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Chapter 1.  Executive Summary 

“Smart driving technologies” are components that create a more intelligent automotive 
system, and these technologies can be beneficial in the future for our infrastructure. To analyze 
these technologies, we anticipated benefits relating to transportation safety, mobility and 
environment. This involves crash benefits, travel time and congestion benefits, and several cost 
benefits, amongst others. Aligned with this vision and as part of the TxDOT Project 0-6847 “An 
Assessment of Autonomous Vehicles: Traffic Impacts and Infrastructure Needs”, the objective of 
this report is to provide a systematic synthesis of contemporary smart driving technologies, 
including their technological maturity and their potential impacts.  

The project began by understanding the current state-of-practice and trends. NHTSA 
provides a four-level taxonomy for automated vehicles, which was used to classify smart driving 
technologies and infrastructure needs. Level 0 and Level 1 technology, such as blind spot 
monitoring and electric stability control, are already entering mainstream adoption. Level 2 
technology is promising for the future featuring technologies such as adaptive cruise control 
(ACC) in conjunction with lane centering or lane keeping assist (LKA). Level 3 and Level 4 
technologies, however, have yet to be adopted in the mainstream and pose several large barriers to 
adoption due to uncertainty in performance and real-world driving. Each of these levels faces many 
barriers, but the main barriers for such technologies are cost, reliability, and legislation. A large 
issue with all levels involves cost. However, cost tends to decrease over time and much like cost, 
we expect that market penetration of these technologies will increase rapidly. Another major 
barrier involved in this technology’s adoption involves licensing and testing standards within the 
U.S., which are currently being developed at the state level, delaying large-scale adoption. Some 
technology will also require more information from roadways and needs supporting infrastructural 
components to function properly such as lane markings and signs. Regarding this need, TxDOT 
has a key role to play in facilitating the arrival of a substantial presence, which will have many 
economic and quality-of-life impacts.  

The project used surveys to analyze and gain an understanding of the U.S. general public’s 
perception towards such technologies and their willingness to adopt such technologies. The team 
designed and disseminated a Texas-wide survey for 1,364 completed responses and used those 
data in the proposed fleet evolution framework to simulate Texans’ long-term (2015 to 2045) 
adoption of connected and autonomous vehicle (CAV) technologies under different technology 
pricing scenarios (1%, 5%, and 10% annual price-reduction rates). Within the surveys, respondents 
were asked several anticipatory questions including their vehicle history as well as their future 
vehicle plans, their technology preferences (buying/selling their vehicles or simply adding new 
technologies to their current vehicles), and their comfort and willingness to pay (WTP) towards 
connected and autonomous vehicles. The team found that advanced automation technologies are 
not yet popular. More than half of the respondents are not willing to pay anything to add the 
advanced automation technologies such as self-parking valet, limited self-driving [Level 3], and 
full-self driving [Level 4]. We also found that among single-function (Level 1) and combined-
function (Level 2) automation technologies, traffic sign recognition is the least appealing (52.5% 
of respondents reported $0 WTP), currently least adopted (2%), and anticipated to have the least 
future adoption (in 2045) by Texans. Blind-spot monitoring and emergency automated braking are 
the two most appealing technologies for Texans, with the highest adoption rate (59.4%) among 
Level 1 and Level 2 technologies in 2045 at a 10% annual price-reduction rate. The future adoption 
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rate of connectivity (for DSRC-based basic safety messaging) is estimated to be 57.9% under 10% 
yearly price reduction scenario. However, it was also found that self-driving valet services and full 
self-driving (Level 4) technology is estimated to reach adoption rates of just 34.8% and 38.5% 
respectively and limited self-driving (Level 3) is estimated to be the least popular at a 16.9% 
adoption rate. Although, Level 3 autonomy may be largely “skipped” by manufacturers (due to 
difficulties in quickly getting drivers sufficiently context-aware to take over control in situations 
where the AV technology needs human assistance). Finally, average WTP (of the respondents with 
a non- zero WTP) to add connectivity, and Level 3 and Level 4 upgrades to their vehicles (new or 
existing) are $110, $5,551, and $14,589, respectively. Overall, without people’s WTP rising 
(thanks to good experiences by peers owning such technologies), policies that promote (and/or 
require such technologies), or unusually fast reductions in technology costs, it is unlikely that 
technology will be anywhere near homogeneous by 2045. 

This research report also describes the potential crash, congestion and other impacts of 
CAVs in Texas, and provides initial monetary estimates of those impacts, at various levels of 
market penetration. In this report, it is anticipated that CAVs will lead to increased vehicle miles 
traveled (VMT) because, essentially, drivers experience falling travel time burdens. Their values 
of travel time that make using a vehicle “costly” tend to decrease because they are more 
comfortable heading to more distant locations (may consider replacing air travel with highway 
travel) and those unable to drive themselves such as the handicapped can now safely travel. Even 
trucking can become more competitive compared to rail transport through train due to removing 
driver costs from the scenario. Shared autonomous vehicles (SAVs) may also emerge as a new 
transportation mode, meaning that some AVs act as driverless taxis or shuttles. In accordance to 
safety concerns of the driving world, CAVs will likely be safer than human drivers, since human 
errors are a factor in over 90 percent of U.S. crashes. Results from this project suggest that more 
than 2,400 lives could be saved each year on Texas roadways by the time 90% market penetration 
is reached, with over $14 billion in economic savings, or more than $62 billion in comprehensive 
crash costs (a 75% total reduction in comprehensive crash costs). In terms of cost savings per 
driver that shifts to CAV operation, around $1,357 per year in added productivity and leisure time 
can be gained. When comparing these potential impacts over the life of a CAV against the 
anticipated costs of communication and automation, the net benefits of CAVs appear quite strong. 
At the 10% market penetration level, privately owned and operated CAVs could have a net present 
value (NPV) of nearly $13,960 per vehicle, increasing to an estimated value of $27,000 with 90% 
market penetration.  

This research report also describes the potential crash, congestion and other impacts of 
CAVs in Texas, and provides initial monetary estimates of those impacts, at various levels of 
market penetration. In this report, it is anticipated that CAVs will lead to increased vehicle miles 
traveled (VMT) because, essentially, drivers experience falling travel time burdens. Their values 
of travel time that make using a vehicle “costly” tend to decrease because they are more 
comfortable heading to more distant locations (may consider replacing air travel with highway 
travel) and those unable to drive themselves such as the handicapped can now safely travel. 
Repositioning trips entail AVs dropping off passengers at their destinations and then returning to 
their owner’s residence (or another location) for free parking, thereby reducing the cost of driving, 
relative to transit and other alternatives. To anticipate how these behaviors will combine to affect 
traffic, we created a four-step model using a generalized-cost function of travel time, monetary 
costs (like parking charges and tolls), and fuel costs. The fact that travel costs impact trip-making 
decisions, mode choices, and route choices is well-known and fundamental to most travel demand 
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modeling efforts. Three mode choices of driving and parking (using an AV or HV), traveling in a 
repositioning AV, and transit are considered in the four-step model, with AVs possibly affecting 
all three choices. The four-step model for determining the impact of AVs allowed for some 
variation in trip generation, trip distribution, mode choice, and traffic assignment. Trip generation 
involves estimating trip productions and attractions for each zone. Trip distribution involves 
splitting a known volume of person-trips and assigning each to a destination. Mode choice 
determines whether vehicles are assigned to be parking, repositioning, or in transit mode. The 
second part of our team’s travel demand modeling work examines the use of SAVs with dynamic 
traffic assignment (DTA) (rather than standard, static). DTA allows for generally more realistic 
with demand changing with time and congestion-feedback models. Along with DTA, to reflect the 
introduction of AVs on roads shared with HVs, new flow models were developed including a cell 
transmission model (CTM). The model assumes that all vehicles in the same cell travel at the same 
speed, class-specific density is uniformly distributed within cells, and backwards wave speed is 
less than or equal to free-flow speed. The multi-class CTM is shown to be consistent with the 
hydrodynamic theory. A CTM modeled link flows in our DTA simulations. In these DTA 
simulations we used a multi-class CTM that admits variations in capacity and backwards wave 
speed in response to class proportions within each cell (or “sub-link” of the network). The 
simulation-based dynamic traffic assignment (SBDTA) model involves three main components: a 
traffic simulator, path generator, and assignment module. As this DTA using a multi-class CTM 
is more accurate and comparative to realistic traffic conditions than static traffic assignment 
(STA), it is quite robust. To reduce computational effort and make modeling intersections more 
tractable, a conflict region model was used in which we discretized the intersections into conflict 
regions with associated capacity. The conflict region model developed under this work allows for 
arbitrary policies for vehicle ordering into the intersection. For example, when testing other 
intersection control such as first-come-first-serve (FCFS) policy (discussed later in this report), the 
conflict region model was integral in modeling a tractable FCFS policy. 

Finally, as presented in this report, the team used the previously mentioned flow and travel 
demand link-based mesoscopic (mid-scale) models to simulate and model CAVs and to find their 
effects on congestion and travel times. This allowed the team to analyze the effects of CAVs 
compared to a control specimen of human driven vehicles (HVs). Within analyzing the effects of 
CAVs on congestion, a FCFS policy applied to a tile-based reservation (TBR) system was 
simulated to explore the possibilities of traditional signal substitutes once AV market penetration 
potentially reaches 100%. The research team also analyzed the effects of rising CAV ownership 
on transit ridership, CAV repositioning trips, and total personal-vehicle demand using static traffic 
assignment (STA) simulations. Finally, the team analyzed how shared (and connected) 
autonomous vehicles (SAVs) may perform relative to privately held CAVs, and how preemptive 
vehicle relocation and dynamic ride-sharing options affect performance of the downtown 
transportation network simulated here, over a 2-hour morning-peak period, where most of the trip-
making is inbound.  

For monitoring CAVs’ effects on traffic congestion and travel times, we simulated two 
smaller arterial road networks, three larger freeway networks, and one large downtown network 
which were all ranked as part of the top 100 most congested locations and corridors within the 
state of Texas, so that the results would be widely applicable (TxDOT, 2015). As previously 
mentioned, the mesoscopic simulation used DTA with a multi-class CTM and a conflict region 
model to obtain metrics of total system travel time (TSTT) and time traveled per vehicle. 
Experiments consisted of simulating varying demands and varying proportions of AVs to HVs 
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with traditional signals, and then running simulations using 100% AVs with a FCFS tile-based 
reservation (TBR) system and varying demands. 

Within our simulator, differences between AVs and HVs were highlighted by assuming 
and applying a reaction time of 1 second for HVs and 0.5 seconds for AVs. As reaction time 
decreases, both the capacity and backwards wave speed increase. The car-following model predicts 
a triangular fundamental diagram, between flow (on the y-axis) and traffic density (on the x-axis). 
Vehicle speed is bounded by the free-flow speed in the uncongested regime. In the congested 
region, speed is limited by vehicle density.  

After running many simulations on different networks with different demands and AV 
proportions, the team observed that increasing the proportion of CAVs always reduced vehicle 
travel time if one assumes that CAVs’ faster reaction times (vs. HVs) reduces their car-following 
headways, thus increasing lane capacities and signal-phase capacities naturally. While reduced 
headways are a reasonable expectation for advanced stages of CAV adoption, in the early stages, 
due to either cultural norms or caution on behalf of manufactures, there may be no reduction in 
headway due to CAVs. 

 The team also found that the FCFS reservations performed worse than traditional signals 
for some networks, especially in freeway networks and closely packed arterial networks. At high 
levels of demand, reservations do not allocate capacity as efficiently as signals or provide 
progression across upstream and downstream signals, resulting in queue spillback along arterials. 
Although some exceptions to the FCFS TBR system improving traffic congestion and decreasing 
travel times presented themselves during simulations, FCFS did especially well on the large scale 
downtown Austin network, resulting in a nearly 78% reduction in travel time across the network 
(with 100% AVs with reduced reaction times). The reason for such a drastic decrease in travel 
times using TBR compared to some arterial network exceptions is that congested intersections 
might be avoided by dynamic user equilibrium route choice decisions. The team also used STA 
simulations to observe the effects of having more classes of CAV users with different values of 
travel time (VOTTs) and to see if there is any change in demand for these trips. It was observed 
that, as more travelers gain access to CAVs, the travel time (or “cost”) per trip generally falls. It 
was also observed that transit demand and parking demand both fall as more travelers can avoid 
parking costs through repositioning in SAVs and CAVs, also allowing for the reallocation of 
downtown parking space.  

This research report analyzes the potential benefits and impacts of smart driving 
technologies consisting of CAVs and SAVs within our current transportation networks relating to 
transport safety, mobility and environment. The report also shows the methodology behind models 
and simulations used to represent and predict such technologies.  
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Chapter 2.  Introduction 

“Smart driving technologies” refer to telematics, sensing, and automation-based 
technologies and technology packages equipped on autonomous vehicles (AVs) and connected 
vehicles (CVs). These represent potentially disruptive yet beneficial changes to our transportation 
system and the society. They have tremendous potential to improve vehicle safety, congestion, 
travel costs, and freight movement, while impacting a variety of related driver behaviors and travel 
choices. In recent years CV and AV technologies have undergone dramatic advances. Auto 
manufacturers, parts suppliers, and technology firms are developing cars and trucks with the ability 
to communicate with one another and with infrastructure, while also finding ways to increasingly 
transfer driving responsibilities from human drivers to the cars themselves. These new 
technologies will undoubtedly have profound impacts on our current and future transportation 
systems, providing more transportation options and possible benefits than we are aware of today. 
It is evident that such changes will profoundly change the landscape of traffic operations, 
infrastructure design and maintenance, among others, in Texas and elsewhere. Our evolving 
transportation systems should harness the power of smart driving technologies to address emerging 
challenges.  

As with any new technology, prior to implementation CAV/AV technology must be 
understood, and its effects carefully predicted, to correctly plan for the transition. Cost/benefit 
analyses must be conducted and the effects of the new technology must be predicted as accurately 
as possible. To understand the current state of automated technology within vehicles and 
transportation, our team conducted research on current and future autonomous technological 
possibilities. The application of such technology has enormous potential within several different 
fields of infrastructure, and our team conducted research on how CVs and AVs operate.  

CVs are cars and trucks that rely on communication technologies to facilitate vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. The USDOT defines the CV 
technology platform as a multimodal initiative that aims to enable safe, interoperable, networked 
wireless communications among vehicles, the infrastructure, and passengers’ personal 
communications devices (USDOT 2015). Some of the potential CV applications in testing and 
development include cooperative adaptive cruise control (CACC), incident warning, traffic signal 
priority, emergency vehicle and/or transit priority, and smartphone-enabled pedestrian safety 
applications. Citing the tremendous potential gains for safety, mobility, and the environment 
enabled through these and other applications, the National Highway Traffic Safety Administration 
(NHTSA) recently announced that it would consider mandating V2V communication facilitated 
through dedicated short-range communication (DSRC, i.e., wireless radio communication), at 
some time yet to be determined (NHTSA, 2014). With several areas such as Wyoming, Ann Arbor, 
Michigan, New York City, and Tampa, Florida implementing and testing next-generation CV 
technologies including V2I technology within roadside units and upgraded signal systems, data is 
being collected and eventually distributed to road users. CV market penetration is likely to grow 
quickly with numerous vehicles manufacturers such as BMW, Volkswagen, Mercedes-Benz, Ford, 
GM, Toyota, and many others dedicating significant efforts toward developing CV technologies 
and successfully implementing them into their vehicles.  

Autonomous vehicles (AVs), although a more recent concept for the transportation world 
(compared to CVs), still possesses an already long and growing list of entities involved in the 
technology. Google’s self-driving cars have been driven over 1.2 million miles since the project 
started in 2009 (Google, 2015). As of May 2015, their self-driving vehicle fleet had been involved 
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in just 12 minor collisions (all of which involved a human driver deemed at fault, rather than 
Google’s AV technology). Currently, the list of entities involved in the autonomous vehicle world 
include auto manufacturers such as Audi, BMW, Ford, GM, Mercedes-Benz, Nissan, Toyota, 
Volkswagen, and Volvo along with their non-traditional counterparts at Tesla and Local Motors, 
and even technology companies such as Apple and Google. An AV may have full self-driving 
capabilities, or it may simply be equipped with a lane keeping assist, where the steering gently 
nudges the vehicle back toward the center of a lane if the driver appears to be drifting. NHTSA 
identifies five levels of AV technology as follows (NHTSA, 2013), with Levels 1 and Level 2 
technology already commercially available:  

• No-Automation (Level 0): The driver is in complete and sole control of the primary vehicle 
controls—brake, steering, throttle, and motive power—at all times. 

• Function-specific Automation (Level 1): Automation at this level involves one or more 
specific control functions. Examples include electronic stability control or pre-charged 
brakes, where the vehicle automatically assists with braking to enable the driver to regain 
control of the vehicle or stop faster than possible by acting alone. 

• Combined Function Automation (Level 2): This level involves automation of at least two 
primary control functions designed to work in unison to relieve the driver of control of 
those functions. An example of combined functions enabling a Level 2 system is adaptive 
cruise control in combination with lane centering. 

• Limited Self-Driving Automation (Level 3): Vehicles at this level of automation enable the 
driver to cede full control of all safety-critical functions under certain traffic or 
environmental conditions and in those conditions to rely heavily on the vehicle to monitor 
for changes in those conditions requiring transition back to driver control. The driver is 
expected to be available for occasional control, but with sufficiently comfortable transition 
time. The Google car is an example of limited self-driving automation. 

• Full Self-Driving Automation (Level 4): The vehicle is designed to perform all safety-
critical driving functions and monitor roadway conditions for an entire trip. Such a design 
anticipates that the driver will provide destination or navigation input, but is not expected 
to be available for control at any time during the trip. This includes both occupied and 
unoccupied vehicles. 
 
Researchers have generated a vast array of ways to implement and integrate CAVs and 

AVs with one common conclusion: CAVs and AVs have the potential to reduce travel times and 
make current transportation systems more efficient. Other technologies such as shared autonomous 
vehicles (SAVs) with dynamic ride-sharing as well as repositioning trips and first-come-first-serve 
(FCFS) reservation intersections are also analyzed in this report. The transition from HVs to AVs 
will be long, with many barriers along the way including some of the largest challenges: Cost, 
reliability, and legislation. As these barriers are overcome, we expect to see rapid increases in 
market penetration of CAV and AV technologies. One of the largest challenges we face as we 
attempt to smoothly transition to a fully autonomous world, is successfully pushing the technology 
into mainstream-adoption. Legislation will add liabilities to many aspects of AVs, and is currently 
handled by state governments in the U.S., which may lead to a decentralized establishment of 
certain technologies. CAVs are currently too expensive for most consumers to afford currently, 
posing a large cost issue. There are also cyber-security related concerns with implementation of 
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such a large and connected network. Gaining a large-scale adoption of a technology is integral in 
establishing its implementation, so to understand the public’s thoughts and views on such 
technologies, our research team designed and disseminated a Texas-wide survey for 1,364 
completed responses. We collected data such as willingness-to-pay (WTP) and comfort with new 
technologies, then used the data in proposed fleet evolution framework to simulate Texans’ long-
term (2015-2045) adoption of CAV technologies under different technology pricing scenarios 
ranging from 1%, to 5%, to 10% annual price-reduction rates. The results confirm that the 
transition to Level 3 and Level 4 technologies will take time, but long-term trends are certainly 
moving in that direction. 

To help delineate how smart driving technologies will achieve system benefits, a 
comprehensive understanding of the transportation system impacts of these technologies is crucial. 
Emerging smart driving technologies along with innovative traffic system management and 
operation strategies provide chances for TxDOT to achieve stated key transportation goals: 
maintaining a safer system, addressing congestion, and connecting Texas communities. To 
showcase these possible benefits, accurate results must be produced to support these assertions. 
With traffic modeling being quite capable of creating simulations parallel to the real world with 
time varying components such as in dynamic traffic assignment (DTA) and with the use of models 
such as the cell-transmission model (CTM), researchers can now produce results that will be 
effective in convincing the public of smart driving technologies’ ability to reduce congestion and 
travel times between locations. This report is concerned with the interplay between HVs and 
CAVs, as during the transition period between the two, there will be a proportion or mix or both 
technologies on the road. This report outlines the test networks and results used to see how travel 
times are affected by the inclusion of CAVs and SAVs at different roadway penetrations. In order 
adequately explore travel-time effects, multiple types of roadway networks are tested. These 
networks are also tested under different, limited-period scenarios, like rush-hour conditions vs. 
lower-demand settings. Once the decision of which networks to use and what scenarios to model 
were decided upon, simulations must be performed to demonstrate the effects of CAVs at different 
penetrations. These results can help city planners prepare for when modeling future networks, 
bearing in mind projected increases in CAV availability and use.  

The objective of this research report is to provide a systematic synthesis of contemporary 
smart driving technologies, including their technological maturity and their potential impacts. This 
report is a complete showcase and analysis of findings within research conducted under TxDOT 
research project 0-6847: “An Assessment of Autonomous Vehicles: Traffic Impacts and 
Infrastructure Needs.  

2.1 Synthesis of Smart Driving Technologies 

2.1.1 Overview: NHTSA’s Taxonomy 

The advances of robotics, navigation, sensing, computer vision and high performance 
computing in the last two decades have stimulated new automotive technologies, mainly along 
two streams: (1) vehicle automation, which consists of technologies concerning automation of 
vehicle control functions (such as steering, throttle and braking) without direct driver inputs; and 
(2) vehicle connectivity, which consists of different vehicular communication technologies (i.e., 
connected vehicles), such as V2V (vehicle to vehicle), V2I (vehicle to infrastructure) and V2P 
(vehicle to personal device). The emergence of new automotive technologies will change motor 
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vehicles and the relationships of drivers with them, over the next several decades. Vehicle control 
systems can also smooth traffic flow, through automatic control of acceleration and brakes, which 
as the ability to reduce headways and increase throughput rates of current roadways. In addition, 
the driving experience and fuel consumption can be simultaneously improved. The new 
technologies may also eliminate a large number of crashes, through effective crash avoidance 
systems. When vehicular automation and connectivity are synergized, new traffic signal control 
systems will become possible which are anticipated to reduce intersection and freeway delay 
significantly. 

Recognizing the prominent safety, environment and mobility potential of emerging 
automotive technologies, NHTSA (2013) released a Preliminary Statement of Policy Concerning 
Automated Vehicles. In this statement, NHTSA provides definitions of different levels of 
automation, current automated research programs at NHTSA, and principles recommended to 
States for driverless vehicle operations (including, but not limited to, testing and licensing). 
According to NHTSA’s definitions, the term ‘automated vehicles’ specifically refers to “those at 
which at least some aspects of a safety-critical control function (e.g., steering, throttle, or braking) 
occur without direct driver input”. Vehicles that can provide safety warnings but without these 
mechanized control functions are not automated. For the purposes of this report, we adopt 
NHTSA’s definition (see Table 2.1). As a side note, besides the definitions of NHTSA, SAE 
International released another set of definitions (SAE, 2014), categorizing automation into six 
levels. These definitions are similar to NHSTA’s in that both capture the decreasing level of 
engagement of human drivers in dynamic driving tasks, including the operational and tactical 
aspects. 
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Table 2.1: NHTSA’s Definitions of Vehicle Automation 

Source: (NHTSA, 2013) 

Four Levels of Automation Defined by NHTSA

No Automation (Level 0): Vehicles have certain driver support/convenience systems but do 
not have control authorities over steering, braking or throttle. Driver is in complete and sole 
control of the primary vehicle controls at all times, and is solely responsible for monitoring 
roadway conditions. 

Function-specific Automation (Level 1): Automation at this level involves one or more 
specific control functions. Examples include electronic stability control or pre-charged brakes, 
where the vehicle automatically assists with braking to enable the driver to regain control of the 
vehicle or stop faster than possible by acting alone. 

Combined Function Automation (Level 2): This level involves automation of at least two 
primary control functions designed to work in unison to relieve the driver of control of those 
functions. An example of combined functions enabling a Level 2 system is adaptive cruise 
control in combination with lane centering. 

Limited Self-Driving Automation (Level 3): Vehicles at this level of automation enable the 
driver to cede full control of all safety-critical functions under certain traffic or environmental 
conditions and in those conditions to rely heavily on the vehicle to monitor for changes in those 
conditions requiring transition back to driver control. The driver is expected to be available for 
occasional control, but with sufficiently comfortable transition time. The Google car is an 
example of limited self-driving automation. 

Full Self-Driving Automation (Level 4): The vehicle is designed to perform all safety- critical 
driving functions and monitor roadway conditions for an entire trip. Such a design anticipates 
that the driver will provide destination or navigation input, but is not expected to be available 
for control at any time during the trip. This includes both occupied and unoccupied vehicles. 

 
According to these definitions, with increasing levels of automations, drivers have 

decreasing engagement in traffic and roadway monitoring and vehicle control. From level 0 to 
level 4, the allocation of vehicle control function between the driver and the vehicle ranges from 
full driver control, driver control assisted/augmented by systems, shared authority with a short 
transition time, shared authority with a sufficient transition time, to full automated control. A 
detailed comparison along with examples is presented in Table 2.2. 
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Table 2.2: Comparison of Different Automation Levels 

Source: (NHTSA, 2013) 

 Vehicle Controls* 
Traffic and Environment 
(Roadway) Monitoring 

Examples 

L0 Drivers are solely responsible 
for all vehicle controls. 

Drivers are solely responsible; 
System may provide driver 
support/convenience features 
through warning. 

Forward collision 
warning (FCW); lane 
departure warning; blind 
spot monitoring; 
automated wipers, 
headlights, turn signals, 
and hazard lights, etc. 

L1 Drivers have overall control. 
Systems can assist or augment 
the driver in operating one of 
the primary vehicle controls. 

Drivers are solely responsible for 
monitoring the roadway and safe 
operation. 

Adaptive cruise control; 
automatic braking 
(dynamic brake support 
and crash imminent 
braking); lane keeping; 
electric stability control 
(ESC). 

L2 Drivers have shared authority 
with system. Drivers can cede 
active primary control in certain 
situations and are physically 
disengaged from operating the 
vehicles. 

Drivers are responsible for 
monitoring the roadway and safe 
operations and are expected to 
be available for control at all 
times and on short notice. 

Adaptive cruise 
control combined with 
lane centering. 

L3 Drivers are able to cede full 
control of all safety-critical 
functions under certain 
conditions. Drivers are 
expected to be available for 
occasional control, but with 
sufficient transition time. 

When ceding control, drivers can 
rely heavily on the system to 
monitor traffic and environment 
conditions requiring transition back
to driver control. 

Automated or self-driving 
car approaching a 
construction zone and 
alert the driver in 
advance. 

L4 Vehicles perform all safety- 
critical driving functions and 
monitor roadway conditions for 
an entire trip. Drivers will 
provide destination or navigation 
input, but are not expected to be 
available for control at any time 
during the trip. 

System will perform all the 
monitoring. 

Driverless car. 

L0 to L4= Level 0 to Level 4 automation; 
Vehicle controls refer to braking, steering, throttle control, and motive power. 

 
Research and development on connected vehicles have drawn significant attention in recent 

years. Dedicated short-range communication (DSRC) and cellular technologies are two major 
technologies in a connected-vehicle system and its applications. The low latency feature makes 
DSRC suitable for safety-sensitive applications, such as forward collision warning. Because such 
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applications require a certain level of market penetration to take effect, it is anticipated that 
governmental regulations are needed at the initial stage of technology deployment. In 2014, 
NHTSA released a notice of making a proposal to mandate DSRC on light vehicles in 2016. In 
comparison, car manufactures and technology companies are engaged in creating/implementing 
cellular-based communications and their applications in emergency response (e.g., the OnStar 
system of General Motors) and infotainment (e.g., the CarPlay system of Apple). 

Level 1 and 2 automated vehicles are readily available on the market, with self-parking, 
adaptive cruise control, lane departure warning, and collision warning systems in place. In 
particular, among various level 1 automated technologies, electronic stability control (ESC) is 
mandated by NHTSA on all new light vehicles since manufacture year 2011. It was also proposed 
by NHTSA in 2011 that ECS be mandated on heavy vehicles. Along with ESC, lane departure 
warning (LDW) and forward collision warning (FCW) are two other crash avoidance technologies 
NHTSA has been looking into and encourages consumers to consider. Besides crash avoidance 
technologies, NHTSA is also engaged in automatic braking technologies, which include dynamic 
brake support and crash imminent braking, all of which fall into the category of Level 1 
automation. 

While the level 0, level 1 and level 2 technologies are ready for large-scale deployment or 
purchase, the technology costs of level 3 and level 4 automation are currently high and likely to 
remain high for another decade or so. Besides the cost, there exist other major barriers in legislation 
and regulation, public acceptance, security and reliability of technologies. 

2.1.2 Level 0 Technologies 

Forward Collision Warning 

NHTSA defines a forward collision warning (FCW) system as “one intended to passively 
assist the driver in avoiding or mitigating a rear-end collision via presentation of audible, visual, 
and/or haptic alerts, or any combination thereof.” An FCW system has forward-looking vehicle 
detection capability, using sensing technologies such as camera, radar and Lidar. Sensor data will 
be processed and analyzed, and alerts will be provided if a collision with another vehicle is 
imminent. 

Blind Spot Monitoring 

There are two different types of blind spot monitors—active and passive. An active blind 
spot monitor generally uses a radar or a camera to detect when another vehicle is in the blind spot 
of the vehicle in question. If any such vehicles are detected, the vehicle in question will notify its 
driver. The type of notification will generally depend on how likely it is that two vehicles will 
collide; as the likelihood of collision increases, so does the magnitude of the warning that one 
receives. The warning may be as minute as a flashing light in the driver’s peripheral vision or as 
large as a seat vibration; the most advanced systems even have the capability to steer the car back 
into safety if collision would be otherwise imminent. It is also important to note that these features 
can be turned off since there have been people who have expressed frustration with these warnings 
being activated too often in heavy traffic. 

In 2005, Volvo was the first manufacturer to introduce blind spot technology under the 
name Blind Spot Information System (BLIS). Originally BLIS used cameras but the newest BLIS 
technologies use radars instead. Ford uses a similar system to Volvo, and many other 
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manufacturers currently have very similar blind spot technologies, as well, such as Audi’s Audi 
Side Assist. Infiniti’s blind spot system is more advanced, which consists of two sub-systems: the 
Blind Spot Warning (BSW) and the Blind Spot Intervention (BSI) systems. The former notifies 
the driver of blind spot vehicles, while the latter will work to keep the vehicle in its lane if it is not 
safe to change lanes (Lampton, 2012). It is important to note that the performance of these blind 
spot technologies decreases under certain situations, such as inclement weather (Travers, 2008). 

Lane Departure Warning 

Lane departure warning (LDW) is similar to blind spot monitoring, in that its main goal is 
to prevent the vehicle from unsafely exiting its lane. LDW uses a camera to detect lane markings 
and will alert the driver if the vehicle begins to leave its lane, but only if the turn signal is not 
activated. The system will emit an audible or visual alert, and advanced applications are able to 
take active control of the steering wheel to correct the vehicle’s heading automatically (Level 1). 
It is anticipated that in the future, these systems will incorporate features such as monitoring 
driver’s eye activities to determine drowsiness (Carmax, 2015). Lane departure warning is 
available on some Infiniti models as an option, with the package ranging from $3,600 to $10,500 
as of December 2016. 

Traffic Sign Recognition 

Traffic sign recognition (TSR) is used to identify and display upcoming traffic signs that 
are often missed by drivers. The system functions using a camera to detect oncoming traffic signs 
and a traffic sign recognition system that identifies the signs recorded by the camera, which is 
displayed to the driver. Depending on the system used, road sign information is displayed on either 
the vehicle’s instrument panel cluster or the driver’s navigation system. 

Cameras placed behind the vehicle’s rear view mirror record oncoming traffic signs and 
transmit the information to the vehicle’s traffic sign recognition system. Since road and traffic 
signs are manufactured according to strict standards, traffic signs can be identified by shape and 
color. In a natural environment, there are three main challenges that object recognition software 
encounter: poor lighting and visibility, the presence of other objects, and the variation of traffic 
and road signs (systems may be designed specific to a region to address this concern). Various 
difficulties arise under poor weather and night-time conditions that influence camera detection of 
color, hue, and saturation (Fleyeh & Dougherty, 2005). Under these conditions vehicle sensors 
will notify the driver of these restrictions. 

Nevertheless, TSR systems have been developed with high detection accuracy and may be 
additionally supplemented by information from digital maps and navigation systems. (Mobileye, 
2015). The system can also be used to help enforce the legal speed limit and to warn drivers of 
other warning signs on the road. If the driver exceeds the posted speed limit, the displayed speed 
limit sign will flash, and the system will make warning noises to warn the driver. These additional 
warning functions are specific to the TSR software and may be turned off if desired. 

The TSR systems’ range and ability to operate at a high performance at high speeds is 
reliant on the camera’s image resolution. Future developments aim to broaden the range of 
detectable signs. 
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Left Turn Assist 

Left turn assist (LTA) systems use a camera and GPS to warn drivers attempting a left turn 
when it is unsafe to enter the intersection. The camera functions by registering lane markings and 
lane boarders on the road, while the vehicle’s position and location is determined using the 
navigation system.  

When LTA is activated, three laser scanners, installed on the front end of the car, begin 
sensing for approaching cars, trucks, and even motorcycles up to 100 meters (330 ft.) away. If the 
sensors detect an approaching vehicle from the opposite direction and the driver’s vehicle 
continues to move into the intersection, the LTA system will generate both warning sounds and 
signals on the vehicle and activate the vehicle’s automatic breaking. Without an automatic braking 
response, the vehicle would continue to move into the intersection, resulting in a possible collision 
(BMW Group, 2011). The automatic braking response is deactivated when the driver applies 
pressure to the vehicle’s brakes, and the LTA can also be overridden. Note that LTA is only 
designed to work at very low speeds at less than 10km/hour (roughly 6mph). 

LTA was first publicized by BMW in 2011 and further research is currently being 
conducted on vehicle-to-vehicle (V2V) communication for better implementation of this feature. 
(NHTSA, 2014) V2V communication increases safety by using a wireless local area network to 
detect other vehicles with similar concealed devices. The technology is proposed to significantly 
decrease the number of crashes at intersections and can be used to warn drivers of the conditions 
at approaching intersections. 

Automatic Collision Notification 

The goal of automatic collision notification (ACN) systems is to provide more rapid and 
informed emergency medical responses in the event of a collision. An effective ACN system is 
able to notify authorities with information such as the location, severity of an existing collision, 
probability of serious injury, and provide a voice link between the emergency response personnel 
and the vehicle’s occupant/s. This is a safety-oriented, in-vehicle emergency response feature that 
can greatly reduce the reaction time of emergency vehicles in the event of a collision. Furthermore, 
if authorities are properly notified of the collision severity and nature, preparation to treat injured 
occupants can be efficiently enhanced. 
ACN systems are not a newly discovered technology as they have existed since the late 1990s 
(Wu, Subramanian, Craig, Starnes, & Longthorne, 2013). However, this technology has rapidly 
progressed over the years providing more accurate and detailed information of collisions involving 
vehicles equipped with ACN systems. More advanced ACN systems have been called AACN 
systems. OnStar is one of the most well-known AACN systems, but BMW Assist, Toyota Safety 
Connect, Ford’s 911 Assist, and others perform many of the same basic functions. Utilizing a 
Global Positioning System (GPS) receiver to locate the vehicle, an accelerometer to detect the 
collision, many sensors to determine the severity of the collision, and a cellular network to 
communicate with the vehicle occupants, AACN systems prove to be more effective in providing 
earlier collision notification than relying on the general public to report a collision. 

Wu, Subramanian, Craig, Starnes, & Longthorne (2013) conducted a study based on 4 
years of data retrieved from the Fatality Analysis Reporting System (FARS) to compare the effects 
of earlier versus later emergency medical service, or EMS, notification on the survival rate of 
vehicle occupants involved in collision. With a total of 41,862 cases, results showed that fatality 
hazard for the less favorable group (later notification) was 2.4% higher than the favorable group 
(earlier notification). Furthermore, the results showed that 1.84% of the group with later EMS 
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notification group could have been saved with an earlier notification of collision to EMS by 
application of an ACN system. 

Adaptive Headlight 

Many manufacturers currently have adaptive headlights technology. Though there is not 
any one specific way that this technology functions or is integrated with the vehicle, there are 
themes that are common to all manufacturers. For example, the BMW adaptive headlights have 
cameras that detect the traffic situation, even in the far distance, and pass this information on to 
the headlights. Then, the headlights adapt the light distribution accordingly so that no oncoming 
traffic or preceding traffic will be affected by the light coming from the user’s vehicle. For 
example, one set of lights may be low beam and another may be high beam, or the lights may be 
swivel if a curve is detected ahead. This is a feature that can drastically improve safety because 
the driver will be able to detect dangerous situations earlier since more lighting will be available 
in the direction of travel. The idea, according to BMW, is to give the driver more notice about an 
object he or she might cross paths with before normal headlights will reach that object (BMW, 
2012). Studies have shown the danger of road accidents at night is reduced with this technology. 

In order for Texas and the United States to be able to leverage this technology to increase 
safety as much as possible, the current federal regulations on headlight standards would need to 
be revised. If this happens, the Highway Loss Data Institute estimates that by the year 2044 95% 
of the registered vehicle fleet will have adaptive headlights; if additional mandates are introduced 
to encourage adaptive headlights, the expected date could be as soon as 2039. 

Driver Monitoring 

Driver monitoring systems (DMS) are safety applications used to track the driver’s 
inattention, (e.g., distraction, fatigue) while operating a vehicle. Driver inattention can be 
described as having a lack of required, critical attention that results in unsafe driving. An estimated 
25% of police-reported crashes are related to driver inattention, according to the National Highway 
Traffic Safety Administration, and over half of those inattentive crashes (16% of the total) are due 
specifically to distraction (Ascone, Lindsey, & Varghese, 2009). With the use of a DMS, these 
distracted and inattentive crashes could be significantly reduced. 

DMSs are designed to monitor vehicle characteristics (e.g., speed, position, acceleration, 
seat belt use, seat occupancy, etc.). The data that is monitored can then be used in several ways. 
One use of the information obtained by the system is to communicate with and alert the driver 
and/or drivers in surrounding vehicles of roadway safety concerns, abnormal driving 
characteristics, and potential impending collisions. Recorded data can also serve as a means of 
evidence in an investigation from a collision or accident. Driver monitoring systems can also be 
used to determine cost of insurance/ liability in the event of a crash. 

A general monitoring system uses infrared sensors and cameras to record the driver’s 
aptitude. The sensors and cameras are used to track and record any detection of drowsiness or 
inattention while the vehicle is being operated. Driver monitoring systems require a strict real- 
time performance capability. One technology used to achieve this is image processing algorithms 
(e.g., eyelid movement, head position, yawning). If the monitoring system detects driver 
inattention, it will alert the driver and proceed with an appropriate action. Depending on the type 
of system installed, feedback can be visual, tactile, or aural. 
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One obstacle for driver monitoring systems is meeting the need of accurately recording 
spatially large head turns while driving, in order to receive the most precise data possible. (Tawari, 
Martin, & Trivedi, 2014) proposed a continuous head movement estimator (CoHMET), a method 
of facial detection that uses multiple cameras with continuous resolution to provide independent 
perspectives. The images processed from these cameras are then combined to produce a final 
estimation of the head pose. CoHMET was tested twice, first with two cameras and then with three. 
The final results of this study showed that the three-cameral approach showed the most favorable 
results, with 96.1% reliable head movement tracking. This indicates that such a system could 
provide a strong degree of certainty for detecting distracted or inattentive drivers. 

2.1.3 Level 1 Technologies 

Adaptive Cruise Control 

Most ACC systems use a radar or laser (less popular) headway sensor and a digital signal 
processor to determine the distance and speed of the vehicle ahead (Honda Motor Co. Inc., 2015). 
Other automobile manufactures prefer an optical system using stereoscopic cameras, such as 
Subaru. (Howard, 2013) ACC systems rely on two sensors that use infrared detection: the sweep 
long-range sensor and the cut-in sensor. The sensors emit beams of infrared light, which are 
reflected by the vehicle ahead and are captured by a receiver. The sweep long-range sensor is only 
able to detect vehicles directly ahead and uses a narrow infrared beam. To deal with curved roads, 
the system uses a solid-state gyro that determines the curve-radius, notifying the sweep sensor to 
turn accordingly. The cut-in sensor deals with cars that suddenly merge into the lane. This sensor 
has two wide beams that detect vehicles in adjacent lanes that are moving at least thirty percent as 
fast as the moving vehicle. The cut-in sensor does not detect stationary objects along the side of 
the roadway. All of the sensor information is transmitted to a central controller, called the Vehicle 
Application Controller, which reads the desired settings of the driver. The central controller also 
controls the engine and/or braking system to respond appropriately. 

Automatic Emergency Braking 

Also known as forward collision avoidance technology, automatic emergency braking 
(AEB) has the potential to significantly decrease the number and severity of collisions, by 
automatically applying the brakes to the vehicle when an imminent collision is predicted. AEB 
systems are made up of sensors that observe and categorize objects within range, control systems 
to depict the data produced by the sensors, and automatic braking actuation system to physically 
stop or slow the vehicle. Many vehicle manufactures, including General Motors, Chrysler and 
Toyota have already begun incorporating AEB systems in their newer luxury model vehicles. 

These results strongly indicate that by application of a Baseline AEB system, the number 
of visible pedestrian, and rear-end collisions, as well as objects struck straight on crashes would 
decrease significantly. Results also showed that a reduced impact speed for unavoidable accidents 
would be accomplished for many other collisions with the application of an AEB system. Since 
impact speeds are non-linearly related to risk of injuries, reduced collision speeds produced by 
AEB systems have the potential to substantially reduce injury risk. 
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Lane Keeping 

Both lane-centering and lane-keeping technologies are used to keep automobiles from 
drifting out of a lane on high-speed roads. Lane-keeping was first developed to correct vehicles by 
braking slightly to warn the driver. Now with lane-centering, the system uses electronically 
controlled steering to help maintain a center position in the lane of the vehicle. 

The technology uses a camera mounted on a vehicle’s windshield to watch the lane markers 
on the road; the camera is able to recognize both yellow and white lines. If the camera detects that 
the driver is beginning to drift out of a lane without the use of a turn signal, the device will alert 
the diver with a warning sound, and then activate the electronic power steering control to steer the 
vehicle back into the center of the lane (Toyota Motor Corp., 2015). One must note that the 
electronic steering is a safety device that may be overridden by the driver. 

Electric Stability Control 

Electronic Stability Control (ESC) is potentially one of the most beneficial safety 
technology introduced to date. It is an extension of the antilock braking technology and the traction 
control system technology (Sivinksi, 2011). ESC is one of the main active safety systems (meaning 
it works to prevent accidents rather than working to prevent injuries once an accident occurs). It 
works to ensure that that a driver can always be in full control of his or her vehicle. ESC helps 
prevent skidding and rollovers which can often happen during high-speed maneuvers or on 
slippery roads making it an immensely valuable feature on rainy days (MEA Forensic Engineers 
& Scientists, 2013). 

ESC works by measuring the steering input (i.e., how much the driver has turned the 
steering wheel in degrees) and then comparing this to the yaw angle (i.e., how much the car has 
actually turned). If there is any difference in these values, then the ESC will automatically apply 
brakes on any of the wheel(s) as needed to steers the car in the desired direction. Also, if needed, 
the engine throttle can be reduced to avoid power skids, (Cars.com, 2012). This technology 
essentially allows the vehicle to maintain traction with the road as long as possible, which can 
provide the driver with enough time to regain control, thus preventing skidding and rollovers. 

Parental Control 

In recent years some car manufacturers (e.g., Ford, GM) offered a parental control feature 
aimed at increasing safety of teenage drivers as an optional add-on. This strategy aims to reduce 
the risk and severity of crashes by using a series of different technologies that monitor and control 
teenagers’ driving behavior. 

For example, the first parental control system introduced by Ford, MyKey (Ford, 2015) 
includes features such as: speed control that allows the owner to set a limit to 80 mph, volume 
control that allows the owner to adjust the volume of the radio remotely, a belt reminder system 
that can mute vehicle’s radio and chime for few seconds, an earlier fuel reminder, and a speed 
reminder at 45, 55 or 65 mph. Chevrolet’s Malibu model, on sale toward the end of 2015, will 
provide the “Teen Driver” system. This tool can “help encourage safe driving habits” (General 
Motors, 2015) by providing a series of features such as stability control, front and rear park assist, 
side blind zone assist, rear cross traffic alert, forward collision alert, daytime running lamps, 
forward collision braking, traffic control, front pedestrian braking. 

