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Chapter 1. Introduction and Report Summary 

1.1. Purpose 

Smart-driving technologies are changing the landscape of transportation. Substantial mobility, 

crash reduction, and environmental benefits may ultimately emerge from these technologies, 

which enable safer and less burdensome road travel. However, in order to optimally capitalize on 

such benefits for Texas’ transportation systems, thoughtful operational strategies, predictions, 

policymaking, and infrastructure innovations are needed.  

This project work developed and demonstrated a variety of smart-transport technologies, 

predictions, policies, and practices for Texas highways and freeways using highly automated or 

fully autonomous vehicles (AVs), connected vehicles (CVs), smartphones, roadside equipment, 

and related technologies.  

The work’s products provide ideas and equipment for more efficient intersection and network 

operations for connected, autonomous vehicle (CAV) operations, alongside a suite of behavioral 

and traffic-flow forecasts for Texas regions and networks under a variety of vehicle mixes (smart 

plus conventional, semi-autonomous versus fully autonomous, connected but not automated, 

passenger vehicles and heavy trucks). The work provides and then evaluates various strategies that 

the Texas Department of Transportation (TxDOT) as well as Texas cities and regions may pursue 

to bring smarter, safer, more connected, and more sustainable ground transportation systems to 

Texas, in concert with auto manufacturers, technologists, and the traveling public. The effort 

supports proactive policymaking on vehicle and occupant licensing, liability, and privacy 

standards, as technologies become available and travel behaviors change. 

1.1.1. Organization of Report 

This report’s organization largely follows the project work plan, including a series of distinctive 

and meaningful tasks, from legal analyses to travel behavior and fleet forecasting, and from traffic 

simulations with smart and micro-tolled intersections and ramp controls to design and 

demonstrations of location-finding and CV applications for better traffic management, road 

condition monitoring, and safety improvements across Texas. The following sub-sections offer 

executive summaries of each chapter of this extensive report, to provide readers an overview of 

contents and findings. 

1.2. Legal Analysis (Chapter 2) 

During Phase 1 of this project, the research team conducted an in-depth review of Texas law to 

ascertain the major issues arising from the introduction of C/AVs and in particular issues that 

would impact TxDOT. During Phase 2 (September 2016 through writing of this chapter in March 
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2018), the research team continued to track legislation introduced at the state and federal levels. 

This section summarizes those legislative activities.  

At the federal level, the 2016 election did create some delay as newly appointed agency heads 

developed new or amended policies. However, this is not to say that no measurable activity took 

place. In September and October of 2016 the National Highway Traffic Safety Administration 

(NHTSA) released policies on AVs and best practices for cybersecurity in modern vehicles 

(NHTSA, 2016 (a) and (b)). These were both deliberately issued as policy (rather than regulation) 

in recognition of the changing dynamic of technologies and public sector groups entering into this 

field. NHTSA’s goal was to encourage technological development and creation of a consistent 

national framework (rather than a patchwork of state-specific laws that could be incompatible with 

one another). The AV policy issued by NHTSA reiterated the agency’s previous stance regarding 

the role of the states and the federal government. Notwithstanding NHTSA’s efforts in this area, 

an examination of state-level legislation does indicate that regulatory inconsistencies are 

potentially arising between the states. NHTSA also began to use a new term highly automated 

vehicle (HAV), re-aligned its set of levels to mirror SAE International’s J3016 levels (the global 

industry reference for defining the six levels of automated/autonomous driving), and noted in the 

policy that it was specifically set for Levels 3 and above. The cybersecurity policy, however, was 

clearly aimed at all vehicles—human-driven, partially automated, connected, and HAVs. 

Other federal agencies continued work in this area as well. The Federal Trade Commission and 

Federal Motor Carrier Safety Administration held multiple hearings on HAVs and CVs during 

2017. Most importantly, on July 13, 2017, the Federal Communications Commission (FCC) 

announced it had unlocked new airwaves for vehicular radar use (FCC, 2017b). The FCC expanded 

the current 76–77 GHz spectrum allocation to include the entire 76–81 GHz band and transition 

radar devices out of the 24 GHz band. This move allows consistency with the internationally 

available spectrum, thus reducing the need for vehicle customization across different international 

markets. Allowing access to this additional spectrum enables these radar devices to better 

distinguish between objects in areas close to the vehicle, and improves performance for 

applications such as lane change warnings, blind spot detection, parking aids, stop and follow, stop 

and go, autonomous braking, and pedestrian detection.  

The U.S. Congress also began to introduce legislation on HAVs. The Senate in June 2017 released 

bipartisan principles for self-driving vehicle legislation. In July 2017 the House Committee on 

Energy and Commerce’s Subcommittee on Digital Commerce and Consumer Protection 

introduced an unnumbered bill regarding highway AV testing and deployment. The draft 

legislation proposed to clarify the federal and state roles for regulating HAVs; it would require 

NHTSA to publish new rules and a safety priority plan for HAVS, and HAV manufacturers to 

submit safety assessment certifications and develop written cybersecurity plans. The legislation 

called for a process for controlling access to automated driving systems and providing employee 

training and management. The draft legislation also required creating a federal advisory committee 

within NHTSA that would have subcommittees to examine various areas, including mobility 

access for communities underserved by traditional public transportation.  
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At the time of writing at the state level it is worth noting that 21 states have now implemented 

legislation or executive orders regarding C/AVs (four states have executive orders in place). These 

legislative and executive components run the gamut from commissioning studies, to creating 

commissions or boards, to drafting extremely detailed and nuanced legislation. The level of 

regulation similarly runs the gamut from almost completely hands-off integration of the 

technology immediately onto roadways to much more extensive regulatory oversight. Over 80 bills 

were introduced in front of state legislatures between fall 2016 and summer 2017.  

What is noticeable within the states is that the various bills employ different terminologies within 

their definitions sections. As noted within Phase 1 report (0-6838-2), nomenclature and definitions 

are extremely important. While many of the state legislatures referred to the SAE J3016 definitions 

and indicated they should be used, many did not. As an example, various bills inconsistently 

employed an array of terminology for HAVs, including self-driving vehicles, autonomous vehicles, 

automated vehicles, and highly automated vehicles.  

The consistent use of nomenclature in setting out definitions for driver, operator, technologies, 

applications, and the vehicles themselves will be extremely useful as these fleets begin to emerge 

within the U.S. The research team recommends that states begin to look at harmonization 

terminology within their statutes and regulations, to reduce confusion, set a standard, and reduce 

litigation anomalies.  

1.3. Information Sharing for Connected and Autonomous 
Vehicles (Chapter 3) 

This chapter describes use of a Markov decision process to model CAVs’ routing behaviors under 

uncertain network conditions. We use node-states to describe the conditions of information 

reception for CAVs when they arrive at a node and prepare to make route decisions. The possible 

actions for each state include all possible links that will be traversed next based on this state; the 

transition functions depend on action and next state regardless of the current state. 

1.4. Autonomous Intersection Management (Chapter 4) 

This chapter proposes a Hybrid Autonomous Intersection Management protocol (H-AIM), which 

is a variant of the Autonomous Intersection Management protocol (AIM) presented in earlier 

project reports. Similar to AIM, H-AIM coordinates the right-of-way for CAVs through an 

intersection in a way that is far more efficient compared to traditional traffic signals. Unlike AIM, 

H-AIM is shown to outperform traditional traffic signals also when traffic is mostly composed of 

human-driven vehicles (HVs). For instance, at 10% CAV penetration rate, H-AIM achieves 3% 

more traffic throughput compared to traditional traffic signals. H-AIM builds on top of existing 

traffic signal infrastructure, it assumes that HVs stop at red signals and cross intersections on green 

signals. By assuming the ability to detect incoming HVs, H-AIM is able to safely direct AVs 

through the intersection even if they arrive on a lane that is assigned a red signal. Experimental 

results are provided showing that H-AIM can decrease traffic delay for AVs even at a 1% 
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technology penetration rate. Furthermore, the presented results suggest that restricting HVs’ 

turning options in each lane—e.g., they can only turn right in the rightmost lane as opposed to also 

having the option to continue straight—is beneficial for AVs. Apart from presenting H-AIM, this 

chapter also provides general guidelines for assigning lanes with turning options for HVs and As. 

