.e., whether collision occurred or not). The second model, called collision 
detection model, was on only the subset of simulated overtaking maneuvers that resulted in 
collisions. This model explores the influence of driver behavior, vehicular dynamics, and V2V 
communication parameters (packet error rate and sensor/estimation inaccuracy rate) on the ability 
of the DSRC-enabled system to detect collisions9 in a timely manner (i.e., before the passing 
vehicle driver’s PR time). The binary outcomes analyzed in this model are: (1) undetected collision 
and (2) detected collision. The third model, called false warning model, was on only the subset of 
simulated overtaking maneuvers that did not result in collisions. This model was used to examine 
the influence of various factors on the likelihood of the overtaking assistant to provide unnecessary 
warnings (or the false alarm of a collision). The binary outcomes analyzed in this model are: (1) 
collision detected but there was no collision (i.e., false warning), and (2) no collision detected and 
there was no collision. The parameter estimates of all the three models are presented in Table 11.2.  

 
 
 
 
 

                                                 
9 Recall that a collision would be detected if the estimated time-to-collision (i.e., time-to-collision at the instance the 
passing vehicle’s headway is one second ahead of the lead vehicle) is less than one second. 
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Table 11.2: Binary probit model estimation results 
  Model #1 Model #2 Model #3 

 Collision Occurrence  
(base: Non-Collisions) 

Undetected Collisions  
(base: Collision occurred and 

warning issued) 

False Warnings  
(base: No collision and warning 

not issued) 

No. of observations 18000 overtaking maneuvers
14121 overtaking maneuvers 

that lead to collisions 
3879 overtaking maneuvers that 

did not lead to collisions 
 Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) 

Constant 4.4888 (50.96) -1.0543 (-20.67) -2.1587 (-21.30) 
Passing Vehicle   
 Perception/Reaction Time   
  <= 3 seconds base category base category base category 
  > 3 seconds 0.2862 (6.63) -1.2267 (-25.40) 0.2974 (2.15) 
 Initial Speed   
  < 60 mph -- -- 0.4797 (3.57) 
  60-70 mph base category -- 0.4797 (3.57) 
  70-80 mph -1.3560 (-26.04) base category base category 
  > 80 mph -1.4802 (-32.74) -0.2123 (-3.99) -- 
 Overtaking Acceleration   
  < 3 ft/sec2 0.5779 (15.07) 0.1068 (2.84) -0.3055 (-2.14) 
  3-5 ft/sec2 base category base category base category 
  > 5 ft/sec2 -0.4291 (-11.20) -- -- 
Lead Vehicle   
 Speed   

 < 60 mph -3.8337 (-47.22) -- -- 
  60-70 mph -1.9778 (-41.04) base category -- 
  70-80 mph base category 0.1579 (3.85) base category 
  > 80 mph 1.4702 (23.58) 0.2985 (5.44) -- 
 Acceleration   
  <= 0 ft/s² -1.0270 (-28.08) -0.1271 (-3.71) base category 
  > 0 ft/s² base category  -- 
Oncoming Vehicle   
 Speed   

 < 60 mph -0.8192 (-15.21) 0.0952 (2.76) -- 
  60-70 mph -0.4136 (-11.27) 0.0952 (2.76) -- 
  70-80 mph base category base category base category 
  > 80 mph 0.3109 (5.87) -- 0.3636 (2.03) 
 Acceleration   
  <= 0 ft/s² base category base category base category 
  > 0 ft/s² 0.3624 (11.50) -0.1196 (-3.45) -- 
Initial Distance between Vehicles   

Passing and Lead   
 < 100ft -- -0.1492 (-3.49) -- 
 100-120 ft base category base category base category 
 > 120 ft -0.1287 (-3.23) -- -- 
Passing and Oncoming    
 < 2000 ft 1.4604 (24.35) -1.5274 (-26.96) 0.5234 (3.67) 
 2000-2500 ft base category base category base category 
 > 2500 ft -1.3674 (-33.32) 2.4363 (50.01) -1.5317 (-8.74) 