Given the early life of this tool, at the moment there are no available data or analyses to 
quantify the benefits of this measure. However, presuming that this feature will be widely 
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developed by other manufacturer competitors (in US), parental control could become within few 
years an affordable standard option. Hence, it is reasonable to expect considerable benefits from 
increased safety among teenage drivers. No particular barrier to the implementation and market 
penetration of this technology is foreseen. 

2.1.4 Level 2 Technologies 

Traffic Jam Assist 

Traffic jam assist (TJA) functions on limited access highways at slow speeds (Andrew, et 
al., 2013). TJA provides for the full control of driving in congested conditions. The drivers will 
still have direct supervision of the vehicle during this process, will receive continuous system 
feedback, and is responsible for the overall operation of the vehicle. The Mercedes S-Class is 
representative of TJA. The driver is expected to be engaged in driving with TJA, with hands on 
the steering wheel. If the system detects that the driver is not touching the steering wheel a warning 
will be issued and the TJA function will be disabled after a few seconds. The European HAVEit 
project demonstrated this concept on heavy trucks. In this system, a truck driver in congestion can 
cede the speed and steering control. 

High Speed Automation 

General Motors described a “super cruise” system, which can provide full-speed range 
ACC in conjunction with lane keeping. Cameras and radars are used for sensing, and the system 
can automatically steer, accelerate, and brake in highway driving. Drivers may leave hands off the 
steering wheel, until the driver wants to change lanes, the system can no longer handle 
deteriorating road conditions, or other issues occur. Other car manufactures that have developed 
similar products include Honda (Europe), Nissan, Audi, and BMW. Nissan's system automatically 
reduces the discrepancies between the intended and actual path, and claims to reduce driver fatigue 
by reducing fine-grained steering adjustments. BMW’s system not only provides lateral and 
longitudinal control, but also responds to merging traffic from the right and can perform a lane 
change when safe. Google has also developed automated vehicles (i.e., Google driverless cars) 
that can operate up to 75 mph on highways. Google’s car combines ACC and lane keeping, but 
does not change lanes automatically. 

Automated Assistance in Roadwork and Congestion 

The Automated Assistance in Roadwork and Congestion (ARC) was demonstrated in the 
HAVEit project of Europe (HAVEit, 2015). This system aims to enable automated driving through 
a work zone, so as to support the driver in overload situations like driving in narrow lanes of 
roadwork (i.e., work zone) areas (Strauss, 2010). It considers the possibility that lane lines are not 
accurate, and it uses other objects, such as trucks, beacons, and guide walls for guidance. 

2.1.5 Level 3 Technologies 

In Level 3, direct supervision of drivers is not needed, and the driver is only needed for 
control with certain degree of notice, with sufficient transition time. 
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On-Highway Platooning 

In a platoon, vehicles can have a shorter headway between each other. This technology 
looks into the possibility of letting a human drive the lead vehicle and is followed by fully 
automated following vehicles in platoon. A prototype of this technology was developed in 
Europe’s SARTRE project using Volvo cars and trucks. 

Automated Operation for Military Applications 

The U.S. Army sponsored development of the Autonomous Mobility Applique System, a 
program designed to retrofit existing military trucks with a range of systems, from active safety to 
full Level 3 automation. The purpose of this project is to allow military vehicles operate on any 
road types and off-road. 

2.1.6 Level 4 Technologies 

Google’s Self-Driving Car  

In May of 2014, Google presented a new prototype of driverless car that does not have 
pedals or steering wheels. In December of 2014, Google released a fully functioning prototype of 
their driverless car and planned to test it on San Francisco Bay Area roads beginning in 2015. 
According to the latest update from Google in December 2014 (Google, 2015), a safety driver is 
still needed to oversee the vehicle, and manual controls are needed in the current testing stage. 

Currently, this latest prototype of driverless car has not been tested in heavy rain or snow. 
Moreover, Google’s driverless car primarily relies on pre-programmed route data, and cannot 
recognize traffic lights. In addition, this prototype is limited in identifying trash and debris on the 
roadway. The Lidar technology cannot spot potholes or recognize humans signaling the car to stop. 
Google has noted that it expects to solve these issues by 2020 (Google, 2015). 

Emergency Stopping Assistant 

A dead man’s switch, or kill switch, is a safety-oriented feature that is installed to give the 
“driver” the ability to cease operation of the vehicle in the case of an emergency or driver 
incapacitation. The dead man’s switch has been most commonly used in the train and railway 
industry in the form of a lever or pedal that must be engaged for the machine to remain active. If 
disengaged, the machine then would alarm the driver, slow to a stop, and shut down. Conceptually, 
this type of switch is ideal for a train on tracks, but when it comes to a vehicle on a roadway with 
other vehicles, it becomes more complicated. 

A distinct kill switch was included in a Google self-driving car as a large red button located 
just below the gearshift. Google’s kill switch differs from conventional and most previous kill 
switches because rather than having to have constant contact with the switch for the machine to 
remain active, the vehicle remains active until the switch/button is activated. After applying the 
switch, however, Google’s car will automatically withdraw all self-driving capabilities and return 
to human-driving mode. 
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Automated Valet Parking 

With automated valet parking feature, some of vehicles are able to automatically park only 
after a spot has been located by the driver. Such vehicles are equipped with technology known as 
Intelligent Parking Assist Systems (IPAS) or Advanced Parking Guidance Systems (APGS). These 
systems were first developed by Toyota in 2004 and are now available in multiple luxury models. 
Completely autonomous self-parking valet systems enable a vehicle to be dropped off at the 
entrance of a parking garage, locate a parking spot, park, and return to driver when summoned 
without any human interaction. Manufacturers such as Audi, BMW, and Volvo have already 
developed such systems and are beginning to test them in controlled settings (Wired.com, 2013). 

With the deployment of this new and rapidly advancing parking technology, and as the 
penetration rate for vehicles equipped with this technology, increases. With sufficient market 
penetration, parking garages may be built more compactly since there may be no need for extra 
space between such vehicles to allow passenger to get in and out. Lutin et al. (2013) also predicted 
that parking garages may be relocated further from the buildings they serve. However, as parking 
infrastructure becomes more compact, it is likely that curb-side loading areas will need to be 
enlarged to accommodate new congestion due to drop- offs and pick-ups. 

The general benefits of auto-valet include saving time and money, increasing safety, and 
using available parking space more efficiently. 

2.2 Discussion 

2.2.1 Driving Forces 

The Public 

AVs have the potential to fundamentally shift the paradigm of driving, by offering an array 
of safety and driver-assistance features. These features will directly benefit drivers in various ways, 
and therefore, the public will be interested in purchasing cars with smart driving technologies. First 
and foremost, automated vehicles can substantially reduce or mitigate crashes. Second, smart 
driving technologies will free the drivers from driving tasks, and thus reduce their stress, especially 
in congested traffic that is recurrent. Third, they can provide critical mobility to the elderly and 
disabled. Fourth, they have the potential of increasing road capacity, saving fuel, and lowering 
emissions, if automatic steering algorithms are carefully developed. Complementary trends in 
shared rides and vehicles may lead us from vehicles as an owned product to an on-demand service, 
and mitigate the need for parking space and change land use patterns, including changes to current 
zoning codes that often require specific parking requirements per occupant or dwelling type. 
Additionally, the passenger compartment may be transformed: former drivers may be working on 
their laptops, eating meals, reading books, watching movies, and/or calling friends—safely. It is 
estimated that by 2030, the value of global automated car market will be worth $87 billion (LUX 
Research, 2014). 

Public Sector 

Smart driving technologies will change the landscape of transportation and bring 
significant potential benefits in safety, mobility and environment. Federal agencies engaged in 
smart driving technology research, tests and policymaking include FHWA, NHTSA, RITA, FRA, 
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FTA, and MARAD. The following programs were created to promote the collaborative efforts in 
research, prototyping and tests (USDOT ITS JPO, 2015): 

• USDOT connected vehicle safety pilot: the Connected Vehicle Safety Pilot a research 
program that demonstrates the readiness of DSRC-based connected vehicle safety 
applications for nationwide deployment. The vision of the Connected Vehicle Safety 
Pilot program is to test connected vehicle safety applications in real-world driving 
scenarios in order to determine their effectiveness at reducing crashes and to ensure that 
the devices are safe and do not unnecessarily distract motorists or cause unintended 
consequences. 

• USDOT ITS JPO connected vehicle pilot deployment: The USDOT’s connected vehicle 
research program is a multimodal initiative to enable safe, interoperable, networked 
wireless communications among vehicles, infrastructure, and personal communications 
devices. USDOT expects an initial set of pilot deployments (Wave 1) to begin in Fall 
2015, and a second wave (Wave 2) in 2017. Prior to Wave 1, USDOT is sponsoring 
multiple workshops and other events to assist stakeholder planning. 

• Automation program: ITS established an automation program within the overall ITS 
program. As a first step, the program has developed a 2015-2019 Multimodal Program 
Plan for Vehicle Automation, a key component of the ITS JPO’s ITS Strategic Plan 2015-
2019. The program plan establishes the vision, role, and goals, as well as a broad research 
roadmap for automation research at USDOT. 

 
In 2004, the Defense Advanced Research Projects Agency’s (DARPA’s) Grand Challenge 

was launched with the goal of demonstrating AV technical feasibility by challenging participants 
to navigate a 150-mile route autonomously. While the best team completed just over seven miles, 
one year later five driverless cars successfully navigated the full route. In 2007, six teams finished 
the new Urban Challenge, where AVs were required to obey traffic rules, deal with blocked routes, 
and maneuver around fixed and moving obstacles, together providing realistic, every-day-driving 
scenarios. Europe’s CityMobile2 project is currently demonstrating low-speed fully autonomous 
transit applications in five cities. Additionally, AVs are becoming increasingly common in other 
sectors including military, mining, and agricultural. While urban environments pose much greater 
challenges, these environments can be helpful testing grounds for AV innovation. 

States are proceeding with AV-enabling legislation: California, Florida, and Nevada have 
enacted bills to regulate AV licensing and operation, with instructions to their respective 
Departments of Motor Vehicles (DMVs) for fleshing out details. Yet some of these efforts are in 
direct conflict with federal guidance. NHTSA has issued a statement advocating that states should 
begin establishing procedures for allowing testing on public roads, though should not yet begin 
licensing AV sales to the general public. In contrast, California has directed its DMV to provide 
AV licensing requirements by 2015. 

Private Sector 

Over the past few years the automobile and technology industries have made significant 
leaps in bringing computerization into what has, for over a century, been exclusively a human 
function: driving. New car models increasingly include features such as adaptive cruise control 
and parking assist systems that allow cars to steer themselves into parking spaces. Assuming that 
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these technologies become successful and available to the mass market, AVs have the potential to 
dramatically change the transportation network. 

At the September 2012 signing of California’s law enabling AV licensure (SB 1298), 
Google founder Sergey Brin predicted that Americans could be using AVs within five years. 
Nissan and Volvo both have announced their intentions to have commercially viable autonomous-
driving capabilities by 2020 in multiple vehicle models. Assuming an additional five years for 
prices to drop to allow for some degree of mass-market penetration, AVs may be available on the 
mass market by 2022 or 2025, approximately two decades after the DARPA Grand Challenge’s 
first successful tests. State DOTs, planners and policymakers need to begin to address the 
unprecedented issues that AVs could surface, while facilitating owners’ adoption rates on 
incremental improvements. 

Google’s self-driving cars have driven over 700,000 miles on California public roads, and 
numerous manufacturers—including Audi, BMW, Cadillac, Ford, GM, Mercedes-Benz, Nissan, 
Toyota, Volkswagen, and Volvo—have begun testing driverless systems. Semi-autonomous 
features are now commercially available, including adaptive cruise control (ACC), lane departure 
warnings, collision avoidance, parking assist systems, and on-board navigation. 

2.2.2 Barriers 

A number of barriers are anticipated to challenge the development and implementation of 
intelligent driving technologies, especially the Level 3 and Level 4 technologies. The major factors 
that could hinder technology adoption before its full maturity include: 

• High Cost: Compared to conventional car, the Level 0 (connected vehicle) and L2 
technologies incur extra cost ranging from several hundred to thousands of dollars. For 
example, an intelligent driving package including radar-based ACC, collision warning 
and adaptive braking cost about $1,200 as of December 2016. This cost is even higher 
on L3 and L4 vehicles, because a Lidar system (which is equipped on Google self-driving 
cars) alone costs thousands of dollars. 

• Security and Privacy: When vehicles are controlled by computers and connected 
wirelessly, like other cyber-physical systems, they are vulnerable to attacks, including 
hacking, and GPS spoofing. Meanwhile, with the smart driving technologies, a large 
amount of data are generated and collected, through onboard sensors. This data contain 
location information that could be sensitive, e.g., where a car was last parked and 
distances traveled as well as time and speed. 

• Operations in Transition Stage: It is anticipated that when smart driving technologies 
are adopted, there will be at least one decade when regular cars still run on the road. It is 
estimated that the average operating life of model year 1990 cars is 16.9 years. When 
cars of different automation levels co-exist on the road, the problem of how to manage 
them and ensure equity, efficiency and safety will be paramount. 

 

Other barriers facing the intelligent driving technologies include legislation, liability 
licensing, and insurance, privacy concerns and social equity. These issues call for targeted policy 
and legislation. 
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2.2.3 Mainstream Adoption 

As this report has indicated, Level 0 and Level 1 technologies are readily available on the 
market and ready for large-scale deployment. In contrast, Level 3 and Level 4 technologies are 
facing the most significant barriers and uncertainties. Table 2.3 outlines a forecast of technology 
development. 

Table 2.3: Forecast of Technology Development Timeline 

# Technology 
Mainstream 

adoption 
Barriers 

1 Forward Collision Warning 2015–2020 Reliability 

2 Blind Spot Monitoring 2015–2020 Cost 

3 Lane Departure Warning 2015–2020 Infrastructure 

4 Traffic Sign Recognition 2015–2025 Cost, Technology Maturity 

5 Left Turn Assist 2015–2025 Cost, Infrastructure 

6 Adaptive Headlight 2015–2020 None 

7 Adaptive Cruise Control 2015–2020 Cost 

8 
Cooperative Adaptive Cruise 
Control 

2020–2025 Standard, Cyber-security 

9 Automatic Emergency Braking 2015–2025 Cost, Reliability 

10 Lane Keeping 2015–2020 Infrastructure 

11 Electric Stability Control 2010–2011 
None; mandated by NHTSA 
since 2011 

12 Parental Control 2015–2020 None 

13 Traffic Jam Assist 2015–2020 Cost 

14 High Speed Automation 2015–2025 Reliability 

15 
Automated Assistance in 
Roadwork and Congestion 

2015–2025 Infrastructure, Reliability 

16 On-Highway Platooning 2015–2020 Infrastructure, Cost 

17 
Automated Operation for 
Military 

Unknown Unknown 

18 Driverless Car 2015–2030 
Regulation, Liability, Cost, 
Cyber- security, Infrastructure 

19 
Emergency Stopping 
Assistance 

2015–2025 Liability 

20 Auto-Valet Parking 2015–2025 Infrastructure 

2.2.4 Traffic Impact 

In general, AVs can reduce travel times through crowd-sourcing-based navigation (smarter 
route choices), automatic collision reports (e.g., OnStar), & more stable cruising speeds. AVs can 
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also reduce travel time uncertainties via better en-route information (such as construction, 
incidents, weather events, etc.), dedicated lanes, and less traffic flow breakdown. It is anticipated 
that they can increase lane and intersection capacity and smooth traffic oscillations in two main 
ways: 

• Lane capacity: AVs can use shorter headways through auto-platooning or coordinated 
adaptive cruise control (CACC) and/or lane centering (in narrower lanes), which 
translates to higher capacity (1 to 80% increases in effective capacity, with adoption of 
10 to 90% CACC). 

• Intersection capacity: AVs + CVs can anticipate green phases and so make better use 
of signal time; they can be better coordinated and share scarce intersection space via 
mini- platoons based on reservation instructions, for specific paths through an 
intersection at specific times, (up to 95.5% delay reduction as adoption rates hit 
100%).Smart driving vehicles can also influence passenger flows, fleet size, and 
consequently the need for parking spaces. 

• Passenger/person flows: Smarter vehicles and trip requests can be matched in real time, 
increasing vehicle occupancies through dynamic ride-sharing (from U.S. current average 
of just 1.55 persons) and reducing traffic congestion (by reducing VMT per person-mile 
travelled) 

• Reduced fleet sizes and lower parking demands: shared driverless fleets are estimated 
to reduce the demand for vehicles in urban areas by 90 percent (among carsharing fleet 
members); this will reduce parking loads, freeing up street space for other modes or 
additional lanes, in some settings. 

 
AVs could also enable ridesharing and travel by those with limited financial means or 

physical limitation and thus improve the accessibility of mobility-constrained people to goods, 
services, jobs and medical appointments. 

2.2.5 Infrastructure Needs 

Based on the previous literature synthesis on smart driving technologies, the team produced 
the following table (Table 2.4) that predicts potential infrastructure needs and associated costs.
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Table 2.4: Infrastructure Needs Evaluation for Different Technologies 
 

# Technology Infrastructure Need Infrastructure Cost 

1 Forward Collision Warning None None 

2 Blind Spot Monitoring None None 

3 Lane Departure Warning Lane marks Low 

4 Traffic Sign Recognition Traffic sign Moderate 

5 Left Turn Assist Lane marks Low 

6 Adaptive Headlight None None 
 
7 

 
Adaptive Cruise Control 

None, possible 
dedicated lane 

 
Depends 

 

8 
Cooperative Adaptive Cruise 
Control 

 

None 
 

None 

9 Automatic Emergency Braking None None 

10 Lane Keeping Lane marks Low 

11 Electric Stability Control None None 

12 Parental Control None None 

13 Traffic Jam Assist Lane marks Low 

14 High Speed Automation Lane marks, traffic sign Moderate 
 
15 

Automated Assistance in 
Roadwork and Congestion 

Lane marks, beacons, 
guide walls 

 
Relatively high 

16 On-Highway Platooning Lane marks, traffic sign Moderate 

17 Automated Operation for Military None Unknown 
 
18 

 
Driverless Car 

Lane marks, traffic 
sign, lighting 

 
Relatively high 

19 Emergency Stopping Assistance None None 

20 Auto-Valet Parking Parking facilities Relatively High 

 
Many smart driving technologies are decentralized, in the sense that they do not require 

any communication with the infrastructure (i.e., V2I) to work. In general, under normal operational 
conditions, certain smart driving technologies, e.g., lane departure warning and lane keeping, will 
require clear lane marking and traffic signs, because they rely on sensing of these objects to 
determine the surrounding environment. Other technologies, such as adaptive cruise control and 
blind spot monitoring, does not require particular infrastructures, because these are vehicle based 
features and only rely on sensing of surrounding vehicles but not particular infrastructure. The 
technologies that will require the most infrastructure changes are traffic sign recognition, 
automated assistance in roadwork and congestion, auto-valet parking and driverless cars. 
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Chapter 3.  Surveys to Forecast Adoption Rates 

Successful implementation of CAV technologies will require public acceptance and 
adoption of these technologies over time, via CAV purchase, rental, and use. In recent years, many 
researchers and consulting firms have conducted surveys and focus groups to understand the public 
perceptions of CAV benefits and limitations. This section first summarizes key findings of these 
prior public opinion surveys, then goes on to describe findings of surveys conducted under the 
current project. These studies provide descriptive statistics regarding public awareness, concerns, 
and expected benefits of smart-vehicle technologies, but none of them could forecast the long-term 
adoption of CAV technologies. This section also includes the previously developed frameworks 
to forecast the long-term adoption of new technologies, such as plug-in hybrid electric vehicles 
(PHEV). 

3.1 Prior Survey Results 

3.1.1 Public Opinion Surveys about Adoption of CAVs 

Casley et al. (2013) conducted a survey of 467 respondents to understand their opinions 
about AVs. The results indicate that approximately 30% of respondents were willing to spend more 
than $5,000 to adopt full automation in their next vehicle purchase and around the same proportion 
of respondents showed interest in adopting AV technology four years after its introduction in the 
market. Eighty-two percent of respondents reported safety was the most important factor affecting 
their adoption of AVs, while 12% said legislation, and 6% said cost. 

Begg (2014) conducted a survey of over 3,500 London transport professionals to 
understand their expectations and issues related to the growth of driverless transportation in 
London. Eighty-eight percent of respondents expected Level 2 vehicles to be on the road in the 
U.K. by 2040; 67% and 30% believe the same for Level 3 and Level 4 vehicles, respectively. 

Furthermore, approximately 60% of respondents supported driverless trains in London, and 
the same proportion of respondents expected AVs to be safer than conventional vehicles. 

Kyriakidis et al. (2014) conducted a survey of 5,000 respondents across 109 countries by 
means of a crowdsourced internet survey. The results indicate that respondents with higher vehicle 
miles traveled and who use the automatic cruise control feature in their current vehicles are likely 
to pay more for fully automated vehicles. Approximately 20% of respondents showed a WTP of 
more than $7,000 for Level 4 AVs, and approximately the same proportion of respondents did not 
want to pay more to add this technology to their vehicle. Most importantly, 69% of respondents 
expected that fully automated vehicles are likely to gain 50% market share by 2050. 

Schoettle and Sivak (2014a) surveyed 1,533 respondents across the U.K., the U.S., and 
Australia to understand their perceptions of AVs. Results indicate that approximately two-thirds 
of respondents had previously heard about AVs. When respondents were asked about the potential 
benefits of Level 4 AVs, 72% expected fuel economy to increase, while 43% expected travel-time 
savings to increase. Interestingly, 25% of respondents were willing to spend at least $2,000 to add 
full self-driving automation in the U.S., while the same proportion of respondents in the U.K. and 
Australia were willing to spend $1,710 and $2,350, respectively. However, around 55% of 
respondents in each country did not want to pay more to add these technologies. When asked about 
their potential activities while riding in Level 4 AVs (e.g., working, reading, and talking with 
friends), the highest proportion of respondents (41%) said they would watch the road even though 
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they would not be driving. The results of one-way analysis of variance indicated that females are 
more concerned about AV technologies than males. 

Underwood (2014) conducted a survey of 217 experts. Eighty percent of respondents had 
a master’s degree, 40% were AV experts, and 33% were CV experts. According to these experts, 
legal liability is the greatest barrier to fielding Level 5 AVs (full automation without steering 
wheel), and consumer acceptance is the smallest. Approximately 72% of the experts suggested 
that AVs should be at least twice as safe as the conventional vehicles before they are authorized 
for public use. Fifty-five percent of the experts indicated that Level 3 AVs are not practical because 
drivers could become complacent with automated operations and may not take required actions. 

CarInsurance.com’s survey of 2000 respondents found that approximately 20% were 
interested in buying AVs (Vallet, 2013). Interestingly, when respondents were presented with an 
80% discount on car insurance for AV owners, 34% and 56% of respondents indicated strong and 
moderate interest in buying AVs, respectively. When respondents were asked to choose the 
activities they would like to perform while riding in AVs, the highest share of respondents (26%) 
chose to talk with friends. Survey results also indicate that approximately 75% of respondents 
believed that they could drive more safely than AVs. Only 25% would allow their children to go 
school in AVs, unchaperoned. When asked who they would trust most to deliver the AV 
technology, the highest proportion (54%) of respondents said traditional automobile companies 
(e.g., Honda, Ford, and Toyota), instead of technology companies (e.g., Google, Microsoft, 
Samsung, and Tesla). Seapine Software’s (2014) survey of 2,038 respondents indicated that 
approximately 88% (84% of 18- to 34-year-olds and 93% of 65-year-olds) were concerned about 
riding in AVs. Seventy-nine percent of respondents were concerned about equipment failure, while 
59% and 52% were concerned about liability issues and hacking of AVs, respectively. 

J.D. Power (2012) conducted a survey of 17,400 vehicle owners before and after revealing 
the market price of 23 CAV technologies. Prior to learning about the market price, 37% of 
respondents showed interest in purchasing the AV technology in next vehicle purchase, but that 
number fell to 20% after learning that this technology’s market price is $3,000. The 18- to 37-
year-old male respondents living in urban areas showed the highest interest in purchasing AV 
technology. 

A KPMG (Klynveld Peat Marwick Goerdeler) (2013) focus group study, using 32 
participants, notes that respondents became more interested in AVs when they were provided 
incentives like a designated lane for AVs, and learned that their commute time would be cut in 
half. In contrast to Schoettle and Sivak’s (2014a) findings, the focus group’s discussion and 
participants’ ratings for AV technology suggests that females are more interested in these 
technologies than males. While focus-group females emphasized the benefits of AVs (e.g., 
mobility for physically challenged travelers), males were more concerned about being forced to 
follow speed limits. Interestingly, the oldest participants (60 years old+) and the youngest (21 to 
34 years old) expressed the highest WTP in order to obtain automation technologies.  

Continental (2015) surveyed 1,800 and 2,300 respondents in Germany and the United 
States, respectively. Approximately 60% of respondents expected to use AVs in stressful driving 
situations, 50% believed that AVs can prevent accidents, and roughly the same number indicated 
they would likely engage in other activities while riding in AVs. 

Recently, Schoettle and Sivak (2014b) surveyed 1,596 respondents across the U.K., the 
U.S., and Australia to understand their perceptions of CVs. Surprisingly, only 25% of respondents 
had heard about CVs. When asked about the expected benefits of CVs, the highest proportion of 
respondents (85.9%) expected fewer accidents and the lowest proportion (61.2%) expected less 
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distraction for the driver. Approximately 84% of respondents rated safety as the most important 
benefit of CVs, 10% said mobility, and 6% said environmental benefits. Interestingly, 25% of 
respondents were willing to spend at least $500, $455, and $394 in the U.S., the U.K., and 
Australia, respectively, to add CV technology. However, 45.5%, 44.8%, and 42.6% of respondents 
did not want to pay anything extra to add these technologies in the U.S., the U.K., and Australia, 
respectively. 

3.1.2 Anticipating Long-Term Adoption of New Technologies 

Vehicle transaction models and simulation frameworks have been increasingly used for 
forecasting market shares of alternative fuel vehicles (Paul et al., 2011). However, these models 
are not directly applicable to forecasting the long-term adoption of CAV technologies, but provide 
a good basis for this new framework. Musti and Kockelman (2010) proposed a vehicle fleet 
evolution framework to forecast PHEV’s and HEV’s shares in Austin, Texas, over a 25-year 
period. They developed a microsimulation framework based on a set of interwoven models 
(vehicle transaction, vehicle choice, and vehicle usage) for vehicle ownership along with 
greenhouse gas (GHG) emissions forecasts in Austin. They estimated Austin’s highest future 
PHEV-plus-HEV share (19% by 2034) under a feebate policy scenario. Paul et al. (2011) adopted 
a similar microsimulation framework to forecast the U.S. vehicle fleet’s composition and 
associated GHG emissions, from 2010 to 2035, under a variety of policy, technology, and gas-
price scenarios. Paul et al. (2011) predicted 14.8% as the highest (total) predicted share of PHEV-
plus-HEV by 2035, under the gas price of $7 per gallon. 

3.2 Survey Design and Data Processing 

3.2.1 Questionnaire Design and Data Acquisition 

The team designed and disseminated a Texas-wide survey in June 2015 using Qualtrics, a 
web-based survey tool. The Survey Sampling International’s (SSI, an internationally recognized 
and highly professional survey firm) continuous panel of respondents served as the respondents 
for this survey. The Office of Research Support at The University of Texas at Austin processed 
this study and determined it as “Exempt” from Institutional Review Board1 (IRB) review (protocol 
number: 2014-09-0078). 

Exploring respondents’ preferences for the adoption of emerging vehicle and transport 
technologies, the survey asked 58 questions, divided into 6 sections. The survey asked respondents 
about their household’s current vehicle inventory (e.g., odometer reading and average miles 
traveled per year), vehicles sold in the past 10 years, future vehicle preferences (e.g., buying or 
selling a vehicle, or only adding technology to the existing vehicles), and WTP for various CAV 
technologies. Respondents were also asked for their opinions related to CAVs (e.g., comfort in 
allowing vehicle to transmit data to various agencies and the appropriate developers for Level 4 
AVs), travel patterns (e.g., using AVs for the long-distance trips and increase in frequencies of 
long-distance trips due to AVs), and demographics. 

                                                 
1 IRB reviews research studies to minimize the risks for human subjects, ensure all subjects give their consent and 
receive full information about risks involved in the research, and aims to promote equity in human subject research. 
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3.2.2 Data Cleaning and Sample Correction 

A total of 1,762 Texans completed the survey, but after removing the fast responses and 
conducting some sanity checks2, 1,364 responses remained eligible for further analysis. The 
sample over-represented specific demographic classes, such as female and bachelor degree 
holders, and under-represented others, such as men who did not complete high school and males 
18 to 21 years old. Therefore, the survey sample proportions in three demographic classes or sixty 
categories (two gender-based, five age-based, and six educational-attainment groups3) were scaled 
using the 2013 American Community Survey’s Public Use Microdata Sample (PUMS 2013) for 
Texas. These scale factors were used as person-level weights to un-bias person-related summary 
statistics (e.g., binary opinion whether AVs are realistic or not) and model-based parameter 
estimates. 

Similarly, some household groups were under- or over-represented. Thus, household 
weights were calculated for 3 demographic classes or 65 categories (4 household size groups, 4 
household workers groups, and 5 vehicle ownership groups)4 using PUMS 2013 data. These 
household weights were used to un-bias household-related (e.g., WTP for new technologies and 
vehicle transaction decisions) model estimates and summary statistics. 

3.2.3 Geocoding 

To understand the spread of survey respondents across Texas and to account for the impact 
of built-environment factors (e.g., population density and population below poverty line) on 
household vehicle transaction and technology adoption decisions, the respondents’ home 
addresses were geocoded using Google Maps' API and spatially joined with Texas’s census-tract- 
level shape file using open-source Quantum GIS. For respondents who did not provide their street 
address or recorded incorrect addresses, their internet protocol (IP) locations were used as the 
proxies for their home locations. Figure 3.1 shows the geocoded respondents across Texas, with 
most respondents living in or around Texas’ biggest cities (Houston, Dallas, Fort Worth, San 
Antonio, and Austin), as expected in a relatively unbiased sample. 
 

                                                 
2 Respondents who completed the survey in less than 13 minutes were assumed to have not read questions 
thoroughly, and their responses were discarded. Certain other respondents were considered ineligible for further 
analysis: those younger than 18 years, reporting more workers or children than represented in the household size, 
having a very old car with all technologies, reporting the same distance of their home from various places (airport 
and city center, for example), and providing other combinations of conflicting answers. 
3 A category “Master’s degree holder female and of age between 18 to 24 year” was missing in the sample data. This 
category was merged with “Bachelor’s degree holder female of age between 18 to 24 year” in the population. 
4 There are 80 combinations of traits (4 x 4 x 5 = 80), but there are only 65 categories because some the categories 
cannot exist. For example, the number of workers cannot exceed household size. Out of 65 categories, 5 were 
missing in the sample, and were merged with adjacent categories. 
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Figure 3.1: Geocoded Respondents across Texas 

3.3 Summary Statistics 

3.3.1 Level 1 and Level 2 Technologies 

Table 3.1 summarizes WTP for, interest in, and current adoption of Level 1 and Level 2 automation 
technologies5. The respondents showed the least interest in traffic sign recognition and left-turn 
assist technologies. Traffic sign recognition is of no interest to 50.7% of the respondents, and 
52.5% noted they are unwilling to pay anything to add this technology to their vehicles. Left-turn 
assist is slightly more acceptable: 47.2% of the respondents are not interested in it, and 45.1% 
would not to pay anything for it. Blind-spot monitoring and emergency automatic braking appear 
to be the two most appealing technologies for Texans. Around half (50.8%) of the respondents are 
very interested in blind-spot monitoring, only 17.3% are not interested in it, and the smallest 
proportion of the respondents (only 23.9%) indicate $0 WTP for it. Emergency automatic braking 
is the second most interesting technology for Texans, with 46.7% of the very-interested 
respondents, only 23% of the not-interested respondents, and only 28.8% of the respondents with 
$0 WTP. 

Not surprisingly, among these Level 1 and Level 2 automation technologies, electronic 
stability control (ESC) is the one most expected to be already present in the respondents’ vehicles: 
21.7% of those who have a vehicle reported having this technology in at least one household 
vehicle, and it is possible that many respondents are unaware that their vehicles now come 
equipped with such technology (since ESC has been mandated on all new passenger vehicles in 
the US since 2012 model year). The second most adopted technology is adaptive cruise control 
(ACC), with 13.2% of the respondents, who have at least one vehicle, having already adopted this 

                                                 
5 Level 1 and Level 2 automations are considered together and used interchangeably at a few places, since a 
combination of Level 1 technologies leads to Level 2 automation. 
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technology. The least adopted technology is traffic sign recognition, as it is present in only 2% of 
the respondents’ vehicles, while pedestrian detection has a slightly higher rate of adoption, at 3.3%. 

The respondents’ WTP for Level 1 and Level 2 technology varies significantly6. The 
average WTP (among the respondents who are willing to pay some positive amount for the 
technology) to add ESC to an existing or a future vehicle exceeded the projected price after five 
years: $79 (see Table 3.37) versus $70. For every other technology, the average WTP (of the 
respondents who are ready to pay for the technology) is lower than the estimated future price after 
five years. For example, average WTP to add emergency automatic braking is $263 versus $320, 
(the projected price after five years) and for blind-spot monitoring, it is $208 versus $280. The 
worst ratio of the average WTP to the projected price is for the adaptive headlights: $346 versus 
$700. Respondents value this technology significantly; in fact, it is the second most valued 
technology in terms of average WTP (of the respondents who are ready to pay for the technology), 
but respondents probably believe that the projected price is still too high. 

                                                 
6 Before asking a WTP question, respondents were provided with a price forecast for a particular technology. For 
example, the price forecast for ESC was “Current Price: $100; Price after 5 years: $70; Price after 10 years: $50”. It 
is difficult to estimate the price of a particular Level 1 or Level 2 technology, since these technologies are provided in 
packages. For example, BMW provides a $1900 package with lane departure warning, forward collision braking, 
adaptive cruise control, pedestrian detection, and blind-spot monitoring. Thus, after analyzing different packages, 
current prices for each of these technologies were determined. Subsequently, 30% price reduction in the next 5 years 
and a 50% price reduction in the next 10 years were considered (with 7% annual price reduction rate) to provide future 
price estimates of these technologies. 
7 Table 3.3 demonstrates average WTP for CAV technologies. The second column represents average WTP of all 
respondents, and the third column summarizes the WTP of those who indicated WTP more than $0 for a specific 
technology. 
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Table 3.1: Population-weighted Summaries for Level 1 and Level 2 Technologies 
(Nobs=1,364) 

Response Variables Percentages Response Variables Percentages 

Electronic Stability Control 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 33.3% Yes 21.7% 

Less than $60 15.2% Interested in Technology 

$60 to $79 22.1% Not interested 28.6% 

$80 to $119 22.3% Slightly interested 41.8% 

$120 and more 7.1% Very interested 29.6% 

Lane Centering 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 40.5% Yes 4.2% 

Less than $200 21.4% Interested in Technology 

$200 to $399 14.9% Not interested 36.8% 

$400 to $599 12.4% Slightly interested 39.3% 

$600 and more 10.7% Very interested 23.9% 

Left-turn assist 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 45.1% Yes 4.0% 

Less than $100 15.0% Interested in Technology 

$100 to $299 23.7% Not interested 47.2% 

$300 to $399 8.1% Slightly interested 33.6% 

$400 and more 8.1% Very interested 19.3% 

Cross Traffic Sensor 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 32.3% Yes 10.4% 

Less than $100 14.6% Interested in Technology 

$100 to $199 14.5% Not interested 30.5% 

$200 to $399 24.9% Slightly interested 38.0% 

$400 and more 13.7% Very interested 31.6% 

Adaptive Headlights 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 40.3% Yes 9.2% 

Less than $150 17.9% Interested in Technology 

$150 to $349 17.4% Not interested 35.3% 

$350 to $649 15.6% Slightly interested 37.6% 

$650 and more 8.9% Very interested 27.1% 
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Response Variables Percentages Response Variables Percentages 

Pedestrian Detection 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 37.6% Yes 3.3% 

Less than $100 15.8% Interested in Technology 

$100 to $199 13.1% Not interested 32.2% 

$200 to $399 24.3% Slightly interested 36.8% 

$400 and more 9.1% Very interested 31.0% 

Adaptive Cruise Control 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 36.6% Yes 13.2% 

Less than $150 26.7% Interested in Technology 

$150 to $249 15.6% Not interested 31.9% 

$250 to $349 11.6% Slightly interested 36.1% 

$350 and more 9.5% Very interested 32.0% 

Blind-spot Monitoring 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 23.9% Yes 9.7% 

Less than $150 29.3% Interested in Technology 

$150 to $249 18.8% Not interested 17.3% 

$250 to $349 15.3% Slightly interested 31.9% 

$350 and more 12.8% Very interested 50.8% 

Traffic Sign Recognition 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 52.5% Yes 2.0% 

Less than $100 15.6% Interested in Technology 

$100 to $199 10.2% Not interested 50.7% 

$200 to $299 10.7% Slightly interested 30.8% 

$300 and more 11.1% Very interested 18.5% 

Emergency Automatic Braking 

Willingness to Pay to Add Present in a Vehicle* 

Do not want to pay anything 28.8% Yes 5.9% 

Less than $200 25.4% Interested in Technology 

$200 to $299 18.8% Not interested 23.0% 

$300 to $399 14.3% Slightly interested 30.3% 

$400 and more 12.7% Very interested 46.7% 
 *Among the respondents who reported to have at least one vehicle in their households. 

3.3.2 Connectivity and Advanced Automation Technologies 

Table 3.2 summarizes respondents’ WTP to add connectivity, self-parking valet system, 
and Level 3 and Level 4 automation. It is evident that more than half of the respondents are not 
ready to pay for any of the advanced automation technology, but comparatively fewer (only around 
37.9%) indicated $0 WTP to add connectivity. Among those who are willing to pay for advanced 
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automation, the average WTP for Level 3 automation is $5,551 and for Level 4 automation, it is 
$14,589 (see Table 3.3). Self-parking valet technology is valued at around $924 (with a simulation-
projected price of $1,400 after 5 years, which may be too low [given how complex discerning a 
proper/legal parking spot can be in many settings]) and connectivity is valued at only $110 
(projected price after five years is $140). 

Table 3.2: Population-weighted WTP for Adding Connectivity and Advanced Automation 
Technologies (Nobs=1,364) 

Response Variables Percentages Response Variables Percentages 

WTP for Adding Level 3 Automation  WTP for Adding Self-parking Valet  
Do not want to pay anything 55.4% Do not want to pay anything 51.6% 

Less than $2,000 12.8% Less than $250 13.2% 

$2,000 to $5,999 14.1% $250 to $1,249 19.8% 

$6,000 to $9,999 9.4% $1,250 to $1,749 9.0% 

$10,000 and more 8.3% $1,750 and more 6.4% 

WTP for Adding Level 4 Automation  WTP for Adding Connectivity  
Do not want to pay anything 57.9% Do not want to pay anything 37.9% 

Less than $6,000 14.9% Less than $75 21.2% 

$6,000 to $13,999 9.4% $75 to $124 16.9% 

$14,000 to $25,999 9.8% $125 to $174 11.7% 

$26,000 and more 8.0% $175 and more 12.3% 

Table 3.3: Population-weighted Average WTP for Automation Technologies (Nobs=1,364) 

Average WTP for Adding Technology For all Respondents For those with WTP > 0 

Electronic Stability Control $53 $79 

Lane Centering $211 $355 

Left-turn assist $123 $224 

Cross Traffic Sensor $174 $257 

Adaptive Headlights $207 $346 

Pedestrian Detection $144 $231 

Adaptive Cruise Control $128 $202 

Blind-spot Monitoring $158 $208 

Traffic Sign Recognition $97 $203 

Emergency Automatic Braking $187 $263 

Connectivity $68 $110 

Self-parking Valet $448 $924 

Level 3 Automation $2,474 $5,551 

Level 4 Automation $6,148 $14,589 
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3.3.3 Opinions about CAV Technologies and Related Aspects 

Table 3.4 summarizes the respondents’ opinions about their own behavior, automation 
technologies, and related aspects. Most Texans perceive themselves as good drivers (86.5%), enjoy 
driving a car (75.6%), and tend to wait before adopting new technologies (79.2%). Respondents 
are indecisive on the topic of whether AVs will drive better than them (around one- third agrees, 
around one-third disagrees, and the last third has no opinion on this). Around 55.3% of the 
respondents perceive AVs as a useful advancement in transportation, but 56.3% are scared of them. 
Only around one-quarter (24.8%) of the respondents have been waiting for AV availability and 
only 19.8% will be comfortable sending an AV driving on its own, assuming that they as owners 
are liable for any accident it might cause. 43.8% of the respondents agree with the statement that 
AVs will be widespread in the future. Around 47% of the respondents think that AVs will function 
reliably, while 44% believe the idea of AVs is not realistic. 

Table 3.4: Individual-weighted Opinions of Respondents (Nobs=1,364) 

Opinions Agree Neutral Disagree

I believe that I am a very good driver myself. 86.3% 10.8% 3.0% 

I think AVs will drive more safely than my driving. 34.3% 31.9% 33.7% 

Driving a car is something I enjoy. 75.6% 15.3% 9.2% 

I generally tend to wait for a new technology if it proves itself. 79.2% 13.6% 7.2% 

AVs are a useful advance in transportation. 55.3% 25.3% 19.4% 

The idea of AVs is not realistic. 44.0% 25.0% 31.0% 

AVs will be a regular mode of transport in 15 years. 43.8% 29.4% 26.8% 

AVs scare me. 56.7% 19.0% 24.3% 

I have waited a long time for AVs. 24.8% 22.8% 52.5% 

I do not think that AVs will function reliably. 47.0% 30.2% 22.8% 
I would be comfortable in sending my AVs out knowing that I 
am liable for an accident. 

 

19.8% 
 

20.3% 
 

59.9% 

 

Table 3.5 summarizes the respondents’ opinions about their comfort in allowing their CVs 
to share information with certain organizations or other vehicles, as well as whom they trust to 
develop AVs. It is interesting to note that more than half of the respondents (52.7%) are 
comfortable if their vehicle transmits information to other vehicles, and 46% are comfortable 
sending information to the vehicle manufacturer. Respondents were most uncomfortable sending 
information to insurance companies (34.4%) and toll operators (32.5%). 

The respondents mostly believe that AVs must be produced by technology companies 
(63.1%), and luxury vehicle manufacturers (49.5%). Mass-market manufacturers are in third place 
with support from 45.1% of the respondents. Around 8.2% of the respondents do not trust any 
company to manufacture AVs, and very few respondents (1%) are unsure. 
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Table 3.5: Individual-weighted Opinions about Connectivity and AVs’ Production 
(Nobs=1,364) 

Comfortable in allowing a vehicle to transmit information to… Comfortable Neutral Uncomfortable
Surrounding vehicles 52.7% 17.5% 29.8% 
Vehicle manufacturers 46.0% 24.9% 29.1% 
Insurance companies 39.9% 25.8% 34.4% 
Transportation planners 43.4% 28.2% 28.4% 
Toll operators 37.0% 30.5% 32.5% 
To develop Level 4 AVs, I would trust: Percentage  
Technology companies (e.g., Google, Apple, Microsoft, and 63.1%  
Mass-market vehicle manufacturers (e.g., Toyota and Ford) 45.1%  
Luxury vehicle manufacturers (e.g., BMW and Mercedes) 49.5%  
Government agencies (e.g., NASA and DARPA) 1.1%  
Universities and research institutions 0.4%  
I would not trust any company to develop a Level 4 AVs. 8.2%  
Unsure 1.0%  

3.3.4 Opinions about AV Usage by Trip Types and Long-distance Travel 

Table 3.6 demonstrates the respondents’ opinions about AV use for different trip types and 
long-distance travel. Interestingly, around the same proportion of the respondents reported 
unwillingness to use AVs for short-distance (39.2%) or long-distance (37.3%) trips (over 50 
miles). More than 40% of the respondents reported their willingness to use AVs in their everyday 
trips; however, only 34.8% plan to use them for their or their children’s school trips. In the context 
of long-distance travel, the highest proportion of the respondents (40.9%) plan to use AVs for trips 
with one-way distances between 100 and 500 miles. The respondents also believe their average 
number of long-distance trips will increase by 1.3 per month due to the adoption of AVs. 