1.5. Methods for Implementing Smart Intersections (Chapter 5) 

As previously found, smart intersections using a tile-based reservation (TBR) system and assuming 

a first-come-first-serve (FCFS) priority function have sometimes shown paradoxical effects on 

road networks, worsening travel times and congestion. These retrogressive effects were seen due 

to increased queue spillback onto adjacent links of major intersections as well as links adjacent to 

other intersections within close proximity of the observed major intersection. It was concluded that 

some combination of signalized and smart-controlled intersections in a large-scale network would 

provide the most benefit to system-wide congestion and travel times. This chapter presents two 

methods to identify these subsets of intersections where smart, TBR-controlled intersections would 

provide not just local benefits of increased throughput in the intersection, but system-wide 

congestion benefits.  

In the first method, a multilinear regression model is estimated to predict the differential impacts 

of individual intersection characteristics on travel times as a smart and as a signalized intersection. 

All intersections observed are from the downtown Austin and downtown Dallas networks, and 

intersection characteristics included relatively easy-to-obtain metrics such as cycle length, 

intersection capacity, and turning demands. The dependent variable estimated is an intersection’s 

estimated difference in total system travel time (TSTT) between reservation control and signalized 

control to encapsulate the differential effect of the two controls on the system. To find this data, 

each eligible intersection is treated as an independent network involving only its directly adjacent 

links, and a demand table found from simulation of the larger, parent network. Intersection data is 

used to estimate a regression model, which is then applied to intersections in the downtown Austin 

network and intersections are ranked according to their difference in TSTT, with those having a 

larger benefit under reservation control assuming higher ranks. The raw, dependent variable data 

is tested in simulation using a dynamic traffic assignment (DTA) model to simulate the downtown 

Austin network by choosing a top percentage of the “best” smart-controlled performing 

intersections assuming TBR FCFS control, and the rest signal control. Raw results show great 

improvement in TSTT, beating the base network with 100% TBR control in TSTT by 4% with 

only 60% of intersections under smart control. TSTT values decrease as the proportion of smart 

intersections increases. According to ranking results, smart intersections are situated in corridors 

of consecutive smart intersections, typically in regions of the network away from large clusters of 

smaller intersections. Regression model results, however, did not show the same benefits, with 

TSTT values higher than randomized networks of the same smart-control proportions, showing 

that interdependencies between proximal intersections cannot necessarily be modeled by a linear 

trend. 
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The second method offers a genetic algorithm (GA), used in coordination with a DTA model 

solving for dynamic user equilibrium to find system-optimal (no limitation of the number of TBR 

intersections) and limited-TBR control optimal allocations of smart intersections. The GA 

randomly generates an initial population with each individual in the same downtown Austin 

network under a randomized combination of controls amongst intersections. The GA then uses the 

concept of natural selection to cross the best-performing individuals of a population to create new, 

better networks until a convergence is reached. Similar to the raw regression data, the results show 

TSTT values that fall below the base 100% smart-controlled network TSTT by 4% at just 40% 

TBR control. The system-optimal GA shows an optimal proportion of 86% of intersections as 

smart-controlled, with the proportion of smart intersections increasing along with iterations in the 

GA. Again, GA results show that smart intersections accumulate in “smart corridors” of 

consecutive TBR-controlled intersections along a roadway.  

Overall results show that a completely smart-controlled network will not necessarily result in the 

best congestion and travel time benefits, and most likely that a placement of smart intersections in 

corridors of consecutive intersections in less congested areas of the network would work best. 

Future work must be done to generalize intersection interdependencies by possibly including 

clustering into a different non-linear regression to generalize intersection characteristics and their 

effects on system-wide congestion and travel times. 

1.6. Road Pricing (Chapter 6) 

Communication and computation capabilities are becoming increasingly common on vehicles. 

Such capabilities present opportunities for developing safer, cleaner, and more efficient road 

networks. One way of increasing road efficiency is to incentivize vehicles to travel via less 

congested routes.  

It has been known for nearly a century that drivers seeking to minimize their private travel times 

need not minimize the total level of congestion. In other words, self-interested drivers may reach 

a user equilibrium (UE) that is not optimal from a system perspective. On the other hand, 

disincentivizing vehicles to traverse certain links (using tolls for instance) can lead to the system 

optimum (SO).  

This chapter discusses the concept of micro-tolling, defined as the ability to set individualized and 

dynamic toll values for each link within a road network. Specifically, this chapter tackles a problem 

where, given current, observable traffic conditions (traffic volume, travel speed, travel time, etc.), 

the goal is to set a dynamic toll value to each link such that the UE aligns with the SO. 

This chapter introduces a novel micro-tolling scheme denoted Delta-tolling. Delta-tolling assigns 

a toll to each link proportional to the difference between its current travel time and its free-flow 

travel time (denoted Delta). The constant of proportionality (denoted beta) requires tuning. Since 

Delta changes according to observed traffic, Delta-tolling is adaptive to traffic changes in real 

time. Since computing the toll value is done locally for each link, Delta-tolling is tractable for large 

networks.  
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This chapter conjectures that Delta-tolling leads to optimal system performance. Two types of 

supporting evidence are provided for this claim. From a theoretical standpoint, we show that under 

additional assumptions Delta-tolling is equivalent to marginal-cost tolling, which provably yields 

optimal system performance. From an empirical standpoint, using two different traffic simulation 

models, we show that Delta-tolling leads to a significant improvement in system performance, up 

to 33% and 32% improvement in social welfare and average travel time respectively. As the annual 

cost of traffic congestion in the United States alone is $160 billion, even small reductions in travel 

time can have dramatic benefits. 

To the best of our knowledge Delta-tolling is the first tolling scheme that is adaptive in real time, 

able to scale to large networks, does not assume user homogeneity, and enhances system 

performance. Moreover, given appropriate communication capabilities Delta-tolling is practical to 

implement in real life. 

1.7. Partial Compliance with Tolls (Chapter 7) 

In multiagent systems, there are generally two paradigms of interaction. Centralized control 

paradigms assume that a single decision-making entity is able to dictate the actions of all the 

agents, thus leading them to a coordinated social optimum. Decentralized control paradigms, on 

the other hand, assume that each agent selects its own actions, and while it is in principle possible 

for them to act altruistically, they are generally assumed to be self-interested. A central theme of 

multiagent mechanism design is finding interaction mechanisms for self-interested agents that 

incentivize them to reach coordinated behavior that is as close as possible to the social optimum. 

In this chapter, we consider a routing scenario in which a subset of agents is controlled centrally 

(compliant agents), while the remaining are self-interested agents. We model the system as a 

Stackelberg routing game in which the decision-maker for the centrally controlled agents is the 

leader, and the self-interested agents are the followers. 

Additionally, we provide a computationally tractable methodology for 1) determining the 

maximum number of self-interested agents that a system can tolerate at optimal flow, 2) 

determining whether a given subset of centrally controlled agents are sufficient to achieve SO, and 

3) computing the actions the leader should prescribe to a sufficient set of compliant agents in order 

to achieve SO. 

A known fact in routing games is that agents seeking to minimize their private travel time need 

not minimize the total system’s travel time. That is, self-interested agents may reach a UE that is 

not optimal from a system perspective. However, if all agents are assigned paths with minimum 

system marginal cost then the system will achieve optimal performance.  

Therefore, from a system manager perspective, it is desirable that all agents traversing a network 

would strictly utilize minimal marginal cost paths, even if such paths are not of minimum travel 

time for an individual agent. However, in many important scenarios, it will not be possible to 
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enforce path assignment on all agents, but it may be possible to affect the behavior of a subset (the 

compliant agents). 