V2V Communication Settings   
 Packet Error Rate   
  0% ** base category base category
  50% ** 0.1562 (2.11) -- 
  75% ** 0.3182 (4.33) -- 
  87.5% ** 1.0795 (16.05) -- 
 Sensor & Estimation Error Rate    
  0% ** base category -- 
  25% ** -- base category 
  50% ** -- 1.2205 (9.35) 
  100% ** -- 1.5277 (12.26) 
 Sensor Power    
 17 dBm ** 2.7132 (31.80) -- 
 20 dBm ** base category base category 
 23 dBm ** -3.2786 (-21.10) -- 

Summary Statistics   
 R2 0.55 0.60 0.37 
 Restricted Log-Likelihood: -9546.44 -6350.23 -569.11 
  Final Log-Likelihood: -4295.90 -2978.21 -355.39 

** Not included in model. V2V communication only warns of a potential collision but does not influence the simulated outcome. 
-- Dropped from specification as the coefficient was statistically insignificant (i.e., not different from zero). 
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Model #1: Collision Occurrence Model 
The collision occurrence model parameter estimates are shown in the second column of the table. 
The positive coefficient on the passing vehicle driver’s perception/reaction time suggests that 
higher PR times increased the likelihood of collisions in our simulations. This is because the 
distance between the passing and oncoming vehicles diminishes as more time elapses from the 
beginning of the simulation. Also recall that all our simulations continued to complete the 
overtaking maneuver despite any potential for collisions because the primary goal of this work is 
to assess the effectiveness of DSRC-enabled V2V communication systems in predicting and 
preventing overtaking collisions. In real life situations, however, longer PR times might provide 
the driver an opportunity to carefully evaluate the situation and abort the overtaking maneuver if 
necessary. Similarly, as discussed later, in the context of the DSRC-assisted collision detection 
systems, longer PR times increase the likelihood of timely detection of collisions.  

In the context of the vehicular dynamics of the passing vehicle, ceteris paribus, greater 
initial speeds and higher overtaking accelerations decreased the likelihood of collisions—perhaps 
because such passing vehicles spend less time in the opposite lane. On the other hand, the initial 
speed and accelerations of the lead and oncoming vehicles had an opposite influence. Greater 
speeds and higher accelerations of either vehicle increased the likelihood of collisions. This is 
because the available gap between passing and oncoming vehicles (when the passing vehicle 
achieves one second headway ahead of the lead vehicle) becomes smaller at higher speeds and 
accelerations of the lead or oncoming vehicles. 

Finally, as expected, smaller initial distance between passing and lead vehicles increased 
the likelihood of collision, while greater initial distance between passing and oncoming vehicles 
reduced the likelihood of collision.  
 
Model #2: Collision Detection Model  
Model #2 may be used to examine the influence of driver behavior, vehicular dynamics, and V2V 
communication settings on the likelihood of a missed warning (or undetected collision) for unsafe 
overtaking maneuvers. Most of the parameter estimates from this model point to the relative 
importance of the passing and oncoming vehicles coming within communication range. For 
instance, in the context of driver behavior, longer PR times of passing vehicle drivers decreased 
the likelihood of missing the detection of a collision, presumably because longer PR times provide 
a greater opportunity for the passing and oncoming vehicles to come within communication 
range.10 In addition, increasing the speed of oncoming vehicles also increased the likelihood of a 
collision being properly detected by the overtaking assistant. More importantly, as can be observed 
from the high t-statistic values of the variable “initial distance between passing and oncoming 
vehicles,” this variable exhibits a significant influence on the ability to detect collisions. 
Specifically, scenarios that begin with a greater separation between passing and oncoming vehicles 
and end in collisions are less likely to be detected in a timely manner. Again, this is because a 
greater initial separation between the two vehicles lowers the likelihood of them coming within 
communication range in a timely manner (i.e., prior to passing vehicle’s PR time). These results 
suggest that increasing the DSRC power settings to broaden the communication range may be an 
effective way of increasing the performance of DSRC devices for improving the safety of rural 
highway overtaking maneuvers. 