Table 3.6: Individual-weighted Summaries for AV Usage by Trip Type (Nobs=1,364) 

I will use AVs during a… Percentage I will use AVs for trips… Percentage 

Work trip 42.8% Between 50 and 100 miles 33.1% 
School trip 34.8% Between 100 and 500 miles 40.9% 
Shopping trip 45.0% Over 500 miles. 29.9% 
Personal business trip 42.8% I will not use AVs for such trips. 37.3% 
Social or recreational trip 47.1% Average increase in the number of long-distance trips 
I will not use AVs. 39.2% Additional number of long-distance trips (per month) 1.3 

3.4 Forecasting Long-Term Adoption of CAV Technologies 

3.4.1 Simulation-based Framework 

The simulation-based framework that forecasts the long-term adoption of CAV 
technologies consists of several stages, pursued together at a one-year time step. The first stage is 
a vehicle transaction and technology adoption model (as shown in Figure 3.2) that simulates the 
households’ annual decisions to sell a vehicle (“sell”), buy vehicles (“buy”), sell a vehicle and buy 
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vehicles (“replace”), add technology to the existing vehicles8 (“add technology”), and take no 
action (“do nothing”). A multinomial logit (MNL) model was estimated in BIOGEME (Bierlaire 
2003) to determine the probabilities of making these decisions and use these probabilities in the 
Monte Carlo method to ascertain the vehicle transaction and technology adoption choice of each 
household after each year. Initial model specifications included all explanatory variables and the 
MNL model was re-estimated using stepwise elimination by removing the covariate with the 
lowest statistical significance. Although most of the explanatory variables enjoy a p-value greater 
than .05 (|t-stat| > 1.96), covariates with p-values lower than 0.32 (which corresponds to a |t-stat| 
of greater than 1.0) were also kept in the final specification. 
 McFadden’s R-Square9 and adjusted R-square are calculated to measure the models’ 
goodness of fit. In the case of a “sell” decision9, the oldest vehicle (within a selling household) is 
disposed of. In the case of a “buy” decision, it is assumed that a household will buy (or lease) 
either one or two vehicles, and that each vehicle can be acquired new or used. It is important to 
determine whether a household purchases a new or used vehicle, since it was assumed that Level 
3 and Level 4 automations cannot be retrofitted into used vehicles. Using the survey data, the 
probability that a household acquiring a vehicle will purchase two vehicles that same year is just 
0.065, versus 0.373 to purchase a single. These values were used in Monte Carlo simulation. 

Subsequently, connectivity is added to the purchased vehicle if a household’s WTP for 
connectivity is more than its price. If the purchased vehicle is used, then Level 1 and Level 2 
automations are added based on the household’s total budget for Level 2 technologies, and 
preferences and WTP for each Level 2 technology (or Level 1 technology, if only one technology 
is added to the vehicle). As mentioned in Section 5, respondents were also separately asked about 
WTP for a self-parking valet system10; this option is added to the used vehicle if the household’s 
WTP is more than its price. If the purchased vehicle is new and the household’s WTP for Level 
4 automation is greater than the price of its addition, then Level 4 is added to the new vehicle. 
Otherwise a similar rule is checked for Level 3 automation. If the condition is met for Level 3, 
this automation is added to the new vehicle; otherwise a self-parking valet system and Level 1 
and Level 2 automations are added to the new vehicle with the same rules as described for the 
used-vehicle case. 

In the case of a “replace” decision, a household is assumed to first choose a “sell” option, 
followed by a “buy” decision. In the case of an “add technology” decision, if an existing vehicle 
already has Level 3 or Level 4 automations, then no new technology is added to the vehicle. If 
this is not the case, then the existing technologies in the vehicle are excluded from the choice 
set, and a self-parking valet system (if not present in the existing vehicle) and Level 1 and Level 
2 automations are added to the existing vehicle with the same rules as described for the used- 
vehicle case. In the “do nothing” case, all vehicles are retained and no technology is added. If a 
household does not own a vehicle, but the simulation suggests it choose “sell”, “replace”, or “add 
technology” options, the household is forced to pick the “do nothing” option. 

Finally, the population-weighted adoption rates of all technologies are extracted after 
each year. This simulation framework does not consider the changes in household demographics 
or WTP over time (except the respondent’s age, since it is an explanatory variable in the vehicle 

                                                 
8 This study assumes that the households’ WTP for CAV technologies remains the same over the simulation period. 
9 It was assumed that the household sells or disposes only one vehicle at a time 
10 Self-parking valet system was not characterized in any level of automation, but was assumed to be present in any 
vehicle having Level 3 or Level 4 automation. 
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transaction and technology adoption model). Integrating these additional household evolution 
models may improve estimates of CAV technologies’ future adoption rates. 

 

 
Figure 3.2: The Transaction Decision Model 

3.4.2 Vehicle Transaction and Technology Adoption: Model Specification 

Table 3.7 summarizes (with population-weights) person- and household-level variables, 
geocoded location variables, and transaction decision variables included in the vehicle 
transaction and technology adoption model. 
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Table 3.7: Population-weighted Summary Statistics of Explanatory Variables (Nobs=1,364) 

Explanatory Variables Mean SD Min. Max. 

Person Variables 

Age (years) 46.764 16.385 21 70
Male? 0.4793 0.4998 0 1
Single? 0.2956 0.4565 0 1
Bachelor’s degree holder? 0.3752 0.4843 0 1
Full-time worker? 0.3663 0.4820 0 1
Retired? 0.1978 0.3985 0 1
Drive alone for work trips? 0.5832 0.4932 0 1

Household Variables 

More than 3 members in the household? 0.2710 0.4447 0 1
More than 1 worker in the household? 0.3551 0.4787 0 1
Age of the oldest vehicle in the household (in years) 10.121 6.8519 0 30
Number of vehicles owned by the household 1.7967 0.9853 0 6
At least one vehicle in the household? 0.9408 0.2360 0 1
Average vehicle holding time (in years) 2.3298 4.8467 0 30
Number of vehicles sold in the past 10 years 0.4335 0.6876 0 5 

Location Variables 

% of families below poverty line in the census tract 13.152 11.125 0 77
Employed and over 16 years of age (per square mile) 2,335.8 2,412.8 1.1917 26,021
Population density (per square mile) 2,993.2 3,099.5 1.6496 32,880
Distance to downtown (from home) is greater than 5 0.7147 0.4517 0 1 

Transaction Decisions 

Sell 0.0358 0.1859 0 1
Replace 0.2310 0.4216 0 1
Buy 0.1573 0.3642 0 1
Add technology 0.1015 0.3021 0 1
Do nothing 0.4745 0.4995 0 1

 

Table 3.8 shows the MNL model’s final specification. The alternative specific constants 
(ASCs) indicate that, everything else being equal, households have inherent inclination and 
disinclination for “add technology” and “replace” options. Specifically, older and single 
individuals with more than one worker in the household, who live farther from downtown in a 
financially poorer neighborhood (all other attributes remaining constant) are relatively less 
inclined towards selling their vehicles, but males with more vehicles in the household who drive 
alone for work are likely to be more inclined to sell. 

Bachelor degree holders, full-time workers, and male respondents who drive alone for 
work, have more vehicles, and more than one worker in the household are more likely (everything 
else constant) to replace a vehicle, but older respondents are less likely to make this decision. Older 
and single respondents whose households have higher vehicle holding times and own more 
vehicles (all other attributes held constant) are less likely to buy vehicles. In contrast, respondents 



39 

who drive alone to work, have more than three members and one worker in the household, have 
older vehicles, and have sold more vehicles in the past 10 years are more likely to buy vehicles. It 
is interesting to note that bachelor’s degree holders who drive alone for work trips and live in 
neighborhoods with higher density of employed individuals are more inclined (everything else 
constant) towards the “add technology” option than the “do nothing.” However, all else being 
equal, older and single individuals who have older vehicles and live in highly populous 
neighborhoods are likely to prefer the “do nothing” option over the “add technology.” The 
respondent’s age, number of vehicles owned by the household, household’s average vehicle 
holding time, number of vehicles sold in past 10 years, indicator for owning at least one vehicle, 
and age of the oldest vehicle in the household are annually updated in the simulation. 

Table 3.8: Transaction Decisions (Weighted Multinomial Logit Model Results) 

Covariates Coef. T-stat 
ASCSell 0 -fixed-
ASCReplace -2.83 -3.9
ASCBuy 0 -fixed-
ASCAdd Technology 0.66 1.6
Sell 

Age (years) -0.065 -7.32
Distance of downtown (from home) is greater than 5 -0.844 -2.61
Drive alone for work trips? 0.361 1.06
Male? 0.589 1.74
Number of vehicles owned by the household 0.706 4.38
% of families below poverty line in the census tract -0.0396 -2.28
Single? -0.913 -2.41
More than 1 worker in the household? -1.07 -2.83

Replace 

Age (years) -0.0255 -4.56
Bachelor’s degree holder? 0.444 3.02
Drive alone for work trips? 0.698 3.94
Full-time worker? 0.266 1.63
Male? 0.317 2.24
Number of vehicles owned by the household 0.154 1.72
At least one vehicle in the household? 1.93 2.74
Retired? 0.821 3.15
More than 1 worker in the household? 0.275 1.7

Buy 

Age (in years) -0.0317 -7.82
Drive alone for work trips? 0.458 2.74
More than 3 members in the household? 0.451 2.81
Age of the oldest vehicle in the household (in years) 0.0133 1.08
Average vehicle holding time (in years) -0.0325 -1.38
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Covariates Coef. T-stat 
Number of vehicles owned by the household -0.422 -3.8
Number of vehicles sold in the past 10 years 0.236 1.87
% of families below poverty line in the census tract 0.0218 3.76
Retired? 0.443 1.57
Single? -0.154 -0.99
More than 1 worker in the household? 0.398 2.34

Add technology 

Age (in years) -0.0461 -5.63
Bachelor’s degree holder? 0.235 1.19
Drive alone for work trips? 0.43 2.07
Age of the oldest vehicle in the household (in years) -0.0593 -3.8

  
Employed over 16 years (per square mile) 0.000426 2.28
Population density (per square mile) -0.000327 -2.09
Retired? 0.978 3.03
Single? -0.346 -1.53

Fit statistics 
Null log-likelihood -2195.27 
Final log-likelihood -1676.58 
McFadden’s R-square 0.236 
Adjusted R-square 0.219 
Number of observations 1,364 

Note: The “do nothing” option is base here. 

3.4.3 Forecasted Adoption Rates of CAV Technologies under Pricing Scenarios 

Technology Pricing Scenarios 

This simulation forecasts the annual adoption rates11 of CAV technologies over the next 
30 years (2016 to 2045) under different technology pricing scenarios; the subsequent subsection 
presents the adoption rates every 5 years. 

As mentioned earlier, it is difficult to estimate the price of a particular Level 1 or Level 2 
technology since automobile companies provide these technologies in packages. Thus, current 
prices for these technologies are approximately estimated by analyzing packages provided by 
BMW, Mercedes, and other manufacturers. Prices to add connectivity, Level 3, and Level 4 
automation were estimated based on experts’ opinions. This simulation assumes that households’ 
WTP to add CAV technologies do not change over the years (and that NHTSA or other agencies 
do not mandate any of these technologies on new or used vehicles12), but rather that adoption 
                                                 
11 Technology adoption rate means the percentage of the households having a specific technology, among the 
households who have at least one vehicle. 
12 If CAVs prove quite helpful (to safety, congestion abatement and/or other major public goals), it may be quite 
likely that some cities or corridors start requiring such technology. Moreover, NHTSA is expected to require 
connectivity on all new vehicles soon (in year 2020 for light-duty vehicles and 2021 for medium- and heavy-duty 
vehicles). 
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occurs as reductions in technology prices take place. Thus, long-term adoption of the technologies 
is forecast under three annual price reduction rates: 1%, 5%, and 10%. To provide the sense of the 
future technology prices at different price reduction rates, Table 3.9 shows an example for the 
annual price reduction rate of 5%. 

Table 3.9: Technology Prices at 5% Annual Price Reduction Rates 

Technology 2015 2020 2025 2030 2035 2040 2045 
Electronic Stability Control 100 77.4 59.9 46.3 35.8 27.7 21.5 

Lane Centering 950 735.1 568.8 440.1 340.6 263.5 203.9
Left-turn assist 450 348.2 269.4 208.5 161.3 124.8 96.6
Cross Traffic Sensor 550 425.6 329.3 254.8 197.2 152.6 118.1
Adaptive Headlights 1,000 773.8 598.7 463.3 358.5 277.4 214.6
Pedestrian Detection 450 348.2 269.4 208.5 161.3 124.8 96.6
Adaptive Cruise Control 400 309.5 239.5 185.3 143.4 111.0 85.9
Blind-spot Monitoring 400 309.5 239.5 185.3 143.4 111.0 85.9
Traffic Sign Recognition 450 348.2 269.4 208.5 161.3 124.8 96.6
Emergency Automatic Braking 450 348.2 269.4 208.5 161.3 124.8 96.6
Connectivity 200 154.8 119.7 92.7 71.7 55.5 42.9
Self-parking Valet 2,000 1,547.6 1,197.5 926.6 717.0 554.8 429.3
Level 3 Automation 15,000 11,606.7 8,981.1 6,949.4 5,377.3 4,160.8 3,219.6
Level 4 Automation 40,000 30,951.2 23,949.5 18,531.6 14,339.4 11,095.6 8,585.6

Overall Comparison of Technology Adoption in Three Pricing Scenarios 

Tables 3.10, 3.11, and 3.12 present the technology adoption rates at 1%, 5%, and 10% price 
reduction rates, respectively. Substantial differences are visible between the long-term adoption 
rates (year 2045) of all technologies at the 1% and 5% price reduction rates. However, such 
differences are not considerable for many technologies at the 5% and 10% price reduction rates. 
For example, consider the 56.9% versus 59.9% adoption rates for ESC and the 12.6% versus 16.9% 
adoption rates of Level 3 automation in 2045 at 5% and 10% price reduction rates. This result may 
have arisen because many households have very low inclination (WTP of $0 or very low) and 
some have strong preference (higher WTP) for some CAV technologies (please see Section 5 for 
this discussion). The long-term technology prices at both the 5% and 10% price reduction rates are 
able to meet the needs of respondents with higher WTP, but are unable to motivate households 
with very low WTP to adopt many technologies. In the 1% (and rarely in 5% and 10%) price 
reduction scenario, a minor temporal decrease occurred in the adoption rates of a few technologies. 
This might have happened because sometimes the effect of a small price reduction may fall below 
the noise of the simulation (involving random number generation) or households might have sold 
their vehicles with these technologies in those years. 
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Table 3.10: Technology Adoption Rates at 1% Annual Price Reduction Rates 

Technology 2015 2020 2025 2030 2035 2040 2045 
Electronic Stability Control 21.7 35.4 32.2 30.1 29.0 29.2 28.5
Lane Centering 4.2 4.0 2.6 2.4 2.6 3.4 4.8
Left-turn assist 4.0 8.7 8.1 7.3 7.3 7.4 12.0
Cross Traffic Sensor 10.4 10.3 7.3 5.9 5.6 10.8 11.4
Adaptive Headlights 9.2 6.1 3.4 2.0 2.1 2.4 2.5
Pedestrian Detection 3.3 8.2 7.8 7.3 7.3 7.6 13.7
Adaptive Cruise Control 13.2 13.2 9.7 8.7 8.5 8.3 11.6
Blind-spot Monitoring 9.7 14.0 11.7 11.2 10.7 10.7 15.2
Traffic Sign Recognition 2.0 3.2 3.1 3.0 2.8 3.3 6.3
Emergency Automatic 5.9 10.4 9.4 9.0 9.2 9.8 17.4
Connectivity 0 12.1 12.5 12.5 12.5 12.4 16.9
Self-parking Valet 0 6.1 6.3 5.9 5.9 5.9 9.2
Level 3 Automation 0 2.0 2.4 2.6 2.9 2.4 1.7
Level 4 Automation 0 0.4 0.4 1.2 2.5 3.1 3.4

Table 3.11: Technology Adoption Rates at 5% Annual Price Reduction Rates 

Technology 2015 2020 2025 2030 2035 2040 2045 
Electronic Stability Control 21.7 35.1 46.8 49.5 49.3 52.7 59.9
Lane Centering 4.2 4.4 8.4 12.8 17.9 22.7 28.6
Left-turn assist 4.0 8.7 13.0 20.1 23.3 31.9 34.4
Cross Traffic Sensor 10.4 13.1 17.7 19.5 30.5 32.6 42.7
Adaptive Headlights 9.2 6.0 6.4 9.3 14.7 19.9 24.4
Pedestrian Detection 3.3 8.8 15.7 24.6 28.7 37.0 39.5
Adaptive Cruise Control 13.2 12.6 16.4 23.8 29.2 29.6 36.5
Blind-spot Monitoring 9.7 14.7 23.3 29.4 38.5 38.9 45.6
Traffic Sign Recognition 2.0 3.7 7.1 13.4 15.1 21.0 22.7
Emergency Automatic 5.9 11.4 19.9 30.3 35.5 44.5 47.3
Connectivity 0 12.2 22.1 31.0 40.0 40.8 46.9
Self-parking Valet 0 6.0 12.9 17.7 23.8 23.9 27.5
Level 3 Automation 0 1.4 3.8 4.8 6.9 8.4 12.6
Level 4 Automation 0 1.1 3.3 5.3 8.7 11.2 15.9

  



43 

Table 3.12: Technology Adoption Rates at 10% Annual Price Reduction Rates 

Technology 2015 2020 2025 2030 2035 2040 2045 
Electronic Stability Control 21.7 43.7 49.7 58.9 59.6 58.7 56.9
Lane Centering 4.2 8.3 17.7 26.9 35.1 39.2 42.3
Left-turn assist 4.0 12.2 21.9 31.4 34.2 43.4 44.6
Cross Traffic Sensor 10.4 14.3 28.2 39.8 46.6 51.9 55.1
Adaptive Headlights 9.2 7.8 14.1 23.3 32.4 34.8 46.0
Pedestrian Detection 3.3 13.5 26.5 38.8 41.0 50.4 51.3
Adaptive Cruise Control 13.2 18.9 28.2 35.9 43.4 43.4 47.4
Blind-spot Monitoring 9.7 22.1 36.5 45.1 52.7 53.8 59.4
Traffic Sign Recognition 2.0 6.4 13.8 21.7 25.3 36.4 38.4
Emergency Automatic 5.9 17.3 32.6 45.8 49.2 58.9 59.4
Connectivity 0 20.6 36.7 45.3 50.8 51.7 57.9
Self-parking Valet 0 12.6 21.1 25.2 30.7 29.9 34.8
Level 3 Automation 0 2.2 6.2 10.7 13.5 14.7 16.9
Level 4 Automation 0 2.3 6.5 13.9 23.0 33.1 38.5

Adoption Rates of Level 1 and Level 2 Technologies 

Traffic sign recognition is the least adopted Level 1 technology in 2015 and is anticipated 
to remain least adopted, with adoption rates of 22.7% and 38.4%, in 2045 at the 5% and 10% price 
reduction rates, respectively. ESC is the most adopted Level 1 technology in 2015 and, not 
surprisingly, it is expected to remain either the most or second-most adopted technology (with 
adoption rates of 59.9% and 56.9%) in 2045 at 5% and 10% price reduction rates, respectively. 
Section 5 suggests that emergency automatic braking and blind-spot monitoring are the two most 
interesting Level 1 technologies for Texans. It is interesting to note that both are forecast to be the 
most adopted technologies in 2045 at the 10% price reduction rate, with an adoption rate of 59.4%. 
These technologies are anticipated to be the second- and third-most adopted Level 1 technologies 
(after ESC—which is now mandated on all new passenger vehicles and so will probably rise to 
100% by 2040) in 2045 at 5% price reduction rate, with adoption rates of 47.3% and 45.6%. 
Pedestrian detection is the second-least adopted technology in 2015, but is expected to be the fifth-
most adopted Level 1 technology (out of 10) in 2045 at price reduction rates of 5% and 10%, and 
adoption rates of 39.5% and 51.3%. 

Adoption Rates of Connectivity and Advanced Automation Technologies 

In 2045, the Level 4 automation adoption rate (38.5%) at a 10% price reduction rate is 
approximately 2.4 times the adoption rate (15.9%) at a 5% price reduction rate. With 5% and 10% 
annual price reduction rates, Level 4 automation cost in 2045 would be around $8590 and $1700, 
respectively. This substantial price difference somewhat justifies this anticipated jump in the Level 
4 automation’s adoption rate at the 10% price reduction rate, relative to 5%. The adoption rates of 
connectivity technology (46.9% and 57.9%) are close to the adoption rates of the second-most 
adopted (47.3% and 56.9%) Level 1 technologies in 2045, at price reduction rates of 5% and 10%. 
At a 10% annual price reduction rate, the anticipated price to add Level 3 automation would be 
around $640 in 2045, but still has the adoption rate of only 16.9%. Irrespective of price reduction 
rate, more than 50% of respondents would not add advanced automation technologies in the future, 
since they have WTP of $0 to add them.
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Chapter 4.  Traffic Impacts of Connected and Automated 
Vehicles 

This chapter describes analyses of the traffic impacts of connected and automated vehicles 
under multiple scenarios. Section 4.1 describes how automated vehicles can be integrated into the 
traditional four-step planning process, including mode and route choice, using static traffic 
assignment. Section 4.2 shows how dynamic traffic flow models can represent capacity increases 
from closer following headways and reservation-based “smart intersection” control. Section 4.3 
describes two traffic simulation models developed in this research project: the Autonomous 
Intersection Management microsimulator and a simulation-based dynamic traffic assignment 
application, as well as results from simulating arterial, freeway, and city networks. Finally, Section 
4.4 discusses the traffic impacts of shared automated vehicles. 

4.1 Static Four-Step Planning for Autonomous Vehicles 

Much of the literature on AVs has addressed the technological hurdles in putting AVs 
safely on the road. Literature on transportation models for AVs includes the proposal of a 
reservation-based intersection control policy by Dresner and Stone (2004) that could increase 
road network capacity when AVs are a significant share of the traffic. A more aggregate question 
is how AV ownership will affect trip and mode choice. Recent workshop presentations at the 
2014 meeting of the Transportation Research Board (2014) addressed this question from the 
perspective of activity-based travel behavior. However, there is yet to be any literature published 
on travel demand models to account for AV benefits. Therefore, the purpose of this section is to 
modify the four-step planning model to address the question of how AV ownership will affect 
transit demand during the highly congested peak hours. Trip and mode choice is analyzed through 
generalized costs of travel time, monetary fees, and fuel consumption. AVs are expected to 
increase trips because of the possibility of empty repositioning trips to avoid parking costs and 
allow other household members to share the vehicle. However, AVs also have the potential to 
increase road capacity. Therefore, an increasing capacity function is proposed based on 
Greenshields’ (1935) speed-density relationship as the proportion of AVs increases. 

The contribution of this section is the development of a multi-class four-step model using a 
generalized cost function of travel time, monetary fees, and fuel consumption to analyze the 
impact of AV ownership on trip, mode, and route choice. Three mode options of parking, 
repositioning, and transit are considered using a nested logit model. A continuum of AV 
ownership is considered to analyze not only the impacts of full AV ownership, but also the impact 
of gradually increasing availability to travelers. The model is analyzed on a city network to 
demonstrate the potential effects on actual planning predictions. 

4.1.1 Methodology 

The fact that travel cost may impact trip, mode, and route choice is well-known and 
fundamental in most combined demand and assignment models. AVs could conceivably affect 
all three aforementioned travel choices by changing the utility of personal vehicle travel. AVs 
can avoid parking costs by dropping off travelers, then returning to the owner’s residence for free 
parking, thereby reducing the cost of driving relative to transit. These reduced costs may affect 
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trip choice, not only because some travelers will have a reduced motivation to choose origins and 
destinations near transit to avoid parking costs, but also because travelers may partake in activities 
besides driving while traveling by AV. Finally, the change in demand on the road network due 
to changes in trip distribution and mode choice will affect travel times and equilibrium flow. 

To model the effect of AVs on demand and route choice, this section presents a modified 
four-step planning model with the addition of an AV round trip instead of a one-way trip with 
parking. Road capacity is formulated as a function of a proportion of AVs on the road, based on 
Greenshields’ (1935) speed-density relationship. To more accurately model the costs incurred by 
the additional driving, a fuel consumption model is incorporated into the generalized cost 
function. 

Assumptions 

Because AVs are still in the early stages of testing, experimental data on AV owner 
behavior and AV improvements in traffic network capacity is not available. Studies such as 
Dresner and Stone (2004, 1999) have predicted significant improvements in intersection flow, 
but link capacity changes, if any, have not been studied. Therefore, we make the following 
assumptions about traveler behavior and capacity: 

1. AV market penetration will occur over a number of years as the purchase price gradually 
becomes viable for travelers of all incomes. Therefore, our model is built on the four-step 
planning model, which is often used for long-term predictions. A long-term model may be 
useful to practitioners forecasting the impact of AVs in 20- or 30-year planning models. 

2. AV drivers have the option of parking (with a possible parking fee) or sending their AV 
back to the origin and incurring fuel costs. Although activity-based models (1999) may 
predict additional utility benefits by making the AV available to other travelers in the 
household, techniques to model such benefits in the four-step planning model are less clear. 
Repositioning to alternate parking locations other than the origin for a reduced parking cost 
is also a realistic option. However, without parking cost data, modeling the utility resulting 
from parking at different locations is difficult. This results in three mode options: parking, 
repositioning, and transit. A nested logit model is used to decide between driving and 
transit, and parking and repositioning. 

3. Travelers seek to minimize a generalized cost of time, fuel, and tolls/parking fees. AVs are 
assumed to choose a route that minimizes this combined cost function, including fuel 
consumption. Travelers are divided into value-of-time (VOT) classes, and VOT is used to 
convert travel time to units of money. Incorporating fuel consumption into route choice, or 
“eco-routing”, has been previously studied by Rakha et al. (2012), and AV routing 
algorithms could incorporate eco-routing technology. Although requiring travelers to 
choose a VOT for their trip routing may seem restrictive, airlines already do this through 
their cost index. 

4. An STA model is used with four-step planning. Although Tung et al. (2010) and Duthie et 
al. (2013) have incorporated dynamic traffic assignment (DTA) into the four-step model, 
without literature on modifying the greater detail in DTA (such as intersection dynamics) 
for AVs, DTA could easily be less accurate. Additionally, trip distribution and mode choice 
have potential errors due to the possible behaviors of AV drivers. DTA is more sensitive 
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to demand and departure time variability, and may exacerbate any errors in demand 
predictions. Furthermore, DTA also requires more computational resources. Therefore, a 
STA model, which is commonly used with the four-step model, was chosen for this study. 

5. The shorter reaction times and greater precision of AVs are assumed to reduce the 
necessary following distance and correspondingly increase the jam density. Link jam 
density is then a function of the proportion of AVs on the link. Capacity is assumed to be 
linearly related to jam density, as in Greenshields’ (1935) model, to predict the increase in 
capacity as a function of AV proportion. This relationship was chosen because although 
AVs may have the reaction time to support minimal headways at any speed, the vehicle 
may not have the braking authority to match maximum braking behavior of the vehicle 
ahead. Therefore, as speed increases, headways must increase as well, even for AVs. 
Although Greenshields’ relationship is designed for use with hard capacities in DTA as 
opposed to the “capacity” of the Bureau of Public Roads (BPR) function, it is used here 
only to scale the original capacities in the static network. In the absence of studies 
estimating roadway capacity improvement as a function of AV proportion, we believe this 
assumption is reasonable. Greenshields’s model also results in the favorable property of 
the travel time function being monotone increasing with respect to increases in AV flow 
(despite increases in capacity). 

 
These assumptions are made for the purposes of a long-term planning model because the 

impact of AVs has not been well studied. However, with AVs in testing on public roads, 
metropolitan planning organizations may soon wish to include the effects of AV ownership in their 
20- or 30-year predictions of travel demand. 

Impedance Function 

The computer precision and reaction times of AVs allows reduction of headways while 
maintaining safety in the event of sudden deceleration of the vehicle ahead. These reduced 
headways increase density, permitting greater roadway capacity. The travel time is given by = ̂ 1 + ∑ ∈ 	     (4.1) 

 
where  is travel time when the flow is  , flow specific to class  is  , ̂  is the free 

flow travel time,  is the capacity, and  and  are calibration constants for link [ , ]. 
Since the VOT varies across the population, the population of travelers is instead divided 

among a set of discrete classes , with each ∈  having a VOT of . Each class uses AVs 
entirely or not at all, denoted by the Boolean variable .  is exogenous in this model because 
ownership decisions depend also on AV pricing relative to individual household income and 
utilities. This is not restrictive because any traveler class with owners of both AVs and non-AVs 
can be separated into two classes with the same VOT. (If a VOT class includes owners of both 
AVs and non-AVs, we assume that the market penetration is known). 

Below, we derive the conditions under which tij (xij) is monotone increasing with respect 

to any xy. This is necessary but not sufficient for formulating the multi-class traffic assignment 
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problem as a convex program (2004). Indeed, we have 

= ̂ ∑ ∈ x∑ ∈ x

x
     (4.2) 

 

Then > 0 if > ∑ ∈ 	     (4.3) 

Equation (4.3) implies that capacity must exceed the change in capacity due to additional  

flow; otherwise 
∑ ∈

 may decrease resulting in a decrease in . 

A capacity function based on the well-known Greenshields’ (1935) speed-density 
relationship and a jam density function increasing in the proportion of AVs is shown to satisfy 
equation (4.3) under reasonable assumptions. Greenshields’ relationship predicts = ^ 1 −       (4.4) 

where  is vehicle speed, ^  is free-flow speed,  is density, and  is jam density on link [ , ]. Based on equation (4.4), capacity is = ^
, a linear function of jam density. Therefore 

 is also assumed to be a linear function of jam density: =       (4.5) 

Jam density is assumed to be a function of the proportion of AVs on the road. Human 
drivers are on average expected to require some headway  including the length of the vehicle 
ahead, with AVs requiring a distance < . Jam density is then = ∑ ∈∑ ∈ 	 + ∑ ∈∑ ∈ 	     (4.6) 

The capacity function defined by equations (4.5) and (4.6) is shown to be monotone 
increasing with respect to any  under the assumption that 2 > . This assumption is 

reasonable considering highway vehicle spacing at jam density was estimated at = 27.3 feet 
for one city by Van Aerde and Rakha (1995), and Elefteriadou et al. (1997) suggested > 17 
feet length for a passenger car equivalent, which is a lower bound on spacing. 

Proof. Since 2 > , > −  and ∑ ∈ > ( − )∑ ∈ . Since ≥ , ∑ ( )∈ + ∑ ( (1 − ))∈ > ( − )∑ ∈    (4.7) 

Since capacity can be rewritten as = ∑ ∈ ∑ ( (1 − ))∈ + ∑ ∈   

 (4.8) 
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then 

= ∑ ∈ (( ) )
∑ ∈ ∑ ( ( ))∈ ∑ ∈   (4.9) 

> ∑∈  simplifies to ∑ + ∑ ( (1 − ))∈∈ > ∑ ( − )∈   (4.10) 

which is satisfied because equation (4.7) is true.        

Fuel Consumption 

To incorporate the multiple types of costs incurred by different modes, such as transit fees 
and travel time, a generalized cost function is required. Monetary fees and travel time do not fully 
encompass the cost of an AV making a round trip instead of a one-way trip with parking. The 
associated cost to the traveler of the AV’s return leg is not travel time (for the traveler is not in the 
vehicle), and road tolls can be avoided by route choice. However, regardless of the route, the return 
trip incurs additional fuel consumption. Therefore, the fuel consumption function found by 
Gardner et al. (2013), based on a regression equation from MOVES (2009) data, was used: = 14.58 .

     (4.11) 

where  is vehicle speed in miles per hour and (⋅) is energy consumption in kilo-Watt hours 
per mile on link [ , ]. This function is monotone decreasing with speed, therefore monotone 
increasing with travel time, allowing its use as part of a generalized cost function for the standard 
user equilibrium assignment. Fuel consumption was included for all personal vehicle trips one-
way with parking and AV round-trip, and converted into money through the price of gasoline, , 
which was assumed to be constant and the same for all vehicles on the network. For a link [ , ] ∈

 (where  is the set of links) with length  in miles, the fuel consumed over the link for a travel 
time of  in hours, , is then = . 	 / 14.58 .

     (4.12) 

where 36.44 kW/gal is the energy content of gasoline (A. F. D. Center). 

Generalized Cost 

When creating generalized costs based on travel time and money, an important variable is 
the VOT. Travelers with a high VOT may burn more fuel and use tolled roads to reduce travel 
time, whereas travelers with a low VOT may be more reluctant to incur monetary costs. The 
generalized cost function for driving on link [i, j], c ,  is a combination of travel time, fuel 

consumption, and road toll τij: 
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, = + +      (4.13) 

For a parking fee of , the cost of a one-way driving trip from  to  followed by parking is , ( ) = + ∑ , ( )( , )∈      (4.14) 

where  is the route. Other per-mile costs could be incorporated as a fixed cost per link. 
For the return leg of AV round-trips, with no passenger, travel time is not a factor, so the 

notation ,  with = 0 is used to denote the cost of driving with 0 VOT. Cost of an AV round-
trip, using path  for travel from  to  and path  for travel from  to , is , ( , ) = ∑ , ( )( , )∈ + ∑ , ( )( , )∈     (4.15) 

The cost of traveling on link [ , ] using transit is similarly , =       (4.16) 

with transit fees included in the origin-destination (OD) cost. When transit uses the same links as 
other vehicles, such as with many buses, travel time depends on total vehicular flow. Transit could 
also be given separate links with different travel time functions. Based on the cost per link, the 
cost of a transit trip is then , ( ) = + ∑ , ( )( , )∈      (4.17) 

where 	is the transit fee for traveling from  to . Multimodal routes are not permitted in this 
model. 

4.1.2 Model Formulation 

The commonly used four-step model was modified to incorporate AV round trips. The 
latter three steps incorporate a feedback element for convergence to a stable solution. The 
following subsections discuss each step in greater detail. Multi-class traffic assignment is 
formulated in Section 15.2.4. 

Trip Generation 

The first step is trip generation, which determines productions  and attractions  based 
on survey data for each r ∈ Z, s ∈ Z, where Z is the set of zones. Productions and attractions for 

each zone are vectors in ℝ| | to distinguish between VOT classes. Although the distribution among 
VOT classes may vary at each zone, system-wide consistency of ∑ ∈ = ∑ ∈  is required. 

Trip Distribution 

Trip distribution uses a gravity model to determine the number of person trips  between 
every OD pair (r, s) ∈ Z , which is assumed to increase with productions and attractions and 

decrease with travel cost. As with trip generation, ∈ ℝ| | to distinguish between VOT class. 
Minimum cost used for determining person-trips is defined as 
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= min{ , , , , , } if	 = 1min{ , , , } otherwise    (4.18) 

Then =       (4.19) 

where (⋅) is a decreasing friction function, = ∑ ∈ , and  is adjusted iteratively 

to ∑ ∈  for consistency with productions and attractions, ∑ ∈ = ∑ ∈ = ∑ ∑ ∈∈ . 

Mode Choice 

Mode choice splits the person trips per OD into mode-specific trips d  per mode ∈ , 
with  the set of all modes. Travelers may choose between parking, repositioning, and transit. 
Mode splits are determined by a nested logit model on utility of each mode. To include the benefits 
of having a vehicle parked at the destination for immediate departure on short notice, an AV 
preference constant ψ  is included. ψ  denotes the traveler preference for transit. 

Mode-specific trips per class are therefore defined as 

, = ,{ , , , } , if	 = 1
,, , otherwise	   (4.20) 

, = ,, , if	 = 10 otherwise	    (4.21) 

, = − , − ,      (4.22) 

To model return trips, additional demand is added for AV round-trips: , = ∑ ,∈       (4.23) 
 

Traffic Assignment 

The traffic assignment formulation is multi-class because of the distinction between AV 
and non-AV vehicles. Marcott and Wynter (2004) demonstrated that multi-class formulations are 
not necessarily convex despite monotonicity of the travel time function with respect to the flow of 
any single class. Non-convexity can result in the existence of multiple equilibria as well as non-
convergence of algorithms designed for convex objective functions. The weaker convexity 
requirement they develop of partial nested monotonicity, in general, requires the specification of 
the optimal link flows of one class as a function of link flows of second class. This is difficult for 
the city-size networks that this model is designed for. Even if these functions were determined, the 
somewhat arbitrary nature of the VOT parameter could prevent partial nested monotonicity in 
general, as shown by Marcott and Wynter’s example network with three equilibria (2004). 
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Nevertheless, this issue is not unique to this model, but common to all models incorporating 
multiple discrete VOT classes. 

Multi-class user equilibrium assignment with fixed demand was formulated as a variational 

inequality (VI) in the form of Nagurney and Dong (2002). Let = { , . . . , | |, . . . , | |, . . . , | |} 
be the vector of all class link flows, where  is the set of links. The VI problem is to find ∗ ∈  
such that ∑( , )∈ ( ∗)	 ∙ ( − ∗) ≥ 0      (4.24) 

where  is the vector of class-specific driving costs and  is the feasible region defined by = ∑ ∈ 												∀( , ) ∈≥ 																			∀ ∈+ = ∑ ∈ 							∀( , ) ∈     (4.25) 

∗ satisfies user equilibrium (UE) due to Nagurney and Dong’s proof (2002) on a more general 
form of this VI incorporating elastic demand and OD disutility. Due to the special behaviors of 
AVs, we include only assignment in the VI and solve trip distribution and mode choice separately 
as in the four-step model. 

The Frank-Wolfe algorithm is used as a heuristic to solve this VI. The step size of  is 
found by solving ∑ ∑ λ ∗ + (1 − λ) 	∗ − = 0∈( , )∈    (4.26) 

where ∗ is the search direction for . The algorithms for multi-class VI formulations of traffic 
assignment studied by Nagurney and Dong (2002) and Marcott and Wynter (2004) may improve 
convergence. Optimal convergence of traffic assignment is not a major focus of this study, and a 
specific algorithm is not a requirement of the model. 

Feedback Algorithm 

The standard four-step algorithm with feedback as described in McNally (2008) is used. 
Productions and attractions, the output of are trip generation, are assumed to be known. The latter 
three steps are performed in a feedback loop for convergence. Trip distribution determines total 
person trips per OD pair and VOT class based on travel costs (initially free flow costs). Mode 
choice splits person trips into mode-specific trips using a nested logit model. Traffic assignment 
finds the routes for all vehicle trips, assuming user equilibrium behavior. As the assignment 
changes based on the personal vehicle trips, the feedback loop allows trip distribution and mode 
choice to be updated using the travel costs from the traffic assignment. 

To improve convergence, the method of successive averages (MSA) algorithm is used for 
the four-step feedback. Let ( ) be the person-trips and ( ) be the trips using mode ∈  
from ∈  to ∈  at iteration  of the feedback loop, and ∗( + 1) and ( )∗( + 1) be the 

search direction at iteration + 1. A step size of  is used, i.e. ( + 1) = 			∗( + 1) + ( )    (4.27) ( + 1) = ( )∗( + 1) + ( )    (4.28) 



53 

Convergence was measured based on the root mean squared error of mode-specific trips, 
as suggested by Boyce et al. (1994): = ∑ ∑ ∑ ∑ , ( ) , ( )∈∈∈∈ | × × |      (4.29) 

Summary 

This section developed an initial model to analyze the impact of AV availability on AM 
peak transit demand. AVs allow the option of a drop-off and return trip to avoid parking costs, 
incurring only additional fuel consumption, so a generalized cost function of travel time, monetary 
fees, and fuel was created to model the cost of a trip. On the other hand, AV use increases road 
capacity, reducing travel times. This inspired a jam density function of the proportion of AVs on 
the road, with capacity assumed to be a linear function of jam density in accordance with 
Greenshields speed-flow density relationship. The resulting travel time function was proven to be 
monotone increasing for the specific jam density function used. 

4.1.3 Roadway Capacity Improvement 

CAVs have the potential to improve the capacity of the roads people are using. As for a 
typical highway, HVs provide a maximum throughput of about 2,200 vehicles per hour per lane, 
only 5% of utilization of the roadway space (2012). AVs, replacing drivers, can increase capacity 
by shortening vehicle- following gaps and narrowing lanes for light duty vehicles based on more 
accurate steering (2012). A similar conclusion is reached in the research of Pinjari et al. (2013), 
which asserts that AVs can allow for much shorter perception and reaction times, smoother 
braking, and shortening of vehicle-following gaps even at high speeds by sensing and anticipating 
the lead vehicles braking actions and acceleration/deceleration decisions better than human 
drivers. The capacity improvement stemming from AV technologies has been investigated by 
many researchers. Vehicle-to-vehicle (V2V) communication, particularly cooperative adaptive 
cruise control (CACC), is another critical technology for network improvement. Tientrakool et 
al. (2011) conducted simulations to investigate the influence of CACC on highway capacity. 
Their results indicated that CACC can increase a highway capacity, of 2,868 vehicles per hour 
per lane to 10,720 vehicles per hour per lane, when 100% are communicating vehicles and the 
speed of vehicles is fixed at 100 km/h—which is a capacity improvement of about 3.7 times. Xu 
et al. (2002) adopted three different simulation models of travel behavior to study the capacity 
improvement of CACC. Their study indicated that 100% CACC can provide a 120% 
improvement compared with manual driving. Although many researchers have obtained 
simulation results confirming the capacity improvements made possible by CAV technologies, 
their results are inconsistent because they are based on varying rates of implementation. For 
example, by assuming full or partial vehicle automation, Childress et al. (2014) applied a 30% 
increase of all freeway and major arterial capacities to analyze the travel demand model based on 
the Puget Sound regional area. Gucwa (2014) adopted capacity improvement of 0%, 10% and 
100% to estimate the travel behavior in the context of the Bay Area Metropolitan agent-based 
activity model. To anticipate the travel impact of AVs in Metro Atlanta, Kim et al. (2015) applied 
a 50% increase in roadway capacity to their activity-based model. Levin and Boyles (2015) 
proposed a heuristic model, based on Greenshield’s model, to scale capacity with the proportion 
of AVs. 
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Given the uncertainty of the capacity improvement based on CAV technologies and 
inconsistent results from the research cited above, it is essential to incorporate a range of 
outcomes from 25% to 200% increase of roadway capacity into our model. 

4.1.4 Travel Demand 

AVs that do not need human drivers or monitors may substantially increase mobility for 
those who cannot (legally) drive themselves because of youth, age, disability, or incapacitation 
(Fagnant and Kockelman, 2015) (Litman, 2015). However, poverty may be one of the most 
critical reasons that will prevent access to AVs for those potential users (Smith, 2012). If this is 
the case, the possible travel demand increase from that set of new travelers may be offset by the 
reality that they are not affluent enough to afford the new technology, which indicates that travel 
demand will stay the same. However, for those users who can afford CAV technology, 
automation could stimulate user travel needs (Gucwa, 2014) (Spieser et al., 2014), due to the 
reduction in perceived time costs and the increase in smoother and more comfortable trips (Cuddy 
et al., 2014). 

While the introduction of SAVs will reduce the levels of private vehicle ownership, SAVs 
will also add more vehicle miles traveled (VMT) to the network (Fagnant and Kockelman, 2014, 
Speiser et al., 2014). According to the information introduced above, in the scenarios involving 
CAVs, the trip generation rates of households above the median income groups are increasing by 
20%, 40%, 60%, 80%, and 100%, respectively, in different scenarios. 

4.1.5 Mode Choice 

Value of Travel Time 

The most significant difference between conventional vehicles and fully AVs is that no 
driver is needed to complete the trip, which means drivers are set free to perform other activities, 
such as using cell phones, reading, watching movies, preparing work reports, and even sleeping. 
This significant change will absolutely overturn the long-established perception of travel time. 
Traveling with fully AVs would be considered a productive activity, resulting in decreased value 
of travel time (VOTT). 

VOTT is a critical factor that will be incorporated into the generalized costs to combine 
travel time and financial costs. The VOTT has the function to change the units of travel time to 
dollars, which leads to the same units for the travel time and financial costs. 

Petersen and Vovsha (2006) found that higher income households tend to drive newer 
vehicles, and among household members, the new vehicles are allocated to workers first, and 
then to retirees and under-18 drivers. 