As a motivating example, consider an opt-in tolling system where drivers are given positive 

incentives to enroll but, in exchange, they will be subject to tolls that affect their route choice. 

We show that, in the general case, computing the optimal assignment of compliant agents is NP-

hard. Therefore, we focus on the specific scenario where the portion of compliant agents is 

sufficiently large to achieve SO. 

We present a novel linear program representation for computing the maximal portion of self-

interested agents that allow the system to achieve SO and to determine whether a given set of 

compliant agents is sufficient to achieve SO. 

Furthermore, we provide a method to tractably compute the flow assignment for the compliant 

agents such that SO performance is guaranteed. Next, we prove that in this case, assigning minimal 

marginal cost paths to all compliant users leads to the SO. 

Experimental results, performed using a standard traffic simulator, are provided and demonstrate 

that the number of compliant agents necessary to achieve SO can be a relatively small percentage 

of total flow (between 13% and 53%). 

1.8. Performance Guarantees for Micro-Tolling (Chapter 8) 

Self-interested agents that are routed in a congestible network, such as vehicles in a road network, 

impose a UE that is often far worse than the SO flow. Charging marginal cost tolls (MCT), in 

which each agent is charged a toll equivalent to the damage it inflicts on all other agents, results 

in a UE that achieves SO performance. 

Calculating the MCT for a given agent, a, on a given path, p (i.e., the damage a inflicts by 

traversing p) is very challenging without making specific assumptions (e.g., well-defined and 

known travel time functions) that do not hold in most traffic models and certainly not in real-life 

traffic. Recent work suggested a model free technique, denoted Delta-tolling, for evaluating MCT.  

Since Delta-tolling, or any scheme that approximates MCT, is not guaranteed to result in the exact 

MCT, no optimality guarantees can be given regarding the system's performance. In fact, applying 

tolls different than MCT might result in a system performance that is worse than not applying tolls 

at all. This fact might deter public officials from implementing any tolling scheme that is not 

guaranteed to impose the exact MCT. 

This chapter examines the impact of imposing inaccurate MCT on the system’s performance. 

Specifically, we provide conditions under which the system performance will not be worse than 

applying no tolls, i.e., the system will not be worse off by imposing the tolling scheme. This chapter 

establishes that charging a toll that is off by a factor, r, from the true MCT will not hurt the system's 

performance if 0 <= r <= 1 (i.e., if MCT is underestimated by a constant factor). 
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Moreover, this chapter proves that the function mapping r to the system’s performance (total travel 

time) has a single (global) minima and no local extrema. This fact implies that calibrating schemes 

for evaluating MCT, e.g., Delta-tolling, can be carried out by identifying a minimum, which is 

guaranteed to be the global optimum.  

Finally, experimental results from a traffic simulator are presented for different traffic scenarios. 

The experimental results support our theoretical claims by showing that, across various traffic 

scenarios, a global optimal flow is achieved for r=1 and no extrema exist elsewhere. 

1.9. CAVs’ Impacts on Long-Distance Household Travel across 
the U.S. and Texas (Chapter 9) 

This chapter investigates Americans’ preferences in adopting and using AVs. Rapid advances in 

technologies have accelerated the timeline for public use of fully-automated and communications-

connected vehicles. Public opinion on self-driving vehicles or AVs is evolving rapidly, and many 

behavioral questions have not yet been addressed. This study emphasizes AV mode choices, 

including Americans’ willingness to pay (WTP) to ride with a stranger in a shared AV (SAV) fleet 

vehicle on various trip types and the long-distance travel impacts of AVs. The 2,588 complete 

responses to a stated-preference survey with 70 questions provide valuable insights on privacy 

concerns and crash ethics, safety and ride-sharing with strangers, long-distance travel, and 

preferences for smarter vehicles and transport systems. While the starting sample data were 

relatively demographically unbiased, Texans were purposefully over-sampled, and all statistics 

adjusted/corrected (via sample weights) to match U.S. demographics on gender, education, 

income, and age. Weighted results suggest that Americans are willing to pay, on average, $2073 

to own AVs over conventional vehicles and an additional $1078 to maintain/include a manual 

driving option on such vehicles. Ride-sharing will be popular at 75¢ per mile, under most 

scenarios, and many Americans are willing to pay $1, on average, to anonymize their trip ends’ 

addresses. Most are also willing to let children 16 years of age and older have unsupervised access 

to AVs (both privately owned and shared). Nearly 50% of long-distance travel appears captured 

by AVs and SAVs in the future, rather than airlines, at least for one-way trip distances up to 500 

miles. 

1.10. Survey Analysis to Determine CAVs’ Impact on Travel 
(Chapter 10) 

Two hurdle models (which allow for a high share of zero-value responses) were estimated in this 

chapter: one to predict WTP to share a ride and another to determine WTP to anonymize location 

while using AVs. The first two-part model shows how travel time delays, person and household 

attributes, and land use densities can significantly affect Americans’ willingness to share rides. 

The second hurdle model suggests that traveler age, presence of children, household income, 

vehicle ownership, and driver’s license status are major predictors of one’s WTP to obscure pick-

up and drop-off locations. 
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A binary logit was used to model current mode choice for long-distance (over 50 miles, one-way) 

travel (between one’s private car and an airplane), with household income as the leading predictor. 

On average, older Americans and/or those with children prefer such travel by car. Finally, a 

multinomial logit anticipated mode shifts when AVs and SAVs become available and affordable. 

Everything else constant, private cars remain preferred by older people, but SAVs may be used in 

the future for more business travel. 

1.11. Traffic and Trade Impacts of Automated Trucking (Chapter 
11) 

This chapter anticipates changes in U.S. highway and rail trade patterns following widespread 

availability of self-driving or autonomous trucks (Atrucks). It uses a random-utility-based 

multiregional input-output (RUBMRIO) model, driven by foreign export demands, to simulate 

changes in freight flows among 3109 U.S. counties and 117 export zones, via a nested-logit model 

for shipment or input origin and mode, including the shipper’s choice between autonomous trucks 

and conventional or human-driven trucks (Htrucks). Different value of travel time and cost 

scenarios are explored, to provide a sense of variation in the uncertain future of ground-based trade 

flows.  

Using the current U.S. Freight Analysis Framework (FAF4) data for travel times and costs—and 

assuming that Atrucks lower trucking costs by 25% (per ton-mile delivered)—truck flow values 

in ton-miles are predicted to rise 11%, due to automation’s lowering of trucking costs, while rail 

flow values fall 4.8%. Rail flows are predicted to rise 6.6% for trip distances between 1,000 and 

1,500 miles, with truck volumes rising for other distances. Introduction of Atrucks favors longer 

truck trades, but rail’s low price remains competitive for trade distances over 3,000 miles. Htrucks 

continue to dominate in shorter-distance freight movements, while Atrucks dominate at distances 

over 500 miles. Eleven commodity sectors see an increase in trucking’s domestic flows, and twelve 

see increased export flows. The total ton-miles across all 13 commodity groups rise slightly by 

3.1%, as automation lowers overall shipping costs. 

1.12. Agent-Based Population from Four-Step Data (Chapter 12) 

This chapter introduces methodology to synthesize person-level data from traditional data sources. 

Car-sharing offers travelers an alternative method of transport in or between cities; the 

transformative implementation of CAVs will likely further promote the sharing. To provide 

decision-makers reasonable information about car-sharing strategies or shared CAVs, 

transportation planners and researchers are looking for advanced travel modeling approaches. 

Activity-based modeling (ABM) is one of the most promising approaches, modeling travel demand 

at the person-level and offering great temporal and spatial details about individuals’ travel patterns. 