                                                 
10 Longer PR times also result in a higher likelihood for the V2V communication to overcome packet loss, which in 
turn, increases the likelihood of detecting collisions. 
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Both the speed and acceleration of the lead vehicle appear to be positively associated with 
the likelihood of undetected collisions. Increasing the lead vehicle speed increases the amount of 
time needed for the passing vehicle to complete the overtaking maneuver, thus increasing the 
likelihood that a distant oncoming vehicle (one outside of communication range) could cause a 
collision. For the same reason, the acceleration at which the passing vehicle performs the 
overtaking maneuver is negatively correlated with the likelihood of undetected collisions. 
 In the context of V2V communication settings, the transmission power has an expectedly 
high correlation with the detection of collisions. As the packet error rate increases beyond 50 
percent, the likelihood of undetected collisions also increases, presumably because it increases the 
likelihood of missed communication among the three vehicles. However, as discussed earlier, 
packet error rates of greater than 50 percent are unlikely in DSRC-enabled V2V communication 
systems. Therefore, in the context of rural highways where the vehicular traffic volumes are not 
as high as those in urban environments, relieving communication channel congestion is perhaps 
not a high-priority concern unless packet error rates increase beyond 50 percent. 
 Sensor and estimation errors were not determined to have significant effect on the detection 
of collisions. Figure 11.4 shows that higher errors will in fact cause slightly fewer collisions to be 
detected, but this amount is so small as to be probabilistically insignificant according to a 
multivariate model. 
 
Model #3: False Warning Model 
The parameter estimates of Model #3 may be used to understand which safe overtaking scenarios 
are associated with an increased likelihood of an unnecessary warning issued by the overtaking 
assistant. Specifically, safe overtaking scenarios with lower initial speeds of passing vehicles, 
higher lead vehicle speeds, or those with higher oncoming vehicle speeds are associated with a 
higher likelihood of a false warning. This is because passing vehicles with lower initial speeds and 
lead vehicles with higher speeds tend to require a longer time for completing the overtaking 
maneuver. Long overtaking maneuvers and fast oncoming vehicles may lead to situations that are 
near collisions but deemed safe (i.e., time-to-collision is higher than one second, but not by much). 
As seen in Figure 11.3, such maneuvers are common in these simulations and contain a high 
proportion of false warnings. In such cases, it is perhaps easier for sensor and estimation errors 
(that influence the trajectory prediction) to cause an under-estimation of the time-to-collision to be 
below one second, leading to a false warning. 
 In the context of communication settings, as expected, packet error rates do not 
significantly impact the likelihood of unnecessary warnings. However, increasing the sensor and 
estimation inaccuracy rates leads to an increase in the likelihood of unnecessary warnings. As 
discussed at the end of Section 4, this result may be attributed to the unbiasedness of the simulated 
sensor and estimation errors combined with our protocol to issue a warning at the first instance of 
predicted time-to-collision falling below one second. To reduce such incidence of unnecessary 
warnings, Haas and Hu [157] built in logic to their collision warning model to only issue a warning 
to the driver if the vehicle predicts a collision two consecutive times. However, given the low 
incidence rate of false warnings (less than 15 percent at the highest noise setting in our simulations) 
and that the warnings occurred for scenarios that were near collisions, the issue of false warnings 
does not appear to be a severe concern for DSRC enabled collision warning systems in rural 
overtaking settings. Of course, to the extent that sensor and estimation errors in reality might be 
biased toward being conservative or optimistic, the predictions may also be biased in the same 
manner.  
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11.6 Comparing V2V and V2I Communication 

In this final section we perform a brief comparison between the use of V2V and V2I 
communication for a CW/CA system. A hypothetical rural-road V2I infrastructure was developed 
as a potential alternative to V2V warnings and 4,690 overtaking maneuvers were simulated. This 
infrastructure consists of periodic radar road-side units (RSUs) positioned to the side of a road, 
facing down that road. Each RSU can detect vehicles up to 200 meters away, and can transmit the 
vehicles’ presence up to 600 meters. While this type of system could potentially be costly, 
especially if many radar units are required, it offers several advantages over V2V methods. Most 
notably, it makes up for DSRC’s potentially inadequate range by adding an additional 200 meters 
of visibility. There is also the potential for each RSU to relay a message from the others, enabling 
vehicle information to spread much farther. 