A similar trend might initially occur with AV adoption (Childress et al., 2014). To test 
AV technology impact on travel time, trip-based VOTTs were reduced by 65% for highest-
income households in the traffic assignment step, and in the travel demand model, the automobile 
travel time was directly modified to be 65% of skimmed travel time in the skims for the high 
VOTT trips. Burns et al. (2013) conducted a case study of SAVs in Ann Arbor, Michigan, that 
indicates an SAV fleet can provide the same mobility as personally owned vehicles at far less 
cost by reducing parking costs and VOTT. The U.S. median income is $50,000 per year, which 
equates to $25/hour, yielding a VOT of $0.85 per mile. Combining the median time value of 
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$0.85 per mile, with the out-of-pocket cost of $0.75 per mile for a medium sedan driven the 
median annual distance of 10,000 miles, we arrive at a cost-plus-time value of $1.60 per mile to 
use a personally owned vehicle. Using an SAV could reduce that traffic cost to$0.15 per mile. 

Kim et al. (2015) maintained that AVs will allow users to perceive travel time disutility, 
because in-vehicle travel time (IVTT) becomes less onerous and more productive, which will 
affect mode choice. In order to reflect this characteristic of AVs, in their Metro Atlanta activity-
based model, Kim et al. decreased IVTT coefficients for autos by 50%, yielding a 71% reduction 
in vehicle operating costs as compared to the base model. 

Gucwa (2014) handled the uncertainty about automated time-costs by considering four 
different IVTT coefficient values across a range of scenarios. In the base scenario, the VOTT 
wasn’t changed. In the extreme scenario, the VOTT was assigned to zero. In the other two 
scenarios, the VOTT of AVs was equal to 30% lower than that of conventional cars and 60% 
lower than that of transit. 

In order to value the convenience of fully AVs, we included the following question in the 
project survey of Texans: “How much money you are willing to pay (WTP) to save 15 minutes 
of travel time during a typical 30-minute ONE-WAY journey you make at least once a week (for 
example, home to work)?” In all, 1,364 Texans completed the response of this question. 

The resulting answers indicated that Texans’ average WTP to save 15 minutes of travel 
time on a 30-minute one-way trip is $6.80, but this figure increases to $9.50 if we remove those 
respondents with $0 WTP for this benefit (28.5%). This result also indicates that most Texans 
associate significant monetary value with their travel time and are ready to pay more to travel 
faster. The VOTT is $27.20, as derived from this question. 

Based on the literature review results and our survey, we considered four AV VOTT 
scenarios in our model. In our base model, the VOTT stayed the same as the conventional 
vehicles. In the extreme scenario, the VOTT was set up to zero to maximize the benefits of AVs. 
In other two scenarios, VOTT was equal to the transit VOTT of transit and 50% of the VOTT of 
conventional vehicles. 

Parking Costs 

Parking cost was considered in the utility equation of mode choice. It is reasonable that 
decreasing parking cost can attract more trips to an area. One critical impact of AVs on traffic 
behavior is a change in parking patterns, as AVs can self-park in less expensive areas (Fagnant 
and Kockelman, 2015). 

Childress et al. (2014) set parking costs to half the original level to reflect AVs self-
parking in cheaper locations or better utilizing existing space. The change was made only in zonal 
parking costs and does not capture VMT generated from vehicles seeking more distant parking 
spaces or even roaming the streets waiting for pickup commands. Kim et al. (2015) further 
increase the AV parking benefits by setting the parking price to zero at the primary destination. 
A similar assumption was also made in the Levin’s (2015) travel demand model, which allows 
AVs to avoid parking fees. 
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Table 4.1: Parameters Set Up for Model Scenarios 

Capacity 
improvement 

Trip generation VOT Parking costs 

25%, 50%, 75%, 
100%, 150% and 
200% 

Work-related stay 
the same, other trip 
purposes increased 
by 20%, 40%, 60%, 
80%, and 100% 

$0, ¼ of autos, ½ of 
autos VOT and 
equal transit VOT 

$0 and ½ of current 
parking costs 

 
An SAV will essential function as a kind of autonomous taxi, which can operate by itself 

without human manipulation, other than input regarding a traveler’s destination. Although SAVs 
will stimulate VMT due to empty vehicle relocation trips, they can provide significant 
environmental benefits, particularly in the form of reduced parking and vehicle ownership needs 
(Fagnant and Kockelman, 2014). Zhang et al. (2015) developed simulation model to test the 
change in parking needs created by an SAV system. Their results indicate a proper SAV fleet can 
reduce parking needs by 70% while still meeting travelers’ needs. Therefore, in our study, when 
an SAV system (or autonomous taxi system) is investigated, the parking cost for this type of 
mode can be set at 30% of the current parking cost of automobiles. In all, based on the information 
we presented above, AV parking costs were set in our travel demand model to zero, one-half of 
the current price, and one-fourth of the current price. In addition, if SAVs are considered in the 
travel demand model, their parking fees are equal to zero. 

4.1.6 Results from Static Traffic Assignment Simulations 

This section presents results on the downtown Austin network, during the two-hour period 
of morning rush hour (2-hour AM peak). Although the model is computationally tractable for a 
larger network, the size of this network allowed study of multiple scenarios with high detail in 
analyses. First, the empirical convergence is presented. Then, the effects of increasing CAV 
ownership on transit ridership, repositioning trips, and total personal-vehicle demand are studied. 

Description of Experiments 

The model was tested on the Austin downtown sub-network with 2-hour AM peak trip data 
provided by the Capital Area Metropolitan Planning Organization. Bus routes are included and 
were used for transit options for the mode choice model. In addition, walking at the speed of 3 
mph was permitted along all links for connecting to transit because some zones are not directly 
served by bus. Although no distance constraint was included due to the complexity imposed on 
the shortest path algorithm, walking long distances would have a high penalty in travel time with 
respect to vehicular travel. 

Due to lack of value-of-time (VOT) distribution data per zone, the same distribution 
(shown in Table 4.2) was used for each zone, with VOTs ranging from 1.15 to 22 in units of dollars 
per hour. Values of time were uniformly chosen from a range based on scaling an income 
distribution, and the log-normal expression with mean [ ] and standard deviation  was used to 
determine the class distribution of demand, as suggested by Yang and Meng (2001) and Huang 
and Li (2007). As shown in Table 4.2, the chosen range accommodates most variation in the 
distribution. The demand data did not include trip purpose. Since the data are for the AM peak, all 
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trips are assumed to be for home-based work travel. Price may have different effects on 

commercial travel or other types of personal trips. The inverse friction function ( ) =  was 

used in trip distribution and mode choice. Parking costs were estimated at $5.00 per day for all 
zones due to more specific data not being available. Although downtown parking fees are often 
much higher, for long-term planning travelers are assumed to have the option of cheaper annual 
parking passes. Fuel cost was set at $3.00 per gallon. If the price of gasoline increases, there will 
be a shift of users from personal vehicle use to public transit. The opposite is true if the gas price 
were to decrease.  

Table 4.2: Value-of-Time Distribution 

Class VOT ($/hr) Proportion 

1 1.15 0.08 

2 3.5 0.37 

3 5.85 0.28 

4 8.15 0.14 

5 10.5 0.07 

6 13 0.03 

7 15 0.015 

8 17.5 0.007 

9 20 0.004 

10 22 0.002 

 
On initial availability for public use, CAVs may have a high purchase cost because of the 

novelty of the technology. As production increases, the cost is expected to decrease so that CAVs 
become more affordable. The assumption was made that higher income travelers also have higher 
VOT, and that income affects affordability of CAVs.  

4.1.7 Convergence of Static Traffic Assignment 

Because of the multi-class formulation, the traffic assignment variational inequality (VI) 
does not necessarily have a unique or even existent equilibrium (Marcotte and Wynter, 2004), and 
therefore the commonly used Frank-Wolfe algorithm is not guaranteed to converge. However, 
empirical results of running Frank-Wolfe on the downtown Austin network suggest that it 
converges to an equilibrium. Figure 4.1 shows the convergence for the simulation case in which 
the eight highest VOT classes constituted 55% of the CAV demand use. Convergence is measured 
through the average excess cost—for example, the average difference between observed and 
shortest path travel costs. Similar convergence was observed for all scenarios in the gradual 
expanding availability of CAVs experiment. Since there was convergence, one can be sure that an 
equilibrium was reached and the results are worthwhile.  
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Figure 4.1: Convergence of Traffic Assignment 

Autonomous Vehicle Demand 

Figure 4.2 shows the decrease in transit demand as more VOT classes receive access to 
CAVs. Transit demand is high without CAVs because a high proportion of low VOT travelers, 
which are the majority of the demand choose transit. The pattern of decrease roughly follows the 
class proportions because the reduction in transit utility is primarily due to the lower cost of CAVs. 
When CAVs are available only to the upper classes, which comprise a small fraction of the 
population, the effect is small. However, as CAVs become available to lower-middle VOT classes, 
the rate of decrease in transit demand is much greater. Overall, the model predicts a reduction in 
transit ridership of 61% due to lower costs of CAVs for low VOT travelers (see Tables 4.3 and 
4.4). CAV round-trip demand was a high fraction of the total personal vehicle demand, reaching 
83% at full market penetration (Figure 4.3). This analysis also neglected the possible reduction in 
parking fees due to the economics of lower demand. However, because the alternative is a return 
trip, parking costs would likely need to be significantly lower to be competitive against the fuel 
cost of a return trip to the origin. Similarly, for transit to be competitive against CAVs, transit must 
provide benefits in cost or travel time. Transit costs in this model were $1, so a reduction in cost 
sufficient to be competitive against the lack of parking costs would be difficult. Despite the 
removal of the parking fee, CAVs still carry their own cost in relation to fuel consumption. 
However, restricted-access routes for transit such as bus rapid transit or metro could provide 
advantages in travel time. 
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Figure 4.2: Total Transit Demand 

 
Figure 4.3: CAV Round-Trip Demand as a Percentage of Total Personal Vehicle Demand 

Long-term Effects 

Table 4.3 shows the mode split for each VOT class before any CAVs and after full CAV 
availability, and Table 4.4 shows the mode costs per class. The values shown in Table 4.4 are the 
costs associated with a single user’s travel based on their mode choice. Total demand for any 
personal vehicle mode changed from 23,500 person trips to 47,676 trips, and with the shift to 
39,592 CAV round-trips, the total number of trips made by personal vehicles increases to 87,275 
an increase of 271%. Although many of these additional trips are traveling away from downtown, 
the network still experiences significant increases in link volume. However, average speed 
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decreases are modest, as shown in Figure 4.4. This is encouraging because it suggests that the 
increases in demand are substantially offset by increases in capacity from CAVs.  

Table 4.3: Comparison of Mode-Specific Demand Before and After CAV Availability  

User 
Class 

Trip Distribution without CAVs 

 

Trip Distribution with CAVs 

Park Transit
Round-

Trip Park Transit 
Round-

Trip 
1 3.1% 96.9% 

 N/A for 
all Classes

1.4% 49.0% 49.6% 
2 15.2% 84.8% 6.1% 33.0% 60.9% 
3 41.4% 58.6% 15.1% 19.6% 65.4% 
4 64.1% 35.9% 20.9% 12.0% 67.1% 
5 78.9% 21.1% 24.3% 7.8% 67.8% 
6 88.0% 12.0% 26.6% 5.3% 68.1% 
7 92.3% 7.7% 27.8% 3.9% 68.2% 
8 95.5% 4.5% 28.9% 2.8% 58.3% 
9 97.3% 2.7% 29.6% 2.1% 68.3% 
10 98.2% 1.8% 30.0% 1.7% 68.2% 

Table 4.4: Comparison of Mode and User-Class-Specific Costs (in $ [USD]) Before and 
After CAV Availability 

User 
Class 

Cost per User without CAVs 

 

Cost per User with CAVs 

Park Transit 
Round-

Trip Park Transit 
Round-

Trip 
1 5.9 2.0 $2.7 6.1 2.0 0.6 
2 6.1 3.9 2.6 6.3 3.8 0.8 
3 6.2 5.7 2.6 6.6 5.5 1.0 
4 6.3 7.7 2.7 6.9 7.3 1.2 
5 6.5 9.6 2.7 7.2 9.1 1.4 
6 6.6 11.7 2.7 7.6 11.1 1.7 
7 6.8 13.4 2.7 7.8 12.6 1.9 
8 6.9 15.4 2.7 8.2 14.6 2.1 
9 7.0 17.5 2.7 8.5 16.5 2.3 
10 7.2 19.1 2.7 8.7 18.0 2.5 

Effects on Traffic Congestion 

Figure 4.4 shows that average link travel speeds mirror the class proportions, indicating 
that the decrease in average link speeds is due to the switch to CAV round-trips. On the north/south 
bound freeways and arterials, much of the CAV round-trip traffic travels in the opposite direction 
away from workplaces in downtown. Within the downtown grid itself, CAV round-trips contribute 
to congestion while leaving the area. However, the changes are relatively small, suggesting that 
roadway capacity increases negate some of the additional vehicular travel demand. Average link 
speeds may be higher than expected because of the lack of intersection penalties, which are a major 
factor in the downtown region.  
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Figure 4.4: Change in Average Link Speed, Weighted by Length, as CAV Availability Increases 

4.2 Link and node models 

4.2.1 Multi-class Cell Transmission Model 

This section presents a multi-class extension of the CTM developed for this project. The 
focus of this section is on roads with both HVs and personal AVs. In this model, the vehicles are 
differentiated by driver type but not by the physical performance characteristics. Therefore, we 
did not include the speed differences between vehicle classes, such as between heavy trucks and 
personal vehicles. The models in this section were defined for continuous flows, which some 
DTA models use. For these models, we made the following assumptions. 

1. All vehicles travel at the same speed. Although in reality vehicle speeds differ, in DTA 
models the vehicle speed behavior model is often assumed to be identical for all vehicles. 
This is reasonable even with multiple vehicle classes because AVs may match the speed 
of surrounding vehicles even if it requires exceeding the speed limit. Although Tuerprasert 
& Aswakul (2010) consider different vehicle speeds in CTM, in this study of HVs and 
AVs most of the differences in speed would come from variations in HV behavior that are 
often not considered in DTA models. 

2. Uniform distribution of class-specific density per cell. Single-class CTM assumes the 
density within a cell is uniformly distributed. We extend that assumption to class-specific 
densities. 

3. Arbitrary number of vehicle classes. Although this task focuses on the transition from HVs 
to AVs, different types of AVs may be certified for different reaction times, and thus may 
respond differently in their car-following behavior. 

4. Backwards wave speed is less than or equal to free-flow speed. This is necessary to 
determine cell length by free-flow speed. 

We first define the multi-class hydrodynamic theory in Section 4.3.1.1. Then, following 
the presentation of Daganzo (1994), we state the cell transition equations in Section 4.3.1.2 and 
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show that they are consistent with the multi-class hydrodynamic theory in Section 4.3.1.3. 

Multi-class Hydrodynamic Theory 

Let  be the set of vehicle classes. Let ( , ) be the density of vehicles of class m at 
space-time point ( , ) with total density denoted by ( , ) = ∑ ϵ 	 ( , ). Similarly, let , … , | |  denote the speed possible with class proportions of , … , | | , and let ( , ) =,… , | | ( , ) be the class-specific flow, with the total flow given by ( , ) =∑ ( , )∈ .  

Speed is limited by free-flow speed, capacity, and backwards wave propagation:  

, … | | = , ,…, | | , , … , | | −    (4.30) 

where  is free-flow speed, , … , | |  is the backwards wave speed, , … , | |  is 

the capacity when the proportions of density in each class are , … , | | , and  is jam density. 

 is assumed not to depend on vehicle type, as the physical characteristics (such as length and 
maximum acceleration) of HVs and AVs are assumed to be the same. For consistency, 

conservation of flow must be satisfied, i.e., 
( , ) 	= 	 ( , )

 for all ∈  (2002).  

Cell Transition Flows 

As with Daganzo (1994), to form the multi-class CTM we discretize time into time steps 
of . Links are then discretized into cells labeled by = 1, ,  such that vehicles traveling at free-
flow speed will travel exactly the distance of one cell per time step. Let ( ) be vehicles of class 

 in cell  at time , where ( ) 	= ∑ ( )∈ . Let ( ) be vehicles of class  entering cell 
 from cell − 1 at time . Then cell occupancy is defined by  ( + 1) = ( ) + ( ) + ( )     (4.31) 

with total transition flows given by ( ) = ∑ ( )∈ = min ∑ ( )∈ , ( ), ( ) ( − ∑ ( )∈ )   

 (4.32) 

where  is the maximum number of vehicles that can fit in cell  and ( ) is the maximum 
flow.  

Equation (4.32) defines the total transition flows, which will now be defined specific to 
vehicle class. To avoid dividing by zero, assume 	 ( ) 	> 	0. (If 	 ( ) = 	0, there is no flow 
to propagate). As stated in Assumption 2, class-specific density is assumed to be uniformly 

distributed throughout the cell. Then class-specific transition flows are proportional to 
( )( ) : ( ) = ( )( )min ∑ ( )∈ , ( ), ( ) ( − ∑ ( )∈ )    (4.33) 
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Equation (4.33) may be simplified to ( ) = min ( ), ( )( ) ( ), ( )( ) ( ) ( − ∑ ( )∈ )    (4.34) 

which shows that flow of class m is restricted by three factors: 1) class-specific cell occupancy; 2) 
proportional share of the capacity; and 3) proportional share of congested flow.  

In the general hydrodynamic theory, class proportions may vary arbitrarily with space and 
time, which includes the possibility of variations within a cell. Therefore, assuming uniformly 
distributed density results in the possibility of non-FIFO behavior within cells. One class may have 
a higher proportion at the end of the cell, and thus might be expected to comprise a higher 
proportion of the transition flow. However, as discussed by Blumberg & Bar-Gera (2009), even 
single class CTMs may violate the principle of first-in-first-out (FIFO). The numerical experiments 
in this paper use discretized flow to admit reservation-based intersection models. The discretized 
flow also allows vehicles within a cell to be contained within a FIFO queue, which ensures FIFO 
behavior at the cell level. Total transition flows for discrete vehicles are determined as stated above 
for continuous flow.  

Consistency with Hydrodynamic Theory 

As with Daganzo (1994) we show that these transition flows are consistent with the multi-
class hydrodynamic theory defined in Section 4.2.1.2.We assume class-specific flow is 

proportional to density (i.e., ) and that all classes travel at the same speed. Also assume that k > 

0, because, if = 0, then flow is also 0. Thus, ( , ) = min , , … , | | , , … , | | −   (4.35) 

Let  be the time step and choose cell length such that · = 1. Then, cell length is 1,  is 1, = , = 	 , 	( ) = ( ), and ( , ) 	= 	 ( ). Cell length is chosen so that flow 
may traverse at most one cell per time step to satisfy the Courant-Friedrichs-Lewy conditions 
(Courant et al., 1928). Therefore:  ( , ) = ( )( ) min ( ), ( ), ( ) − ( ) = ( )   (4.36) 

except for the subindex of n on the last term, which should be i+1 . As done in Daganzo (1994), 

this difference is disregarded. (See (1995) for more discussion on this issue.) Therefore 
( , ) =( ) − ( ). Since 

( , ) = ( + 1) − ( ) is the rate of change in cell occupancy 

with respect to time, the conservation of flow equation 
( , ) 	= 	 ( , )

 is satisfied by the cell 

propagation function of equation (4.32). 

Link Capacity and Backwards Wave Speed 

We now present a car-following model based on kinematics to predict the speed-density 
relationship as a function of the reaction times of multiple vehicle classes. Car-following models 
can be divided into several types, as described by Brackstone et al. (1999) and Gartner et al. (2005). 
Some of these predict fluctuations in the acceleration behavior of an individual driver in response 
to the vehicle ahead. However, for DTA a simpler model is more appropriate to predict the speed 
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of traffic at a macroscopic level. Newell (2002) greatly simplified car following to be consistent 
with the hydrodynamic theory, but the model does not include the effects of reaction time. Instead, 
the car-following model used here builds from the collision avoidance theory of Kometani & 
Sasaki (1961) to predict the allowed headway for a given speed, which varies with driver reaction 
time. The inverse relationship predicts speed as a function of the headway, which is determined 
by density. This car-following model results in the triangular fundamental diagram used by Newell 
(1993) and Yperman et al. (2005).  

Although this car-following model is useful in predicting the effects of a heterogeneous 
vehicle composition on capacity and wave speed, other effects (such as roadway conditions) are 
not included. Furthermore, CTM assumes a trapezoidal fundamental diagram that enables a lower 
restriction on capacity. Therefore, the effect of reaction times on capacity and backwards wave 
speed are used to appropriately scale link characteristics for realistic city network models. 
Although AVs may be less affected by adverse roadway conditions than human drivers, this paper 
assumes similar effects for the purposes of developing a DTA model of shared roads. Other 
estimates of capacity and wave speed may also be included in the multi-class CTM model 
developed in Section 5.1.  

Safe Following Distance 

Suppose that vehicle 2 follows vehicle 1 at speed  with vehicle lengths ℓ. Vehicle 1 
decelerates at a to a full stop starting at time = 0, and vehicle 2 follows suit after a reaction time 
of ∆ . The safe following distance, , is determined by kinematics.  

The position of vehicle 1 is given by 

( ) = − 		 ≤									 >       (4.37) 

where  is the time required to reach a full stop. For > , the position of vehicle 1 is constant 

after its full stop. The position of vehicle 2, including the following distance of , is  ( ) = − 																	 ≤− ( − ) − 		 >      (4.38) 

The difference is 

( ) − ( ) = − + 																			 ≤− + ( ) + 								 < ≤− + ( − ) + 						 >     (4.39) 

and the minimum distance occurs when both vehicles are stopped, at + ∆ . To avoid a collision,  ≥ − + + − + ℓ = + ℓ    (4.40) 

Flow-density Relationship 

Equivalently, equation (4.40) may be expressed as 
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	 ≤ ℓ
       (4.41) 

which restricts speed based on following distance (from density). Flow may be determined from 

the relationship = ℓ
 with = , which is linear with respect to density. Figure 4.5 shows 

the resulting relationship between flow and density for different reaction times for a characteristic 
vehicle of length 20 ft (6.1 m) that decelerates at 9	 /  (2.7	 / ) for a free-flow speed of 60 
mi/hr (96.6 km/hr). Since speed is bounded by free-flow speed and available following distance, 

the triangular fundamental diagram is described by = min , ℓ
 . Reaction times of 1 

to 1.5 seconds correspond to human drivers (1971).  

 
Figure 4.5: Flow-density Relationship as a Function of Reaction Time 

The maximum density at which a speed of  is possible is ℓ from equation (4.41), so 

capacity under free-flow speed ( ) is = ℓ      (4.42) 

And the backwards wave speed is: = − ℓℓ ℓ = ℓ
     (4.43) 

which increases as reaction time decreases. The direction of this relationship is consistent with 

micro-simulation results by Schakel et al. (2010). Note that if ∆ < ℓ
, which may be possible for 

computer reaction times, then backwards wave speed exceeds free-flow speed. If >  for 
CTM, then the cell lengths would need to be derived from the backward wave speed, not the 
forward. That would complicate the cell transition flows. To avoid this issue, this paper assumes 
that ≤ .  
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Flow for Heterogeneous Vehicles 

The car-following model in the previous section is designed to estimate the capacity and 
backwards wave speed when the reaction time varies, but is uniform across all vehicles. This 
section expands the model for heterogeneous flow with different vehicles having different reaction 
times. Let the density be disaggregated into 	for each vehicle class . Consider the case where 
speed is limited by density. Assuming that all vehicles travel at the same speed, for all vehicle 
classes,  = ℓ

      (4.44) 

where  is the headway allotted and ∆  is the reaction time for vehicles of class . Also, with 
appropriate units,  ∑ ∈ = 1      (4.45) 

is the total distance occupied by the vehicles. Thus ∑ ( − ℓ)∈ = 1 − ℓ     (4.46) 

By equation (4.44), ∑ ∈ = 1 − ℓ      (4.47) 

which results in = ℓ∑ ∈       (4.48) 

Equation (4.47) may be rewritten as ∑ ∈ = 1 − ℓ. Dividing both sides by  yields ∑ ∈ + ℓ =       (4.49) 

Assuming that vehicle class proportions  remain constant because all vehicles travel at the 

same speed, the maximum density for which a speed of is possible is = ∑ ∈ ℓ      (4.50) 

which follows by taking the reciprocal of equation (4.49). Capacity is = ∑ ∈ ℓ     (4.51) 

Backwards wave speed is thus 

= − ∑ ∈ ℓ
∑ ∈ ℓ ℓ = ℓ∑ ∈     (4.52) 

Equations (4.48) through (4.52) reduce to the previous model in the single vehicle class 
scenario. Figure 4.6 shows an example of how capacity and wave speed increase as the AV 
proportion increases when human drivers have a reaction time of 1 second and AVs have a reaction 
time of 0.5 second. The cases of 0% AVs and 100% AVs are identical to the 1-second reaction 
time and 0.5-second reaction time fundamental diagrams in Figure 4.5, respectively.  



67 

 
Figure 4.6: Flow-density Relationship as a Function of AV Proportion. 

Other Factors Affecting Capacity 

In reality, factors such as narrow lanes and road conditions affect capacity as well. These 
factors are usually in Highway Capacity Manual estimates of roadway capacity used for city 
network models. The model described above, however, does not include factors beyond speed 
limit. To include these factors, we scale existing estimates on capacity and wave speed in 
accordance with equations (4.51) and (4.52). Although the model in Section 17.2.3 predicts a 
triangular fundamental diagram, as used by Newell (1993) and Yperman et al. (2005), other flow-
density relationships are often used. CTM, the basis for multi-class DTA in this paper, uses a 
trapezoidal fundamental diagram.  

Here, estimates of roadway capacity and wave speed are and , respectively, and the 
reaction time for human drivers is ∆ . Human reaction times may vary depending on the location 
of the road; for instance, reaction times on rural roads are often longer than those in the city. 
Because capacity is affected by reaction time through equation (4.51), scaled capacity  is = ℓ∑ ∈ ℓ      (4.53) 

Similarly, wave speed is affected by reaction time through equation (4.52), so scaled 
wave speed  is = ∑ ∈      (4.54) 

Equations (4.53) and (4.54) provide a method to integrate capacity and backwards wave 
speed scaling with other factors and realistic data.  

Summary 

Maturing AV technology suggests that AVs will be publicly available within the next few 
decades. To provide a framework for studying the effects of AVs on city networks, this section 
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developed a shared road DTA model for human and autonomous vehicles. A multi-class CTM is 
presented for vehicles traveling at the same speed with capacity and backwards wave speed a 
function of class proportions. A collision avoidance car-following model incorporating vehicle 
reaction time is used to predict how reduced reaction times might increase capacity and backwards 
wave speed. These models are generalized to an arbitrary number of classes because different AVs 
may be certified for different reaction times. These models also use continuous flow so that 
SBDTA models built on continuous flows may incorporate these multi-class predictions.  

4.2.2 Conflict Region Modeling 

Tile-based reservation (TBR) intersection control for AVs has the potential to reduce 
intersection delays beyond optimized traffic signals. A major question in implementing 
reservations is the underdetermined problem of resolving conflicting reservation requests. 
Previous work studied prioritizing requests on a first-come-first-served (FCFS) basis or holding 
auctions at intersections, but there are many possibilities. Furthermore, although selfish routing 
behavior could affect the benefits of the reservation prioritization, reservation control has not been 
studied with user equilibrium routing due to its microsimulation definition. This report addresses 
these issues by presenting an integer program (IP) formulation of the conflict point simplification 
of reservations. The feasible region is transformed resulting in a more tractable IP on conflict 
regions for DTA. Because the IP may be NP-hard, we present a polynomial time heuristic. Finally, 
we demonstrate the potential utility of this heuristic by demonstrating objective functions that 
reduce congestion or energy consumption on a city network. 

One major issue with TBR is the computational tractability of simulating vehicle 
movements through the grid of tiles. Smaller tiles result in greater intersection utilization but 
correspondingly greater computational requirements. TBR in its original form is therefore 
intractable for solving DTA. This issue has been addressed by two recent papers: Zhu and Ukkusuri 
(2015) and Levin and Boyles (2015). Zhu and Ukkusuri proposed a conflict point simplification, 
which focuses only on the intersections between turning movement paths in the grid of tiles. 
However, intersections with a large number of lanes and turning movements would have a 
correspondingly large number of conflict points, limiting the computational efficiency. 
Alternately, Levin and Boyles (2015) proposed to aggregate the tiles into larger conflict regions 
constrained by capacity. While effective for DTA, the justification for using conflict regions 
instead of tiles or conflict points was less clear. In addition, although the conflict region model 
admits an arbitrary priority function for resolving conflicts in reservation requests, the priority 
function does not directly correspond to an objective function for the intersection policy. 

The work of Dresner and Stone (2004, 2006, 2005) on the TBR control used the advantages 
computers have over human drivers to improve utilization of intersection supply at the cost of 
greater complexity in vehicle-to-intersection communication and protocols. Experiments by 
Fajardo et al. (2011) on a variety of demand scenarios for a single intersection confirmed that TBR 
with the FCFS priority improves the level of service experienced by vehicles. 

One major potential issue for TBR is that its communication complexity restricts usage by 
human drivers. Since it is likely that AVs will not be in exclusive use for many decades, extensions 
that allow humans to use reservation-based controls have been studied. Dresner and Stone (2006, 
2007) proposed periodically providing a green light to specific lanes or links for human drivers. 
Qian et al. (2014) extended the reservation system to HVs and semi-AVs under certain 
assumptions about path and car-following behaviors, and Bento et al. (2013) proposed reserving 
larger sections of the intersection for HVs. Such interventions should be compatible with general 
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TBR strategies by requiring occasional allowances for non-AVs. Therefore, this paper focuses on 
the scenario in which all vehicles are autonomous. 

Optimizing TBR is further complicated by the effects of UE routing, which can produce 
system inefficiencies such as the well-known Braess paradox (1968). Network studies of TBR 
have been complicated by its computational requirements. Previous network models by Carlino et 
al. (2012) and Vasirani and Ossowski (2012) have not included traffic assignment, and in some 
cases were forced to reduce the number of tiles for computational tractability at the cost of 
intersection efficiency. Zhu and Ukkusuri (2015) developed a linear program for flow through the 
conflict point model, albeit with some further restrictions on conflicting flow. Levin and Boyles 
(2015) developed the conflict region model of TBR for SBDTA, which was shown to be tractable 
for solving SBDTA on large city networks. For a more general model of reservation-based 
intersection control, we combine the conflict point and conflict region approaches by developing 
a discrete vehicle-based integer program (IP) for the conflict point model and transforming its 
feasible region to achieve the conflict region model. 

Derivation of the Conflict Region Model 

This section justifies the conflict region model by deriving it from the conflict point 
simplification of TBR control in three steps: 

1. Section 4.2.2.2 presents an IP of the conflict point model in microsimulation. This IP models 
vehicles sequentially passing through conflict points while traversing their turning 
movements in continuous time. This section models vehicle movement similarly to the work 
on TBR. 

2. In Section 4.2.2.3, we transform the conflict point IP for microsimulation to a conflict point 
IP for DTA. This involves replacing continuous time with discrete time steps. As is typical 
with SBDTA, vehicles crossing the intersection are assumed to begin and complete their 
turning movement within one time step. Therefore, in Section 4.2.2.3 we constrain conflict 
points by capacity rather than occupancy. 

3. Section 4.2.2.4 presents the conflict region IP by aggregating conflict points into conflict 
regions. In Section 4.2.2.3, conflict points are constrained by capacity rather than occupancy 
for DTA. For computational tractability, we combine conflict points into larger conflict 
regions, which are also constrained by capacity.  

Conflict Point Model for Microsimulation 

The TBR control policy of Dresner and Stone (2004) operates on a grid of tiles in space-
time. As noted by Zhu and Ukkusuri (2015), the tile conflict analysis of TBR may be simplified 
through the definition of conflict points. As illustrated in Figure 4.7, the paths for any two turning 
movements ( , ) and ( ′, ′) first intersect at some point . Ensuring adequate spacing at  for 
vehicles traveling from ( , ) and ( ′, ′) will guarantee that no conflict occurs at  or anywhere in 
the intersection between vehicles moving from  to  and from ′ to ′. For vehicles uniform in 
physical characteristics and acceleration behaviors, these conflict points are fixed. However, in 
terms of practical implementation, tiles may be required instead of conflict points to handle 
vehicles of different shapes and turning behaviors. Nevertheless, in many DTA models physical 
uniformity of vehicles is assumed. 
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Figure 4.7: Illustration of Intersections Between Turning Movement Paths. 

Previous work on TBR by Fajardo et al. (2011) studied tiles with width as small as 0.25 
meters to improve intersection efficiency. Assuming 3-meter-wide lanes, the intersection in Figure 
4.7 requires 676 such tiles in space. With 3 turning movements per link, and 4 links, there are a 
total of 12 paths through the intersection. In the worst case, in which each turning movement 
conflicts with all movements from other links, each turning movement has only 9 conflicts, for a 
total of 108 conflict points. In general, for a rectangular intersection with n lanes along the width 
and m lanes along the height, the number of tiles is Θ( ). Assuming vehicles are not permitted 
to change lanes in the intersection, the number of turning movements is ( + ), and thus the 
number of conflict points is (( + ) ). Therefore, the conflict point model may scale worse 
than the tile model. However, as demonstrated by the analysis of Figure 4.7, the conflict point 
model may be significantly more efficient for small intersections. The conflict point model also 
admits mathematical programming methods, as demonstrated by Zhu and Ukkusuri (2015). 

Zhu and Ukkusuri (2015) assume that vehicles cannot simultaneously propagate through 
two conflicting lane movements. Depending on the magnitude of the time step, this may or may 
not be the most accurate assumption. For sufficiently large time steps allowing adequate spacing, 
two vehicles from conflicting turning movements should be able to traverse a single conflict point. 
This assumption is relaxed in the following IP formulation. 

Let  be the set of conflict points. For any lanes  and  denote by  the subset of  that 
vehicles traveling from  to  will pass through. The conflict point model is built on lane-specific 
turning movements because the intersection points may differ depending on which lanes vehicles 
are traveling between. Assume for this conflict point model that all vehicles enter the intersection 
at the same speed so that the travel time between conflict point  and the next point on path  is 
denoted . Although this is an unrealistic assumption for micro-simulation, it is sufficient for 
first-order SBDTA models (predicting speeds but not accelerations), which is the focus of this 
paper. 

We present an original IP formulation for the conflict point model in microsimulation on a 
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single intersection. In later sections it will be transformed to be used for a single DTA time step. 
Let  be the set of vehicles wanting to cross the intersection and  the subset of  departing lane 
. For any vehicle , denote by ( ) the incoming lane for , let ( ) be the time  arrives at 

the intersection, let  be the path traversed by , and let ( ) be the time  crosses conflict point 
. ( ) are the decision variables for the intersection manager. We use  to denote continuous 

time decision variables and  for the discretized time in SBDTA. Let  and  be the sets of 
incoming and outgoing lanes, respectively. 

For any ∈ , let ( ) be the required separation for other vehicles after a vehicle from 
lane  passes through . The separation may depend on the directional orientation of the vehicle; a 
vehicle in the midst of a turn may cause greater separation requirements for following vehicles. 
Therefore, for any , ′,  with ∈  and ∈ , if ( ) > ( ) then ( ) − ( ) ≥( ) . This is modeled by the ordering variable , ∈ {0,1} with , ≤ 1 + ( ) ( )

 

and , ≥ ( ) ( )
, where  is a large positive constant. These constraints result in , = 1 

if and only if ( ) > ( ). Then separation is ensured by the constraint ( ) − ( ) ≥( ) . Note that if two vehicles conflict at multiple points, separation need only be 
checked at the first conflict. However, this formulation is presented for analytical, not 
computational, purposes as a more efficient model will be derived later. 

The model below also assumes that flow into outgoing lanes is restricted only by a conflict 
point at the start of the lane. As this is unrealistic, in Section 18.1.2 this is replaced by a receiving 
flow constraint to be compatible with general SBDTA models. The intersection reservations may 
then be modeled as the following IP: 

max ( )           (4.55) 

s.t. ( ) = ( − 1) + 																				∀ ∈ , ∀ ∈    (4.56) ( ) − ( ) ≥ ( ) + , 						∀ ∈ , ∀ ∈ , ∀ ∈ : ∈  (4.57) 

, ≤ 1 + ( ) ( )																							∀ ∈ , ∀ ∈ , ∀ ∈ : ∈  (4.58) 

, ′ ≥ ( ) ′( ) 																											∀ ∈ , ∀ ∈ , ∀ ′ ∈ : ∈ ′ (4.59) 

, ′ ∈ {0,1}																																	∀ ∈ , ∀ ∈ , ∀ ′ ∈ : ∈ ′ (4.60) ( ) ′( )( ) ′ ≥ 0																															∀ ∈ , ∀ ′ ∈ ( )   (4.61) ( ) ≥ 0																																			∀ ∈ , ∀ ∈    (4.62) 

 
where  is the vector of ( ) decision variables. Constraint (4.56) enforces travel time between 
conflict points, constraints (4.57) through (4.59) ensure separation, and constraint (4.61) enforces 
FIFO behavior for each lane: if ( ) − ( ′) > 0, then (0) − (0) ≥ 0 as well in FIFO 
behavior. If, for all lanes , and for all vehicles , ′ ∈ , ( ) = ( ) ⟹ = ′ then ( ) =( ′) ≠ 0 admitting the constraint (6.4). The objective function  is left unspecified for generality. 
Previous studies have considered FCFS policies, priority for emergency vehicles (2006), and 
intersection auctions (Schepperle et al. 2007 and 2008, Vasirani and Ossowski 2010, and Carlino 
et al. 2013). However, other strategies are worth consideration as well. 
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The above IP could potentially contain many variables because it is not restricted to a time 
interval, which could make it difficult to solve. We will now transform the feasible region to be 
solved within a single time step in SBDTA. 

Conflict Point Model for DTA 

This section transforms the IP formulated in Section 4.2.2.2 to be solved for individual 
time steps in SBDTA models. Let ( ) denote whether vehicle  enters the intersection in time 
step . ( ), the set of vehicles that are waiting to enter the intersection in time step , is the sending 
flow in time . We assume that ( ) includes vehicle order. ( ) is the sending flow disaggregated 
by lane. 

In most SBDTA models, vehicles are assumed to begin and complete turning movements 
within the same time step. Turning movements spanning multiple time steps are normally not 
considered. However, constraint (4.56) of conflict point arrival times could violate this assumption 
because vehicles entering the intersection late in one time step would not be able to complete their 
turning movement within the same time step. Therefore, instead of constraining the arrival times 
of individual vehicles at conflict points, we constrain the total flow through each conflict point 
during each time step. This is equivalent to a major difference between micro-simulation and DTA: 
in car-following models, vehicles decelerate to avoid colliding with the vehicle in front; in DTA, 
speed decreases as density increases to model vehicle deceleration to avoid collisions. 

Constraints (4.57) through (4.60) on conflict point arrival spacing are not meaningful 
without constraint (4.56). Therefore, we transform conflict point spacing to a capacity-based 
restriction. Although this reduces the power of the model to prevent intersection conflicts, 
conflicting movements still constrain flow at an aggregate level consistent with SBDTA flow 
models. Let  denote whether ∈ , and let  be the capacity of conflict region . Vehicles 
from ( ) require a spacing headway of ( ( ′)) where ( ) is the capacity for vehicles 
from lane  moving through . Then the separation constraint becomes ∑ ( ) ( ) 	∈ ( ) ≤ , where  is the simulation time step. This may be written as ∑ ( ) ( ) 	∈ ( ) ≤ , which yields the capacity reduction in Levin and Boyles 

(2015). In addition, we add a receiving flow constraint for all lanes : ∑ ( )∈ ( ) ≤ ( ), 
where  denotes whether  enters lane . 

The FIFO constraint must also be transformed because SBDTA may not assign each 
vehicle a unique arrival time at the intersection. However, assume that SBDTA determines arrival 
order for discrete vehicles. Let ( ) = { ′ ∈ ( )( ): ( ) > ( ′)} be the set of vehicles that 

arrived at the intersection before . Then all ′ ∈ ( ) must move before  due to FIFO, which 

may be written as ( ) ≤ 1 − | ( )| ∑ ( )∈ ( ) . If ( )( ) − ∑ ( )∈ ( ) > 0 then at 

least one vehicle in front of  has not yet moved, and the lane is blocked for . 
The result of these transformations is the following IP. Note that this program is for every 

time step , so  is assumed fixed. 

Max ( )           
 (4.63) 

s.t. ∑ ( ) ( ) 	∈ ( ) ≤ 																						∀ ∈    (4.64) 
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∑ ( )∈ ( ) ≤ ( )																													∀ ∈    (4.65) ( ) ≤ 1 − | ( )| ∑ ′( )′∈ ( ) 																					∀ ∈    (4.66) ( ) ∈ {0,1}																																						∀ ∈ ( )   (4.67) 

 
where	x( ) is the vector formed by the decision variables ( ). 
Conflict Region Model 

With the relaxation of the constraint on arrival time sequencing to capacity, conflict points 
may be combined in the model for computational efficiency. This could result in a capacity 
reduction due to modeling a conflict between two turning movements that do not intersect, but if 
all points in a sufficiently large conflict region are combined it is likely that the paths would have 
intersected at one of those points. With the aggregation of conflict points into conflict regions, 
denoted by the set , lanes may similarly be aggregated into links. Thus, from this point forward, γ (v) and γ(v) refer to the incoming and outgoing links for vehicle , respectively. Denote by ℓ  
the number of lanes link  has. The number of lanes affects the FIFO constraint because vehicles 
cannot enter the intersection unless they are at the front of a lane. This results in the following IP: 

Max ( )           
 (4.68) 

s.t. ∑ ( ) ( ) 	∈ ( ) ≤ 																						∀ ∈    (4.69) ( ) ≤ 1 + ( ) 																																	∀ ∈ ( )   (4.70) ∑ ( )∈ ( ) ≤ ( )																															∀ ∈    (4.71) ( ) ∈ {0,1}																																								∀ ∈ ( )   (4.72) 

where 

( )( ) = − ∑∈ ( ) ( ) ℓ ( ) | ( )| ∑∈ ( ) ( )ℓ ( )    (4.73) 

Constraints (4.70) and (4.73) are the generalization of constraint (4.51) for multiple lanes. When 
a vehicle blocks a lane due to a rejected reservation, the capacity for vehicles behind is restricted. 
This is modeled by the function ( )( ), which is the remaining capacity for  as a function of 
whether vehicles ahead of  moved through the intersection. The number of lanes available for 

use for  is ℓ ( ) − | ( )| − ∑∈ ( ) ( ) . − ∑∈ ( ) ( ) is the remaining capacity of the 

link, which is reduced proportionally by the number of available lanes remaining. When ( )( ) ≥ 1, then ( ) = 1 satisfies constraint (4.70). Note that ( )( ) < 0 is possible in 
a sufficiently large queue. If ℓ ( ) or more vehicles in front of  have not moved, then ( )( ) ≤ 0, and  cannot enter the intersection. Nevertheless, this IP always has a feasible 
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solution: 

Proposition 1. Let ( ) be the set of feasible solutions to the conflict region IP. Then ( ) ≠ ∅. 

Proof. Consider x( ) = 0. ( ) ≥ 0 and ≥ 0 , so constraints (4.72) and (4.73) are satisfied. 1 + ( ) ≥ 0 so constraint (18.70) is satisfied. Therefore 0 ∈ ( ).    

  

Satisfaction of Requirements for DTA Intersection Models 

As an intersection model for DTA, it is relevant to study the conflict region IP in equations 
(18.14) through (18.18) in the context of the requirements for generic DTA intersection models 
described by Tampère et al. (2011): 1) general applicability; 2) maximizing flows; 3) non-
negativity; 4) conservation of vehicles; 5) satisfying demand and supply constraints; and 6) 
obeying conservation of turning fractions. As stated, the conflict region IP satisfies all 
requirements except the invariance principle. We show that the algorithm of Levin and Boyles 
(2015), which satisfies the invariance principle, creates a feasible solution for the IP. 

General applicability is challenging for the many possibilities of intersection geometries. 
However, Levin and Boyles (2015) proposed a radial division of the intersection into conflict 
regions, which specifies the set  and the indicator variables  for all ∈ , ∈ . That radial 
division may be used for this IP. 