Currently, the four-step travel demand modeling process is the most commonly used approach that 

is trip-based, modeling travel demand at an aggregated level of traffic analysis zones. However, 

this approach is unable to track individuals’ travel patterns with great spatial details. ABM can be 

used to estimate the impacts of car-sharing in transportation systems and evaluate the 
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policies/strategies related to the CAV operations. ABM takes the individual’s daily activities 

chained by a series of travel trips (also called “tour” if the last trip ends where the first trip starts, 

e.g., home) as the travel demand input. The input can be simply summarized into “4Ws”: Who this 

individual is, where this individual lives and works, what daily activities this individual person 

does, and when this individual plans to perform activities. This study delivers a methodological 

framework to prepare the “4W” inputs, taking advantage of existing travel model data (including 

the travel survey data) and open-source data (e.g., Open Street Maps). This chapter presents a 

programming-based tool composed of a series of algorithms that output synthetic population, 

synthetic locations for activities, travel tours (i.e., chained trips and activities), and travel schedules 

for performing activities, respectively. The tool is particularly useful for planning practitioners 

from state agencies and regional planning organizations who already have the data (e.g., regional 

travel models and travel survey data) and seek to convert their existing trip-based models to 

activity-based models that may be more suitable for simulating the individuals’ travel patterns.  

1.13. Potential for Dynamic Ride-Sharing with SAVs: Study with 
Cellphone Data (Chapter 13) 

This chapter discusses potential for dynamic ride-sharing by using a cellphone dataset to simulate 

trip-matching as probable by a fleet of SAVs. Transportation network companies are regularly 

demonstrating the economic and operational viability of dynamic ride-sharing (DRS) to any 

destination within a city (e.g., uberPOOL or Lyft Line), thanks to real-time information from 

smartphones. In the foreseeable future, fleets of SAVs may largely eliminate the need for human 

drivers, while lowering per-mile operating costs and increasing the convenience of travel. This 

may dramatically reduce private vehicle ownership and deliver extensive use of SAVs. Using 

AirSage’s cellphone-based trip tables across 1,267 zones over 30 consecutive days, this study 

anticipates DRS matches (by assigning independent travelers with overlapping routes in time and 

space to the same SAV) and simulates SAV travel across the Orlando network to determine 

optimal SAV fleet size. Those results suggest significant opportunities for DRS-enabled SAVs: 

nearly 60% of the single-person trips can be shared with other persons traveling solo and with less 

than 5 minutes added travel time (to arrive at their destinations). This value climbs to 80% and 

86% for 15 and 30 minutes of added wait or travel time, respectively. The results indicate that 

120,000 SAVs will be required to meet less than 45% of seats in Orlando’s 2.8 million single-

traveler trips. In other words, just 1 SAV per 20 person-trips, on average, is able to serve almost 

half the region’s demand, helping reduce congestion while filling up passenger vehicle seats.  

1.14. Pricing Strategies with CAVs in the Mix (Chapter 14) 

This chapter employs different pricing strategies in an agent-based model to assess a future with 

AVs, SAVs, and traditional modes of transport and how mode-shares will look. The introduction 

of autonomous (self-driving) vehicles and SAVs will affect travel destinations and distances, mode 

choices, vehicle-miles traveled, and congestion. Although some congestion reduction may be 

achieved (thanks to fewer crashes and tighter headways, long-term), car-trip frequencies and VMT 

are likely to rise significantly in most settings, compromising the benefits of driverless vehicles. 
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Congestion pricing (CP) and road tolls are both key tools for moderating demand and incentivize 

more socially optimal travel choices. This work develops multiple CP and tolling scenarios and 

investigates their effects on Austin network conditions and traveler welfare, using the agent-based 

simulation model MATSim. Results suggest that, although all different CP schemes manage to 

reduce congestion and improve modal share, their impacts on social welfare differ from each other. 

More complex and advanced schemes may considerably improve traffic efficiency, but they need 

not necessarily bring higher economic benefits. The possibility to refund users by reinvesting toll 

revenues can play a crucial role in the overall efficiency of each CP strategy. 

1.15. Technologies for Congestion Pricing (Chapter 15) 

Congestion pricing of high-demand roadways seeks to influence travelers’ route choices, trip 

timing, modes, and destination choices, to keep vehicles moving and avoid excessive congestion. 

This chapter describes the use of various technologies to enable more advanced and cost-effective 

congestion pricing applications.  

Video-based systems require cameras to capture the state of traffic, plus some form of 

communication back to users. Both DSRC and cellular-based systems use GPS data to price roads 

and toll users based on traffic conditions. DSRC employs roadside units (RSUs) to receive and 

send messages to in-vehicle DSRC units. A cellular-based system could use communications from 

cellular towers in combination with a smartphone, on-board diagnostics port (OBD-II), or pre-

installed cellular chip. DSRC is a recommended technology to pilot congestion pricing at highly 

congested locations, such as bridges and major highways, while cellular communications enable 

congestion pricing across entire networks. 

VMT taxes can be relatively simple, or variable in space and time, facilitating transportation-

agency cost recovery. A next step for roadway management is CBCP, which can better reflect the 

marginal delay costs of one’s travel choices and enable a more equitable distribution of each 

community’s scarce roadway assets. 

1.16. Traffic Flow Estimation Using Fast-Algorithms for Fast-
Forward Simulations of Macroscopic Traffic Models (Chapter 16) 

CV applications of this work are discussed in this chapter and involve the use of IMUs (inertial 

measurement units) to solve a variety of sensing problems associated with vehicle operations. We 

focused on the use of IMUs to determine the condition of the pavement (PSR, or present 

serviceability rating) by monitoring vertical acceleration timeseries and comparing some features 

of these timeseries to human-determined PSR data. We examined the positioning accuracy of GPS-

IMU systems, and the possibility of using high-resolution positioning data to determine the state 

of traffic on multiple lanes of a highway. This requires both the investigation of the accuracy levels 

of current GPS-IMU combinations, and the possibility of computing solutions to macroscopic 

multilane flow models quickly and efficiently. Finally, we investigated the use of acceleration and 
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rotation rate data to detect potentially dangerous areas in the transportation network that result in 

frequent abrupt user inputs (braking or steering).  

1.17. Development of an IMU-Based Traffic and Road Condition 
Monitoring System (Chapter 17) 

This chapter presents a new type of wireless platform designed for real-time traffic and road 

surface monitoring. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller 

and a LSM9DS0 IMU module, as well as a short-range Bluetooth transceiver. This platform is 

designed to enhance the performance of probe vehicles and can be easily installed or retrofitted to 

a vehicle using a USB car charger. A self-calibration unit is designed to improve the applicability 

and accuracy through automatically computing the relation between the coordinates of the device 

and the coordinates of the vehicle after a short calibration period. This system is multipurpose, and 

can be used to obtain an estimate of the trajectory of the vehicle, relative to a fixed sensor network 

on the ground. It can also be used to monitor the vehicle speed, as well as additional information 

regarding traffic—for example the presence of accidents or of stop-and-go waves. The same device 

can also be used to monitor pavement condition through vertical acceleration measurements.  

This chapter also details the main versions of this platform, including first, second, and third 

generations; their design principles (including microcontroller and peripherals); and their 

measurement capabilities. 

1.18. Cybersecurity Analysis of Connected Vehicles Using Deep 
Learning (Chapter 18) 

This chapter describes the research team’s efforts to meet two objectives: 1) solve an inverse 

modeling problem (predicting the vehicle dynamics from vehicle input commands, and from 

vehicle measurement data) and 2) use this dynamical model to detect input faults or spoofing, or 

sensor faults or spoofing (particularly for GPS position sensors). We used deep neural networks to 

obtain the most accurate representation of the vehicle dynamics. We used this dynamical model in 

conjunction with the initial state of the vehicle (determined by the vehicle sensors) and with the 

inputs to the vehicle system (which can be the output of the AV guidance computer in an AV, or 

the positions of the throttle, brake pedals, and steering wheel in a conventional vehicle), to simulate 

the vehicle trajectory. If this simulated trajectory significantly deviates from the actual position of 

the vehicle, then either the model is incorrect, or one or multiple sensors and actuators are spoofed 

or faulty. We tested this on a simulated GPS spoofing scenario involving fake positional data. 