Table 11.3 shows the comparison of the CW/CA capabilities of this infrastructure system 
to that of the previously studied V2V system. The sensor and estimation accuracies were set to 
one-half of their worst-case accuracy, and packet loss was set to zero for this result. If RSUs are 
spaced at two per kilometer, they can potentially warn of far more collision-causing maneuvers 
than V2V can. These RSUs also give false warnings at a higher rate than V2V, but that is entirely 
due to the fact that they can detect more vehicles in the first place, rather than some fundamental 
difference in their accuracy or predictive algorithm. These results show that V2I may have an 
important role in complementing V2V for safe collision warning systems. However, the analysis 
performed herein is not conclusive and cannot guarantee that V2I is the most suitable solution for 
rural roads. 

Table 11.3: Simulations results for overtaking CW/CA with V2I 

Method 3,593 collisions 1,097 safe maneuvers 

V2V—600m range 70.8 % warned 10.3% false warning 

V2I with 200m spacing 96.9% warned 29.4% false warning 

V2I with 500m spacing 95.6% warned 26.2% false warning 
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Chapter 12.  Conclusion 

Historically, the focus of highway safety has been geared toward implementing passive 
safety systems (such as airbags and road barriers) that attempt to reduce the severity of crash 
outcomes. With the advancement of technology, however, efforts have expanded to design 
advanced driver assistance systems. In this report, we provide four different approaches to utilizing 
communications and radar sensors to enhance CW/CA systems. The overall goal of the trajectory 
prediction research was to quantify the value of different types of information in predicting a 
vehicle’s future motion, and how these predictions translate into more effective CW/CA systems. 
Position and basic dynamic information, such as speed, direction, and acceleration, can contribute 
to accurate prediction of a vehicle’s position for up to 3 seconds. A 3-second time gap is enough 
for many CW/CA systems, and this information is easily conveyed with V2V communications 
and/or gathered through radar. For further prediction, information such as road maps and recorded 
vehicle trajectories can improve accuracy, but our current methods require detailed information 
for every location. 

CW/CA system design for non-motorized users was investigated by coupling a 
radar/LIDAR sensor with the recent, state-of-the-art deep-learning approaches of computer vision. 
Pedestrian detection was achieved, while cyclist detection was less successful—partially due to 
the lack of example data for cyclists. The possibility of an onboard detection system with deep 
learning was also investigated. Simulations of intersection maneuvers verified that both 
communication and radar have strengths and weaknesses that result in different CW/CA 
performance, in terms of how accurately collision situations can be detected in advance. Sensor 
fusion of the two information sources achieved the best performance. In addition, the different 
properties of a vehicular sensor were prioritized, with coverage area being the most important, 
accuracy being next, and frequency of information last. The COIN simulations showed that 
automated systems are capable of learning simple driving precepts simply by avoiding collision 
situations. The model is being continually refined and the goal is to achieve a rule-free and crash-
free navigation in a crowded intersection using only information that is readily available from 
DSRC communication. This work is an unprecedented experiment in the design of futuristic 
transportation systems. 

In this report we also explained why current technologies for vehicular communications, 
such as DSRC or 4G cellular systems, would be insufficient for future connected vehicles that 
wish to share raw sensor data on a large scale. To exchange large amounts of data from automotive 
sensors (e.g., cameras and LIDARs), we proposed the use of mmWave networks to exploit a large 
amount of bandwidth and enable Gbps data rates for future vehicular communications. Since 
automotive radars are already using mmWave spectrum, we developed a framework for joint 
mmWave radar and communication systems that functions within a single device by using the 
same waveforms. We showed that it is possible to simultaneously achieve desired automotive radar 
performance and data rates to exchange raw sensor data using a joint mmWave system. We also 
verified the feasibility of joint radar and communication systems using low frequency WLAN 
systems.  

To optimize the performance of joint radar and communication systems, we first identified 
the three key scenarios where automotive radar and communication systems would be mostly 
needed. Then we studied performance trade-off between radar and communication functions of 
the joint systems. Using the trade-off characteristic of joint systems derived in this report, joint 
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mmWave radar and communication systems can adaptively optimize radar and communication 
performance depending on traffic scenarios.  