For general applicability, we assume, as with Levin and Boyles (2015), that in the absence 
of other flow, flow between any ( , ) ∈ ×  is constrained only by sending and receiving 
flows. Let  be the capacity of link ; if = , then flow of  should saturate the conflict 
region. This can be satisfied by choosing = max( , )∈ × : ∈ {min{ , }}, where  is the set 

of conflict regions flow from  to  will pass through. With ( ( )) = , then flow of  

through any conflict region  will result in equality on constraint (6.15) because = . 

Constraint (18.69) can then be written as ∑ ( ) ( )∈ ( ) ≤ 										∀ ∈     (4.74) 

Tampère et al. (2011) note that DTA intersection models should maximize flow as drivers 
will move whenever possible. In a reservation-based context, vehicles may be prevented from 
moving even if it is possible for them to move. However, it is reasonable to assume that many 
practical intersection strategies will allow a vehicle to move if its reservation request does not 
conflict with the reservation of another vehicle and the downstream link has sufficient space. To 
achieve this, the objective function in (18.14) should satisfy the following: 

Property 1. For any ( ) ∈ ( ), if for all ∈ ( ) ′ ( ) ≥ ( ) and there exists a ∈ ( ) 
with ′ ( ) > ( ), then x( ) < x′( ) . 

Objective functions satisfying Property 1 yield the desired characteristic of the solution to the 
conflict region IP: 

Proposition 2. Let x∗( ) be an optimal solution to the conflict region IP and let (⋅) satisfy 
Property 1. For any ∈ ( ), if ∗( ) = 0, form x ( ) with x ( ) = x∗( ) except with ∗( ) = 1. 
Then x ( ) is not feasible. 
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Proof. Suppose x ( ) is feasible. Since (⋅) satisfies Property 1, then x ( ) < x∗( ) , which 
contradicts x∗( ) being optimal. 

Property 1 can be satisfied by ( ) = 	 ∙ ( ) for some >  or more complex 
functions. It does not, however, require that the objective is to maximize flow. For instance, 
FCFS can be modeled through the conflict region IP. 

Proposition 3. The FCFS policy may be modeled through the IP in equations (4.68) through 
(4.69). Specifically, there exists an objective function (⋅) satisfying the following: Let ^( ) be 
the reservation time of . If, for all , ∈ ( ), ≠ ⟹ ^( ) ≠ ^( ) and x∗( ) is chosen 
by FCFS, then for all x ∈ , x( ) < x∗( ) . 

Proof. By induction on | ( )|. Sort ( ) by reservation request so that for any indices , , if <
 then ^( ) < ^( ). Let ∗ be the reservation time of the last vehicle, and let x( ) = ∑ ∗ ( ) ( )     (4.75) 

be the objective function. (This satisfies Property 1). We show that ∑ ∗ ^( ) ∗ ( ) ≥∑ ∗ ^( ) ( ) for all x( ) ∈ ( ), for all 1 ≤ ≤ | |. 
 
Base case: If  can move, then ∑ ∗ ^( ) ∗ ( ) = ∗ ^( ) because FCFS prioritizes by 

request time, and 
∗ ^( ) ≥ ∑ ∗ ^( ) ∗ ( ) for all x( ). 

If  is blocked, then ∑ ∗ ^( ) ∗ ( ) = 0 for all x( ). 
 
Inductive step: If ∗ = 1 or ∗ = 0 for all 1 ≤ ≤ + 1, then this holds trivially. The 
remaining case is that ∗ = 0 because of higher priority vehicle(s) blocking its movement, i.e., 

if = 1 then for some vehicle < + 1, = 0. Because 
∗ ^( ) >∑ ∗ ^( )∈ ( ), , ∑ ∗ ^( ) ∗ > ∑ ∗ ^( ) ∗ . 

Then by the inductive hypothesis, ∑ ∗ ^( ) ∗ > ∑ ∗ ^( ) ∗ .    

Proposition 3 proves that the oft-studied FCFS policy falls within the general framework 
of the IP developed here. Setting =  should be sufficiently large, although that may still result 
in impractically large numbers due to the exponential. We prove in Proposition 6 that the 
polynomial-time algorithm of Levin and Boyles (2015) can solve the IP with objective (4.75). 

Tampère et al. (2011)’s requirement of non-negativity is satisfied because x( ) ≥ 0. 
Tracking discrete vehicles also satisfies conservation of flow and of turning fractions. Demand 
constraints are satisfied by the implicit definition of the set of sending flow, and supply constraints 
are explicitly satisfied by equation (4.61). 

The remaining requirement is the invariance principle, which essentially states that the 
intersection flow should be invariant to the constraint on sending flow changing from the number 
of waiting vehicles to the link capacity. The invariance principle may not be satisfied for general 
objective functions, although it is for some objectives, including FCFS (1971). If | ( )| <  
changes to | ′ ( )| = , if one ∈ ′ −  has a very high weight in the objective function, the 
optimal solution to the conflict region IP may need to include . The invariance principle can be 
satisfied by an additional constraint (2010), or as a corollary of alternate solution algorithms. For 
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instance, the conflict region algorithm of Levin and Boyles (1971) satisfies the invariance 
principle. With a small change to better model FIFO constraints, shown in Algorithm [alg1], the 
conflict region algorithm finds a feasible solution to the conflict region IP. Specifically, ℓ  tracks 
the number of lanes blocked. These are combined in line 20 to satisfy constraint (4.73). 

Proposition 4. The conflict region algorithm (Algorithm 1) produces a feasible solution to the 
conflict region IP in equations (4.68) through (4.72). 

Proof. For any ∈ ( ), let ′ be the set of vehicles considered before  in the loop on line 7. If = 1, then  can move from  to  according to line 8. Line 9 results in ℎ  being the number 
of vehicles in ′ moving from ′ to ′. This results in line 19 requiring that ≥ 1 +∑ ( )∈ , so constraint (6.17) is satisfied. For all conflict regions  that  passes through, 

line 21 requires that ≥ + ∑ ( )∈ , satisfying constraint (18.15). Constraints 

(18.16) and (18.19)—FIFO—are satisfied because vehicles either move through the intersection 
or block a lane (line 17). Blocked lanes detract from outflow (line 19) and vehicles are considered 
for movement in FIFO order. Finally, constraint (18.18) is satisfied because each vehicle is only 
considered once in the loop on line 6.   

 

Algorithm 1 Conflict region algorithm 
1: Set = ∅ 
2: for all ∈  do 
3:  Sort ( ) by arrival time at  
4:  Remove first ℓ  vehicles in ( ) and add them to  
5:  Set = 0 
6:  for all ∈  do 
7:   Set ( ) = 0 
8:  end for 
9: end for 

10: Sort  by ( ) 
11: for all ∈  do 
12:   Let ( , ) be the turning movement of  
13:   if canMove( , ) then 
14:    Set ( ) = 	 ( ) + 1 
15:    for all ∈  do 

16:     Set ( ) = ( ) +  

17:    end for 
18:    Remove first vehicle in ( ) and add it to  in sorted order 
19:    Set ( ) = 1 
20:   else 
21:    Set ( ) = 0 
22:    Set = + 1 
23:   end if 
24: end for 
25:   

26: function canMove ∈ −1, ∈  

27:   if − ∑ ∈ < 1 or − ∑ ∈ ℓ ℓℓ < 1 then 

28:    Return False 
29:   end if 
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30:   for all ∈  do 

31:    if ( − ( ) <  then 

32:     Return False 
33:    end if 
34:   end for 
35:   Return True 
36: end function 
 
 
Proposition 5. The running time of the conflict region algorithm is (| ( )| log| ( )| | | +| || |). 
Proof. Initialization of  (lines 1 through 9) iterates through each vehicle in ( ). Sorting  (line 
10) is therefore (| ( )|log| ( )|). Initializing ( ) requires (| || |). Therefore 
initialization is (| ( )|log| ( )| + | || |). 

The main loop (lines 11 through 24) iterates through each vehicle at most once, scaling 
with | ( )|. It may add vehicles to  in sorted order, requiring (log| ( )|) time to find the 
appropriate index. For each vehicle, the destination link and the conflict regions it passes through 
is checked once for conflicts in the canMove() subroutine, which is (| |).If canMove() returns 
true, the flow through each conflict region is updated, also requiring (| |). Therefore, the main 
loop is (| ( )| log| ( )| | |).    

Although the conflict region algorithm produces a feasible solution in polynomial time, it 
may not be optimal. It takes as input some priority (⋅) to each vehicle, and moves the highest 
priority vehicle able to enter the intersection. It does not consider the value of moving a vehicle to 
allow vehicles behind to cross the intersection sooner. However, for specific objective functions, 
such as FCFS, the priority function will result in an optimal solution to the IP. 

Proposition 6. The conflict region algorithm, using reservation time as the prioritization ( ( ) =^( )), produces an optimal solution for the FCFS policy. 

Proof. From Proposition 4, the solution created by the conflict region algorithm is feasible. Since 
vehicles cannot request a reservation unless they are not blocked from entering the intersection, 
for any two vehicles , ∈ ( ), ( ) < ( ) ⟹ 	 ( ) ≤ ( ). Therefore, if ∈  and ∉ , then ( ) ≤ ( ). Once at the front of the intersection, reservations are ordered by (⋅) 
for consideration. Therefore, if the reservation of  is rejected, there must be some  with ( ) ≤ ( ) blocking the movement of , which is the definition of FCFS. 

Division of Intersection into Conflict Regions 

A proper division of the intersection into conflict regions is vital to the proposed algorithm. 
Division into a grid of small tiles is more computationally demanding, and also requires more 
precise predictions of vehicle paths to determine which conflict regions are occupied. Tampère et 
al. (2011) in particular noted the necessity of intersection models to be as independent as possible 
of specific intersection geometry due to the potentially high number of intersections in city 
networks. Division into tiles of high granularity, such as one tile at the intersection of every two 
lanes, requires lane-specific vehicle paths. At the other extreme, no division at all (i.e., the entire 
intersection is one conflict region) may not properly capture vehicle interactions between specific 
turning movements. Capacity may be incorrectly borrowed from other areas of the intersection. 

We propose a radial division into conflict regions at incoming and outgoing links, as shown 
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in Figure 4.8. This division does not require lane-specific turning movements but limits supply of 
specific areas of the intersection. This division can also be determined geometrically when link 
angles are known by the method below. Link angles can be determined through node coordinates, 
which are readily available from internet-based geographic information systems. 

The radial division method divides a circle into conflict regions through radii along 
incoming and outgoing link angles. Therefore any angle ϕ can be mapped to a conflict region; let (ϕ) be this mapping. Let ϕ  be the angle of directed link i. The path from ∈  to ∈  is 
assumed to be composed of two lines. Starting and ending coordinates of are shifted to the right 
by  (for countries in which vehicles travel on their right, or −  for vehicles traveling on their left), 
so that the paths do not follow conflict region boundaries. This results in starting coordinate  and 
ending coordinate  defined by = cos( + ), sin( + ) + cos − , sin −    (4.76) 

 

Figure 4.8: Illustration of Radial Division on a Three-Approach Intersection 

The inner circle is divided by radii to the incoming and outgoing links.  = cos( ), sin( ) + cos − , sin −    (4.77) 

where  in this context is the ratio of a circle’s circumference to its diameter, not a path. 
Paths are defined by the intersection of the lines ( ) = + cos( ), sin( )  and = + cos , sin . 

All conflict regions crossed by the turning movement path (determined through angles to the 
center of the circle) are added to ( ) 	,	the set of conflict regions used by vehicles traveling from 

 to . Choose ∗ and ∗ such that ( ∗) = ∗ . Then ( ) = tan ( , ) ∈ { ( )|0 ≤ ≤ ∗}⋃ ( ) 0 ≤ ≤ ∗   (4.78) 

Although this path may not model the curves traced by real vehicles, such curves are 
unnecessary for this division because conflict regions are not lane-specific. Figure 4.8 
demonstrates this method applied to a typical three-approach intersection. 
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Summary 

This section developed and optimized a simplification of the TBR described by Dresner 
and Stone (2004) for autonomous vehicles. We first formulated an IP for the conflict point 
transformation of TBR proposed by Zhu and Ukkusuri (2015). After transforming the IP for use 
in SBDTA, the spacing constraints were found to naturally reduce to capacity limitations on each 
conflict point. For computational tractability on large networks, we aggregated conflict points into 
conflict regions, resulting in a model similar to that of Levin and Boyles (2015) formulated as an 
IP. This admits arbitrary objective functions and can therefore be used to optimize the order that 
vehicles cross the intersection for a more general class of policies. Since IPs in general are NP-
hard, we derived theoretical results about the conflict region algorithm of Levin and Boyles (2015). 
It solves the IP for the FCFS objective, and admits a polynomial-time greedy heuristic based on 
the MCKS problem for general objective functions. 

4.3 Microsimulation Modeling 

Team member Peter Stone has developed two open-source traffic simulation simulators for 
AVs: AIM, which provides highly detailed representations of small networks of intersections; and 
AORTA, which provides a more aggregate representation of a much larger (city-scale) network. 
Both accommodate mixed (traditional + CAV) traffic streams, traditional traffic control (signals), 
and reservation-based control for CAVs (who wish to reserve a safe path through the intersection 
without much delay). 

The project objectives of the microsimulation modeling sub-task were defined as follows: 

1. Semi-AVs - Inclusion of new, transitional vehicle types. The transition from current 
technologies to CAVs will occur gradually (along with retrofitting and addition of smart 
devices on board conventional vehicles), with vehicles gaining increasing autonomy and 
connectivity. For instance, a vehicle may have the ability to autonomously follow the 
car in front of it by staying in its lane and maintaining a constant following distance 
while traveling between intersections, but require a human driver to steer while turning 
through an intersection. We intend to adapt both AIM and AORTA to be able to model 
traffic that includes a mix of HVs, semi-AVs, and fully-AVs. 

2. Extending intersection control to handle mixed technology levels - In the case of 
vehicles that can follow autonomously, but not steer, such vehicles may be able to 
communicate with the intersection manager and obtain a reservation in more limited 
circumstances than a vehicle with higher autonomy. For the case of HVs, we aim to add 
traffic light signaling that will coexist with the autonomous intersection management, 
thus allowing communication with both human drivers and AVs. These settings will be 
coded into the existing software, allowing for a wide range of scenario analyses under 
this sub-task. 

As a first step in this research, we evaluated the appropriateness of both AIM and AORTA 
as simulations of mixtures of HVs, semi-AVs, and fully AVs. We found that the AIM simulator is 
well-suited to such an adaptation due to its prior modeling of both fully AVs and HVs. We 
therefore determined that it was feasible to implement a variety of hybrid types of semi-AVs and 
study a range of traffic mixtures as described below. On the other hand, we found that the AORTA 
simulator does not meaningfully distinguish between HVs and AVs, and we did not see a 
straightforward path to implementing the sort of studies proposed in this task within AORTA. We 



80 

therefore focused our subsequent research efforts associated with this task entirely on the AIM 
simulator. 

4.3.1 Autonomous Intersection Management 

The objective of the original Autonomous Intersection Management (AIM) project was to 
create a scalable, safe, and efficient multiagent framework for managing AVs at intersections. AIM 
is designed for a time when all vehicles will be fully autonomous. The AIM protocol exploits the 
fine control of AVs to allow more vehicles simultaneously to cross an intersection, thus effectively 
reducing the delay of vehicles by orders of magnitude compared to traffic signals (2011). 

In order to test the impact of the AIM protocol the AIM simulator was developed. The AIM 
simulator validated that by leveraging the control and network capabilities of AVs the AIM 
intersection control protocol is much more efficient compared to traditional traffic signals (2014). 

Summary of Work 

In order to achieve the above objectives with regards to AIM, the research focused on two 
main sub-objectives: 

• SemiAIM Protocol - We devised an enhanced version of the AIM protocol denoted 
SemiAIM. As opposed to the AIM protocol, the SemiAIM protocol can correspond with 
semi-AVs and HVs as well as fully AVs. Figure 4.9 summarizes the interaction model 
of the SemiAIM protocol between human drivers, driver agents (with AV or semi-AV 
capabilities), and the Intersection Manager (IM). We require the inclusion in the vehicle 
of a single button that signals the driver agent to ask for a reservation. After pressing the 
button, the driver agent will automatically send a request message to the IM on behalf of 
the human driver. It is also important that there is a clear Okay indicator (such as a green 
light) installed in the car that indicates when the request has been confirmed. After seeing 
the Okay signal, the driver would have to actively pass control to the driver agent, again 
by pressing a single button. This way the driver will not be surprised by any sudden 
autonomous actions of the vehicle. The driver’s involvement in this procedure depends 
on the level of autonomous capabilities installed in the car. The different classifications 
of autonomous capabilities are described in Table 4.5. SemiAIM only requires the human 
driver to perform relatively simple driving maneuvers such as holding the steering wheel 
at a certain angle (types SA-ACC and SA-CC vehicles) or driving as if under a traffic 
signal (type SA-Com vehicles). These tasks are much simpler than other maneuvers such 
as lane changing and passing other vehicles, and thus should not be taxing to experienced 
human drivers. 

• SemiAIM Simulator - In order to experiment with the SemiAIM protocol we developed 
the SemiAIM simulator. Based on the AIM simulator, SemiAIM is able to simulate semi-
AVs and HVs as well as fully AVs. Using the SemiAIM simulator, we have performed 
experiments to test the efficiency of the SemiAIM protocol. We observed that (as 
expected) as the percentage of cars with autonomous capabilities increases then each 
vehicle suffers less delays. Figure 4.10 presents the average delay per car while crossing 
the intersection (y-axis) against the ratio of AVs/HVs (x-axis) for different types of 
autonomous capabilities. Traffic level was fixed to 360 vehicles/lane/hour.  
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Figure 4.9: The Interaction between Human Drivers, Driver Agents, and the IM.  

(The blue lines are message passing, and the red lines are transfer of control. Note that human 
drivers retain some control of the vehicle inside the intersection [the dashed red line]).  

Table 4.5: Semi-autonomous Vehicle Technologies 

Vehicle Type Communication Device Cruise Control Adaptive Cruise 
Control 

SA-ACC X X X 
SA-CC X X  

SA-Com X   
 

 
Figure 4.10: Average Delay (y -axis) vs. Different Ratio of Autonomous/Human Drivers (x -

axis). Note: Traffic level = 360 vehicles/lane/hour. 

4.3.2 Dynamic Traffic Assignment Methodology 

DTA models have become a widely accepted tool to support a variety of transportation 
network planning and operation decisions. The ability of these models to produce stable and 
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meaningful solutions is crucial for practical applications, particularly for those involving the 
comparison of modeling results across multiple scenarios. DTA is particularly relevant for 
modeling AVs because AVs affect many time-dependent variables. For instance, unlike fixed-
phase traffic signals, reservation-based intersection efficiency is highly dependent on the demand 
at each approach and will vary over time. In addition, when mixed (AV and HVs) flows are 
considered, time-varying proportions of AVs on a road will result in the road capacity changing 
over time. Therefore, DTA is used for some of the most critical modeling for Task 4. This section 
describes the solution methodology used for solving DTA. 

Two main processes are repeated multiple times during the solution of an SBDTA 
framework: the simulation of traffic conditions for a given assignment of vehicles to paths, and the 
search for new shortest paths based on the simulated traffic conditions. Both may involve 
significant computational effort, depending on the characteristics of specific SBDTA 
implementations. The computational efficiency of the analyzed techniques is not explicitly 
described, as it will highly depend on implementation-stage decisions that involve other 
components of a SBDTA model. 

User Equilibrium in Simulation-Based DTA Models 

The typical solution framework for SBDTA models seeks to attain UE conditions. UE is 
based on Wardrop (1952) and is related to equilibrium strategies of game theory. It refers to a state 
in which no traveler can improve his or her travel time by switching paths. For STA models with 
link performance functions, UE is typically found by solving a convex program. When the link 
performance functions are monotone increasing with link flow, the solution to the convex program 
is unique and exists. For SBDTA, travel times are determined by simulation, and travel times 
depend on departure time due to traffic congestion waves that evolve over time. Therefore, SBDTA 
solves for a modified UE state known as a dynamic user equilibrium (DUE), in which travelers 
only consider travel times of paths for their specific departure time. Furthermore, travel times are 
not well-behaved functions of link flows. Therefore, proving that a DUE exists, or is unique, is not 
possible. In practice, though, many of the algorithms used for STA convergence have been shown 
to be effective for DTA. 

To find UE, many STA models have relied on the MSA as described in Sheffi (1985), 
which has been shown to converge to the equilibrium solution in STA problems with well- behaved 
link-cost functions (Powell and Sheffi, 1982). The framework used for the static case may be easily 
extended to the solution of SBDTA problems. However, although MSA does not guarantee 
convergence for SBDTA due to the complex and discontinuous nature of link costs after accounting 
for traffic dynamics (Robbins and Monro, 1951), practical results indicate a convergence pattern. 

Simulation 

The simulation model of SBDTA is an approximation method to solving equations 
describing dynamic traffic flow, such as the kinematic wave theory (Lighthill and Whitham 1955; 
Richards 1956). The complexity has resulted in discrete solution methods such as the CTM 
(Daganzo 1994, Daganzo 1995) and the link transmission model (Yperman 2007). The models are 
solved by iterating through discrete time steps and updating flows accordingly. SBDTA can model 
continuous or discrete flow, and does not introduce stochastic driver behavior. Given roadway 
parameters, flow route, and departure time choice, simulation output is deterministic. For the 
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methodology of this task, the SBDTA for this task uses the multi-class CTM described above.  

Solution Framework 

In the context of DTA, MSA algorithms involve finding the time-dependent shortest paths 
under prevalent conditions and shifting a pre-determined fraction of vehicles to such routes. The 
fraction of vehicle sot be re-assigned, called the step size, decreases as the algorithm progresses, 

and is equal to  (where n is the iteration number) for all ODTs. 

SBDTA models are typically chosen for practical applications over their analytical 
counterparts, which are typically suitable only for the study of very small networks. Moreover, 
SBDTA models are appealing because they can realistically capture the impact of a variety of 
traffic control devices, network operation strategies, and time dependent changes in traffic 
conditions. Typical SBDTA frameworks include three main components: a traffic simulator, a path 
generator, and an assignment module. A traffic simulator is used to evaluate the network 
performance based on a specific assignment of vehicles to paths. The path generator uses 
simulation results to find the time-dependent least-cost path under prevalent conditions per OD 
pair and assignment interval tuple (ODT). The assignment module adjusts the allocation of 
vehicles to paths with the goal of attaining DUE. Assignment often follows an iterative approach 
based on updated travel times from the traffic simulator. Initially, a certain number of cars are 
prescribed for paths that have the least amount of travel time. The simulator runs and determines 
the travel times for each path. New paths are created by the path generator that perform better than 
the previous iteration and the assignment module, based on some predetermined method, takes a 
certain volume of vehicles from one path and places them in others. This process is visually 
represented in Figure 4.11. 
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Figure 4.11: Process of SBDTA Framework 

This process continues until the convergence criteria is met which is determined by Eq. 
4.79. Convergence criteria are assessed and the assignment of vehicles to paths is adjusted based 
on some pre-defined logic. The process is repeated until an acceptable solution is found. In order 
to evaluate convergence, most SBDTA applications define a gap function that measures the 
proximity of a given solution to the equilibrium conditions. SBDTA models differ mostly in the 
type and refinement of the selected traffic simulator, and on the rationale behind the assignment 
adjustments. 

 ( ) = ∑ ∑ ( )∈( , , )∈∑ ∑ ∈( , , )∈      (4.79) 

4.3.3 Test Networks Used for Link-Based Meso-Simulations 

This section presents the test networks used in the multiclass CTM meso-simulation to 
model the effects of CAVs on congestion and different types of road networks. These networks 
included two arterial networks, three freeway networks, and one downtown city network. These 
networks are also among the top 100 congested roadways in Texas, which made them particularly 
interesting candidates for observing the effects of CAVs on congestion and traffic (TxDOT 2015). 
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Arterial Networks  

Two arterial networks, including the intersection of Lamar and 38th Street as well as a strip 
of Congress Avenue, were used for simulations and are shown in Figure 4.12. The first arterial 
network, Lamar & 38th Street, contains the intersection between the Lamar & 38th Street arterials, 
as well as five other local road intersections. This network contains 31 links, 17 nodes, and 5 
signals—with a total demand of 16,284 vehicles over a 4-hour time window. Congress Avenue in 
Austin was also studied. This network has a total of 25 signals in the network, 216 links, and 122 
nodes with a total demand of 64,667 vehicles in a 4-hour period. These arterial networks used 
fixed-time signals for controlling flow along the entire corridor. 

 

 
Figure 4.12: Lamar and 38th Street and Congress Avenue Networks (from left to right) 

Freeway Networks 

The three total freeway networks are shown in Figure 4.13. The first freeway network is 
the I-35 corridor in the Austin region, which includes 220 links and 220 nodes with a total demand 
of 128,051 vehicles within a 4-hour span. (Due to the length, the on- and off-ramps are difficult to 
see in the image.) All intersections are off-ramps or on-ramps. The I-35 network is by far the most 
congested of the freeway networks and one of the most congested freeways in all of Texas, 
especially in the Austin Region. The US-290 network in the Austin region was studied, with 97 
links, 62 nodes, 5 signals, and a total demand of 11,098 vehicles within 4 hours. Finally, research 
was conducted on Texas State Highway Loop 1, also known as the MoPac Expressway after the 
Missouri Pacific Railroad that runs alongside the expressway, in the Austin region. This network 
contains 45 links, 36 nodes, and 4 signals with a total demand of 27,787 vehicles within 4 hours. 
On this network, there are a mixture of merging and diverging ramps and signals, which allows 
for some interesting analyses. This network was chosen due to the large number of signals around 
the freeway. All freeway networks are also among the 100 most congested roads in Texas (TxDOT 
2015). 
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Figure 4.13: I 35, Hwy 290, and MoPac Networks (from left to right) 

City Networks 

The last network studied was the Austin downtown network (Figure 4.14), as this would 
be the largest network tested to show us the effects of TBR and CAVs as they apply to an entire 
downtown structure. Downtown Austin differs from the previous networks in that there are many 
route choices available. Therefore, DTA was solved using the method of successive averages, a 
method that assigns vehicles to paths based on the iteration number in order to obtain an optimal 
system path for the vehicles. All scenarios were solved to a 2% gap, which was defined as the ratio 
of average excess cost to total system travel time. This gap was deemed sufficient to return the 
realistic results. Any decrease in the gap would incur larger amounts of computation time that 
would not alter the results significantly. Route choice admits issues such as the Braess and 
Daganzo paradoxes (1968, 1998), in which capacity improvements induce selfish route choice that 
increase travel times for all vehicles. The downtown network also contains both freeway and 
arterial links, with part of I-35 on the east side, a grid structure, and several major arterials. 
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Figure 4.14: Downtown Austin Network 

4.3.4 Effects of Autonomous Vehicles on Networks 

This section presents results of the DTA simulation to analyze the effects of different 
proportions of CAVs on a network with human drivers. In addition, simulations were run with 
100% CAVs using a TBR system on chosen test networks to see if there were travel time 
improvements in comparison with those of typical traffic signals. The results were analyzed by 
comparing travel times in vehicles/minute as well as the total travel time (TTT) of all vehicles in 
the network. The two main objectives of these simulations were to measure the effects on 
congestion of increasing the proportion of CAVs to HVs and of implementing a TBR system 
instead of a traditional signal system with 100% CAVs.  

It is important to note that these simulations assume zero pedestrians and cyclists, along 
the routes and at intersections. Non-instrumented, non-motorized travelers using crosswalks will 
disrupt intersection operations and reduce vehicle flows. Both pedestrians and cyclists will 
probably not be able to use the tiles in TBR system, unless they wear special glasses (giving path 
and timing requests to them), they can be trusted to follow the guidance, and their slower speeds 
are accounted for.  

In most simulations, perception reaction times of 0.5s and 1s were assumed for CAVs and 
HVs respectively, however, these times can be seen as something to be achieved farther into the 
future by autonomous vehicles whereas reaction times of 1s and 2s for CAVs and HVs respectively 
is a nearer and more achievable goal presently. Due to this ideology, several simulations were run 
using these 1s and 2s reaction times including the following networks: I-35, MoPac Expressway, 
Lamar & 38th Street, and Congress. After running simulations, it was observed that the slower 
perception reaction times showed the same trends and most of the time, nearly the same travel 
times with a few exceptions. For these reasons, only the previously listed four networks were 
simulated using the 1s and 2s reaction times. The purpose of these simulations involving analyzing 
effects of reaction times is to observe changes in road capacity as these reaction times can reduce 
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following headways and backwards wave propagation. Capacities for HVs have been directly 
taken from models calibrated for VISTA. 

CAV Effects on Arterial Networks 

The travel time results for arterial networks are shown in Figure 4.15. The general trend 
for the arterial networks is that the use of the TBR reduced travel times. Although reservations 
helped most arterial networks, such as Congress Avenue, at high demands the reservations 
increased travel times for Lamar & 38th Street. The lower 0.5-second reaction time for CAVs, 
compared to the 1-second reaction time for HVs, decreased travel times for every network tested. 
The 1s and 2s reaction times also decreased travel times for every network tested and followed 
similar trends for traditional signal systems with CAVs. However, the slower perception reaction 
times decreased travel times under the TBR system more so than with the faster 0.5s and 1s 
reaction times. This is primarily because 1s and 2s reaction times results in a greater benefit from 
CAVs relative to HVs, compared with 0.5s and 1s reaction times. As the proportion of CAVs in 
the network was increased, the travel times decreased. Reduced reaction times were more 
beneficial in some scenarios than in others, but all yielded a benefit. The reaction time difference 
was analyzed by running simulations of each network at a moderate 85% demand and by changing 
the proportion of CAVs ranging from 0%-100%. 

In the Lamar & 38th Street network, the TBR significantly decreased travel times for a 50% 
demand simulation as compared to traffic signals at 50% demand; however, once the demand was 
increased to 75%, reservations began increasing travel times relative to signals. This is most likely 
due to the close proximity of the local road intersections. On local road-arterial intersections, the 
FCFS reservations grant greater capacity to the local road than traffic signals. Because these 
intersections are so close together, reservations likely induced queue spillback on the arterial with 
the larger capacity. The longer travel times might also be linked by reservations removing signal 
progression on 38th Street. During high congestion, FCFS reservations tended to be less optimized 
than signals for the local road-arterial intersections. On the other hand, during low demand, 
intersection saturation was sufficiently low for reservations to reduce delays and travel times.  

The Lamar & 38th Street network responded well to an increase in the proportion of CAVs 
with dramatic decreases in travel times, due to the CAV low reaction times. At 85% demand and 
at 25% CAVs, the TTT was reduced by 50%, and when all vehicles were CAVs, the TTT was 
reduced by 87%. Each demand proportion was then simulated with only CAVs. As demand 
increased, the improvements from reduced reaction times also increased. At 50% demand, reduced 
reaction times decreased travel times by 44%, whereas at 100% demand, reduced reaction times 
decreased travel times by 93%. The effect of greater capacity improved as demand increased 
because as demand increased, the network became more limited by intersection capacity. At low 
congestion (50% demand), signal delays hurt travel times because reservations made significant 
improvements. At higher congestion, intersection capacity was the major limitation and, therefore, 
reduced reaction times were of greater benefit. 

Congress Avenue responded well to the introduction of reservations, showing decreases in 
travel times at all demand scenarios. These improvements are due to the large amount of streets 
intersecting Congress Avenue, each with a signal not timed for progression. The switch to 
reservations therefore reduced the intersection delay. However, the switch to reservations could 
result in greater demand on this arterial in the future. Included in these simulations were the effects 
of route choice in the downtown Austin network (Section 24.3).  
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CAVs also improved travel times and congestion due to reduced reaction times. At 85% 
demand, using reaction times of 0.5s and 1s for CAVs and HVs respectively, a 25% proportion of 
CAVs on roads decreased travel times by almost 60%. This increased to almost 70% reduction in 
travel time when all vehicles were CAVs. On Lamar & 38th Street, as demand increased, the 
reductions in travel times increased as well due to the CAV reaction times. For example, at a 50% 
demand level, the Lamar and 38th Street interchange experienced decreased travel time by about 
10% when all vehicles were modeled as CAVs. The same network at 100% demand and assuming 
all vehicles are CAVs, reduced the travel time by nearly 82%. The reduced reaction times did not 
improve travel times as much as TBR, however—except for the 100% demand scenario. This 
indicates that at lower demands, high travel times were primarily caused by signal delay. However, 
travel time was still improved by lower CAV reaction times.  

It is important to note that, except in the case of %100 CAVs with TBR, the reduced travel 
time and congestion is exclusively due to the reduced reaction time of 0.5s for CAVs, versus 1s 
for HVs, allowing for reduced following headway. Effectively, this allows for higher throughput 
for both links and intersections by increasing the maximum density of vehicles. This is an 
important assumption to the analysis, but it may not be valid in the early stages of CAV adoption. 
While CAVs will experience reduced reaction times relative to HVs, it is likely that, either due to 
transportation norms, an abundance of caution on behalf of manufactures, or issues with 
integrating CAVs with HVs, CAVs will not realize reduced following headways until CAV 
adoption is quite high. If it is the case that CAVs do not realize reduced headways, then average 
travel times and congestion will not decrease due to the presence of increased numbers of trips 
brought about by the lower cost of travel for CAVs and the presence of CAV round-trips. 
Fundamentally, if CAV behavior mimics that of HVs, then using existing infrastructure and 
intersection management policies is unlikely to lead to lower average travel times or reduced 
congestion. However, the results presented here assume that CAVs can take full advantage of their 
reduced reaction times. 

Overall, these results show consistent, significant improvements from reduced reaction 
times of CAVs at all demand scenarios. As shown in Figure 4.15, reducing the reaction time to 0.5 
seconds nearly doubles road and intersection capacity. However, the effects of reservations were 
mixed. At low congestion, traffic signal delays had a greater effect on travel time, and in these 
scenarios reservations improved the traffic flow. Reservations also improved the traffic flow when 
signals were not timed for progression (although this may be detrimental to the overall system). 
However, as seen on Lamar & 38th Street, during high demand, reservations performed worse than 
signals, particularly around local road-arterial intersections. 
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Figure 4.15: Arterial Network Travel Time Results for Lamar & 38th Street and Congress 

Avenue 

CAV Effects on Freeway Networks 

Results for the freeway networks are presented in Figure 4.16. Although there were some 
observed improvements in travel times for the US-290 network using reservations, the 
improvements were modest. On the other hand, observing the I-35 and MoPac networks, 
reservations made travel times worse for all demand scenarios. Most of the access on US-290 is 
controlled by signals, which explains the improvements observed when reservations were used 
there. Reservations seem to have worked more effectively with arterial networks, probably because 
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on- and off-ramps do not have signal delays. Therefore, the potential for improvement from 
reservations is smaller.  

Overall, greater capacity from CAVs’ reduced reaction times improved travel times in all 
freeway networks tested, with better improvements at higher demands. Reduced reaction times 
improved travel times by almost 72% at 100% demand on I-35. On US-290 and I-35, as with the 
arterial networks, the improvement from CAV reaction times increased as demand increased. This 
is because freeways are primarily capacity restricted and the faster reaction times increase this 
capacity. On MoPac, reaction times had a smaller impact, but the network overall appeared to be 
less congested. 

Links and nodes were chosen to study how reservations affected travel times at critical 
intersections or spans on the freeways, such as high demand on- or off-ramps. For these specific 
links, average link travel times were compared between 120 and 135 minutes into the simulation, 
at the peak of the demand. Researchers compared HVs, CAVs with signals, and different CAV 
proportions with signals at 85% demand, which resulted in moderate congestion. In the I-35 
network, very few changes in travel times for the critical groups of links were observed from the 
different intersection controls.  

 

 
Figure 4.16: Freeway Network Travel Time Results for I-35 

The differences appear greater in the US-290 corridor with more overall improvements in 
critical groupings of links near intersections. Interestingly, the largest improvements in travel times 
going from traffic signals to reservations occurred at queues for right turns onto the freeway. A 
possible explanation for this result is that making a right turn conflicts with less traffic than going 
straight or making a left turn. Although signals often combine right-turn and straight movements, 
reservations could combine turning movements in more flexible ways. Although larger 
improvements in travel times occurred at the observed right turns, improvements at left turns were 
also observed. Because US-290 has signals intermittently spaced throughout its span, vehicles are 
frequently stopping at lights causing signal delays, which can increase as the demand increases. 
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Using the reservation system, the flow of traffic is stopped less frequently, if at all, reducing 
congestion along the freeway. Also, in the 290 network, analyzing the effects of reduced reaction 
times showed that improvements to travel times were made due to the reaction times and their 
respective capacity increases, but these improvements were less than those experienced due to 
reservations. It is also important to note that the use of 1s and 2s reaction times rather than 0.5s 
and 1s reaction times for the CAVs and HVs respectively did not affect travel times or any trends 
seen in the original reaction time simulations. In most cases, using reservations instead of signals 
doubled the improvements resulting from using CAVs. Reservations appear to have a positive 
effect on traffic flow and congestion in networks (freeway and arterial) that use signals to control 
intersections. 
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Figure 4.17: Freeway Network Travel Time Results for MoPac and US 290 

CAV Effects on City Networks 

Tests were performed on the downtown network of Austin with 100% demand at different 
proportions of CAVs in a traditional signal system, as well as with the TBR system, as shown in 
Table 4.6. Downtown Austin differs from the previous networks in that many route choices are 
available. Therefore, DTA was solved using the method of successive averages. All scenarios were 
solved to a 2% gap, which was defined as the ratio of average excess cost to total system travel 
time. Route choice admits issues such as the Braess and Daganzo paradoxes (1968, 1998), in which 
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capacity improvements induce selfish route choice that increase travel times for all vehicles. The 
downtown network also contains both freeway and arterial links, with a section of I-35 on the east 
side, a grid structure, and several major arterials. 

Reservations greatly helped travel times and congestion in the downtown network, cutting 
travel times by an additional 55% at 100% demand. When combined with reduced reaction times, 
the total reduction in travel time was 78%. Reservations were highly effective in downtown 
Austin—more effective than in the freeway or arterial networks, even under high congestion. In 
downtown Austin, most intersections are controlled by signals with significant potential for 
improvement from reservations. Although many intersections are close together, congested 
intersections might be avoided by dynamic user equilibrium route choice decisions, avoiding the 
issues seen with reservations in Lamar & 38th Street. The increased capacity from 100% CAVs 
also contributed to much less congestion, reducing travel times by around 51%.  

Table 4.6: Downtown Austin City Network Travel Time Results 

Downtown Austin 

Simulation Type Demand
Proportion of 

CAVs 
TTT 
(hr) 

min/veh

Signals 100% 0 18040.2 17.23 
Signals with CAVs 100% 0.25 13371.4 12.77 
Signals with CAVs 100% 0.5 11522.3 11 
Signals with CAVs 100% 0.75 9905.1 9.46 
Signals with CAVs 100% 1 8824.7 8.43 
TBR Reservation System 100% 1 3984.3 3.8 
 
As mentioned earlier, all these simulations assume zero pedestrians and cyclists, along the 

routes and at the intersections. Non-instrumented, non-motorized travelers using crosswalks will 
disrupt intersection operations and reduce vehicle flows. Both pedestrians and cyclists will 
probably not be able to obtain a reservation within the TBR system, unless they wear special 
glasses (giving path and timing requests to them), they can be trusted to follow the guidance, and 
their slower speeds are accounted for.  

4.4 Shared Autonomous Vehicles 

4.4.1 Shared Autonomous Vehicle Framework 

This section presents a general framework for dynamic simulation of SAVs to admit the 
latest developments in traffic flow modeling and SAV behavior. The framework is built on two 
events that can be integrated into most existing simulation-based traffic models. The purpose of 
this framework is to encourage future studies on SAVs to make use of existing traffic models for 
effective comparisons with current traffic conditions. As we will demonstrate in our case study, 
replacing personal vehicles with SAVs for the same number of travelers could increase congestion. 
To determine whether SAVs are beneficial, it is therefore necessary to compare SAV and personal 
vehicle scenarios in the same traffic model. 

In this section, we discuss the key events defining this framework and the types of 
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responses they warrant. However, the specific responses depend on the dispatcher logic, and for 
generality we do not require specific dispatcher behaviors. This framework is based on a traffic 
simulator operating on a network G = (N, A, Z, V, D), where N is the set of nodes, A is the set of 

links, and Z ⊂ N is the set of centroids. The network has a set of SAVs V that provide service to 

the demand D. Note that D is in terms of person trips, not vehicle trips, since travelers will be 
serviced by SAVs. The integration of the framework with the traffic simulator is illustrated through 
the simulator logic in Figure 4.18 with simulator time t and time step ∆t. Events and responses are 
indicated with double lines; the remainder is the standard traffic simulator. The simulation steps 
are grouped into three modules: 1) demand; 2) SAV dispatcher; and 3) traffic flow simulator. The 
remainder of this section discusses these modules in greater detail. 
 

 
Figure 4.18: Event-based Framework Integrated into Traffic Simulator 

Demand 

The demand module introduces demand into the simulation and outputs the set of travelers 
that request an SAV at time  (This does not include waiting travelers). The demand module of 
existing traffic simulators may be adapted for this purpose, with the caveat that the demand is in 
the form of travelers, not personal vehicles. If new demand appears at , this triggers the 
corresponding event: a traveler calls an SAV. Because SAV actions are triggered by a traveler 
calling an SAV, this framework admits a very general class of demand models. The major 
requirement is that demand must be separated into packets that spawn at a specific time with a 
specific origin and destination. Although in this paper we primarily refer to demand as individual 
travelers, these packets could also represent a group of people traveling together. Demand cannot 
be continuous over time because that would trigger a very large number of events. However, in 
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our case study demand and traffic flow are simulated at a time step of 6 seconds, which is 
demonstrated to be computationally tractable for city networks. 

As a result, this framework can handle both real-time and pre-simulation demand 
generation. Real-time demand may be randomly generated every simulation step, triggering the 
event of a traveler calling an SAV when the demand is created. For models with dynamic demand 
tables, each packet of demand spawns at its departure time and calls an SAV then. In addition, if 
demand is assumed to be known prior to its departure time, SAVs may choose to preemptively 
relocate before the traveler appears. However, this requires that travelers plan ahead to schedule 
an SAV before they depart. A less restrictive assumption is that the productions at each zone are 
known, and SAVs may preemptively relocate in response to expected travelers. This requires less 
specific information about the traveler, and trip productions are usually predicted by metropolitan 
planning organizations. 

SAV Dispatcher 

For this framework, we assume the existence of an SAV dispatcher that knows the status 
of all SAVs and can make route and passenger assignments. With the range of wireless 
communication available today, the existence of a central dispatcher is a reasonable assumption 
for SAVs. However, if desired the dispatcher logic could also be chosen to simulate individual 
SAVs making decisions on their own limited information. 

The SAV dispatcher module determines SAV behavior, including trip and route choice, 
parking, and passenger service assignments. The dispatcher operates as an event handler 
responding to the events of a traveler calling an SAV or an SAV arriving at a centroid, and takes 
as input the event details. The dispatcher is responsible for ensuring that all active travelers are 
provided with SAV service. 

The output of the dispatcher is the SAV behaviors in response to the event. These include 
SAV vehicle trips (which are passed to the traffic flow simulator), passenger pick-up and drop-
off, and parking SAVs that are not needed. At any given time, each SAV is either parked at a 
centroid or traveling. If an SAV is parked, its exact location must be known. 

This framework is event-based, meaning that SAV actions are assigned when one of the 
following events occurs: 

1. A traveler calls an SAV. 

2. An SAV arrives at a zone centroid. 

The first event is triggered in response to demand departing (or requesting to depart), and 
the second is in response to an SAV completing its assigned trip. These can be implemented in 
most simulation-based frameworks. Instead of a traveler departing by creating a personal vehicle, 
the traveler calls an SAV. When an SAV completes travel on a path (which should end in a 
centroid), this also triggers an event so the simulator can check for arriving or departing passengers 
at that centroid and assign the SAV on its next trip. 

A Traveler Calls an SAV 

When a traveler ∈  calls an SAV, the dispatcher should ensure that the demand will be 
satisfied by an SAV. This could occur in several ways: 

1. If an empty SAV ∈  is parked at ’s origin, the dispatcher might assign  to 
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immediately pick up d. 

2. If an empty SAV ∈  is parked elsewhere, the dispatcher may assign  to travel 
to ’s origin. In this case, the dispatcher might choose to wait to optimize the 
movement of SAVs. For instance, Fagnant & Kockelman (2014) use a heuristic to 
move SAVs to a closer waiting traveler rather than the first waiting traveler. The 
dispatcher might also change the path of a traveling SAV to handle the demand. 