1.19. Prototype Development and Limited Deployment of CAV 
Technologies on Texas Roadways (Chapter 19) 

In Phase 1 of this project, research team members from the Southwest Research Institute (SwRI) 

demonstrated vehicle-to-vehicle applications for emergency vehicle alert, emergency electronic 

brake lights, and intelligent message propagation and vehicle-to-infrastructure applications for 
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static and dynamic wrong-way driver detection and road condition monitoring. Leveraging these 

systems and applications for Phase 2, SwRI extended the wrong-way driver detection system and 

the porting and transition of UT Austin’s Autonomous Intersection Management (AIM) system 

onto physical vehicles and infrastructure for demonstration at the SwRI facilities. This chapter 

describes this work in some detail.  
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Chapter 2. Legal Analysis 

2.1. Federal Update 

This section details federal activities. It runs in reverse chronological order, from the date of 

writing this final report back to the start of Phase 2 of this project in September 2016.  

2.1.1. U.S. Congress 

The U.S. Senate Committee on Commerce, Science and Transportation held a hearing on June 14, 

2017 regarding the release of bipartisan principles for self-driving vehicle legislation. Those 

principles can be seen in Figure 2.1.  

 “Prioritize Safety: As with conventional vehicles, federal standards will be important to self-driving vehicle safety. 
 Legislation must consider both the near-term and long-term regulatory oversight of these vehicles, 
recognizing that new safety standards governing these vehicles should eventually be set. 
 
Promote Continued Innovation and Reduce Existing Roadblocks: Currently, there is a body of regulations 
governing conventional vehicles, developed over decades, that does not directly address self-driving vehicles. 
Developing new standards takes significant time.  
 Legislation must allow the life-saving safety benefits of self-driving vehicle technology to move forward as 
new standards development is underway.  
 Legislation must find ways to preserve and improve safety while addressing incompatibility with old rules 
that were not written with self-driving vehicles in mind. 
 
Remain Tech Neutral: Self-driving vehicles are likely to take different forms, use diverse technologies, serve 
consumers with varying capability levels, and follow multiple business models.  
 Legislation must be technology neutral and avoid favoring the business models of some developers of self-
driving vehicles over others. 
 
Reinforce Separate Federal and State Roles: Traditionally, the federal government has regulated the vehicle itself, 
while states have regulated driver behavior.  
 Legislation must clarify the responsibilities of federal and state regulators to protect the public and prevent 
conflicting laws and rules from stifling this new technology. 
 Legislation must be based on the existing relationship between federal and state regulators and their current 
separation of authority, but make necessary targeted updates for new challenges posed by the current regulatory 
environment with respect to self-driving vehicles. 
 
Strengthen Cybersecurity: Cybersecurity should be a top priority for manufacturers of self-driving vehicles and it 
must be an integral feature of self-driving vehicles from the very beginning of their development. 
 Legislation must address the connectivity of self-driving vehicles and potential cybersecurity vulnerabilities 
before they compromise safety.  
 Educate the public to encourage responsible adoption of self-driving vehicles: Government and industry 
should work together to ensure the public understands the differences between conventional and self-driving 
vehicles. 
 Legislation must review consumer education models for self-driving vehicles and address how companies 
can inform the public on what self-driving vehicles can and cannot do based on their level of automation and their 
individual capabilities.”  

Source: US Congress, 2017 

Figure 2.1 Principles for bipartisan legislation on self-driving vehicles  
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Twenty bills were introduced into the 115th U.S. Congress regarding automated vehicles, or 

ancillary and tangential issues. These include thirteen bills that directly regulate automated 

vehicles. H.R. 3401, H.R. 3388, H.R. 3416, S. 1885, H.R. 3404, H.R. 3407, H.R. 3430, H.R. 3405, 

H.R. 3412, H.R. 3411, H.R. 3414, H.R. 3413, and H.R. 3408.  

The SEVEN ancillary/tangential bills include H.R. 2778, S.1809, H.R. 3901, H.R. 346, H.R. 3421, 

H.R. 4625 and S. 2217  

None of these bills as at time of drafting this chapter in this Phase 2 report has passed both 

chambers in the U.S. Congress.  

 H.R. 2778 – Less Traffic with Smart Stop Lights Act 2017.  

 S.1809 – Smart grants to cities/states re connected and automated vehicles. 

 H.R. 3901 – smart grant 

 H.R. 3406 – partial exemption on number of vehicles with reduced bumper safety – but for 

automated.  

 H.R. 3421, another exemption bill creating database of exemptions and noting AV type 

vehicles. 

 H.R. 4625 and S2217 – artificial intelligence 

On July 28, 2017, the U.S. House introduced H.R. 3401 to amend chapter 301 of subtitle VI of 

title 49, United States Code, to update or provide new motor vehicle safety standards for HAVs 

and other purposes. The bill defines automated driving system(s), dynamic driving task(s), HAV 

and operational design domain. The bill requires the Secretary to issue rules within 24 months 

requiring the submission of safety assessment certifications regarding how safety is being 

addressed by each entity developing HAVs or ADS (U.S.C., 2017 (d)). In the interim, the bill 

would require safety assessment letters are submitted to NHTSA under its policy issued in 

September 2016 or under any successor guidance. If this bill moves forward, it would require 

amendment to NHTSA’s September 2017 guidance, which now only has voluntary safety self-

assessment guidance, where entities can choose to submit or not submit.  

On July 25, 2017, the U.S. House introduced the Safely Ensuring Lives Future Deployment and 

Research in Vehicle Evolution Act (Self Drive Act) H.R. 3388 (U.S.C., 2017(b)). H.R. 3388 was 

passed by the House as amended and agreed to by voice vote on September 6, 2017. It was received 

in the Senate and read twice before it was referred to the Senate Committee on Commerce, Science 

and Transportation on September 6, 2017. HR 3588 clarifies federal and state roles. It preempts 

states (and political sub divisions) from creating laws or regulations regarding the design, 

construction or performance of HAVs, automated driving systems or components of automated 

driving systems, unless the laws are identical to federal laws. HR 2588 would require NHTSA to 

issue within 18 months rules on submission of safety assessment certifications on how safety is 
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addressed by manufacturers of highly automated vehicles or automated driving systems. NHTSA 

should identify elements in HAVs that may require performance standards including human 

machine interface, sensors, and actuators, and consider process and procedure standards for 

software and cybersecurity as necessary  

The act also amends Chapter 3001 of Subtitle VI of Title 49 USC by adding a new section on rear 

seat occupant alert systems. The Secretary of Transportation is required to issues rules, within two 

years of enactment, requiring all new passenger motor vehicles weighing less than 10,000 pounds 

gross vehicle weight to be equipped with an alarm system to alert the operator to check rear 

designated seating positions after the vehicle motor or engine is deactivated by the operator. 

H. R. 3888 also requires manufacturers to develop written cybersecurity plans. H.R. 3888 requires 

the Secretary to also create within six months of enactment a Highly Automated Vehicle Advisory 

Council Membership that is diverse, and will be determined by the USDOT Secretary. 

On July 26, 2017 the U.S. House introduced H.R. 3416 to establish in the National Highway 

Traffic Safety Administration a Rural and Mountainous Advisory Council. This council would 

make recommendations regarding the testing and deployment of HAVs and automated driving 

systems in areas that are rural, remote, mountainous, insular, or unmapped (U.S.C., 2017 (e)). The 

council would be convened by NHTSA within six months of enactment. Council members are to 

be appointed for three-year terms by the Secretary. The Council will undertake information 

gathering, develop technical advice, and present best practices or recommendations to the 

Secretary. The council will terminate six years after enactment. Within Section 1 automated 

driving system, dynamic driving task, highly automated vehicle and operation design domain are 

defined. H.R. 3416 notes that if SAE revises definitions, it must notify the Secretary who is 

required to publish these within the federal register for comment. If the Secretary determines that 

this new definition does not meet the need for motor vehicle safety or is otherwise inconsistent 

with United States Code, the existing Section 1 definition shall remain in effect. If the Secretary 

does not reject a definition revised by SAE it will amend regulations and standards as necessary.  