We also investigated mmWave antenna and transceiver structures and identified an optimal 
beamwidth that maximizes the performance of mmWave systems, which will guide future antenna 
design. We proposed a beamforming technique to efficiently adapt beamwidths to maximize the 
performance of joint systems. We further investigated mmWave channel acquisition techniques, 
which exploit low frequency channel information. The proposed techniques will enable sufficient 
flexibilities on designing mmWave joint radar and communication systems. Since security is 
critical in automotive environments, we thoroughly investigated security issues in automotive 
radar and communication systems. We then proposed potential ways to improve security in 
mmWave systems exploiting a large number of antennas.  

There is still a significant amount of work to in this field of automotive communication 
technology research. In order to mitigate high velocities in vehicular settings, we need to develop 
efficient protocols to establish mmWave communication links with minimal overhead. We believe 
it is possible to exploit side information from auxiliary automotive sensors and leverage this 
information in the implementation of efficient communication protocols. For example, automotive 
radars can detect possible vehicles for communication, and automotive cameras can tell where to 
transmit mmWave beams to establish communication links. The use of out-of-band sensing 
technologies to support communication links is a novel concept in the wireless communication 
industry, and requires a substantial amount of work. In addition, prototyping will also be necessary 
to demonstrate the true benefits of the proposed techniques. 

In the final task of this research project, we used simulations to assess the performance of 
a CW/CA system that uses DSRC to assist overtaking maneuvers. The overtaking assistant 
predicted collisions successfully for 70% of the simulated collisions and gave false CWs for less 
than 3% of simulated safe maneuvers. A descriptive analysis followed by a multivariate analysis 
(using binary discrete outcome models) of the simulated data revealed that the majority of 
collisions that could not be detected were due to the passing and lead vehicles being out of 
communication range (2000 ft) when the passing vehicle started the overtaking maneuver (at least 
for the communication power settings used in the simulation). These results suggest that a 
promising way forward to enhance the effectiveness of DSRC devices for improving the safety of 
rural highway overtaking maneuvers is by increasing their power settings to broaden the 
communication range. Another notable result was that packet errors up to a 50% error rate did not 
have a significant influence on the ability to detect collisions. This result points to how the 
communication requirements of rural road overtaking scenarios might differ from those of urban 
intersection scenarios with large traffic volumes where decreasing latency (or packet errors) and 
relieving communication channel congestion might be a critical need. While still a factor, channel 
congestion will not have the same magnitude in rural settings as in urban settings. Furthermore, 
the rural road overtaking maneuver is very deliberate and allows a large span of time in which 
communication can occur. However, even in rural road settings, latency may be a key factor for 
other safety applications such as forward CW or emergency brake warning. Sensor error and 
estimation inaccuracies were found to increase the rate of false warnings more than that of 
undetected collisions. However, since the incidence of false alarms was small and a majority of 
them occurred for scenarios that were near collisions, the issue of false alarms does not appear to 
be a major concern in the case. It is important to note, however, that any systematic biases in sensor 
and estimation errors, or systematic errors in the trajectory prediction method, may increase the 
incidence of false alarms or undetected collisions in ways not covered by this simulation. 
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The data collection effort performed in the project was very limited but enough to show 
the importance of merging multiple technologies for sensing the traffic environment in cities. The 
blind intersection scenario, the situations in which the GPS positioning showed the vehicle in the 
wrong lane, and the interaction with pedestrians are some examples of situations in which we could 
use the data to visualize the importance of having multiple technologies backing each other. The 
difficulty of identifying the causes of errors in the information produced by the sensors and 
transmitters pointed to the necessity of more controlled experiments. One possible approach could 
be the use of efficient experimental design to allow the identification of sets of environmental and 
situational variables that adversely affect the functioning of the system. The identification of these 
special circumstances can also allow specific programming to enhance the performance of the 
algorithms and the overall system. Situations in which the radar component outperforms the 
communication system (and vice versa) can be identified and the algorithms can be adapted in 
order to give more weight to the information provided by the best sensor in each occasion. 

The research described in this report is a solid first step towards the development of 
connected and even autonomous vehicles. We developed important frameworks that need to be 
prototyped and further enhanced. Overall, our effort in this report makes clear the huge value of 
being able to rely on multiple information sources for CW/CA. The different strengths of each in-
vehicle device, from cameras to radar to V2X networks, mean that each device plays the main role 
in at least one important CA task.  
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Appendix A. Device Properties 

These are the assumed properties of certain on-vehicle sensors, as used in Chapter 4.3. 