3. If an SAV ∈  is inbound to ’s location, the dispatcher might assign  to 
service  if possible. However, the dispatcher should consider ’s estimated time 
of arrival (ETA). If ’s ETA results in unacceptable waiting time for , the 
dispatcher may also send an empty SAV to  in order to reduce waiting time. 

Regardless of the conditions chosen for each action, the dispatcher must ensure that the 
demand will be handled. 

An SAV Arrives at a Centroid 

When an SAV ∈  arrives at a centroid ∈ , it has finished its assigned trip. This should 
result in two types of actions. First, if  is carrying any travelers destined for , they should exit . 
Second, the dispatcher should assign  to park at  or depart on another trip. There are several 
possibilities for this assignment: 

1. If  still has passengers, it should continue to the next destination. If ride sharing 
is allowed and the capacity of  permits it, other passengers at  may wish to take 

 to reduce their waiting time. 
2. If v is empty, and a traveler ∈  is waiting at  for an SAV, it is reasonable to 

assign  to accept .  may then proceed directly to ’s destination or, if dynamic 
ride-sharing is allowed, to another centroid to pick up another passenger. 

3. If no travelers are waiting at  and  is empty, the dispatcher might assign  to 
pick up a traveler at a different centroid. 

4. The dispatcher could also assign  to wait at  until needed for future demand, 
contingent on parking availability. If  does not have available parking,  cannot 
wait at  and must travel elsewhere. 

5. Finally, the dispatcher might assign v to preemptively relocate to handle predicted 
demand. 

The conditions given above are reasonable but may not be necessary. Optimizing the 
assignment of actions for the existing and predicted demand could use the possible actions in 
different ways. For example,  might be assigned to park at  and wait for expected demand even 
if  is already carrying passengers. This optimization problem is similar to the class of vehicle 
routing problems, which are NP-hard. Therefore, solving this optimization is outside the scope of 
this paper, but we will study heuristic rules in later sections. 

Traffic Flow Simulator 

The traffic flow simulator takes as input SAV trips and their departure times and 
determines the arrival times of SAVs at centroids. The primary output of the simulator is to trigger 
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the event that an SAV arrived at a centroid at the appropriate time. 
Because the SAV framework is built on the events of a traveler calling an SAV, and an 

SAV arriving at a centroid, the framework admits many flow propagation models. The major 
requirement is that the model be integrated into simulation. After departing, an SAV travels along 
its assigned path until reaching the destination centroid, at which point it triggers the arrival event. 
Therefore, the framework must track the SAV travel times to determine arrival times, but its travel 
time may be evaluated by a variety of flow models. For instance, the travel time could be set as a 
constant or through link performance functions. Alternatively, SAV movement may be modeled 
through micro- or meso-simulation. Any uncertainty in the model is compatible with this 
framework; the SAV triggers the event only when it arrives at its destination. Note that this 
framework is compatible with other vehicles on the road affecting congestion through link 
performance functions or simulation-based flow propagation. Therefore, this SAV framework can 
be implemented with existing traffic models by modifying them to trigger demand and centroid 
arrival events. To demonstrate this flexibility, the case study implements this framework on the 
simulation-based DTA model of Levin & Boyles (2015a). 

4.4.2 Case Study: Framework Implementation 

This section describes the implementation of the SAV framework on a CTM-based traffic 
simulator. Although we discussed how to implement SAVs in existing traffic simulators, the 
responses of the dispatcher to events were not specified for generality. The purpose of this section 
is to describe the specific traffic flow simulator and dispatcher logic used in our case study, 
including the heuristics for dynamic ride-sharing and preemptive relocation.  

In this case study, we assume that all vehicles are SAVs: travelers do not have personal 
vehicles available. This setting was chosen in order to study the feasibility of switching to an 
entirely SAV-based travel model. Furthermore, a mix of SAVs and personal vehicles would 
complicate the route choice. Finding routes for personal vehicles would require solving DTA, and 
the many simulations needed to solve DTA would add computation time and complexity to the 
theoretical model. 

Demand 

For this case study, we converted personal vehicle trip tables into SAV traveler trip tables. 
These trips are discretized with specific departure times. Although some of these vehicle trips may 
encompass multiple person trips, that information was not available. Furthermore, multiple 
persons using the same vehicle would likely use the same SAV. Therefore, it would only affect 
situations in which SAV capacity was a limitation, such as dynamic ride-sharing. 

For each trip, the demand module creates a traveler at the origin at the appropriate time. 
Although the demand is completely known in advance, the SAV dispatcher is not programmed to 
take advantage of demand information. The dispatcher only responds to demand when a traveler 
is created. 

Traffic Flow Simulator 

The traffic flow simulator uses the CTM (Zhang et al. 2015, Lighthill and Whitham 1995), 
which is a space and time discretization of the hydrodynamic theory of traffic flow (Powell and 
Sheffi 1982, Robbins and Monro 1951). CTM has been used in, and allows direct comparisons 
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with, large-scale DTA simulators (Daganzo, 1995). Because all vehicles are SAVs, we assume 
that intersections were controlled using the reservation-based protocol of Dresner & Stone (2004) 
for AVs. For computational tractability, we use the conflict region model of reservation-based 
intersection control proposed by Levin & Boyles (2015a). 

DTA models typically assume that route choice is based on driver experience. Each vehicle 
individually seeks its shortest route, resulting in a DUE in which no vehicle can improve travel 
cost by changing routes. Although this concept is based on the analytical STA models, it requires 
further study to be formulated for SAV behavior because SAV trips may depend on stochastic 
demand. Therefore, we use a dynamic network loading-based route assignment. Let  be the 
path stored by the dispatcher for travel from  to . When an SAV departs to travel from  to , it 
is assigned to the stored path . During simulation, when 	 ≡ 	0	 	∆ , where ∆  is the 
update interval,  is updated to be the shortest path from  to  based on average link travel 
times over the interval [ 	 − 	∆ , ). Our experiments use ∆ = 1 minute. 

SAV Dispatcher 

This section describes the specific logic used to assign SAVs in our case study. Although 
this is only a heuristic for the vehicle routing problem of servicing all travelers, vehicle routing 
problems in general are NP-hard and solving them in real time is unrealistic. Instead, we describe 
reasonable behaviors that SAVs could choose. 

A Traveler Calls an SAV 

When a traveler ∈  calls an SAV at centroid ∈ , we first check whether there are any 
SAVs already en-route to . If an SAV en-route to  is free, or will drop off its last passenger at , 
and its ETA at  is less than 10 minutes away, we allow that SAV to service . This is to reduce 
the congestion that would result from sending more SAVs. (As we demonstrate below, moving 
SAVs more frequently can result in a net travel time increase while decreasing waiting times due 
to congestion.) If there are multiple travelers waiting at , we assume that travelers get SAVs in a 
FCFS order — with some exceptions for dynamic ride-sharing. Therefore, we look at the ETA of 
the SAV that would be assigned to , if one exists.  

Otherwise, we search for the parked SAV that is closest (in travel time) to . If it could 
arrive sooner than the ETA of the appropriate en-route SAV, it is assigned to travel to  in order to 
provide service to . This is a FCFS policy: the traveler that requests an SAV first will be the first 
to get picked up, even if the SAV could sooner reach a traveler departing later. Although Fagnant 
& Kockelman (2015) initially restricted SAV assignments to those within 5 minutes of travel to 
improve the system efficiency, FCFS is also a reasonable policy for dispatching SAVs. If all SAVs 
are busy, then  is added to the list of waiting travelers . 

An SAV Arrives at a Centroid 

If an SAV 	 ∈ 	  is free after reaching centroid 	 ∈ 	  (either because  is empty, or 
because  drops off all passengers at ), and there are waiting travelers at , then it is assigned to 
carry the longest waiting traveler. Note that  may not be the same SAV that was dispatched to 
that traveler. Due to stochasticity in the flow propagation model, it is possible that the order of 
arrival of SAVs may differ. However, there is no significant difference between two free SAVs in 
terms of carrying a single traveler. Therefore, we assign them to travelers in FCFS order. 
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If v still has passengers after reaching  (which is possible when dynamic ride-sharing is 
permitted), then  is assigned to travel to the next passenger’s destination. However, travelers 
waiting at  have the option of entering  if it helps them in reaching their destination. 

If  is free after reaching  and no demand is waiting at , then  is dispatched to the longest-
waiting traveler in . If multiple SAVs become free at the same time, the one closest to the 
longest-waiting traveler in  will be sent. If  is empty, then  will park at  until needed. We 
assume for this study that centroids have infinite parking space, as there are no personal vehicles 
in this network. However, it would be possible to model limited parking by assigning  to travel 
somewhere else if parking was not available at . 

Dynamic Ride-sharing 

We also consider the possibility of dynamic ride-sharing. Following the principle of FCFS, 
we give precedence to the longest-waiting traveler. However, we allow other passengers to enter 
the SAV if they are traveling to the same, or a close destination. Specifically, suppose that the 
SAV ∈  is initially empty, and the longest-waiting traveler at ∈  is , seeking to travel from 
 to ∈ . If there is another traveler  also seeking to travel from  to , then  may take the 

same SAV. If there is a traveler  seeking to travel from  to ∈ , and there is room in the SAV, 
 may also take the same SAV if the additional travel time is sufficiently low. Let  be the 

expected travel time from  to . Then  will take the SAV if + ≤ (1 + ) . Otherwise, 
 will wait at . If decides to take the SAV, then any other waiting travelers at  also traveling 

from  to  may enter the SAV. Although this violates FCFS, this is permitted because it does not 
impose any additional travel time on the SAV. 

This offer is extended, in FCFS order, for all travelers waiting at  until  is full. For 
instance, suppose a passenger  departing after  is traveling from  to ∈ . Because of FCFS, 

 must service first, but if + + ≤ (1 + ) , then will still take SAV  from . 
The logic is slightly different when  arrives at  already carrying a passenger. In that case, 

precedence is given to all passengers already in  because they have been traveling. However, 
travelers in  may enter  — at the back of the queue — if the additional travel time is less than  
of the direct travel time. 

The problem of dynamic ride-sharing is a vehicle routing problem with all SAVs. In 
general, vehicle routing problems can admit solutions in which an SAV picks up several 
passengers before dropping any off. The heuristic in this case study does not do that due to 
complexity, although that behavior could certainly be implemented within this framework. In 
practice, due to the necessity of tractability when solving vehicle routing problems in real-time in 
response to demand, similar simple heuristics are likely to be used. Even with this restricted form 
of dynamic ride-sharing, the benefits over non-ride-sharing SAVs are significant, as shown below. 

Preemptive Relocation 

Preemptive relocation can reduce waiting times by starting to move SAVs to travelers’ 
locations before they depart. Fagnant & Kockelman (2015) studied four strategies for preemptive 
relocation and found that the best performing heuristic distributed SAVs to each centroid according 
to the proportion of productions. Since productions are typically determined by a survey of land 
use, the total expected trip productions at any centroid is likely to be known even if specific traveler 
departure times are not. Formally, let be the productions and  the set of SAVs parked at ∈ . 
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The number of SAVs to be moved to  is = | || | − ∑ ∈  

If > 0,  SAVs are moved from ; if > 0, −  SAVs are moved to . Let =	{ ∈ | > 0} and =	 { ∈ | > 0}.  is sorted in decreasing order. For each ∈ , 
 SAVs from  are distributed to the nearest centroids (by travel time) in . This attempts to 

minimize the congestion caused by relocation. 

4.4.3 Summary 

This section presented an event-based framework for implementing SAV behavior in 
existing traffic simulation models. The framework relies on two events: travelers calling SAVs, 
and SAVs arriving at centroids, that are orthogonal to traffic flow models. This allows comparisons 
with personal vehicle scenarios through solving traffic assignment in the same simulator. We 
implemented this SAV framework within a cell transmission model-based dynamic traffic 
assignment simulator as well as heuristic approaches to preemptive relocation and dynamic ride-
sharing. 

4.4.4 Shared Autonomous Vehicle (SAV) Simulation Results 

Many sets of experiments were undertaken to study how SAVs perform relative to personal 
vehicles, and how preemptive relocation and dynamic ride-sharing affect performance. 
Experiments were performed primarily on the downtown Austin network. This is only a 
subnetwork of the larger Austin region, which has 1.2 million trips. This subnetwork was used 
because computation times were around 30–40 seconds per scenario on an Intel Xeon running at 
3.33 GHz (with the SAV framework and CTM implemented in Java), allowing many scenarios to 
be studied. However, many trips bound for the downtown grid originate from outside the 
subnetwork region. They were approximated as arriving from one of the subnetwork boundaries. 
The data was provided by the Capital Area Metropolitan Planning Organization. 

Initially, SAVs were distributed proportionally to zones based on the number of 
productions in each zone. The assumption is that all SAVs could be relocated overnight to fulfill 
these proportions at the start of the AM peak This reallocation is different than preemptive 
relocation which is relocating SAVs during the AM peak, while travelers are requesting SAVs. 
Fagnant & Kockelman (2014) used a seeding run to determine the number of SAVs necessary to 
service all travelers. Instead of a seeding run, a sensitivity analysis was performed to study how 
increasing numbers of SAVs affected travel time. A seeding run may have biased the number of 
SAVs to be lower. In some scenarios (such as dynamic ride-sharing) it was observed that lower 
numbers of SAVs performed better due to lower congestion. However, in other scenarios, higher 
numbers of SAVs improved service. The following charts contain experiments using between 
4,000 and 40,000 SAVs, with increments of 500. For some scenarios, the range was reduced to the 
number of SAVs that could provide service to all travelers within 6 hours, because service was 
limited by having too few SAVs or too much congestion.  

Personal Vehicles 

First, to create a base scenario, DTA was solved on downtown Austin, assuming that all 
travelers use privately owned CAVs for their trips. Although SAVs use a dynamic network 
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loading-style route choice, the DTA model assumed drivers based their routes on past experience 
to find a dynamic user equilibrium. Therefore, the routing strategy in DTA is likely more efficient 
than the routing strategy for SAVs. Overall, when using personal vehicles with traffic signals, 
travelers experienced an average travel time of 15 minutes. When signals were replaced with 
reservation controls, average travel times were reduced to 7 minutes. Since the adoption of 
reservation controls may be difficult or inefficient if a significant proportion of personal vehicles 
are not autonomous, both DTA scenarios may be reasonable for comparison against SAVs. The 
assumption made here was that if SAVs were to replace all personal vehicles, reservation controls 
would be used.  

Shared Autonomous Vehicles 

The initial SAV scenario did not include preemptive relocation or dynamic ride-sharing. 
Figure 4.19 shows travel time results with 28,500 to 40,000 total SAVs available. (Lower numbers 
of SAVs were found to be insufficient to service all travelers after 6 hours.) As the number of 
SAVs increased, waiting time decreased linearly. Vehicle miles traveled (VMT) and empty 
VMT—miles traveled while not carrying any passengers—decreased at the same rate as the 
number of SAVs increased (Figure 4.19). This indicates that the difference was primarily due to 
fewer repositioning trips to pick up the next traveler. It is intuitive that as the number of SAVs 
increased, the average distance between a waiting traveler and the closest available SAV would 
decrease. Overall travel times in this base SAV scenario were much higher than with personal 
vehicles. In-vehicle travel time, interestingly, decreased for around 31,000 to 32,000 SAVs, then 
remained nearly constant thereafter. This may be due to a reduction in congestion when SAVs 
were traveling less for repositioning trips. In-vehicle travel times of 33–35 minutes, however, are 
double that of DTA with signals , and five times that of DTA with CAVs. Previous studies 
predicted that each SAV can service multiple travelers with acceptable waiting times—that is still 
true in these experiments, but the travel times experienced are more similar to those of public 
transit. Travelers may be unwilling to use SAVs if the travel times are this high.  
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Figure 4.19: Travel Time and VMT for the Base SAV Scenario 

The difference in travel time is most likely due to additional congestion from empty 
repositioning trips made to pick up the next traveler. The downtown Austin network is already 
fairly congested during the AM peak, and the addition of repositioning trips makes matters worse. 
This is an important result, however, because it demonstrates the value in using a realistic traffic 
flow model for analyzing congestion. For less congested networks, SAVs might cause only modest 
increases in congestion. However, for a high-traffic city in the AM peak, these results are not 
encouraging for a switch to SAVs. 

Preemptive Relocation 

Next, the effects of preemptively relocating SAVs to match the proportion of productions 
of each centroid was studied. This resulted in very high waiting times with few SAVs available. 
This is likely due to the fairness of assigning SAVs: travelers are prioritized by the time spent 
waiting. Unless a traveler was waiting at the destination of the relocating SAV, it would be re-
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assigned to service a different traveler, which is likely why the waiting time was so high when few 
SAVs were available. Although this is a reasonable policy, alternatives such as that of Fagnant and 
Kockelman (2014), in which travelers are prioritized according to distance from the available 
SAV, could improve average waiting time. 

As the number of SAVs increased, waiting time decreased linearly, although it was still 
much higher than the base scenario. One potential reason is the additional congestion resulting 
from relocating SAVs. This is illustrated by the much higher empty VMT resulting from 
relocations, shown in Figure 4.20. Relocating resulted in around 400,000 vehicle miles of empty 
travel. This did not decrease as the number of SAVs increased, as it did in the base scenario, which 
likely contributed to the increasing in-vehicle travel times. The in-vehicle travel time increased 
linearly with the number of SAVs, which is indicative of those additional SAVs contributing 
significantly to congestion. In fact, beyond 20,500 SAVs, congestion prevented effective service 
for all travelers. Although waiting time decreased, the increases in travel time resulted in only 
small decreases in TTT. 
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Figure 4.20: Travel Time and VMT for the Preemptive Relocation Scenario 

Dynamic Ride-Sharing 

Compared with the base and pre-emptive relocation SAV scenarios, dynamic ride-sharing 
allowed SAVs to provide in-vehicle travel times competitive with personal vehicles. SAV capacity 
was four passengers, and  was set at 0.4 (Fagnant and Kockelman 2015). At the minimum 
scenario of 4000 SAVs, the average in-vehicle travel time was 12.4 minutes and the average 
waiting time was only 5.1 minutes, as shown in Figure 4.21. For travelers who call a SAV a few 
minutes before they plan to leave, a 5.1-minute waiting time is easily forgivable. Those 12.4-
minute in-vehicle travel times improve over average travel times with personal vehicles and traffic 
signals, and are only around 5 minutes greater than personal vehicles with reservation controls. As 
the number of SAVs increased, though, travel times also increased until they were comparable 
with the non-ride-sharing scenario. Waiting times were overall much lower. This was probably 
because travelers with nearby destinations could share the same SAV, when one arrived. This 
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approach yielded the best results when the fewest SAVs were available: despite increased waiting 
times, SAV utilization was greater. 

Figure 4.21 shows that VMT peaked with around 23,000 SAVs. With only 4000 SAVs, 
VMT was low because of the low number of SAVs, but dynamic ride-sharing allowed just 4000 
SAVs to service 62,836 travelers in the AM peak. Note that the difference between total and empty 
VMT increases as the number of SAVs increases due to the reduction in average number of 
passengers carried per SAV. This demonstrates an interesting result: when ride-sharing is possible, 
having fewer SAVs is sometimes more efficient. Ride-sharing reduces congestion and maximizes 
the utilization of each SAV because travelers accumulate as they wait for one of the few SAVs to 
arrive for pick-up 

A fleet of 4000 SAVs corresponds to a 93.6% reduction in the number of vehicles: each 
SAV services an average of 15.7 travelers. This efficiency is similar to that found in previous 
studies, such as one SAV servicing 11 travelers (Fagnant and Kockelman 2014). However, the 
observed efficiency is at least partially due to the network topology: due to considering only the 
downtown region, traveler origin/destinations are fairly close together. If a regional network were 
used, the efficiency would likely decrease. 

Preemptive relocation was somewhat detrimental when used with dynamic ride-sharing, as 
shown in Figure 4.22. When the number of SAVs was below 10,000, preemptive relocation 
slightly reduced waiting times. At higher numbers of SAVs, though, relocation still had a waiting 
time of around 3–4 minutes. This probably resulted from high congestion delaying the arrival of 
relocating vehicles. Beyond 20,000 SAVs, the congestion caused by the additional relocations 
prevented travelers from reaching their destination. Travel time increased significantly with the 
number of SAVs, mostly due to increases in in-vehicle travel time from congestion. However, 
travel time with ride-sharing and relocation increased at a lower rate than travel time with just ride-
sharing. In fact, when the number of SAVs was between 4000 or 10,000, preemptive relocation 
with ride-sharing had slightly lower travel times than ride-sharing alone. However, at higher 
numbers of SAVs, with ride-sharing available, most SAVs were relocating, resulting in high 
congestion and worse travel times than in the base case. As the number of SAVs increased, the 
empty VMT increased as well, resulting in around 100,000 additional miles traveled at 20,000 
SAVs when relocation and ride-sharing was used compared to ride-sharing alone (Figure 4.22). 
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Figure 4.21: Travel Time and VMT for the Dynamic Ride-Sharing Scenario 

 



108 

 

 
Figure 4.22: Travel Time and VMT for the Dynamic Ride-Sharing and Preemptive Relocation 
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Chapter 5.  Benefit/Cost Analysis 

In order to assess potential benefits to the transportation system and its users stemming from 
CAVs, it is first critical to assess the existing scope of problems faced by the traveling public. To 
these ends, this report attempts to quantify these problems across two major domains: congestion 
and crashes. During the course of the project, the team developed initial estimates, which were 
then refined using the results of the other analyses performed. Section 5.1 describes the preliminary 
estimates generated towards the start of the project, and Section 5.2 the updated estimates 
generated near the end. 

5.1 Preliminary Estimates 

5.1.1 Congestion 

Congestion exists as a consistent economic drain on the state. While Texas is in an enviable 
position compared to many other parts of the nation, given its growing economy and relatively 
plentiful jobs, it remains important to protect the state’s advantage as a lower-cost, business-
friendly location by avoiding scenarios where increasing congestion imposes costs harmful to the 
state’s economy. Based on the 2015 Urban Mobility Report (Schrank et al. 2015), urban areas of 
all sizes are experiencing the challenges related to increasing levels of congestion. Data from 1982 
to 2014 show how congestion has expanded over time on a national level, and may continue to 
increase (absent systemic changes), as shown in Table 5.1. 

Table 5.1: Major Findings of the 2015 Urban Mobility Scorecard (471 U.S. Urban Areas) 
U.S. Congestion Costs 1982 2000 2010 2013 2014 

Travel delay (billion hours) 1.8 5.2 6.4 6.8 6.9 
Wasted fuel (billion gallons) 0.5 2.1 2.5 3.1 3.1 
Congestion cost (billions of 2014 dollars) $42 $114 $149 $156 $160 

 
While these dramatic changes are occurring nationwide, Texas’ population growth 

continues to outpace the rest of the country, and thus the state is experiencing significant 
congestion strains. Table 5.2 summarizes the extent of Texas’ road congestion problems, as 
measured across multiple performance measures for the state’s major urban areas13 in 2014.

                                                 
13 Defined as the developed area (population density more than 1,000 persons per square mile) within a metropolitan 
region. 
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Table 5.2: Congestion Data for Texas Urban Areas 

(Sources: TTI 2014 & Schrank et al., 2015) 

 Austin 
Dallas-

Fort 
Worth 

Houston 
San 

Antonio 
Others14 

National 
level 

Population (1000 s) 1,500 5485 5000 1935 2600 -- 
Daily Vehicle-Miles of Travel (1000s) 
Freeway 
Arterial streets 

 
13,273 
11,237 

 
64,411 
41,713 

 
51,673 
39,211 

 
21,270 
12,956 

 
15,755 
20,746 

 
-- 
-- 

Annual Excess Fuel Consumed 
Total Fuel (1000 gallons) 
Fuel per Peak Auto Commuter (gallons) 

 
21,654 

22 

 
79,392 

22 

 
94,300 

29 

 
28,809 

20 

 
28,431 

14 

 
-- 
19 

Annual Delay 
Total Delay (1000s of person-hours) 
Total Delay (Freeway)15 
Total Delay (Arterials) 
Delay per Peak Auto Commuter (person-hrs) 

 
51,116 
19,936 
31,180 

52 

 
186,535 
72,748 

113,786 
53 

 
203,173 
79,237 

123,935 
61 

 
64,328 
25,088 
39,240 

44 

 
58,823 
 9,411 
49,411 

29 

 
-- 
-- 
-- 
42 

Travel Time Index 1.33 1.27 1.33 1.25 1.15 1.22 

Freeway Planning Time Index (95th 
Percentile) 

2.58 2.65 3.13 2.12 1.6 2.41 

Congestion Cost (constant 2014 $) 
Total Cost ($ millions) 
Cost per Peak Auto Commuter ($) 

 
$1,140 
$1,159 

 
$4,202 
$1,185 

 
$4,924 
$1,490 

 
$1,462 
$1,002 

 
$1,351 
$676 

 
-- 

$960 
 

When taken collectively, these measures show that Texans annually experience over 560 
million hours of delay, going relatively slowly or sitting in traffic, with an economic cost of over 
$13 billion. As should be expected, higher levels of VMT, total fuel consumption, delays, and 
congestion costs are seen in Texas’ larger cities. On a per-commuter basis, Houston travelers 
experience the greatest congestion costs, followed by those from Dallas-Fort Worth and Austin. 
While not quantified in terms of direct economic costs, the travel time variability measures (travel 
time index and freeway planning time index) represent real costs to travelers as well, since travelers 
must either leave increasingly early or risk being late. In sum, this data clearly illustrates the scope 
of congestion impacts to Texas in terms of wasted time and lost economic efficiency. 

Furthermore, historical data shown in Figure 5.1 illustrates growing population trends 
along with several congestion performance measures in recent years from 2010 to 2014 (TTI 
2014). These charts show how congestion continues to worsen across the state with continued 
population growth and economic activity. 
 

                                                 
14 These include El Paso, Laredo, McAllen, Brownsville, Corpus Christi, and Beaumont, Texas. Values per peak-
period automobile traveler were calculated using a weighted average by population as weights.  
15 These values were calculated using the base share of delay on freeways vs. arterials at the national level provided 
by (Schrank et al., 2015), and adjusted based on freeway vs. arterial VMT differences when comparing Texas to U.S. 
averages. 
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(a) 

 
(b) 

 
(c) 

 

 
(d)  

Figure 5.1: Trends of (a) Population, (b) Delay, (c) Cost and (d) Travel Time Index per Peak 
Auto Commuter from 2010 to 2014.  

The congestion problem can be further broken down into its component parts based, on 
roadway type. Nationally, more delay is experienced on surface streets than freeways, and larger 
urban areas experience higher shares of their delay on freeways than in smaller cities. Additionally, 
approximately 40% of delay occurs in off-peak hours, as shown in Figure 5.2, indicating a 
persistent problem that could be potentially ameliorated with carefully considered CAV strategies.  
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Figure 5.2: Percent of Delay, By Road Type and Time of Day 

While the Urban Mobility Report outlines the total impacts of congestion costs in urban 
areas, there may be opportunities for some mobility enhancements in rural areas and small towns 
too. For example, a small town may have 20 traffic signals, each with 2,500 entering vehicles 
during the highest traffic hour. If 10 seconds of delay could be shaved off each signal through 
cooperation with CAVs, over a half million hours of delay could be saved per year. Though this 
figure pales in comparison to the delay experienced in Texas’ major cities, the cumulative impacts 
across Texas’ numerous small towns could become sizable. Since the scope of delay and potential 
for improvement in small towns has not been quantified in the literature, this chapter cannot 
adequately quantify these potential impacts with any accuracy. Therefore, readers should note that 
the true potential for delay reductions could be greater than estimated in this report, due to the 
omission of potential improvements in small towns outside of large urban metro areas. 

5.1.2 Crashes 

In 2013 Texas experienced more than 446,000 crashes, resulting in 3,065 fatalities and over 
296,000 injuries (TxDOT 2014). With nearly 250 billion VMT per year, this translates to one crash 
for every 532,000 VMT and one fatality for every 78 million VMT. This comes at a total 
comprehensive economic cost of $83 billion (or $3,000 per Texan per year), a tremendous social 
burden. While most collisions occurred in urban areas (75.2% of all crashes), fatalities in rural 
areas were typically more severe, accounting for 55.4% of all fatalities. Table 5.3 outlines crash 
count distributions, by severity and setting, across the state. 
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Table 5.3: Number of Crashes in Texas, 2013 

Crashes 
# Crashes # Injuries 

Rural Urban Statewide Rural Urban Statewide 
# of Fatal Crashes or 
Fatalities 

1,648 1,417 3,065 1,887 1,521 3,408 

# Incapacitating Crashes or 
Injuries 

5,184 8,254 13,438 6,847 9,960 16,807 

# Non-Incapacitating 
Crashes or Injuries 

13,778 38,433 52,211 20,205 52,430 72,635 

# Possible Injury Crashes 
or Injuries 

16,218 72,591 88,809 26,236 116,921 143,157 

# Non-Injury Crashes or 
Non-Injuries 

70,655 201,946 272,601 203,259 694,664 897,923 

# Unknown Severity 
Crashes or Injuries 

2,950 12,755 15,705 8,539 51,766 60,305 

Total Number of Crashes 
or Injuries 

110,433 335,396 445,829 63,714 232,598 296,312 

 
Rural and urban settings have their own unique characteristics in terms of traffic flow, 

roadway facilities types, traffic control, operating speeds, and other factors. These characteristics 
also lead to differences in incidence rates. For example, NHTSA (2015) estimates a fatality rate 
per 100 million VMT in rural areas at 1.88 compared to just 0.73 for urban areas.  

In addition to context, motorcycle crashes are of particular concern to CAVs. Collisions 
that a CAV can avoid in these instances are inherently limited, since a CAV can only prevent its 
own mistakes, and not those of a motorcyclist. And while a motorcycle can be automated (see e.g., 
Brassfield 2014), the appeal of a self-operating motorcycle seems quite limited. With 
approximately half of all motorcycle fatalities being single-vehicle collisions (Fagnant and 
Kockelman 2015), this share of crashes is assumed to remain unchanged.  

Moreover, motorcycle crashes are often quite severe. While motorcycle-involved crashes 
represented just 0.8% of all collisions in Texas, they accounted for over 15% of statewide fatalities. 
This means motorcyclists are more vulnerable in the event of a crash, with associated higher 
likelihood of a fatality resulting, and along with higher expected crash cost per motorcycle. The 
number of motorcycle injuries is shown in Table 5.4.  

Table 5.4: Motorcyclist Injuries in Texas, 2013 

Types of Injuries 
Motorcyclist 

Injuries 
All Crash Injuries 

Motorcyclists’ 
Injury Share 

Fatalities 503 3,408 14.8% 

Incapacitating Injuries 1,969 16,807 11.7% 

Non- Incapacitating Injuries 3,698 72,635 5.1% 

Possible Injuries 2,002 143,157 1.4% 

Non-Injuries 1,283 897,923 0.1% 

Unknown Injuries 184 60,305 0.3% 

Total TX Motorcycling Injuries 8,356 29,312 0.8% 
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Crash injury severities were then translated from the KABCO scale to the MAIS scale, 
using Blincoe et al.’s (2015) estimates, in order to calculate total economic and comprehensive 
crash costs. In addition to economic components such property damage, delay, medical costs, lost 
productivity, and other factors, comprehensive crash costs also include external measures such as 
quality-adjusted life years and willingness-to-pay measures for avoiding crashes. Table 5.5 depicts 
the estimated number of injuries in Texas across the MAIS severity scale, along with per-crash 
economic and comprehensive valuations associated with each severity level. 

Table 5.5: Number of Injured Persons in Crashes and Costs per Injured Person 

Severity 
# Injured Persons 

(all Injuries) 
# Injured 

Motorcyclists  
Economic 

Cost/Injury 
Comprehensive 

Cost/Injury 

Fatal 3,408 532  $1,398,916  $9,145,998  

MAIS5 1,213  55  $1,001,089  $5,579,614  

MAIS4 1,910  86  $394,608  $2,432,091  

MAIS3 9,181  867  $181,927  $987,624  

MAIS2 32,015  1,511  $55,741  $396,613  

MAIS1 358,219  5,240  $17,810  $41,051  

MAIS0 788,080  1,348  $2,843  $2,843  
 

These valuations indicate that the total economic cost of Texas’ 446,000 crashes in 2013 
exceeded $19 billion, rising to $83 billion once comprehensive costs are included. 

It should be noted that this is markedly higher than TxDOT’s 2013 crash cost estimate of 
$27.8 billion, since TxDOT’s figures rely on the National Safety Council’s valuations (NSC 2012), 
which include economic components only, and are somewhat less current and rigorous than 
Blincoe et al.’s (2015) work. 

5.1.3 Implications for Travel and Vehicle Ownership 

As CAVs become more prevalent, they are bound to impact our interface with the 
transportation system. Texas may see an increase in VMT as commuters take their self-driving 
vehicles to work, then send them home to park for free or be used by other family members. Trip 
generation may rise as those previously unable to drive (e.g., children, the elderly, and disabled 
persons) achieve newfound independent mobility. Empty vehicles may drive themselves from one 
location to another, to park less expensively or serve the travel needs of another person. Airlines 
may see fewer passengers as more long-distance travelers take to the roadways (LaMondia et al. 
2016). Ultimately, people may choose different destinations and home and work and school 
locations, as motorized travel becomes less onerous. 

Household vehicle ownership patterns may also change. As fleets of shared on-demand 
driverless vehicles become available (also known as shared autonomous vehicles, or SAVs), 
households may choose to own fewer cars, relying on SAV services instead for some or even all 
of their travel needs. This section examines potential impacts across both VMT and vehicle 
ownership dimensions, in order to predict potential changes that Texas may experience, and the 
resulting impacts on congestion and safety. 
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Vehicle-Miles Traveled (VMT) 

With the arrival of CAVs, it is quite likely that we will see a net increase in total VMT. 
Individual travelers will be freed, enabling them to read a book, use a laptop, relax, or perform 
other activities previously not possible to undertake while driving (at least safely). This should 
lead to an effective reduction in the perceived values of travel time (or alternatively, travel time 
burdens) for CAV users. Indeed, Gucwa (2014) estimated a potential 4–8% VMT increase due to 
lower perceived values of travel time and increased road capacity, due to CAV capabilities. 
Additionally, once fully automated vehicles arrive, CAVs may afford new mobility opportunities 
for those currently unable to drive. This development may also give rise to a new transport mode, 
the shared AV (SAV). SAVs may act as on-demand driverless shuttles or taxis, transporting 
travelers from one location to the next throughout the day. It is highly probable that some of this 
travel will be unoccupied at times, thus introducing new VMT, though if enough ridesharing takes 
place, net reductions could possibly result. Fagnant and Kockelman (2015) estimated that, when 
serving 1.3% of regional trips by SAV (with no ridesharing), total VMT rose by 8.7% on a per-
trip basis. However, when ridesharing was incorporated into the model, just 4.5% VMT was added, 
and this figure could be pushed to below zero (i.e., VMT reductions) with greater SAV demand or 
looser ridesharing parameters. Moreover, (if not prohibited) it may also be possible for individual 
CAV owners to send their vehicles to cheaper parking locations, thus creating even more VMT. 

When considering all of these factors together, several assumptions may be made in order 
to develop an order-of-magnitude estimate for the potential changes in VMT at various levels of 
market penetration. At the 10% market penetration level, a 20% VMT increase is assumed per 
CAV, to account for latent demand (i.e., those previously unable to drive) as well as falling values 
of travel time, and unoccupied CAV travel. Added VMT per CAV is assumed to fall to 15% at the 
10% market penetration level (i.e., CAVs between the 10–50% range will see 15% per-CAV travel 
increases, on top of the 20% increases shown by the first 10% of CAV adopters), and just 10% at 
the 90% market penetration level. These falling values account for the increased potential for 
ridesharing via SAV (and less unoccupied relocation), as well as the fact that latent demand from 
those unable to drive would already have been served. Since there is likely greater utility for 
unoccupied travel in urban areas (e.g., due to avoiding pricy parking and unoccupied travel by 
SAVs), rural areas are assumed to experience half of the per-CAV travel as that seen in urban 
areas. These per-AV increased travel values are consistent with prior estimates conducted by 
Fagnant and Kockelman (2015). 

This noted, additional VMT is estimated here, beyond estimates conducted in Fagnant and 
Kockelman’s (2015) work, for other travelers who are not CAV users. CAVs should improve 
operational efficiencies through freeway traffic flow harmonization and smoothing, platooning via 
CACC, and an anticipated reduced collision rate. All of this should create an effective increase in 
capacity, leading to reduced travel times across all travelers. As capacity increases and traffic 
delays fall, prior studies show, utilization increases on those same facilities. For example, 
Cervero’s (2001) review of literature for cities in California and the U.S. across 30 years found 
that urban demand elasticity with respect to highway lane miles averaged 0.74. This implies that a 
1% increase in a region’s total lane miles should correspond to a 0.74% increase in VMT. 

It is unlikely that the full magnitude of the 0.74 average elasticity found by Cervero will 
materialize due to effective capacity increases enabled via CAVs. In the past, roadway construction 
improvements were targeted to address specific needs, while CAV capabilities may have broad-
based effects, regardless of whether any latent travel demand is present, or would otherwise 
materialize absent capacity increase. Therefore, a demand elasticity of non-CAVs with respect to 



116 

capacity increase is assumed to be 0.40 at the 10% market penetration level. As with CAVs, the 
incremental impacts of added capacity is assumed to fall with greater market penetration (and thus 
greater effective capacity increases), and therefore elasticity values are assumed to fall to 0.20 and 
then just 0.10 at the 50% and 90% market penetration levels, respectively. Since congestion is a 
minimal factor if present at all in rural areas, no rural VMT increases due to latent demand factors 
are assumed in this analysis. 

Vehicle Ownership 

As CAVs enter the market, eventually the requirement for a driver to be present will fall, 
giving rise to SAVs. The value proposition inherent in SAVs is quite substantial—instead of 
owning your own vehicle, simply summon an on-demand SAV via smartphone when you need 
one, and share a ride if you wish to save some money and someone else is headed in the same 
direction. Indeed, in many ways this is a similar framework to what transportation network 
companies (TNCs) currently operate. Uber has publicly stated its intention of transitioning to 
SAVs as they become feasible (Harris 2015), and Google has similar plans with its recently 
introduced fleet of SAV prototypes. Yet SAVs have many advantages beyond current TNC models 
with human drivers. System-optimal vehicle fleet control will be possible (rather than relying on 
drivers to make decisions of when and where to operate that impact the entire fleet), SAVs do not 
need to take breaks and can work around the clock, and most importantly, cost savings may be 
dramatic. To this last point, Fagnant and Kockelman’s (2015) simulations estimated that a fleet of 
2118 SAVs serving 1.3% of Austin regional trips could cut equivalent taxi fares from around $3 
per mile to just $1 per mile, while still garnering an annual return on investment capital of nearly 
20% per year. Moreover, this assumes a vehicle purchase price of $70,000, and long-term market 
projections for the cost of added vehicle automation is anticipated to be around $10,000 or less 
(Fagnant and Kockelman 2013). 

Consequently, it is highly likely that a significant share of households will come to rely on 
SAVs for their travel needs, and shed one or more personally owned vehicles. This will likely 
occur most frequently in more densely populated areas, since SAVs are most effective with 
increased trip intensity and high parking costs. The question then remains as to how large of a 
market share SAVs will comprise, as a proportion of all CAVs. It is possible that they will come 
to dominate the market (as projected by Zachariah et al. 2014), or alternatively comprise just a 
small part of the transportation ecosystem, perhaps just above current TNC and taxi shares. Both 
scenarios are certainly plausible, with economic efficiencies driving the first vision; and an implicit 
value of ownership, locked mobile storage, and vehicle availability certainty driving the second. 
Instead, here it is anticipated that SAVs will displace less-intensely used vehicles in urban areas, 
thus comprising a large but not overwhelming share of CAVs. Thus, this report projects roughly 
half of all CAV trips will be served by SAVs, consistent with Fagnant and Kockelman’s (2015) 
prior estimates. 

5.1.4 Mobility 

Potential Mobility Impacts of Connected & Automated Vehicles 

The potential benefits for enhanced mobility are also quite substantial. CAVs have the 
potential to increase effective road capacity and efficiency through reducing vehicle headways 
when platooning, operating more efficiently with traffic signals, utilizing intelligent merging with 
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automated on-ramp metering, and harmonizing speeds to smooth traffic flow. On arterials and 
other surface streets, additional efficiencies may be gained through intelligent coordination with 
signals. Additionally, with fewer crashes anticipated due to safety improvements, non-recurring 
congestion stemming from crashes should fall. The FHWA (2005) estimates that around 25% of 
urban congestion is due to non-recurring events, around half of which is attributed to collisions. 

CACC is one emerging technological application with the potential for significantly 
enhancing roadway efficiency. CACC aims to reduce gaps between communicating CAVs, 
facilitating the creation of tightly spaced vehicle platoons, with gaps between vehicles as low as 
just several meters. CACC utilizes V2V communication in combination with vehicle automation 
to form these platoons. V2V communication enables the precise transmission (10 times per 
second) of location, velocity, gap, and any acceleration or braking actions of other vehicles in the 
platoon, enabling safe and reliable platoon formation. Using these platooning strategies, CACC-
capable vehicles can increase the effective freeway capacity (van Arem, van Driel et al. 2006). 

Shladover et al. (2012) conducted series of microsimulation experiments (informed by 
field-testing of CACC-equipped vehicles) to estimate the impacts of platooning CACC vehicles 
on freeway traffic flow, at multiple levels of market penetration. This research found that the 
marginal increase in capacity enhancement increases at higher market penetration levels. When 
the entire traffic flow stream was equipped with CACC capabilities, lane capacity was estimated 
to increase to 3,970 vehicles per hour, or nearly double current freeway lane capacities. Moreover, 
two evaluation alternatives were tested based on the rest of the non-CACC vehicle fleet: as 
conventional unconnected vehicles, and as CVs that can transmit “Here I am” (HIA) messages via 
DSRC-enabled V2V communication, to enable platoons to form behind them. Table 5.6 
summarizes the estimated potential impacts of CACC, across various market penetration levels. 

Table 5.6: Estimated Impacts of CACC on Freeway Capacity (veh/hr/ln) 

Method 
Area 
Type 

Facility 
Type 

Benefit 
Type 

Impact by market penetration 

0% 20% 40% 60% 80% 100% 

CACC - Freeway 
Increase 
Capacity 

2100 2200 2350 2500 2900 3970 

CACC 
w/ HIA 

- Freeway 
Increase 
Capacity 

2200 2350 2500 2900 3300 3970 

 
While in theory the CACC-with-HIA implementation should work, in practice there may 

be reluctance on the part of road users. That is, the driver in a vehicle that can transmit an HIA 
message but is not CACC capable might likely object to CACC-capable vehicles platooning 
behind it with very short gap spaces. Instead, it is envisioned here that platoons of vehicles would 
be more likely to be self-organizing across CACC-capable vehicles only, with each vehicle in the 
platoon (including the lead vehicle) operating in self-driving mode, thus reducing potential 
anxiety, nervousness, or other discomfort by potential non-CACC lead vehicles. Therefore, for the 
subsequent analysis conducted in this report, figures from the CACC-only analysis method are 
used. 

Furthermore, similar information may be obtained from other downstream V2V-capable 
vehicles that are not in a platoon (or from roadside infrastructure relaying this information). Using 
this information, CAVs can identify such downstream traffic flow conditions, and adjust their 
speeds accordingly (e.g., letting off the accelerator prematurely when a downstream vehicle 
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brakes, to avoid harder braking later). This phenomenon results in overall smoother traffic flow, 
lower fuel consumption, and reduced delays, additionally benefiting following vehicles (connected 
or not) even at lower levels of market penetration. Atiyeh (2012) estimates that on congested 
freeways, such traffic flow smoothing algorithms could achieve speed increases of 8 to 13%. 

Similarly, Englund et al. (2014) evaluated the potential impacts of cooperative speed 
harmonization (CSH) on a highly congested freeway interchange, which acted by strategically 
adjusting CAV speeds to integrate merging traffic flow streams. They found that CSH should 
decrease CO2 emissions by 11% and travel time by 16%, and increase average speed up to 14%. 
Englund et al. (2014) conducted this research by simulating approaching vehicles that became 
grouped as they approached a convergence point at an on-ramp, thus resulting in fewer vehicles 
that would need to change lanes at the intersection. Milanés et al. (2011) conducted a similar 
evaluation using automated ramp metering and DSRC communication by enabling merging 
vehicles to fluidly enter major facilities, while avoiding congestion on the approach ramp. This 
was conducted in part by modifying the speed of the vehicles already on the main road, which in 
turn reduced the total effect of congestion on main facility. When using this strategy, total 
congestion delay experienced in the merge area was reduced between 7% and 16%. 