On September 8 the Senate Commerce Committee circulated the American Vision for Safer 

Transportation through Advancement of Revolutionary Technologies Act, (AV START Act – 

S.1885). The bill has similarities to the House’s SELF Drive Act (H.R. 3588), but also some major 

departures within specific sections. Most notably including addressing trucking. The definitions 

section includes brackets pertaining to a vehicles weight, so inclusion of trucks and buses is 

considered within this bill. S. 1885 makes major differences in the approach to preemption, with 

AV laws and regulations enacted by states considered to be pre-empted if they pertain to any of 

nine subject areas of the Safety Evaluation Report that this bill requires (U.S.C., 2017 (a)).  

H.R. 3404 provides for the establishment of a NHTSA HAV Advisory Council (U.S.C., 2017 (f)). 

The proposed act would require NHTSA to establish a HAV Advisory Council within six months 

of enactment. Council members are to be appointed for year 3-year terms by the Secretary. 

Membership is to be diverse and include business, academia, state and local representation, labor 

organization, environmental experts and other members. Any subcommittee of this Council shall 
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be composed of not less than 15 and not more than 30 members appointed by the Secretary. The 

Council may form subcommittees as needed to undertake information-gathering activities, develop 

technical advice, and present best practices or recommendations to the Secretary regarding:  

(1) labor and employment issues that may be affected by the deployment of HAVs; 

(2) the impact of the development and deployment of HAV on the environment; 

(3) protection of consumer privacy and security of information collected by HAVs; and 

(4) cabin safety for highly automated vehicle passengers, and how automated driving 

systems may impact collision vectors, overall crashworthiness, and the use and placement 

of airbags, seatbelts, anchor belts, head restraints, and other protective features in the 

cabin. 
 

The council’s recommendations are to be reported to Congress. The council shall terminate six 

years after the Acts enactment.  

H.R. 3407 was introduced in September 26, 2017 to require a cybersecurity plan for highly 

automated vehicles, and for other purposes (U.S.C., 2017 (g)). It has not yet been introduced into 

a committee. H.R. 3407 would amend Chapter 301 of Subtitle VI of title 49 United States Code to 

insert a new section (as added by section 4) after Section 30129 as a new Section 30130 

Cybersecurity of Automated Driving Systems. A manufacture cannot sell, introduce or deliver any 

HAV that performs partial driving automation or automated driving unless it has a cybersecurity 

plan that includes a written policy on detection and response. The policy must include process for 

identifying, measuring and responding to attacks, processes for preventative and corrective actions 

to mitigate against vulnerabilities that includes incident response and intrusion detection. The plan 

must identify a company point of contact, processes for limiting access to automated driving 

systems, employee training and processes to restrict employee access. H.R. 3407 also includes the 

provision seen in H.R. 3416 regarding SAE definition revisions.  

In July 2017 the house introduced H.R. 3430 Highly Automated Information Sharing Advisory 

Council (Shares Act) that would establish a council to make recommendations on the development 

of a framework to allow manufacturers of HVS to share information relating to testing and 

deployment. The act as at writing this chapter was still referred to a subcommittee (U.S.C. 2017 

(h).). 

H.R. 3405 was introduced on July 28, 20017 to the Subcommittee on digitation commerce and 

protection (U.S.C. 2017 (i)). It is called the MORE Act. It would expand the exemption from motor 

vehicle safety standards for testing or evaluation purposes to cover manufacturers of highly 

automated vehicles and automated driving system components, and for other purposes. The bill 

has not moved out of committee. 

H.R. 3412 was introduced on July 28, 2017 to the Subcommittee on Digital Commerce and 

Consumer Protection as is called the LEAD’R Act (USC 2017 (c)). H.R. 3412. It would amend 

Section 3013 of Title 49 United States Code to establish sole authority for NHTSA over regulation 

of HAVs. The bill would preempt state and other local jurisdictions from creating, maintaining or 

enforcing any law/regulation that prescribes the design, construction, or performance of highly 
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automated vehicles, automated driving systems, or components of automated driving systems 

unless such law or regulation is identical to a standard prescribed under this chapter. 

On July 28, 2017, the U.S. House introduced H.R. 3411 to amend chapter 301 of subtitle VI of 

title 49, United States Code, to update or provide new motor vehicle safety standards for highly 

automated vehicles, and for other purposes (U.S.C. 2017 (j)). The bill proposes an automated 

driving system cybersecurity council that will be convened within six months of the bill’s 

enactment. Set by the Secretary, representation will be diverse and capped at 30 members. In the 

same fashion as HR 3416, this bill notes that if SAE revises definitions, it will notify the Secretary 

who is required to publish these within the federal register for comment. The secretary will then 

notify SAE that if it has determined that the definition does not meet the need for motor vehicle 

safety or is otherwise inconsistent with United States Code, the existing Section 1 definition shall 

remain in effect. If the Secretary does not reject a definition revised by SAE it will amend 

regulations and standards as necessary (U.S. Congress, 2017 (j). 

H.R. 3413 was introduced on July 28, 2017 and referred to the Subcommittee on Highways and 

Transit in the House Transportation and Infrastructure committees. The bill is titled the ACCESS 

Act – Addressing Community Challenges Emerging from Self-Driving Systems. This bill directs 

NHTSA to create an Advisory Council on Improving Mobility Access for Underserved 

Populations and Senior Citizens. The council shall undertake information gathering activities, 

develop technical advice, and present best practices or recommendations to DOT regarding 

mobility access for senior citizens and populations underserved by traditional public transportation 

services and educational outreach efforts with respect to the testing and distribution of highly 

automated vehicles in commerce. Members of the Council will serve for a term of three years, and 

shall include a diverse group that represents, the private and public sector, nonprofits, safety and 

consumer advocates, labor organizations, environmental experts and engineers. The council shall 

be comprised of no less than 15 and not more than 30 members appointed by the Secretary (U.S.C. 

2017 (l)).  

H.R. 3408 would amend section 30113 of title 49, United States Code to establish new exemptions 

for motor vehicle safety standards, and for other purposes. The amendments would make easier 

the development or field evaluation of— a feature of a highly automated vehicle providing a safety 

level at least equal to the safety level of the standard for which exemption is sought; or a HAV 

providing an overall safety level at least equal to the overall safety level of nonexempt vehicles 

(U.S.C., 2017 (m). 

2.1.2. Other Bills 

 H.R. 2778  

 S.1809  

 H.R. 3901  
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 H.R. 346  

 H.R. 3421  

 H.R. 4625 

 S. 2217  

2.2. Federal Agencies 

2.2.1. National Highway Traffic Safety Administration (NHTSA) 

The most important development from the standpoint of Texas is NHTSA’s September 2016 

Policy on Automated Vehicles (NHTSA, 2016(a)), its October 2016 Policy on Best Practices for 

Cyber Security Best Practices in Modern Vehicles (NHTSA, 2016 (b)), and the September 2017 

Automated Driving Systems: A Vision for Safety policy (NHTSA, 2017 (a)), which replaced the 

previous 2016 policy.  