• Global Positioning Service (GPS) – worst case r.m.s. error of 4 meters, as found in the 
95th percentile of tests by a US survey [49]. The simulations used normally distributed 
noise with a standard deviation of 2 meters. This way the 95th percentile of noise has a 
magnitude of roughly 4 meters. 

• Speedometer – the required accuracy is 5 miles per hour [50]. This is surprisingly high 
for a mechanical sensor, the primary reason being that tires have varying-changing size. 
Simulations used normally distributed noise with a standard deviation of 2.5 miles per 
hour. 

• Accelerometer – not included in these simulations, but included in the Task 3 overtaking 
simulations. Their error is usually reported well under 0.25 meters per second squared 
[142], though numbers have not been reported for vehicle use in particular. 

• Delphi ESR [DELPHIESR] 

o Communication range: 174 meters from the long-range radar, 60 meters from the 
short-range radar 

o Communication field of vision: 10 degrees from the long-range radar, 45 degrees 
from the short-range radar 

o Positioning error: normally distributed with one meter standard deviation. It was very 
difficult to find any statements on the accuracy of the radar; the vehicle tests from 
Task 3 will provide more insight into this. Note that this is the relative position of 
one vehicle to the other, not the absolute position of the vehicle! 

o Speed error: normally distributed with 1.25 miles-per-hour (roughly 0.5 meters per 
second) standard deviation. Same as above, a characterization of radar accuracy was 
not easy to locate. Also same as above, this is speed relative to the reference of the 
sensing vehicle. 

o Frequency of information: 50 milliseconds. Our simulations only occur in 100-
millisecond timesteps, so this is the limit that we could simulate. It was assumed that 
the increased frequency would have no benefits. 

• DSRC communication [DSRC] 

o Communication range: Values vary depending on the implementation, but most 
studies accept that at least 100 meters will be standard 

o Communication field of vision: complete 

o Positioning and speed errors: same as GPS and speedometer errors. Sending the 
vehicle’s values by communication will add no error. 

o Frequency of information: once per 100 milliseconds. Packet loss may occur in cases 
of heavy traffic, but is not studied in our simulations. 
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Appendix B. COIN State Space 

This list includes every element of the states that the agents learn on: note that all are 
discrete variables, and some are heavily rounded to keep the state space small. 

• Location = {pre-intersection, entering intersection, within intersection, post 
intersection}, this specifies the rough position of the car in the intersection. 

• Lane={Agent’s current lane number depending on road } 

• Lane to Destination = {T, F} whether the path that agent is currently in ends up in its 
desired destination (e.g., the car that wants to go straight should learn not to take the 
lane which is specifically meant to be used by vehicles which make the left turn at 
intersection) 

• Adjacent Lane is Free = {None, Left, Right, Both}, measures the presence of other 
vehicles in adjacent lanes 

• Agent Speed = {0,10,20,30,40,50,60}(Km/h), Agent speed with resolution of 10 Km/h 

• Time to Nearest Vehicle = {[0,1],[2,4],[4,8],[8,]} (seconds), the shortest time-to-
collision with any other vehicle, using a constant-velocity model to predict vehicles’ 
trajectories. The model from Chapter 2.2.2 is used to gather this time value. 

• Slower Time to Nearest Vehicle = {[0,2],[2,]} (seconds), checks for potential collisions 
under the assumption that this vehicle moves 10 kph slower than its current speed. 

• Faster Time to Nearest Vehicle = {[0,2],[2,]} (seconds), checks for potential collisions 
under the assumption that this vehicle moves 10 kph faster than its current speed. 

• Distance to the car ahead = {[0,2],[2,4],[4, ]} (meters), the approximate distance of the 
car to the car ahead (on the same lane) 

• Distance to a crossing car = {[0,2],[2,4],[4,]} (meters), the approximate distance to a 
car that is blocking this car’s way through the intersection 

• Intersection Open = {True, False} whether there is a vehicle currently entering or in the 
intersection with a conflicting path with this vehicle – regardless of whether the two 
vehicles are expected to collide 

• Priority = {True, False} whether this entry road has priority for the intersection at the 
moment 
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