At the surface street level, it should also be possible to achieve efficiency improvements, 
particularly at intersections. A CAV could communicate with a connected signal to improve 
operational efficiencies, enhancing existing signal detection system capabilities, and potentially 
accounting for modal consideration, as formulated in the Multi-Modal Intelligent Traffic Signal 
System algorithm (Head 2014). CAVs could coordinate acceleration and deceleration profiles in 
advance of a signal phase change, in order to minimize hard braking and acceleration. For example, 
strategically premature deceleration could allow a CAV to arrive just before the stop bar at the 
start of green, while rolling at 30 mph, thus effectively eliminating startup delay. Also, a small 
platoon of CAVs could simultaneously accelerate from stopped conditions, thereby removing 
startup time loss for every vehicle but the platoon leader. 

Eventually, once all or almost all vehicles are equipped with CAV capabilities, tremendous 
intersection efficiencies may be possible, by facilitating alternative right-of-way assignment at 
signalized intersections (e.g., Autonomous Intersection Management, or AIM; Dresner and Stone 
2008). The AIM protocol operates by assigning each vehicle approaching the intersection a 
dedicated time-space path, while ensuring that the path does not conflict with a previously assigned 
path of another vehicle. Yet in order to achieve such gains, it is necessary that very high market 
penetration levels are present, likely in excess of 90%. Therefore, potential signalized intersection 
benefits due to fundamental operational paradigm shifts like those proposed in AIM are not 
assumed in the analysis conducted in this report. 

Quantitative Estimates of Mobility Impacts 

In order to estimate the potential impacts of CAVs on congestion in Texas, the following 
assumptions and methodology were used. First, the relative levels of congestion were broken out 
between Austin, Dallas/Fort Worth, Houston, San Antonio, and other mid-sized Texas cities. Data 
from Schrank et al.’s (2015) Urban Mobility Report was then used to estimate base levels of 
congestion, segmented by peak vs. off-peak congestion, and freeway vs. surface street congestion, 
using prior values noted in Table 5.2. Next, equivalent peak hour freeway congestion was 
estimated using each of these cities’ travel time indices, which relates average peak hour travel 
times to travel times in free flow conditions. The Bureau of Public Roads link performance 
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function (Eq. 5.1) was then used to estimate average effective regional freeway traffic volumes, 
assuming link capacity of 2100 vehicles per hour per lane. 
 = 1 +         (5.1) 

 
In Equation (5.1), Tc represents congested link travel time, Tf the link free-flow travel time, 

v traffic volume, and c link capacity, while α and β are volume/delay coefficients with parameter 
values of 0.83 and 5.5, consistent with Martin and McGuckin’s (1998) findings.  

Once current assumed traffic volumes were obtained, effective link capacity was increased 
by 50, 325, and 1335 vehicles per hour per lane at the 10%, 50%, and 90% market penetration 
levels, consistent with Shladover et al.’s (2012) earlier findings. Next, increasing traffic volumes 
were incorporated, due both to greater travel per CAV, and due to increased travel by other road 
users as they see their travel times fall. This resulted in total average VMT increases of 3%, 12%, 
and 26%, respectively, at the 10%, 50%, and 90% market penetration levels. After this calculation, 
a flat 10% reduction in delay was assumed across all scenarios, to account for the combined 
congestion impacts of freeway traffic flow smoothing, CSH, intelligent ramp metering, and other 
CAV applications. Resulting delay values were compared against initial delay, in order to estimate 
the total percentage of delay reduction across each of the market penetration scenarios. 

Since off-peak delay freeway cannot be as readily computed as peak hour delay without 
more granular details (e.g., traffic volume assumptions, incidents that may have caused the delays, 
etc.) the same share of delay reduction was assumed as was computed for peak hour delays. For 
surface street arterials and collectors, delay reductions of 5%, 10%, and 15% were assumed at the 
respective 10%, 50%, and 90% market penetration levels. These were used to account for greater 
signal and vehicle operational efficiencies, with values consistent with the estimates used by 
Fagnant and Kockelman (2015). The resulting estimated potential congestion delay reductions 
across Texas may be seen in Table 5.7. 
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Table 5.7: Estimated Impacts of CAVs on Freeway Traffic Congestion in Texas 

City Impact 
Market penetration 

0% 10% 50% 90% 

Austin 

Annual Delay per Population (hr) 24.4 23.0 20.8 14.7 
Delay Reduction per Population (hr)  1.4 3.6 9.7 

Congestion Cost Savings per Population  $25  $64  $172  
Regional Congestion Cost Savings ($M)  $31  $79  $213  

Dallas/Fort 
Worth 

Annual Delay per Population (hr) 24.9 23.4 21.2 15.0 
Delay Reduction per Population (hr)  1.5 3.7 9.9 

Congestion Cost Savings per Population  $26  $65  $175  
Regional Congestion Cost Savings ($M)  $246  $621  $1,670 

Houston 

Annual Delay per Population (hr) 29.4 27.7 25.0 17.7 
Delay Reduction per Population (hr)  1.7 4.3 11.7 

Congestion Cost Savings per Population  $30  $77  $206  
Regional Congestion Cost Savings ($M)  $288  $727  $1,957 

San Antonio 

Annual Delay per Population (hr) 22.5 21.2 19.2 13.6 
Delay Reduction per Population (hr)  1.3 3.3 8.9 

Congestion Cost Savings per Population  $23  $59  $158  
Regional Congestion Cost Savings ($M)  $86  $216  $581  

Others16 

Annual Delay per Population (hr) 15.0 14.2 13.2 11.3 
Delay Reduction per Population (hr)  0.8 1.8 3.8 

Congestion Cost Savings per Population  $14  $32  $67  
Regional Congestion Cost Savings ($M)  $73  $162  $340  

Statewide 

Congestion Costs ($M) $13,079 $12,319  $11,185 $8,078 
Congestion Cost Savings ($M)  $760  $1,894  $5,001 

System-wide Congestion Reduction (%)  5.8% 14.5% 38.2% 

 
Meaningful congestion reduction may be achieved even at the 10% market penetration level, 

with an estimated total system-wide delay reduction of nearly 6%, accounting for $760 million in 
economic savings. By the 90% market penetration level, more than half of freeway congestion is 
assumed to be eliminated, with most of the remaining congestion due to collector and arterial 
surface street intersections. This results in a total system-wide delay reduction of more than 38%, 
for a cost savings exceeding $5 billion. Of course, readers should keep in mind that these figures 
are meant to represent order-of-magnitude estimates of potential outcomes, and that there remains 
a great deal of uncertainty surrounding how these CAV systems will ultimately be implemented. 

5.1.5 Safety 

Potential Safety Impacts of Connected & Automated Vehicles 

Motor vehicle collisions have existed since the world’s first engines were installed in 
horseless carriages: the first recorded gasoline-powered auto crash occurred in 1891, involving a 
vehicle that lost control and crashed into a hitching post (Soniak 2012). From that time, auto 

                                                 
16 El Paso, Laredo, McAllen, Brownsville, Corpus Christi, and Beaumont. 
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manufacturers, civil engineers, planners, law enforcement, and others have sought to identify ways 
to reduce automotive crashes. In over 90% of incidents, the primary cause of the collision is human 
error, such as slow reaction time, poor sight, aggressive driving, drowsy driving, or other human 
factors (NHTSA 2008). While other environmental- and vehicle-related causes remain factors to 
be considered, this finding indicates a strong potential for reducing crash rates.  

In this respect, Level 4 automation (when vehicles will be able to drive themselves for the 
entire trips without human intervention) may be the best option for reducing human errors. Here, 
the term reducing is used because human error will still exist, though it will be effectively 
transferred from the human driver to the human programmer coding the underlying logic and 
algorithms used to guide the vehicles’ operations. This noted, the relative level of safety should 
improve as time and technology progress, since software and hardware developers can learn from 
and build upon past experiences. In contrast, each new 16-year-old driver must begin anew, so the 
difference in safe driving ability from one year’s group of 16-year-olds to the next is likely 
negligible (or perhaps worse in some ways, given increasing smart phone distractions). This noted, 
it may take 20 years or more before vehicle automation technology can safely and reliably handle 
the same variety of environmental and roadway locations, conditions, and speeds that human 
drivers regularly drive on today.  

As previously noted, this report seeks to examine the potential benefits from Level 3 to Level 
4 automation, assuming CV technology. With safe driving responsibilities transferred from the 
human driver to the vehicle, it is useful to broadly understand the types of human errors that were 
primarily responsible for collisions, and how similar failures may be handled differently for CAVs 
versus human drivers. One way to frame these differences is in terms of perception (P), 
interpretation (I), judgment (J), and reaction (R, which in this case also represents action), or PIJR, 
a key variable used when considering stopping sight distance reaction times. Today, PIJR times 
required for CAVs are much shorter than PIJR times for human drivers, and it is possible that these 
times could be further reduced with advances in processing power. Using that underlying 
framework, this analysis broadly groups human failings into the following categories: intoxication 
(drugs or alcohol involvement), aggressive driving (characterized by speeding, erratic operation, 
or other prohibited maneuvers), inattention and distraction, judgement failure (failures to keep in 
lane or yield), and performance errors, with corresponding PIJR elements as follows: 

• Intoxication (PIJR), 

• Aggressive driving (JR), 

• Distraction or inattention (P), 

• Judgment failure (IJR), and 

• Performance (PJR) 
 
While it is unknown how many of these collisions may be completely avoided, educated 

estimates may be used to assess potential order-of-magnitude scales for potential crash reductions. 
Therefore, the following crash reduction factor (CRF) estimates are provided at the 10% market 
penetration level, using the following justification: 

• Intoxication (99%): A vehicle cannot consume alcohol or ingest drugs. The closest 
analogy would be a malicious cyber-attack against one or more CAV, which should 
almost assuredly occur at a dramatically lower frequency than current rates of drunk or 
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drugged driving in Texas. Therefore, a 99% CRF is assumed for crashes where 
intoxication was involved.  

• Aggressive driving (90%): CAVs will likely be programmed to prohibit aggressive 
driving. This noted, it is still possible that a CAV could misinterpret conditions, or behave 
erratically due to sensor, software, or actuator failures, and thus behave similarly as an 
aggressive driver would. It is highly unlikely that these failures should be common, so a 
90% CRF is assumed. 

• Inattention and Distraction (75%): While it should be impossible for a CAV to become 
inattentive or distracted, it may encounter other errors due to sensor limitations or 
interpretation failures regarding information received from the sensors. Therefore, a 75% 
CRF is assumed, to account for these new errors that may be introduced. 

• Judgment failure (75%): CAVs should be better at staying in their lanes than human 
drivers, since occasional willingness to drive outside of lane lines on curves, and other 
human behaviors will not apply. Similarly, range finders, communication abilities on 
CAVs, and other sensors may be used to better assess when a turn is safe to make 
(particularly compared to human drivers), and establish right of way for turning 
operations. However, since a CAV should still be able to misinterpret lane lines, 
pavement edges, safe turning decisions, and other judgements, a 75% CRF is assumed. 

• Performance Error (67%): IIHS (IIHS 2015) notes that teenagers have crash rates at 
three times those of drivers over 20, while at a minimum, CAVs must be at least as safe 
as a good human driver. Therefore, a 67% CRF for causes due to inexperience is assumed 
to achieve this basic level of safety. Similar safety improvements are assumed for general 
performance-related crash causes, such as inadequate surveillance, overcompensation, 
panic/freezing, and poor directional control. 

• Other factors (50%): Even after accounting for all aforementioned potential crash causes, 
it remains highly likely that CAVs will be required to be able to drive safer than a sober, 
attentive, experienced and relatively cautious human driver. Indeed, rider acceptance will 
likely demand this: a minor mistake resulting in a near-collision may be waived off with 
a human driver, though the same action would cause a dramatic loss of confidence in the 
self-driving capabilities of a CAV. In the event that a crash actually occurs, the loss of 
confidence may lead the owner to sell the vehicle outright. Therefore, a 50% CRF is 
assumed for all other crash types, at a range that is lower than other human failure CRFs, 
but still twice as safe as a human driver. 

 
Additionally, it is assumed here that a crash where multiple of the above factors were 

involved that highest applicable CRF is applied. This may therefore underestimate the total 
possible crash reduction, since, for example, in a collision involving aggressive driving and 
distraction, both contributing factors would be addressed through CAV capabilities. 

In subsequent years it is assumed that the level of safety will continue to improve for CAVs. 
Though it is impossible to truly appreciate how far they may drop, this report assumes that between 
the 10% and 50% market penetration level all collision rates are halved, and that collision rates 
are halved again between the 50% and 90% market penetration levels. Thus, for example, the 90% 
CRF for aggressive driving would become a 95% CRF at the 50% market penetration level and 
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exhibit a 97.5% CRF at the 90% market penetration level. Therefore, total crash reduction potential 
is estimated for CAVs as shown in Table 5.8. 

Table 5.8: Assumed Crash Reduction Factors for CAVs 

Crash Factor Types of Human Error 
CAV Market penetration 

10% 50% 90% 

Intoxication Alcohol, Drugs 99% 99.5% 99.75% 

Aggressive 
Driving 

Speeding, driving too fast for curve or conditions, 
erratic operation, illegal maneuver, other prohibited 

driver errors  
90% 95% 97.5% 

Distraction & 
Inattention 

Internal and external distraction, inattention 75% 87.5% 93.75% 

Judgment 
Failure 

Failure to keep in lane, failure to yield, misjudgment 
of gap or other’s speed, false assumption of other’s 

action 
75% 87.5% 93.75% 

Performance 
Inexperience / over-correction, inadequate 

surveillance, panic / freezing, sleep, heart attack 
66.67% 83.34% 91.67% 

Other Factors All other crashes 50% 75% 87.5% 

 
NHTSA’s (2015) Fatal Analysis Reporting System (FARS) database was then used across 

the set of 2013 Texas roadway fatalities to estimate the share of fatal collisions that were 
attributable to each of these factors. As noted previously, where more than one of these factors 
was observed for a single crash, the crash factor associated with the higher CRF was assumed (e.g., 
if alcohol and aggressive driving were both noted in a crash, the crash is attributed to intoxication 
and not aggressive driving, in order that crash reductions are not double-counted).  

Similarly, NHTSA’s General Estimates System (GES) database contains some of this 
information, though the collision data contained therein is more sparsely populated, making it 
difficult to truly get a sense of how crashes were attributed to each of these crash factors. Therefore, 
the set of critical reasons for the critical pre-crash events from NHTSA’s (2008) Motor Vehicle 
Crash Causation survey is used here for non-fatal crashes, to estimate what total proportion of 
collisions is attributable to each of the various crash causes. This data is further augmented by non-
fatal alcohol and drug-related crash information from the GES database, since drugs and alcohol 
are not listed as a critical pre-crash event, with resulting shares across the various crash factors 
shown in Table 5.9. 
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Table 5.9: Shares of Fatal and Non-Fatal Crashes Attributable to Various Crash Factors  

Crash Factor Types of Human Error 
% of Fatal 

Crashes 

% of Non-
Fatal 

Crashes 
Intoxication Alcohol, Drugs 37.0% 6.9% 
Aggressive 

Driving 
Speeding, driving too fast for curve or conditions, erratic 
operation, illegal maneuver, other prohibited driver errors 

23.1% 17.5% 

Distraction & 
Inattention 

Internal and external distraction, inattention 6.1% 15.4% 

Judgment 
Failure 

Failure to keep in lane, failure to yield, misjudgment of 
gap or other’s speed, false assumption of other’s action 

8.3% 6.7% 

Performance 
Inexperience / over-correction, inadequate surveillance, 

panic / freezing, sleep, heart attack 
2.0% 35.8% 

Other Factors All other crashes 23.5% 16.2% 

Quantitative Estimates of Safety Impacts 

In order to provide a quantitative estimate of the potential safety benefits of CAVs, it is 
necessary to understand the number, severity, and cost of crashes that Texas experiences on an 
annual basis, the shares attributable to various causes, and the potential for their future reduction 
through CAV capabilities. By applying these factors across three levels of market penetration 
(10%, 50%, and 90%), it is possible to estimate the total potential collision savings for CAVs as 
they enter the Texas transportation system. Table 5.10 summarizes the road safety implications 
and potential of CAVs for non-motorcycle crashes, Table 5.11 summarizes the same for 
motorcycle collisions (crash reductions here are assumed to be lower, since motorcycles are 
assumed to be non-automated and only enjoy safety enhancements gained through reduced crash 
exposure from other vehicles), and Table 5.12 summarizes implications across all road crashes.  

Table 5.10: Potential Crash Implications for CAVs, Non-Motorcycle Crashes 

 CAV Market Penetration 

0% 10% 50% 90% 

# Crashes 436,975 405,168 248,213 70,450 

# Injuries 224,930 208,569 127,794 36,289 

# Fatalities 2,905 2,669 1,588 412 

Economic Costs ($M)  $17,932 $16,593 $10,100 $2,814 

Comprehensive Costs ($M) $76,158 $70,389 $42,695 $11,770 

Lives Saved - 236 1,317 2,493 

Economic Savings ($M)  $1,339 $7,832 $15,118 

Comprehensive Savings ($M) - $5,769 $33,463 $64,388 
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Table 5.11: Potential Crash Implications for CAVs, Motorcycle Crashes 

 CAV Market Penetration 

0% 10% 50% 90% 

# Crashes 8,854 8,693 7,898 6,998 

# Injuries 7,669 7,530 6,841 6,061 

# Fatalities 503 494 449 398 

Economic Costs ($M) $1,172 $1,151 $1,046 $926 

Comprehensive Costs ($M) $7,056 $6,927 $6,294 $5,576 

Lives Saved   9 54 105 

Economic Savings ($M)  $21 $127 $246 

Comprehensive Savings ($M) - $128 $762 $1,479 

Table 5.12: Potential Crash Impacts for CAVs (Not Accounting for VMT Changes) 

 CAV Market Penetration 

0% 10% 50% 90% 

# Crashes 445,829 413,861 256,111 77,448 

# Injuries 232,599 216,099 134,635 42,350 

# Fatalities 3,408 3,162 2,036 810 

Economic Costs ($M) $19,104 $17,744 $11,146 $3,741 

Comprehensive Costs ($M) $83,214 $77,316 $48,989 $17,347 

Lives Saved   246 1,372 2,598 

Economic Savings ($M) - $1,361 $7,958 $15,364 

Comprehensive Savings ($M) - $5,898 $34,225 $65,867 

 
To these estimates, an added exposure factor must be applied, to account for the higher 

levels of VMT and resulting increased collision risk that will be experienced. As previously 
mentioned, different VMT changes are expected in rural vs. urban areas, and with differing market 
penetration levels. While urban areas were projected to experience VMT increases of 3%, 12%, 
and 26% for 10%, 50%, and 90% of market penetration, respectively, in rural areas these same 
values were estimated at just 1%, 5%, and 9%. This analysis then assumed that increasing VMT 
as a measure of exposure is directly proportional to the expected number of collisions. The final 
collision estimates were then achieved by applying these VMT growth factors to the earlier 
urban/rural crash split shares, and merging them with the potential CAV impacts estimated in 
Table 5.12. From this, Table 5.13 was generated, which summarizes the total estimated potential 
impact of CAVs on safety in the state of Texas.  
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Table 5.13: Potential Statewide Crash Implications for CAVs 

 CAV Market Penetration 

0% 10% 50% 90% 

# Crashes 445,829 419,901 266,082 83,475 

# Injuries 232,599 222,080 148,993 48,401 

# Fatalities 3,408 3,224 2,211 955 

Economic Costs ($M)  $19,104 $18,020 $11,932 $4,292 

Comprehensive Costs ($M) $83,214 $78,575 $52,590 $20,024 

Lives Saved - 184 1,197 2,453 

Economic Savings ($M) - $1,085 $7,172 $14,813 

Comprehensive Savings ($M) - $4,639 $30,624 $63,190 

% Reduced Comprehensive Crash Costs - 5.6% 36.8% 75.9% 

 
Taken together, these results indicate that CAVs could potentially save around 185 lives per 

year on Texas roads, even at the 10% market penetration level. With 90% market penetration, 
annual motor vehicle crash fatalities could be cut to almost a quarter of their current levels, leading 
to comprehensive collision cost savings in excess of $62 billion. Importantly, motorcyclists are 
expected to comprise nearly half of the remainder of fatal crashes at this market penetration level, 
with much of the remainder caused by non-CAVs. CAVs will still likely be responsible for 
collisions, (or even some fatalities, as projected here), though the key takeaway is the magnitude 
of the tremendous safety potential that CAVs might bring. As with the estimated congestion 
impacts, readers should remember that these estimate represent order-of-magnitude projections of 
potential outcomes, and there remains a great deal of uncertainty surrounding the ultimate 
improvements in safety that will eventually come to pass. 

5.1.6 Productivity and Leisure 

As drivers are freed from the task of operating their vehicles, they will gain the ability to focus 
their attention and efforts elsewhere, through relaxing, working, surfing the internet, or engaging 
in other activities that were previously not possible to do while driving (at least safely). This should 
therefore result in added benefits stemming from CAVs, in terms of productivity gains and added 
leisure time for former drivers. 

Here, it is assumed that productivity and leisure gains will be realized by the former driver 
of each CAV based on the time spent previously driving, but now available for other tasks. On 
average, 335 hours are spent driving per year per Texan, estimated based on Urban Mobility 
Scorecard data (TTI 2014). From this dataset we obtained each city’s daily travel distance (VMT) 
by freeway and arterial, as well as Travel Time Index, percentage of congested travel (% of VMT), 
and number of auto commuter. Additionally, we assumed that free flow speed of freeway and 
Arterial as 70 mph and 30 mph respectively. Using equation (5.2), we can estimate the yearly 
travel time per Texan: 
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= ∑ ∑ × × × × 365           (5.2) 

 
    Where: = 	 	  = 	 	  = 	 	  = 	 	  = 	 	 	  = 	 	 	  = 	 	 	  =  = 	 	  

 
Using USDOT guidance regarding personal travel (Endorf, R. 2015), existing values of 

travel time were assumed to be equal to half the median wage rate ($16.18 for Texas, BLS 2014), 
and gains from productivity and leisure were estimated to be 50% of current travel time valuations, 
consistent with MacKenzie et al. (2014) and Gucwa (2014). This means that each CAV should 
deliver approximately $1,357 per year in monetized time benefits to their users. 

5.1.7 Summary Analysis 

Analysis results from prior sections of this report may be drawn from in order to summarize 
the potential impacts of CAVs on the transportation system, across mobility, safety and 
productivity/leisure dimensions. This may be used in combination with anticipated future costs of 
vehicle automation, in order to more fully understand the potential impacts of CAVs in Texas. 

Here, added purchase price costs for automation and connectivity capabilities (on top of 
base vehicle costs) are assumed to be $10,000 at the 10% market penetration level, $5,000 with 
50% market penetration and just $3,000 in added cost once CAV market penetration levels reach 
90%. These values are consistent with estimates from Southwest Research Institute’s Steve 
Dellenback (2012) and Volvo’s Erik Coelingh (ETQ 2012). A 10% discount rate is also assumed, 
which is higher than the 7% rate required for federal TIGER grant applications, to account for the 
greater uncertainty surrounding CAVs. These cost and discount rate values are consistent with 
those used in prior research conducted by Fagnant and Kockelman (2015).  

The benefits from CAV were calculated on a per vehicle basis for comparing the cost of 
automation and connectivity capabilities. In this research, we assumed a baseline of Texas’ 
existing 23.88 million vehicles to estimate these figures, though the true number of vehicles may 
likely increase along with Texas’ population in future years (TxDOT 2014). An 11.4 year average 
CAV life span was also assumed for calculating net present value, based on current data for 
conventional vehicles (USDOT 2014). This noted, it is also possible that a substantial number of 
CAVs may have shorter lifespans, specifically for SAVs which would be used more intensely 
during any given year. 

Table 5.14 summarizes the various safety and mobility benefits that may be gained across 
Texas’ transportation system, while comparing them to anticipated added CAV costs, from an 
order-of-magnitude perspective: 
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Table 5.14: Summary of Anticipated CAV Impacts across Texas  

 
CAV Market Penetration 

10% 50% 90% 

Benefits 

Congestion reduction ($/Veh/Year) $318 $159 $233 

Economic crash savings ($/Veh/Year) $454 $601 $689 

Comprehensive crash savings ($/Veh/Year) $1,943 $2,565 $2,941 

Productivity and leisure 
($/Veh/Year) 

$1,357 $1,357 $1,357 

Sum of benefits ($/Veh/Year) $3,618 $4,081 $4,530 

Costs Price of automation and connectivity capabilities ($/Veh) $10,000 $5,000 $3,000 

Net Present Values (using comprehensive crash cost savings) ($/Veh) $13,960 $22,024 $27,000 

Benefit-Cost Ratios 
(using comprehensive crash cost savings) 

2.4 5.4 10.0 

 
These results indicate that the introduction of CAVs may have significant potential for 

delivering significant benefits to the traveling public. Even at just 10% of market penetration, 
$13,960 in net benefits would be realized over the 11.4-year life of the CAV, after the $10,000 
cost of automation and connectivity is removed. At all levels of market penetration, comprehensive 
crash cost savings represent the largest share of benefits, though if only economic costs are 
assumed, productivity and leisure benefits become most important. With 90% of market 
penetration, total lifecycle benefits rise to over 10 times the initial added costs of automation and 
connectivity. Also of note, not all of these benefits would be realized directly by the CAV owner 
or user. Some of the crash benefits would accrue to other road users (through reduced risk), and 
the benefits from congestion reduction effects would be experienced by all motorists.  

5.2 Updated Benefit-Cost Analysis  

5.2.1 Assumptions 

Mobility & Congestion Impacts 

• Due to the expected increases in vehicle-miles-traveled (VMT) due to eventual Level 4 
automation, the method of TM 3 of 6847 assumed a 20% increase in vehicle-miles 
traveled (VMT) at the 10% CAV market penetration (MP) level. Likewise, a 15% 
increase and 10% increase in VMT per CAV are assumed at the 50% and 90% MP levels, 
respectively. 

• Since CAVs are eventually expected to travel with smaller headways, effectively 
increasing capacity, latent demand from this effective capacity increase is also 
anticipated. Demand elasticities of 0.4, 0.2, and 0.1 are assumed at the 10%, 50%, and 
90% CAV MP levels. These assumptions stem from the 0.74 average demand elasticity 
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with respect to highway miles found by Cervero (2001)’s review of literature. It is not 
expected that demand elasticities with respect to CAV miles driven will be as high. 

• There is much debate about to the extent to which shared autonomous vehicles (SAVs) 
will achieve popularity in the future. SAVs will be Level 4 AVs that are owned by 
transportation network companies. (TNC) or some other entity. It is assumed that half of 
all CAV trips will be served by SAVs at the 10%, 50%, and 90% CAV MP levels. 

• Expected increases in capacity derive from CAVs’ use of cooperative adaptive cruise 
control (CACC), which enables each CAV to communicate with other vehicles on the 
roadway via dedicated short-range communication (DSRC) so that groups of vehicles 
form with smaller headways than currently observed with human-driven vehicles. 
Additionally, the method assumed that conventional vehicles were not equipped with a 
“Here I am” module, which allows CAVs to communicate with and utilize conventional 
vehicles in the formation of platoons. Thus, benefits were only derived from CAVs using 
CACC with other CAVs. A base link capacity of 2100 vehicles/hour/lane was assumed 
for the base case (0% CAV). Effective lane capacity was assumed to increase to 2,150, 
2,425, and 3,435 vehicles per lane at the 10%, 50%, and 90% MP levels, respectively. 
Assumptions made on the increases in lane capacity at the three market penetration levels 
due to CACC were consistent with the findings of Shladover et al. (2012). 

• A flat 10% reduction in delay on freeways was assumed for all three market penetration 
scenarios during peak and off-peak. This assumption accounted for the combined 
congestion impacts of freeway traffic flow smoothing, cooperative speed harmonization 
(CSH), intelligent ramp metering, and other CAV applications. 

• For surface streets, arterials, and collectors, delay reduction of 5%, 10%, and 15% were 
assumed at the respective 10%, 50%, and 90% MP levels. These estimates were 
consistent with those made by Fagnant and Kockelman (2015). 

Safety Effects 

• The crash reduction factors that were assumed for each of the five crash reduction factors 
are shown in Table 5.15. Based on the crash reduction factors (CRFs) assumed at the 
10% CAV MP level, the collision rates are assumed to be 50% less at the 50% MP level, 
and 75% less at the 90% MP level.  
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Table 5.15: Assumed Crash Reduction Factors for CAVs 

Crash Factor Types of Human Error 
CAV Market Penetration 

10% 50% 90% 

Intoxication Alcohol, drugs 99% 99.5% 99.75% 

Aggressive 
Driving 

Speeding, driving too fast for curve or 
conditions, erratic operation, illegal 
maneuver, other prohibited driver errors  

90% 95% 97.5% 

Distraction & 
Inattention 

Internal and external distraction, inattention 75% 87.5% 93.8% 

Judgment Failure 
Failure to keep in lane, failure to yield, 
misjudgment of gap or other’s speed, false 
assumption of other’s action 

75% 87.5% 93.8% 

Performance 
Inexperience / over-correction, inadequate 
surveillance, panic / freezing, sleep, heart 
attack 

66.7% 83.3% 91.7% 

Other Factors All other crashes 50% 75% 87.5% 

 

• Of the five factors, if a crash in the FARS database was attributed to more than one of 
the five factors, the crash factor with the higher CRF was assumed for that crash. This 
assumption ensured that crashes were not double-counted.  

• To account for the expected increase in demand resulting from CAV use, the higher 
levels of VMT were assumed to increase the expected amount of collisions in a 
proportional manner from the original collision estimates. The researchers assumed 
VMT increases of 3%, 12%, and 26% for the three respective MP levels in urban areas. 
Meanwhile 1%, 5%, and 9% VMT increases were assumed in rural areas at the 10%, 
50%, and 90% MP levels.  

Productivity and Leisure 

• The value of travel time was assumed to be half of the 2014 median wage rate in Texas, 
which was $16.18 per hour according to the U.S. Bureau of Labor Statistics (BLS, 2014) 

• Benefits from productivity and leisure were assumed to be 50% of the travel time 
valuations of Texas drivers.  

Costs of Automation and Connectivity 

• Purchase price costs for adding automation and connectivity capabilities were assumed 
to be $10,000, $5,000, and $3,000 at the 10%, 50%, and 90% MP levels.  

• Texas’ existing 23.88 million vehicles was assumed for calculating CAV benefits and 
costs per vehicle.  

• An 11.4-year project life and 10% discount rate were assumed. The relatively high 
discount rate was used to account for the uncertainty in estimating benefits and costs for 
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CAVs. The project life assumption is based on the average life span of a conventional 
vehicles.  

Updates to Assumptions 

To further improve the method used to estimate benefits and cost implications of CAV use 
in Texas, parameter assumptions were updated with the results of autonomous vehicle research by 
UT-Austin. The updates are organized by the sub-sections listed earlier in Section 2.  

Mobility & Congestion 

A flat 10% reduction in delay benefits from CAV use on freeways was assumed in the 
original methodology. Because of the many factors that impact the amount of delay experienced 
on roadways, this assumption was made on simplistic grounds due to the lack of data and certainty 
on how CAVs will impact freeway use. Nonetheless, it is expected that CAV use will reap 
significant mobility benefits, but the magnitude of the benefits at each respective market 
penetration level is also uncertain. In TM 5 of project 0-6847, mixed traffic containing both HVs 
and CAVs was simulated on several freeway networks in Austin1. The links in the networks were 
simulated using the cell transmission model (CTM). The researchers assessed the impact of CAVs 
on two city networks in Austin. When only using traditional signals in their networks instead of 
new alternative methods of intersection management, there was a 26%, 36%, 45%, and 51% 
reduction in total travel time at the 25%, 50%, 75%, and 100% market penetration (MP) levels. 
When integrating CAVs into the simulations, the researchers assumed headways of only 0.5 sec 
for CAVs, which may not be feasible at the lower CAV MP levels due to concerns about liability. 
Because of various factors that have not been accounted for in simulations yet, the 10% reduction 
in delay assumption was made to be conservative. Early simulations as performed in this project 
show that some variation in delay reduction should be experienced as CAV market penetration 
rises. Additionally, since familiarity with CAVs should grow as more CAVs are adopted on the 
market, it is reasonable to assume that Texans’ comfortableness with smaller headways should 
increase as well. Thus, it is recommended that the flat reduction in delay on freeways be changed 
to 10%, 15%, and 20% at the 10%, 50%, and 90% CAV MP levels. The simulations from TM 5 
from 6849 show much larger reductions in travel times using only signals, which show that the 
new assumptions maintain conservatism. It is expected that fully realized and optimized 
autonomous intersection management should reap further reductions in delay.  

Productivity and Leisure 

In Section 2, a random survey of Texans was conducted. This survey asked the respondents 
what their willingness to pay (WTP) to save 15 minutes of travel time. After excluding the 
respondents who answered $0 WTP, the average WTP of 1,364 Texans was $9.50. Scaling this 
value to an hourly basis, the average VOTT was $27.20/hour. The original methodology used a 
VOTT of $16.18/hour, which was half of the 2014 median wage rate for Texas; according to the 
U.S. Bureau of Labor Statistics. Since the figure obtained in TM 4 of 6849 was produced from a 
random sample of Texans, it is more representative of the opinions of Texans on saving travel time 
than a proportion of the median wage rate. It is recommended that the VOTT used in estimating 
congestion benefits from CAV use be increased from $16.18/hour to $27.20/hour. It is 
anticipated that changing the VOTT parameter will increase the estimated benefits from delay 
reduction. 



132 

5.3 Locations in Texas for CAV Testing 

This section identifies roadways and intersections in Texas that could serve as testbeds for 
assessing the effectiveness of strategies related to CAV use. Locations must be carefully selected 
so that initial tests relating to CAVs are given the highest chance of showing successful results. In 
other words, the anticipated benefits of CAV use may not be realized if initial testbeds do not show 
positive results, which could motivate state agencies and other interest groups to become less 
interested in CAV development. Potential testbeds are identified as highway segments or 
intersections that can be used testing CAV technologies. The roads and intersections that are 
proposed for testing purposes are only recommendations and should be used mainly to further the 
discussion of testing CAV technologies. Roads or intersections are classified into three levels of 
testing: preliminary, intermediate, and advanced. The details of testing procedures are not 
discussed here as that isn’t the focus of this task. These stages are designated to indicate roads that 
could be used to test CAV platooning.  

5.3.1 CAV Light-Duty Vehicle Platooning 

Reduced headways from CAV use will increase the capacity of roadways. However, it is 
important that testing of light-duty platooning be performed to help further the development of 
platooning technology. Potential test corridors include highways in Texas that experience 
significant congestion. TxDOT maintains on a list of the 100 most congested corridors in Texas. 
For preliminary testing of CAV platooning, it is more feasible to begin testing on corridors that 
will most likely prove easier on which to test CAV technologies rather than opting for the top 
congested roads in Texas where the largest benefits may be realized. A relatively smaller testing 
scale will increase the probability of obtaining successful results. The list for year 2015 is compiled 
by the Texas A&M Transportation Institute, which uses 2014 traffic speed data for estimating 
delay. In addition to the top 100 congested roads published by TxDOT, the list by TTI includes 
over 1600 more TxDOT road segments that are ranked by congestion level. The level of congestion 
ranges from around 975,000 person-hours of delay per year to just one person-hour of annual delay 
on the roads contained in the TTI list. 
  It is expected that CAV use will first occur primarily in urban areas instead of rural areas. 
When selecting corridors for testing light-vehicle platooning, picking a group of roads that have 
geographic diversity within the state will help minimize any biasing of results to patterns of one 
urban area. The suggested roads were limited to the six largest counties in Texas by population: 
Harris, Bexar, Dallas, Travis, Tarrant, and El Paso. The criteria presented in Table 5.16 was 
developed for determining possible roadway segments for CAV light-vehicle platooning testing.  
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Table 5.16: Criteria for Selecting Potential Roadway Segments for Light-Duty Platooning 
Testing 

Testing Level Length (miles) 
Annual Delay per mile 

(person-hours) 
Preliminary > 5 30,000 to 60,000 

Intermediate > 5 60,000 to 100,000 

Advanced > 5 >100,000 

 
Roads shorter than five miles were not considered to ensure enough length was provided 

to fully observe platooning effects. The roads that were selected for the preliminary, intermediate, 
and advanced testing levels are shown in Tables A-1, A-2, and A-3 respectively in Appendix A. 
Though the highest benefits will be realized from implementing CAV technologies on the 
roadways with higher levels of congestions, the roadways suggested for preliminary testing are 
expected to have a relatively higher chance of success with early and less familiar testing 
procedures than the roadways selected for intermediate or advanced testing, which will require 
more rigorous testing procedures to meet the scale. This qualitative approach is implied throughout 
the rest of the section.  

5.3.2 CAV Truck Platooning 

As Texas has the second largest population of any U.S. state, trucks carry a considerable 
amount of goods throughout the state. Though platooning for light-vehicles and trucks will 
produce a similar type of benefit, it will be important to select roads for testing truck platooning 
that experience notable truck delay. When observing TTI’s 2015 list of most congested roads, 
many roads have a significant amount of both light-duty and heavy-duty delay. But some roads 
contain little or no truck delay. Annual truck delay per mile ranges from a peak of just under 
115,000 annual person-hours to less than two person-hours annually. A similar approach is taken 
for suggesting roads that can serve as testbeds for CAV truck platooning. The following criteria 
(Table 5.17) are used for identifying potential roadway segments from TTI’s list of the most 
congested roadways in Texas. Since many trucks carry freight over long distances, the selected 
roads were not limited to the six largest counties as with light-duty platooning. The suggested 
roads for preliminary, intermediate, and advanced testing are listed in Appendix A (Tables A-4, 
A-5, and A-6).  

Table 5.17: Criteria for Selecting Potential Roadway Segments for Truck Platooning 
Testing 

Testing Level Length (miles) 
Annual Delay per mile (person-

hours) 
Preliminary > 5 10,000 to 20,000 

Intermediate > 5 20,000 to 50,000 

Advanced > 5 >50,000 
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5.3.3 Texas Intersections as Potential Test Beds 

Reducing the number of intersection-related crashes is a significant potential benefit of 
CAVs. New technologies are being developed, such as Cooperative Intersection Collision 
Avoidance Systems (CICAS), should be able to reduce crash frequencies at intersections. 
 According to 2008 crash data from databases maintained by NHTSA, around 40% of the 
5.8 million crashes reported that year were intersection-related (NHTSA, 2010). Indirectly related 
to safety, researchers have been working on developing alternative methods of intersection 
management that can improve throughput. This new form of intersection management, known as 
autonomous intersection management (AIM), is intended to allow CAVs to reserve space at an 
intersection, which is similar in form to a slot-system. CAVs are allocated space by the automated 
intersection manager, which allocates space on a first-come-first-serve basis. Researchers have 
been working on various algorithms and simulations to test the potential of this alternative form 
of intersection management (Dresner & Stone, 2008; Levin & Boyles, 2015; Au et al., 2016). 
Improved efficiency at intersections using fully optimized AIM systems is expected to coincide 
with a reduction in intersection-related crashes. 

When exploring intersections that serve as potential testbeds for testing new intersection 
technologies, it is infeasible to examine every intersection in the state and determine their average 
control delays. A more feasible approach is identifying general locations in Texas where 
intersections could most likely be used as testbeds. Since CAV use is expected to begin in urban 
areas, and then expand to rural areas at higher market penetration levels, the intersection testbeds 
should be in or near the larger cities in Texas. Figure 5.3 maps the TxDOT districts discussed.  

 

 
Figure 5.3: TxDOT District Map 

Intersections that are selected for testing should be close to urban areas to best simulate 
traffic conditions in those highly populated areas. In order to do this, intersections testbeds should 
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be located in the six most populated TxDOT districts: Houston (HOU), Dallas (DAL), San Antonio 
(SAT), Austin (AUS), Fort Worth (FTW), and El Paso (ELP). A general recommendation would 
be to begin initial testing on intersections in counties within these six districts that are not the 
respective district’s most populated county. For example, if potential intersections are being 
looked at in the Austin District, it is reasonable to assume that lower risk and difficulty in testing 
would be experienced if an intersection in Williamson or Hays Counties is selected. More granular 
details should be incorporated into the decision process, such as intersection skew, control delay, 
adjacent land use, and proximity to other signals. The last factor should be taken into account when 
conducting tests that involve coordination between signals.  
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Chapter 6.  Conclusions 

The general public is the primary beneficiary of smart driving technologies. AVs have the 
potential to fundamentally transform the act of driving, by offering an array of safety and driver-
assistance features. First and foremost, automated vehicles can substantially reduce or mitigate 
crashes. Second, smart driving technologies will free the drivers from driving tasks, and thus 
reduce stress, especially in congested conditions. Third, they can provide critical mobility to the 
elderly and disabled. Fourth, they have the potential of increasing road capacity, saving fuel, and 
lowering emissions, if automatic steering algorithms are carefully developed. Complementary 
trends in shared rides and vehicles may lead us from vehicles as an owned product to an on-demand 
service, and mitigate the need for parking space and change land use patterns, including changes 
to current zoning codes that often require specific parking requirements per occupant or dwelling 
type. Additionally, the passenger compartment may be transformed: former drivers may be 
working on their laptops, eating meals, reading books, watching movies, and/or calling friends—
safely. Though there are many benefits to this new technology once implemented, a number of 
barriers are anticipated to challenge the development and implementation of intelligent driving 
technologies, especially advanced autonomous technologies (Level 3 and Level 4). Some of these 
major barriers include the high cost of these new vehicles, security and privacy issues on a large-
scale network that can be prone to cyber-attacks, and smoothly transitioning this technology in a 
large-scale adoption. Other barriers facing the intelligent driving technologies include legislation 
(liability and licensing), insurance, and social equity. These CAVs, SAVs, and CVs will also 
require more information from the roadways as well as supporting infrastructural components to 
function properly (such as lane markings and signs). 

The survey results offer insights about Texans’ current adoption of, WTP for, and interest 
in CAV technologies, while helping traffic engineers, planners and policymakers forecast long-
term (year 2015-2045) adoption of these technologies under three different technology-
acquisition-cost scenarios (i.e., 1%, 5%, and 10% annual price-reduction rates). Among Level 1 
technologies, traffic sign recognition is the least interesting (52.5% of respondents reported $0 
WTP), currently the least adopted (2%), and anticipated to have the lowest level of future adoption 
(in 2045) by Texans. Blind-spot monitoring and Emergency automated braking are the two most 
interesting technologies for Texans, with the highest adoption rate (59.4%) among Level 1 
technologies in 2045 at a 10% price reduction rate. ESC has the highest current adoption rate 
(21.7%), and is anticipated to have the highest (59.9%) and second-highest (56.9%) future 
adoption rates (among Level 1 Technologies) at the 5% and 10% price reduction scenarios. More 
than half of respondents are not willing to pay anything to add advanced automation technologies 
(Level 3 and Level 4) to their current vehicles. Average WTP (of the respondents with a non-zero 
WTP) to add connectivity and Level 3 and Level 4 automations are $110, $5,551, and $14,589, 
respectively. The future adoption rate of connectivity is comparable with the second-most adopted 
Level 1 technology in the future. Respondents also felt more comfortable knowing that their 
vehicles themselves would be connected through open communication, however felt the most 
uncomfortable when knowing that they, as owners, are liable for any accidents that occur with the 
vehicle. Interestingly, roughly the same shares of respondents reported WTP of $0 to use AVs for 
short-distance (39.2%) or long-distance (37.3%) trips. The average number of long-distance trips 
(over 50 miles) is reported to increase by 1.3 (per person per month) due to the adoption of AVs. 
Because this is the current perceptions of Texans, as they learn more about CAV technologies and 
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experience more of the technology first hand, their responses may change. More survey work is 
required elsewhere in the U.S. as well as in other countries, all over time.  