The September 2016 policy publication, which was deliberately issued as guidance and not as 

rulemaking to facilitate best-practice guidance within a preliminary framework, set out the roles 

and responsibilities for NHTSA and the states. The guidance also set out the USDOT’s 

expectations of industry for the immediate short term to test and deploy HAVs. Unlike the 2013 

policy, this new 2016 policy is aimed at Level 3-and-above vehicles (under SAE J3016 

definitions). A vehicle performance section set out best practices for safe pre-deployment, design, 

development, and testing of HAVs, and defined deployment as the operation of a HAV by 

members of the public who were not agents or employees of the designer, developer, or 

manufacturer of the HAV (NHTSA, 2016 (a) p. 8). The September 2016 policy also confirmed the 

model state policy articulated in the 2013 NHTSA policy: state responsibilities will include 

licensing of drivers (human) and motor vehicle registration, law and traffic enforcement, 

inspections, and motor vehicle liability and insurance rules. NHTSA noted that this was to ensure 

the creation of a consistent national framework, rather than a patchwork of laws that could be 

incompatible with one another.  

In October 2016 NHTSA (NHTSA, 2016 (b)) released a new policy on best practices for 

cybersecurity in modern vehicles. This policy, which covers all motor vehicles, recommended a 

layered approach to cybersecurity, with the goal to reduce the probability of a cyber-attack’s 

success and diminish unauthorized access ramifications. NHTSA stated that the approach should  

 Be built upon risk-based prioritization 

 Provide for timely detection and rapid response 

 Create methods to ‘design-in’ rapid recovery from an incident 

 Institutionalize methods for adopting lessons learned.  
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NHTSA encouraged use of the ISO 2700 series of standards and other best practices used in other 

technology sectors for developing protocols and approaches (NHTSA, 2016 (b)). The 

cybersecurity policy also recommended “penetration testing and documenting,” which has stages 

that employ qualified testers who were not involved in development and are incentivized to unearth 

vulnerabilities. In summary, NHTSA set out at pages 17–20 a series of fundamental vehicle 

cybersecurity protections that it recommended.  

In September 2017 the new administration under Secretary Chao issued its policy for Automated 

Driving Systems. The policy was again introduced as policy and not as rulemaking.  

This policy framework notes that it offers a path forward for safe deployment of automated 

vehicles by 

 Encouraging new entrants and ideas that deliver safer vehicles 

 Making the department’s regulatory process nimble to help match the pace of private sector 

innovation 

 Supporting industry innovation and encouraging communication with the public and 

stakeholders.  

The policy also continues to adopt SAE’s automation levels and created a new iconography to 

convey to the general public the various levels of automation (Figure 2.2). 

As part of this new policy’s development, the agency also responded to comments sought on the 

2016 policy. The policy document is split into two sections. Section One has voluntary guidance 

that details ADS safety elements and ends with a voluntary safety self-assessment component. 

Section Two incorporates what it calls common safety-related components and significant 

elements regarding ADSs that states should consider incorporating into legislation. 
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Source: NHTSA 2017 (a) 

Figure 2.2 NHTSA’s SAE automation levels 

Voluntary guidance for automated driving systems in Section One, contains twelve priority safety 

design elements for consideration. Table 2.1 provides brief descriptions of the ADS safety 

elements. The policy encourages entities that are engaged in testing and deployment to publicly 

disclose their voluntary safety self-assessments to demonstrate varied approaches to achieving 

safety. The difference between this requirement and the previous NHTSA 2016 policy is that 

entities will not be required to submit these safety assessments. These are now entirely voluntary. 

This includes some new elements such as fallback minimal risk condition, data recording, human 

machine interface, and post-crash ADS behavior.   
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Table 2.1 NHTSA’s 2017 Policy ADS Safety Elements 

Safety Element Brief Descriptor 

1 System safety A robust design and validation process based on systems engineering approach to 

design ADSs free of unreasonable safety risks. Including a hazard and safety risk 

assessment for overall vehicle design integration. Design decisions should be linked to 

assessed risk that impact safety-critical system functionality.  

2 Operational design 

domain 

Define and document ODD for each ADS available on their system including: road 

types, geographic area, environmental conditions, speed range and domain constraints.  

3 Object and event 

detection and 

response 

Detection by driver or ADS circumstances relevant to immediate driving task and 

implementation of driver system response. Document process for assessment, testing 

and validation, crash avoidance and variety of behavioral competencies for ADSs.  

4 Fallback minimal 

risk condition 

Process for transitioning to a minimal risk condition when a problem is encountered 

and ADS cannot operate safely. At higher automation, where human driver is not 

available, ADS must fall back into minimal risk condition without driver intervention.  

5 Validation 

methods 

As scope, technology, and capabilities widen, entities are encouraged to develop 

validation methods to appropriately mitigate safety risks associated with ADS 

approach.  

6 Human machine 

interface 

At minimum the ADS should be capable of informing the human operator/occupant 

through indicators that the ADS is ADS functioning properly, i.e., is currently engaged 

or unavailable, experiences malfunction and/or requests control from ADS to the 

operator.  

7 Vehicle 

cybersecurity 

Encouraged to follow a robust product development process based on systems 

engineering approach to minimize safety risks due to cybersecurity threats and 

vulnerabilities. Documentation encouraged, including changes, design choices, 

analysis, and testing. Groups involved with ADSs should consider adopting a 

coordinated vulnerability reporting/disclosure policy 

8 Crashworthiness As vehicle mix may be operating (those with/without ADS), entities should consider 

scenarios of non-DS vehicle crashing into ADS-equipped vehicle and how to protect.  

9 Post-crash ADS 

behavior 

In testing or deployment consider how to return ADS to a safe state immediately after 

an incident, e.g., moving to a safe spot. If vehicle is a CV, communication with a 

relevant entity is encouraged to share and reduce harm resulting from a crash.  

10 Data recording Entities engaged in testing/deployment are encouraged to establish a process for data 

collection and validation to establish crash causes leading to fatalities/injuries. ADS 

data recommended to be stored and available for retrieval for crash reconstruction.  

11 Consumer 

education and 

training 

Develop, document, and maintain employee, dealer, distributor and consumer 

education and training programs to address anticipated differences in use and operation 

of ADS vehicles.  

12 Federal state and 

local laws 

Document how federal, state, and local traffic laws and updates will be integrated in 

vehicle design and ADSs.  

Source: NHTSA, 2017 

 

Section 2 incorporates notes common safety-related components and significant elements 

regarding ADSs that states should consider incorporating into legislation.  

Section 2’s technical assistance to the states notes that:  

“The purpose of this Voluntary Guidance is to help designers of ADSs analyze, identify, 

and resolve safety considerations prior to deployment using their own, industry, and other 

best practices. It outlines 12 safety elements, which the Agency believes represent the 

consensus across the industry, that are generally considered to be the most salient design 

aspects to consider and address when developing, testing, and deploying ADSs on public 

roadways. Within each safety design element, entities are encouraged to consider and 
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document their use of industry standards, best practices, company policies, or other 

methods they have employed to provide for increased system safety in real-world 

conditions. The 12 safety design elements apply to both ADS original equipment and to 

replacement equipment or updates (including software updates/upgrades) to ADSs” 

(NHTSA, 2017). 

A framework of best practices for highway safety officials is also provided within this section. 

This includes the traditional areas of licensing, registration and testing, liability and insurance and 

working with law enforcement. The policy highlights that as part of development best practices 

legislatures should: 

 Provide a technology neutral environment 

 Provide licensing and registration procedures 

 Provide reporting and communications for public safety official 

 Review traffic laws and regulations that could serve as barriers to operation of ADS. 

2.2.2. Federal Trade Commission (FTC) 

The FTC held a workshop on June 28, 2017 in which they examined consumer privacy and security 

issues posed by AVs (FTC, 2017). Workshop attendees, which included public and private sector 

stakeholders and consumer advocates, discussed these topics: 

 the types of data vehicles with wireless interfaces collect, store, transmit, and share; 

 potential benefits and challenges posed by such data collection; 

 the privacy and security practices of vehicle manufacturers; 

 the role of the FTC, NHTSA, and other government agencies regarding privacy and 

security issues related to CVs; and 

 self-regulatory standards that might apply to privacy and security issues related to CVs 

(FTC, 2017a). 