In order to see cost improvements with CAVs, values are assigned to different metrics of 
transportation. VMT is predicted to rise, as travelers experience falling values of travel time (easier 
travel), CAVs travel unoccupied/empty, and inter-vehicle coordination and incident reductions 
effectively improve network capacity. Even with rising VMT, congestion may fall overall due to 
platooning, speed harmonization, cooperation with “smart” infrastructure, and fewer crashes. 
CAVs will no longer be prone to human errors, such as intoxication and distraction, resulting in 
fewer collisions and fewer fatality crashes. Moreover, as SAVs become a viable new transport 
mode, household vehicle ownership should fall, particularly in urban areas. Summary results 
indicate that comprehensive crash savings represents the largest potential gain (over $2,000 per 
privately held CAV per year), though benefits from added productivity and leisure time also 
comprises a substantial portion of the total benefits (at roughly $1,300 per driver that shifts to 
automated travel per year). Congestion benefits are also apparent, though much smaller in 
magnitude (since total travel delays are much lower in value to begin with). However, if targeted 
measures are used (e.g., smart intersections with very high CAV adoption rates), and innovative 
demand management strategies are undertaken (e.g., increased ridesharing using SAVs), it may be 
possible for each CAV to offer greater congestion benefits. In all, this work indicates that the 
lifecycle value of each privately held CAV is likely to result in over $15,500 in net benefits at the 
10% market penetration level (after reflecting added automation costs), rising to over $30,000 per 
vehicle by the time 90% market penetration rates are reached. With CAVs we foresee an undoubted 
improvement in safety of all vehicles on the road as market penetration increases as CAVs are 
safer vehicles.  

This report also describes several different models used to closely simulate AV behavior. 
Although AVs hold much potential, visually conveying the benefits to the public is an essential 
task and complex traffic models are required to simulate the predicted AV behaviors. First, a four-
step planning model was used including trip generation, trip distribution, modal split and choice, 
and traffic assignment for AV and HV flow distribution. This static four-step model, simulates the 
effect of AVs on demand and route choice by including AV round trips which involves AVs 
dropping off passengers at locations and then leaving to avoid parking costs. This cut in parking 
cost can affect trip/route choice and further increase demand as it becomes more cost-effective to 
use an SAV or CAV to commute. Repositioning trips may increase SAV travel times, however far 
less SAVs are required to support a large population of travelers, however, with dynamic ride 
sharing involved, SAVs can cut times and use less vehicles on the road to do so, picking up three 
or four passengers at a time and taking them to similar destinations. This model will be able to 
show the effects of AVs on demand and route choice and their new generalized cost's effect on 
trip, mode, and route choice as well. Next, a multi-class extension of the CTM was introduced. 
AVs have the potential to improve link and intersection traffic behavior, since lower computer 
reaction times may admit reduced following headways as well as increase capacity and backwards 
wave speed. 

To provide a framework for analyzing effects of these AVs on city networks, the multi-
class CTM is used in conjunction with a shared road DTA model for HVs and AVs. The multi-
class CTM is presented for vehicles traveling at the same speed with capacity and backwards wave 
speed a function of class proportions. A collision-avoidance car-following model incorporating 
vehicle reaction time is used to predict how reduced reaction times might increase capacity and 
backwards wave speed. These models are generalized to an arbitrary number of classes to allow 
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for different AVs certified for different reaction times. These models also use continuous flow so 
that SBDTA models built on continuous flows may incorporate these multi-class predictions. With 
the second part of a shared road DTA model is the intersection control which involves secondary 
and unconventional alternatives to the traditional traffic signal such as a FCFS TBR system for 
100% AVs that could potentially increase efficiency by decreasing travel times as well. TBR 
intersection control for AVs has the potential to reduce intersection delays beyond optimized 
traffic signals. 

Because modeling such a finely aggregated intersection in TBR is so robust and 
computationally demanding, a conflict region model was developed to offer a much more tractable 
model and more practical simulation in terms of run time. Previous work studied prioritizing 
requests via FCFS or holding auctions at intersections, but the possibilities are infinite. 
Furthermore, although selfish routing behavior could affect the benefits of the reservation 
prioritization, reservation control has not been studied with user equilibrium routing due to its 
microsimulation definition. Future work will include developing traffic models that include 
vehicle automation of several levels and running these models using the adapted simulator. 
Preliminary results show that adaptive micro-tolling can achieve up to a 30% decrease in the 
average travel time within a road network. Finally, in regards to the methodology of models and 
simulations, this report presented an event-based framework for implementing SAV behavior in 
existing traffic simulation models. We demonstrated this framework by implementing SAV 
behavior in a CTM-based DTA simulator. The framework relies on two events independent of 
traffic flow models: travelers calling SAVs, and SAVs arriving at centroids. This allows 
comparisons with personal vehicle scenarios through solving traffic assignment in the same 
simulator. 

Using the defined above, road-sharing DTA simulations were run using a multi-class CTM 
and a conflict region model (for intersection control) for AVs, HVs, and different proportions of 
the two together with traditional traffic signals. Our team also varied demands for each network 
tested, to observe trends as demands were increased to 100% for the network tested. Finally, 
simulations with 100% AVs were run on each network with FCFS TBR systems at intersections 
and merge/diverge ramps on highways. The networks tested included 2 arterial networks, 3 
freeway networks, and 1 downtown network, which were all part of the Texas 100 top most 
congested locations and intersections, with the purpose of being able to apply our results to most 
other network scenarios. It was observed that increasing the proportion of AVs always decreased 
travel times in all networks tested due to the reduced reaction times of AVs causing closer 
following headways and increased capacities, with larger benefits in freeway networks, naturally. 
The TBR system, however, did not always do better than traditional signals in terms of travel time. 
For arterial regions, reservations were beneficial in some situations but not in others. On Congress 
Avenue, a long arterial without progression, reservations improved travel times. However, at the 
Lamar & 38th Street intersection, reservations gave greater priority to vehicles entering from local 
roads. Since intersections were so close together, this created queue spillback and greater 
congestion from using reservation controls. This was due to the FCFS policy: vehicles were 
prioritized according to how long they had been waiting. In contrast, signals allowed more freedom 
in capacity allocation, and were optimized to give arterials a greater share of the capacity. On 
freeway networks, the effects of reservations were again mixed. On US-290, which uses signals to 
control access, reservations were an overall improvement. In other freeway networks, reservations 
were worse than merges/diverges. In the downtown Austin grid network, reservations resulted in 
great reductions in travel times. The downtown Austin network saw a near 78% reduction in travel 
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times across the network as congested intersections did not pose as great a problem as in the Lamar 
& 38th scenario, because the larger downtown network allowed for more dynamic route choice and 
avoidance of such a problem. 

Moreover, the simulations do not consider corridor or intersection use by pedestrians and 
cyclists, which will reduce capacities and increase travel times. If signals are foregone, special 
accommodations will be needed for pedestrians and cyclists. 

Finally, this report also described a model to analyze the impact of CAV availability on 
AM peak transit demand. CAVs allow the option of a drop-off and return trip to avoid parking 
costs, incurring only additional fuel consumption, so a generalized cost function of travel time, 
monetary fees, and fuel was created to model the cost of a trip. On the other hand, CAV use 
increases road capacity, reducing travel times. The model was tested on the Austin downtown 
network, including bus routes. Results indicated that parking cost was a main incentive for transit, 
and that avoidance of parking costs through CAV round-trips resulted in both an increase in CAV 
round-trips relative to one-way and park trips and a decrease in transit demand. However, only 
modest increases in average link speed were observed. These results are likely due to two factors: 
first, CAVs have a reduced following headway resulting in higher capacity, which is included in 
the travel time function; second, most repositioning trips are away from downtown, whereas most 
traveler trips are moving towards downtown, so they use somewhat different links. 
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Appendix A: Identified Testbeds for Testing CAV Applications 

Table A-1: Suggested Roadways for Preliminary CAV Light-Duty Vehicle Platooning Testing (Source: TTI, 2015) 

County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Bexar Blanco Rd / FM 2696 
Charles West Anderson Loop / 

SL 1604 N 
Connally Loop N / IH 410 6.64 59,567 

Dallas W Illinois Ave SS 408 R L Thornton Fwy / IH 35E / US 77 5.30 58,520 
Tarrant FM 1709 Main St / US 377 Northwest Hwy / SH 114 9.04 58,510 
Bexar Wurzbach Blanco Rd / FM 2696 Connally Loop W /IH 410 / SH16 9.86 58,459 
Bexar Potranco Rd / FM 1957 Talley Rd Raymond E. Stotzer Jr Fwy / SH 151 7.21 58,322 

Dallas Josey Ln 
President George Bush Turnpike 

Toll Rd 
Lyndon B Johnson / IH 635 5.30 58,216 

Harris 
Tomball Pkwy / SH 

249 
Holderrieth Rd Perry Rd 7.05 57,981 

Tarrant E Loop 820 S / IH 820 Tom Landry Fwy / IH 30 IH 20 6.82 57,723 
Harris Gessner Northwest Fwy / US 290 Katy Fwy / IH10/ US90 5.78 56,895 
Harris Bissonnet St Southwest Fwy / IH 69/ US 59 West Loop S/ IH 610 6.69 56,236 
Harris FM 1960 North Fwy / IH 45 Eastex Fwy / US 59 10.10 55,629 
Harris East Fwy / IH 10 E Sam Houston Pkwy /SL 8 SS 330 5.76 55,191 
Dallas S SL 12 W SS 408 (W Illinois Ave) R.L. Thornton Fwy / IH 35E /US 77 9.75 54,747 
Bexar Pleasanton S Flores Street Connally Loop S / IH 410 5.14 53,873 
Harris Fairbanks N Houston  N Sam Houston Pkwy W / SL8 Northwest Fwy / US 290 5.27 53,302 

Bexar FM 471 
Charles West Anderson Loop / 

SL 1604 NW 
Bandera Rd / SH 16 6.01 52,996 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Dallas 
John W. Carpenter 

Fwy / SH 114 
President George Bush Turnpike 

Toll Rd 
Airport Fwy / SH 183 6.04 52,824 

Harris Bellaire Blvd Addicks-Clodine W Sam Houston Pkwy / SL 8 6.88 51,692 
Travis RM 620 RM 2222 SH 71 12.86 51,323 
Dallas IH 20 Marvin D Love Fwy / US 67 S Central Expy / SH 310 9.09 51,036 
Bexar Culebra Rd Connally Loop W / IH 410 Bandera Rd / SS 421 5.57 50,446 

El Paso 
Montana Ave / US 180 

/ US 62 
Gateway Blvd / IH 10 Global Reach Dr 5.39 50,387 

Dallas 
S Buckner Blvd / SL 

12 E 
E R L Thornton Fwy / IH 30 / 

US 67 
C F Hawn Fwy / US 175 5.92 50,289 

Dallas Harry Hines Blvd W Northwest Hwy / SL 12 N Dallas North Tollway 5.80 49,902 

Dallas 
Tom Landry Fwy / IH 

30 
SH 360 S Walton Walker Blvd / SL 12 W 8.71 49,800 

Bexar Military Dr / SL 13 S PanAm Expy / IH 35 / IH10 Goliad Rd 5.96 49,489 
Harris N Fry Rd FM 529 Katy Fwy / IH 10 / US 90 6.60 49,377 

Dallas 
N Buckner Blvd / SL 

12 E 
E Northwest Hwy / SL 12 N E R L Thornton Fwy / IH 30 / US 67 5.01 49,128 

Travis N Lamar Blvd / SL 275 IH 35 US 183 5.99 49,092 

Bexar 
Charles West Anderson 

Loop / SL 1604 N 
US 281 IH 35 9.42 48,960 

Tarrant University Dr  Jacksboro Hwy / SH 199 Granbury Rd 5.30 48,728 
Harris FM 1960 Eastex Fwy / US 59 Crosby Huffman Rd / FM 2100 11.07 48,536 
Travis SH 71 RM 620 US 290 7.25 48,529 

Dallas Forest Lane 
Lyndon B Johnson / IH 635 

(Grissom Ln) 
SH 75 10.87 48,324 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Harris Beechnut Blvd W Sam Houston Pkwy S / SL 8 West Loop S/ IH 610 6.10 48,023 

Bexar Huebner Rd 
Charles West Anderson Loop / 

SL 1604 N 
Bandera Rd / SH 16 9.89 47,717 

Dallas Belt Line Rd Dallas North Tollway US 75 5.24 47,482 
Harris Murphy Rd / FM 1092 Southwest Fwy / US 59 SH 6 5.99 47,218 

Dallas 
Lyndon B Johnson / IH 

635 
US 80 IH 20 6.73 47,058 

Bexar 
Charles West Anderson 

Loop / SL 1604 NE 
FM 1976 IH 10 / US 90 5.06 46,890 

Harris 
Westheimer Rd / Elgin 

St 
West Loop S/ IH 610 Southwest Fwy / US 59 5.58 46,414 

Dallas Cockrell Hill Rd Tom Landry Fwy / IH 30 S G Alexander Fwy / US 67 8.70 46,397 
Harris East Fwy / IH 10 E Loop Fwy / IH 610 E Sam Houston Pkwy /SL 8 7.42 46,281 
Harris FM 2234 S Sam Houston Pkwy W /SL 8 Blueridge Rd 6.40 46,130 
Dallas Belt Line Rd Stemmons Fwy / IH 35E/ US 77 Dallas North Tollway 5.13 45,702 
Bexar Callaghan Rd McDermott Fwy / IH 10 / US 87 Raymond E. Stotzer Jr Fwy / SH 151 7.45 45,552 
Harris Holcombe Blvd West Loop S/ IH 610 South Fwy / SH 288 5.32 45,043 
Tarrant SH 183 Jacksboro Hwy / SH 199 IH 30 5.10 44,379 
Dallas Ferguson Rd Lyndon B Johnson Fwy / IH 635 Samuell Blvd 6.35 43,961 

Bexar Babcock Rd 
Charles West Anderson Loop / 

SL 1604 NW 
Fredericksburg Rd / SL 345 11.12 43,903 

Harris 
Briar Forest Dr_San 

Felipe St 
W Sam Houston Pkwy / SL 8 West Loop S/ IH 610 6.31 43,805 

Harris Clay Rd Barker Cypress Rd W Sam Houston Pkwy N / SL 8 7.49 43,573 
Harris FM 2920 SH 249 Kuykendahl Rd 8.37 43,230 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Bexar Vance Jackson Huebner Road Fredericksburg Rd / SL 345 6.38 42,890 
Harris Eldridge Pkwy Katy Fwy / IH 10/US 90 Westpark Tollway 5.09 42,887 
Travis S Mopac Expwy / SL1 S Capital of Texas Hwy / SL 360 SH 45 7.40 42,885 
Dallas Royal Ln Stemmons Fwy / IH 35E/ US 77 US 75 7.58 42,477 

Bexar Bitters Rd 
Charles West Anderson Loop / 

SL 1604 N 
Starcrest Drive 6.00 42,456 

Harris Spencer Rd / FM 529 Stockdick School Road SH 6 7.17 42,304 
Bexar Bandera Rd / SH 421 Connally Loop NW / IH 410 McDermott Fwy / IH 10 / US 87 6.00 42,182 
Harris Spencer Hwy Texas St Red Bluff Rd 6.12 42,012 
Travis SH 71 IH 35 SH 130 / SH 45 8.25 41,364 

Tarrant 
 Jacksboro Hwy / SH 

199 
NW Loop 820 / IH 820 W Lancaster Ave 6.56 41,067 

El Paso Alameda Ave / SH 20 North Carolina Dr S Americas Ave / SL 375 7.12 41,012 
Tarrant Wilshire Blvd / SH 174 IH 35W E 12th St / FM 917 7.73 40,837 
Harris Jones Rd Grant Rd Northwest Fwy / US 290 5.25 40,791 
Dallas Lemmon Ave W Northwest Hwy / SL 12 N N Haskell Road 5.85 40,775 
Tarrant SH 183 IH 30 IH 20 5.06 40,720 

Harris 
Edgebrook 

Dr_Fairmont Pkwy 
Almeda Genoa Rd East Sam Houston Pkwy S/ SL 8 6.49 40,569 

Bexar 
Harry Wurzbach Rd _ 

Burr Rd 
Connally Loop N / IH 410 Broadway St / SL 368 5.66 40,542 

Tarrant BU 287 P Old Decatur Rd Northeast Loop 820 / IH 820 5.36 40,481 
Harris Wallisville Road Lockwood Dr Crosby Fwy / US 90 5.79 39,664 

Bexar Stone Oak Parkway US 281 
Charles West Anderson Loop / SL 1604 

N 
5.03 39,375 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Bexar 
Jose Lopez Fwy / IH 

10 / US 90 
Staff Sergeant William 

J.Bordelon Fwy / IH 37 / US 281
Connally Loop E /IH 410 6.37 39,200 

Travis RM 2222 RM 620 N N Capital of Texas Hwy / SL 360 5.27 39,187 
Tarrant Davis Blvd / FM 1938 Northwest Hwy / SH 114 Starnes Rd 7.65 39,032 
El Paso SH 20 Talbot Ave / SL 375 Canam Hwy / IH 10/ US 180 5.36 38,982 
Tarrant US 377 IH 30 IH 20 5.05 38,832 
Dallas Spring Valley Rd Marsh Ln S Coit Rd 8.93 38,825 

Harris 
Weslayan St _ Stella 

Link Rd 
Inwood Dr S Main St /UA 90 6.10 38,652 

Harris Bay Area Blvd Gulf Fwy / IH 45 Red Bluff Rd 6.65 38,634 

Dallas SH 78 FM 544 
President George Bush Turnpike Toll 

Rd 
5.88 38,166 

Harris Tidwell Rd Eastex Fwy / US 59 Greens Bayou 6.27 37,633 
Bexar Blanco Rd Connally Loop N / IH 410 Fredericksburg Rd / SL 345 5.14 37,633 

Dallas 
Riverside Dr _ 
O'Conner Blvd 

IH 635 W Irving Blvd / SH 365 7.47 37,426 

Dallas FM 1382 IH 20 E Belt Line Rd (Cannady Dr) 6.52 37,151 
Harris Memorial Dr W Loop N Fwy / IH610 Gulf Fwy / IH 45 5.09 36,885 

Dallas Singleton Blvd 
S Walton Walker Blvd / SL 12 

W 
N Beckley Ave 5.32 36,776 

Dallas Arapaho Rd Surveyor Blvd US 75 7.16 36,488 
Dallas US 67 IH 20 W Belt Line Rd 5.43 36,451 
Harris Hillcroft Ave Southwest Fwy / IH 69/ US 59 S Main St /UA 90 6.94 36,282 

Harris 
Wirt Rd_Chimney 

Rock Rd 
Kempwood Dr Southwest Fwy / IH 69 / US 59 6.44 36,238 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Travis FM 969 Ed Bluestein Blvd / US 183 Hound Dog Trail 5.52 36,040 
El Paso N Loop Dr / FM 76 North Carolina Dr N Americas Ave / SL 375 5.13 35,858 
Harris Kuykendahl Rd FM 2920 North Fwy / IH 45 9.91 35,659 
Dallas Belt Line Rd US 75 N Glenbrook Dr 5.68 35,301 
Harris Montrose Blvd N Main St Main St 5.75 35,292 
Harris Hardy Toll Road Cypress Creek Pkwy / FM 1960 Aldine Bender Rd /FM 525 7.32 34,967 
Dallas Campbell Rd Preston Rd US 75 5.36 34,945 
Bexar West Fwy / IH 30 W Loop 820 S / IH 820  Camp Bowie Blvd / US 377 7.55 34,660 

Tarrant 
Blue Mound Rd / FM 

156 
US 81 / US 287 Meacham Blvd 6.23 34,593 

Harris Beechnut St Winkleman Dr W Sam Houston Pkwy S / SL 8 5.59 34,478 

Harris Fairmont Pkwy 
East Sam Houston Pkwy S /  

SL 8 
Park Dr 8.60 34,453 

Harris E Little York Rd North Fwy / IH 45 Mesa Dr 8.74 34,328 

Harris Antoine Dr 
North Sam Houston Pkwy W / 

SL 8 
Victory Dr 5.03 34,091 

Dallas 
Belt Line Rd / FM 

1382 
E Main St / SH 180 IH 20 12.39 34,090 

Bexar 
Raymond E. Stotzer Jr 

Fwy / SH 151 
Charles West Anderson Loop W 

/ SL 1604 
Connally Loop W /IH 410 5.54 33,965 

Harris North Houston Rd N Sam Houston Pkwy / SL 8 Northwest Fwy / US 290 7.18 33,962 
Dallas Greenville Ave Belt Line Road / Main St Northwest Hwy / SL 12 N 6.20 33,760 

Bexar 
NW Military Hwy / 

FM 1535 
Charles West Anderson / FM 

1604 
Connally Loop N / IH 410 6.32 33,759 

Harris S Braeswood Blvd Bissonnet St West Loop S/ IH 610 5.22 33,145 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Harris W Little York Rd N Fry Rd Hempstead Hwy 10.35 32,999 
Harris Dairy Ashford N Eldridge Pkwy Aleif Clodine Road 5.75 32,892 
Tarrant Denton Hwy / US 377 Alliance Gateway Fwy / SH 170 Northeast Loop 820 / IH 820 10.36 32,883 
Harris Greens Rd Hardy Toll Rd Eastex Fwy / US 59 5.75 32,696 
Harris Briar Forest Dr SH 6 W Sam Houston Pkwy S / SL 8 5.39 32,571 
Harris Gulf Fwy / IH 45 Nasa Pkwy / FM 528 FM 517 6.42 32,495 

Harris 
Beaumont Hwy / BU 

90 
N Sam Houston Pkwy E / SL8 N Loop E Fwy / IH 610 6.29 32,301 

Harris 
Aldine Bender Rd / FM 

525 
North Fwy / IH 45 Eastex Fwy / US 59 7.03 32,004 

Dallas N Jim Miller Road Highland Road Great Trinity Forest / SL 12 S 5.72 31,735 
Harris Richey St / SH3 Shaver St Gulf Fwy / IH 45 5.53 31,593 
Bexar Thousand Oaks Dr US 281 N PanAm Expy / IH 35 6.82 31,501 
Harris Spencer Hwy Red Bluff Rd Broadway St 6.82 31,253 
Dallas MacArthur Blvd W Grauwyler Rd E Main St / SH 180 5.52 31,163 

Harris 
West Lake Houston 

Pkwy 
FM 1960 North Sam Houston Pkwy E / SL 8 6.65 31,050 

Tarrant 
Grapevine Hwy / SH 

26 
Glade Rd Denton Hwy / US 377 8.48 30,788 

Tarrant Matlock Rd W Sublett Rd E Broad St 5.58 30,692 
Harris Richmond Ave W Sam Houston Pkwy / SL 8 West Loop S/ IH 610 5.93 30,657 
Dallas Irving Blvd / SH 356 Airport Fwy / SH 183 Walton Walker Blvd / SL 12 W 5.35 30,545 

Dallas Ledbetter Dr / SL 12 S 
R.L. Thornton Fwy / IH 35E /US 

77 
C F Hawn Fwy / US 175 

 8.71  
30,455 

Harris Gessner Katy Fwy / IH10/ US90 Southwest Fwy / IH 69/ US 59  6.95  30,415 



160 

County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Dallas Walnut St Lyndon B Johnson Fwy / IH 635 N Country Club Rd  8.38  30,246 
Harris Fulton St Parker Rd Hogan St  6.13  30,017 
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Table A-2: Suggested Roadways for Intermediate CAV Light-Duty Vehicle Platooning Testing (Source: TTI, 2015) 

County Road Name From To 
Segment 
Length 
(miles)  

Annual Delay 
per Mile 

(person-hours)  

Harris SH 6 Northwest Fwy / US 290 Katy Fwy / IH10/ US90 10.00 97,860 
Tarrant IH 30 / US 377  Camp Bowie Blvd / US 377 IH 35 W 5.08 97,136 

Harris 
North Sam Houston Pkwy E/ 

SL 8 
Hardy Toll Rd Old Humble Rd 6.48 96,194 

Harris SH 6 Katy Fwy / IH10/ US90 Westpark Tollway 5.40 93,105 

Dallas 
President George Bush 

Turnpike / SH 161 
Lyndon B Johnson / IH 635 Airport Fwy / SH 183 7.13 92,717 

Harris 
W Sam Houston Pkwy N /SL 

8 
Tomball Pkwy / SH 249 Northwest Fwy / US 290 6.41 89,596 

Bexar Bandera Rd / SH 16 FM 1560 Connally Loop NW / IH 410 7.43 87,984 
Dallas IH 20 SH 360 Marvin D Love Fwy / US 67 11.13 87,376 
Harris Bellaire Blvd W Sam Houston Pkwy / SL 8 West Loop S/ IH 610 5.91 83,803 

Bexar 
McDermott Fwy / IH 10 / US 

87 
Connally Loop N / IH 410 S PanAm Expy / IH 35 6.52 83,552 

Bexar N PanAm Expy / IH 35 McAllister Fwy / US 281 Connally Loop NE / IH 410 5.55 83,356 
Tarrant IH 20 US 287 SH 360 9.04 81,699 
Bexar White Rd / SL 13 Connally Loop E / IH 410 Rigsby Ave / US 87 8.20 80,308 

Harris Eastex Fwy / IH 69 / US 59 Little York Rd 
North Sam Houston Pkwy E 

/ SL 8 
5.24 79,707 

Bexar Connally Loop NE / IH 410 N PanAm Expy / IH 35 Rigsby Ave / US 87 5.57 79,441 

Dallas Mockingbird Ln 
John W. Carpenter Fwy / SH 

183 
SH 75 5.87 78,673 

Harris Tomball Pkwy / SH 249 
North Sam Houston Pkwy W / 

SL 8 
North Fwy / IH 45 6.92 78,577 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual Delay 
per Mile 

(person-hours)  

Bexar IH10 / US 87 Boerne Stage Rd 
Charles West Anderson 

Loop / SL 1604 N 
6.48 78,338 

Tarrant IH 20 IH 35 W US 287 6.46 76,508 
Tarrant Tom Landry Fwy / IH 30 IH 35 W E Loop 820 / IH 820 6.31 76,181 

Dallas Preston Rd / SH 289 
Sam Rayburn Tollway / SH 

121 
IH 635 12.12 73,043 

Travis 
Capital of Texas Hwy / SL 

360 
RM 2222 RM 2244 5.15 72,567 

Harris Pasadena Fwy / SS 225 E Loop Fwy / IH 610 
East Sam Houston Pkwy S/ 

SL 8 
7.97 72,075 

Harris  S Post Oak Rd S Loop W Fwy / IH610 FM 2234 7.22 71,887 
Tarrant Cooper St / FM 157 IH 20 BU 287P 6.83 70,100 
Dallas  IH 30 / US 67  Buckner Blvd / SL 12 E President George Bush Hwy 9.10 69,978 
Tarrant IH 35 W IH 20 NE Wilshire Blvd / SH 174 7.94 69,943 

Harris S Main St / UA 90 S Loop W Fwy / IH610 
South Sam Houston Pkwy 

W / SL 8 
6.54 69,436 

Dallas Northwest Hwy / SL 12 N Dallas North Tollway N Buckner Blvd / SL 12 E 5.70 69,393 
Dallas Coit Rd Frankford Rd Forest Lane 6.10 69,088 

Dallas SH 114 Texan Trail / SH 26 
President George Bush 

Turnpike Toll Rd 
6.09 68,995 

Tarrant Collins St / FM 157 Airport Fwy / SH 183 Tom Landry Fwy / IH 30 6.88 68,063 
Harris N Loop E Fwy / IH 610 North Fwy / IH 45 East Fwy / IH 10 8.02 67,585 
Dallas Hampton Rd Tom Landry Fwy / IH 30 Marvin D Love Fwy / US 67 5.90 67,470 

Dallas W Northwest Hwy / SL 12 N 
Walton Walker Blvd / SL 12 

W 
Dallas North Tollway 5.57 67,237 

Bexar Rittman _ N Foster Rd 
N PanAm Expy / IH 35 / IH 

410 
IH 10 / US 90 5.05 66,453 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual Delay 
per Mile 

(person-hours)  

El Paso N Mesa St / SH 20 
Canam Hwy / IH 10 / US 180 / 

US 85 
Executive Center Blvd 5.35 66,180 

Bexar Marbach Rd 
Charles West Anderson Loop 

W / SL 1604 
Pinn Rd 5.59 65,531 

Dallas Belt Line Rd Denton Tap Airport Fwy / SH 183 7.67 64,251 

Dallas Lyndon B Johnson / IH 635 SH 121 
Stemmons Fwy / IH 35 E / 

US 77 
9.24 64,048 

Bexar San Pedro Ave / SS 537 Connally Loop N / IH 410 S PanAm Expy / IH 35 5.92 63,643 
Dallas Belt Line Rd Airport Fwy / SH 183 E Main St / SH 180 6.25 61,833 

Harris Bissonnet St Clodine Rd 
Southwest Fwy / IH 69/ US 

59 
7.38 61,581 
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Table A-3: Suggested Roadways for Advanced CAV Light-Duty Vehicle Platooning Testing (Source: TTI, 2015) 

County Road Name From To 
Segment 
Length 

Annual Delay per Mile 
(person-hours) 

Travis IH 35 US 290 N / SS69 Ben White Blvd / SH71 7.93 975,552 
Harris Southwest Fwy / US 59 West Loop S/ IH 610 South Fwy / SH 288 5.37 609,082 

Tarrant 
North Fwy / IH 35W / US 

287 
US 81 / US 287 28th St / SH 183 5.37 599,739 

Dallas Lyndon B Johnson / IH 635
Stemmons Fwy / IH 35 E / 

US 77 
US 75 8.01 578,542 

Harris North Fwy / IH 45 
North Sam Houston Pkwy 

E / SL 8 
N Loop Fwy / IH 610 9.90 524,701 

Harris Katy Fwy / IH10 / US 90 W Loop N Fwy / IH610 North Fwy / IH 45 5.08 519,820 

Dallas US 75 Lyndon B Johnson / IH 635
Woodall Rodgers Freeway 

/ SS 366 
9.27 501,265 

Harris Northwest Fwy / US 290 
W Sam Houston Pkwy N / 

SL 8 
N Loop W Fwy / IH 610 8.38 500,008 

Harris N Loop W Fwy / IH 610 North Fwy / IH 45 Katy Fwy / IH10/ US90 6.58 499,335 
Harris Gulf Fwy / IH 45 IH10 / US 90 S Loop E Fwy /IH 610 6.88 458,650 

Dallas 
E R L Thornton Fwy / IH 

30 / US 67 
Jefferson Viaduct  Buckner Blvd / SL 12 E 8.40 441,769 

Harris Gulf Fwy / IH 45 
South Sam Houston Pkwy 

E / SL 8 
Nasa Pkwy / FM 528 7.73 363,613 

Dallas US 75 
President George Bush 

Turnpike Toll Rd / SH 190 
Lyndon B Johnson / IH 635 6.45 362,364 

Dallas  IH 35E/ US 77 / US 67 Tom Landry Fwy / IH 30 
Marvin D Love Fwy / US 

67 
5.34 359,414 

Harris Katy Fwy / IH 10 / US 90 
W Sam Houston Pkwy /  

SL 8 
W Loop N Fwy / IH610 6.39 339,314 
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County Road Name From To 
Segment 
Length 

Annual Delay per Mile 
(person-hours) 

Travis Mopac Expwy / SL1 US 183 
S Capital of Texas Hwy / 

SL 360 
10.52 299,867 

Harris Katy Fwy / IH 10 / US 90 Grand Pkwy / SH 99 N Eldridge Pkwy 9.51 298,440 

Harris 
Southwest Fwy / IH 69 / 

US 59 
W Loop S Fwy / IH 610 

W Sam Houston Pkwy S / 
SL 8 

7.79 288,002 

Dallas Dallas North Tollway 
President George Bush 

Turnpike Toll Rd 
Lyndon B Johnson / IH 635 6.19 223,514 

Travis IH 35 Parmer Ln / FM 734 US 290 N / SS69 6.44 222,199 

Harris North Fwy / IH 45 
Spring Cypress Rd / FM 

2920 
North Sam Houston Pkwy 

E / SL 8 
8.55 210,600 

Harris W Loop S Fwy / IH 610 
Southwest Fwy / US 59 / 

IH 69 
South Fwy / SH 288 7.97 208,419 

Tarrant SH 360 Tom Landry Fwy / IH 30 IH 20 5.67 193,351 

Tarrant Airport Fwy / SH 121 SH 26 
Northeast Loop 820 / IH 

820 
12.18 191,577 

Harris Gulf Fwy / IH 45 S Loop E Fwy / IH 610 
South Sam Houston Pkwy 

E / SL 8 
14.55 188,397 

Bexar 
McDermott Fwy / IH 10 / 

US 87 
Charles West Anderson 

Loop / SL 1604 N 
Connally Loop N / IH 410 7.08 186,555 

Dallas Lyndon B Johnson / IH 635 Garland Ave / SH 78 US 80 5.70 178,930 

Tarrant SH 360 Airport Fwy / SH 183 Tom Landry Fwy / IH 30 5.55 176,944 

Harris Westheimer Rd / FM 1093 
W Sam Houston Pkwy S / 

SL 8 
West Loop S/ IH 610 6.48 175,985 

Bexar 
Connally Loop NW / IH 

410 
McDermott Fwy / IH 10 / 

US 87 
Culebra Rd 6.29 163,773 
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County Road Name From To 
Segment 
Length 

Annual Delay per Mile 
(person-hours) 

Harris South Fwy / SH 288 S Loop W Fwy / IH 610 
South Sam Houston Pkwy / 

SL 8 
5.57 162,033 

Harris 
W Sam Houston Pkwy / 

SL 8 
Katy Fwy / IH10/ US90 

Southwest Fwy / IH 69 / 
US 59 

8.60 160,737 

Harris 
North Sam Houston Pkwy / 

SL 8 
Tomball Pkwy / SH 249 Hardy Toll Rd 8.04 159,245 

Dallas Lyndon B Johnson / IH 635 US 75 Garland Ave / SH 78 7.41 157,870 

Harris 
Cypress Creek Pkwy / FM 

1960 
Tomball Pkwy / SH 249 North Fwy / IH 45 8.55 154,925 

Bexar Connally Loop N / IH 410 McAllister Fwy / US 281 N PanAm Expy / IH 35 5.63 153,604 

Harris 
W Sam Houston Pkwy N / 

SL 8 
W Little York Road Katy Fwy / IH10 / US90 6.41 153,245 

Tarrant IH 35 W IH 30 IH 20 5.50 147,143 

Dallas 
Walton Walker Blvd / SL 

12 W 
W Northwest Hwy / SL 12 

N 
IH 30 7.46 140,596 

Tarrant 
North East loop 820 / IH 

820 
North Fwy / IH 35 W Baker Blvd / SH 183 6.76 140,583 

Dallas Tom Landry Fwy / IH 30 
S Walton Walker Blvd / SL 

12 W 
Jefferson Viaduct 6.04 138,800 

Harris S Loop E Fwy / IH 610 South Fwy / SH 288 Gulf Fwy / IH 45 6.01 131,885 
Harris E Loop Fwy / IH 610 East Fwy / IH 10 Gulf Fwy / IH 45 6.03 131,234 

Travis 
S Capital of Texas Hwy / 

SL 360 
RM 2244 

W Ben White Blvd / US 
290 / SH 71 

5.06 128,418 

Dallas Airport Fwy / SH 183 SH 161 
N Walton Walker Blvd / 

SL 12 W 
6.02 122,637 

Tarrant Tom Landry Fwy / IH 30 E Loop 820 / IH 820 SH 360 8.78 120,301 
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County Road Name From To 
Segment 
Length 

Annual Delay per Mile 
(person-hours) 

Bexar 
Charles West Anderson 

Loop / SL 1604 N 
US 281 

McDermott Fwy / IH 10 / 
US 87 

8.17 115,845 

Bexar McAllister Fwy / US 281 Connally Loop N / IH 410 PanAm Expy / IH 35 6.35 115,128 

Harris Southwest Fwy / US 59 
W Sam Houston Pkwy S / 

SL 8 
SH 6 5.35 114,702 

Tarrant IH 35 W Alliance Gateway / SH 170 US 81 / US 287 5.08 110,809 

Bexar 
Charles West Anderson 

Loop / SL 1604 NW 
McDermott Fwy / IH 10 / 

US 87 
Braun Rd 5.22 109,862 

Harris 
Northwest Fwy / US 290 / 

SH 6 
Spring Cypress Rd SH6 5.73 106,019 

Travis US 183 IH35 E Ben White Blvd / SH 71 10.17 102,484 
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Table A-4: Suggested Roadways for Preliminary CAV Truck Platooning Testing (Source: TTI, 2015) 

County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay 

per Mile 
(person-
hours)  

Annual 
Truck 

Delay per 
Mile 

(person-
hours)  

Harris North Fwy / IH 45 
Spring Cypress Rd / FM 

2920 
North Sam Houston Pkwy E / 

SL 8 
8.55 210,600 19,324 

Harris Katy Fwy / IH10 / US 90 
W Sam Houston Pkwy /  

SL 8 
W Loop N Fwy / IH 610 6.39 339,314 19,227 

Harris Gulf Fwy / IH 45 S Loop E Fwy / IH 610 
South Sam Houston Pkwy E / 

SL 8 
14.55 188,397 17,927 

 Tarrant IH 35 W Alliance Gateway / SH 170 US 81 / US 287 5.08 110,809 16,545 
Hidalgo IH 69C / US 281 E Canton Rd IH 2 / US 83 5.72 41,503 16,146 

Williamson Palm Valley Blvd / US 79 N IH 35 FM 685 7.84 37,408 16,019 

Denton IH 35 E / US 77 
Lillian Miller Pkwy / SL 

288 
N Denton Dr 5.59 185,689 15,370 

Harris 
Northwest Fwy / US 290 /  

SH 6 
Spring Cypress Rd SH 6 5.73 106,019 15,007 

Dallas Tom Landry Fwy / IH 30 
S Walton Walker Blvd / SL 

12 W 
Jefferson Viaduct 6.04 138,800 13,974 

 Tarrant Airport Fwy / SH 121 SH 26 Northeast Loop 820 / IH 820 12.18 191,577 13,713 

Harris Westheimer Rd / FM 1093 
W Sam Houston Pkwy S / 

SL 8 
West Loop S / IH 610 6.48 175,985 13,494 

Harris South Fwy / SH 288 S Loop W Fwy / IH 610 
South Sam Houston Pkwy / 

SL 8 
5.57 162,033 13,370 

Brazos S TX Ave / BS 6R E Villa Maria 
Earl Rudder / SH 6 (Deacon 

Dr) 
5.26 69,431 13,266 

Denton FM 1171 Flower Mound Rd BS 121H 8.18 50,004 13,200 
 Tarrant North East Loop 820 / IH 820 North Fwy / IH 35 W Baker Blvd / SH 183 6.76 140,583 12,906 
 Tarrant IH 35 W IH 30 IH 20 5.50 147,143 12,712 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay 

per Mile 
(person-
hours)  

Annual 
Truck 

Delay per 
Mile 

(person-
hours)  

 Collin Sam Johnson Hwy / US 75 
Sam Rayburn Tollway / SH 

121 / SH 399 
President George Bush 

Turnpike Toll Rd / SH 190 
11.51 173,879 12,654 

Harris W Loop S Fwy / IH 610 
Southwest Fwy / US 59 / IH 

69 
South Fwy / SH 288 7.97 208,419 12,592 

 Tarrant IH 30 / US 377  Camp Bowie Blvd / US 377 IH 35 W 5.08 97,136 12,272 
Williamson IH 35 SH 45 / Louis Henna Blvd Parmer Ln / FM 734 5.55 104,216 12,199 

Harris Tomball Pkwy / SH 249 
North Sam Houston Pkwy 

W / SL 8 
North Fwy / IH 45 6.92 78,577 12,090 

Smith Southwest Loop 323 
Dallas Hwy / W Ervin St / 

SH 64 
S Broadway Ave / US 69 5.35 46,968 12,034 

Denton Justin Rd / FM 407 McMakin Rd IH 35E / US 77 6.82 38,369 11,394 

Bexar 
Charles West Anderson Loop 

/ SL 1604 N 
US 281 

McDermott Fwy / IH 10 / US 
87 

8.17 115,845 11,335 

Bexar 
Charles West Anderson Loop 

/ SL 1604 NW 
McDermott Fwy / IH 10 / 

US 87 
Braun Rd 5.22 109,862 11,071 

Dallas Preston Rd / SH 289 
Sam Rayburn Tollway / SH 

121 
IH 635 12.12 73,043 11,032 

 Tarrant SH 360 Tom Landry Fwy / IH 30 IH 20 5.67 193,351 10,714 
Fort Bend FM 762 Jackson St / UA 90 Crabb River Rd / FM 2759 5.26 42,153 10,231 

Harris East Fwy / IH 10 E Sam Houston Pkwy / SL 8 SS 330 5.76 55,191 10,075 
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Table A-5: Suggested Roadways for Intermediate CAV Truck Platooning Testing (Source: TTI, 2015) 

County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay 

per Mile 
(person-
hours)  

Annual 
Truck Delay 

per Mile 
(person-
hours)  

Harris Gulf Fwy / IH 45 IH10 / US 90 S Loop E Fwy  / IH 610 6.88 458,650 46,138 

Harris Northwest Fwy / US 290 
W Sam Houston Pkwy N /  

SL 8 
N Loop W Fwy / IH 610 8.38 500,008 42,465 

Dallas 
E R L Thornton Fwy / IH 

30 / US 67 
Jefferson Viaduct  Buckner Blvd / SL 12 E 8.40 441,769 40,667 

Harris N Loop W Fwy / IH 610 North Fwy / IH 45 Katy Fwy / IH10 / US 90 6.58 499,335 39,731 

Dallas US 75 Lyndon B Johnson / IH 635 
Woodall Rodgers 
Freeway / SS 366 

9.27 501,265 39,318 

Harris Katy Fwy / IH10 / US 90 W Loop N Fwy / IH 610 North Fwy / IH 45 5.08 519,820 33,636 

Harris Gulf Fwy / IH 45 
South Sam Houston Pkwy E / 

SL 8 
Nasa Pkwy / FM 528 7.73 363,613 32,217 

Dallas  IH 35E / US 77 / US 67 Tom Landry Fwy / IH 30 
Marvin D Love Fwy / US 

67 
5.34 359,414 31,709 

Denton IH 35 E / US 77 BS 121 H 
Lyndon B Johnson / IH 

635 
10.28 325,116 28,255 

Williamson IH 35 RM 1431 
SH 45 / Louis Henna 

Blvd 
5.07 167,436 27,294 

Dallas US 75 
President George Bush 

Turnpike Toll Rd / SH 190 
Lyndon B Johnson / IH 

635 
6.45 362,364 27,173 

Travis IH 35 Parmer Ln / FM 734 US 290 N / SS69 6.44 222,199 26,191 
Harris Katy Fwy / IH10 / US9 0 Grand Pkwy / SH 99 N Eldridge Pkwy 9.51 298,440 26,148 

Dallas 
Lyndon B Johnson / IH 

635 
Garland Ave / SH 78 US 80 5.70 178,930 24,659 

Harris 
Southwest Fwy / IH 69 / 

US 59 
W Loop S Fwy / IH 610 

W Sam Houston Pkwy S 
/ SL 8 

7.79 288,002 24,125 
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County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay 

per Mile 
(person-
hours)  

Annual 
Truck Delay 

per Mile 
(person-
hours)  

Montgomery North Fwy / IH 45 Lake Front Cir 
Spring Cypress Rd / FM 

2920 
6.89 254,925 22,091 

Dallas 
Lyndon B Johnson / IH 

635 
US 75 Garland Ave / SH 78 7.41 157,870 20,823 

 

Table A-6: Suggested Roadways for Advanced CAV Truck Platooning Testing (Source: TTI, 2015) 

County Road Name From To 
Segment 
Length 
(miles)  

Annual 
Delay per 

Mile 
(person-
hours)  

Annual 
Truck 

Delay per 
Mile 

(person-
hours)  

Travis IH 35 US 290 N / SS69 Ben White Blvd / SH71 7.93 975,552 114,930 

Dallas Lyndon B Johnson / IH 635 
Stemmons Fwy / IH 35 E / US 

77 
US 75 8.01 578,542 83,394 

Tarrant North Fwy / IH 35W / US 287 US 81 / US 287 28th St / SH 183 5.37 599,739 82,273 

Harris Southwest Fwy / US 59 West Loop S / IH 610 South Fwy / SH 288 5.37 609,082 52,955 

Harris North Fwy / IH 45 
North Sam Houston Pkwy E / 

SL 8 
N Loop Fwy / IH 610 9.90 524,701 50,923 
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