2.2.3. Federal Communications Commission (FCC) 

On July 13, 2017 the FCC announced it had unlocked new airwaves for vehicular radar use (FCC, 

2017b). According to the Commission’s Press Release, “The Commission’s action expands the 

current 76-77 GHz spectrum allocation to include the entire 76-81 GHz band and transitions 

radars out of the 24 GHz band. This is consistent with the spectrum that is available 

internationally, avoiding the need to customize the radars in vehicles for different markets.” 

According to the FCC, access to this additional spectrum will enable innovation; allow these radar 

devices to better distinguish between objects in areas close to the vehicle; and improve 
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performance for applications such as lane change warnings, blind spot detection, parking aids, 

“stop and follow,” “stop and go,” autonomous braking, and pedestrian detection. The FCC Order 

also permits the use of this band for fixed and mobile radars at airports (2017). The order amends 

Amendment of Parts 1, 2, 15, 90 and 95 of the Commission’s Rules to Permit Radar Services in the 

76-81 GHz Band (FCC, 2017a).  

2.2.4. Federal Motor Carrier Safety Administration (FMCSA) 

The FMCSA held a public listening session on HAVs on April 24, 2017 (FMCSA, 2017). The 

public listening session was held in Atlanta, Georgia, and was accompanied by an online portal 

for stakeholders to listen in and to make comments. The notice in the federal register stated  

“FMCSA seeks information on issues that need to be addressed to ensure that the Federal 

safety regulations provide appropriate standards for the safe operation of HACVs from 

design and development through testing and deployment. Specifically, FMCSA welcomes 

comments and information on the application of the following regulatory provisions in title 

49 CFR to HACVs: Part 383 (Commercial Driver’s Licenses); part 391 (Qualifications of 

Drivers); sections 392.80 and 392.82 (use of electronic devices); part 395 (Hours of Service 

of Drivers); and part 396 (Inspection, Repair, and Maintenance). The FMCSA also requests 

public comments on how enforcement officials could identify CMVs capable of various 

levels of automated operation and the types of HACV equipment that can be effectively 

inspected at roadside” (FR Doc 2017-07723, 2017). 

2.3. Texas Legislative Developments 

The 85th Regular Texas Legislative Session saw a few bills pass out of committee with regard to 

CVs and AVs. All have been signed by Governor Greg Abbot. First, House Bill (HB) 1791 amends 

the Transportation Code (TC) regarding platooning vehicles that are using connected braking 

systems. Section 545.062 of TC is amended so that an operator of a vehicle that is equipped with 

a braking system, and is following another vehicle equipped with the same system, can use the 

first system to maintain an “assured clear distance or sufficient space as required by this section.” 

Connected braking system is defined here as “a system by which the braking of one vehicle is 

electronically coordinated with the braking system of a following vehicle.”  

Senate Bill (SB) 2205 regarding automated vehicles amends TC Section 545 to add a new 

subchapter J. Definitions for automated motor vehicles include: 

“Automated driving system” means hardware and software that, when installed on a motor 

vehicle and engaged, are collectively capable of performing, without any intervention or 

supervision by a human operator: 

(A) all aspects of the entire dynamic driving task for the vehicle on a sustained 

basis; and 

(B) any fallback maneuvers necessary to respond to a failure of the system. 

 

“Automated motor vehicle” means a motor vehicle on which an automated driving system 

is installed. 
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“Entire dynamic driving task” means the operational and tactical aspects of operating a 

vehicle. The term: 

(A) includes: 

(i) operational aspects, including steering, braking, accelerating, and 

monitoring the vehicle and the roadway; and 

(ii) tactical aspects, including responding to events, determining when to 

change lanes, turning, using signals, and other related actions; and 

(B) does not include strategic aspects, including determining destinations or 

waypoints. 

 

“Human operator” means a natural person in an automated motor vehicle who controls 

the entire dynamic driving task. 

 

“Owner” has the meaning assigned by current TC at Section 502.001.1 

 

The new chapter governs exclusively automated motor vehicles and automated driving systems, 

unless an exception is called out.2 Political subdivisions of the state cannot impose either 

regulations, or franchise on the operation of an automated motor vehicle or automated driving 

system.3 

When the automated driving system is installed on a motor vehicle or is engaged, the owner of the 

automated driving system is considered the “operator of the automated motor vehicle solely for 

assessing compliance with applicable traffic or motor vehicle laws.” This is regardless of whether 

a person is physically present in the vehicle when the vehicle is operating and the automated 

driving system is considered to be licensed to operate the vehicle. A licensed human operator is 

not required to operate a motor vehicle if an automated driving system is installed and engaged4. 

Automated motor vehicles are authorized to operate in the state with the automated system 

engaged, with or without a human physically present in the vehicle.5 However, an AV may not 

operate on a highway in the state with the automated system engaged unless the vehicle: 

1) can operate in compliance with traffic and motor vehicle laws,  

2) is equipped with a data recording device installed by the manufacturer of the vehicle 

or automated driving system,  

3) has an automated driving system that complies with all federal laws and federal 

motor vehicle standards, 

4) is registered and titled in accordance with current laws, and 

5) has vehicle liability coverage or self-insurance required under current laws.6 

 

                                                 
1 SB 2205 Section 545.451 subsections (1) through (5) 
2 SB 2205 Section 545.452 Subsection (a) 
3 SB 2205 Section 545.452 Subsection (b) 
4 SB 2205 Section 545.453 
5 SB 2205 Section 545.454 (a) 
6 SB 2205 Section 545.454 (b) (1) through (5) 
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Section 545.455 sets out the duties required following an accident with an AV. In the event of an 

accident that involves an AV, the automated motor vehicle (or the human operator of this vehicle) 

must comply with TC 550.7  

Section 545.456 provides that an owner identified within TC 502.001 (31) may identify the vehicle 

as an AV or having an automated driving system to the Department of Motor Vehicles (DMV). 

The bill does not provide any specific authority for specific rulemaking by any state agencies 

(TxDOT, DMV, or DPS),  

HB 8 relating to cybersecurity for state agencies requires State agencies, through an amendment 

to Government Code Section 2054.515, to conduct an information security assessment of the 

agency’s information resources systems, network systems, digital data storage systems, digital data 

security measures, and information resources vulnerabilities at least once every two years. The 

Information Services Department may create by rule requirements for the type of information 

security assessment and report.  

The Sunset review bill (HB 100) did not make any provisions for AVs.  

2.4. Legal Developments within the States 

In the United States, legal oversight of AV technologies has been initiated primarily at the state 

level. At the time of writing, 21 states have enacted legislation that governs the operation of C/AVs 

in the state, four states have executive orders, and there were over 80 bills in state houses across 

the U.S. during the spring 2017 legislative sessions. The NCSL is tracking the progress of bills in 

state legislatures and has a database of legislation; Figure 2.3 shows NCSL’s current map of 

enacted legislation (NCSL, not dated).  

                                                 
7 SB 2205 Section 545.455 
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Source: NCSL.org, as of August 2017 

Figure 2.3 Map of states with enacted legislation for self-driving vehicles 

2.4.1. States Developing Legislation  

This section lists in alphabetical order the states that have developed and/or passed laws since the 

last review of state activity in late October 2016. We’ve indicated instances where a bill has not 

passed into law. Note in particular that Tennessee was added to this list, as they passed legislation 

in April 2016 that created a per-mile tax structure for AVs, and then amended and added to their 

legislation in 2017.  

The section details activities that leading-edge states for AVs have undertaken, including 

amending their regulations on HAVs, CVs, platooning, and related matters.  

2.4.1.1. Arizona 

In February 2017 Arizona introduced HB 2434, which had amended language regarding handheld 

device prohibition. HB 2434 would have deemed a person not to be operating a motor vehicle if 

the motor vehicle is driven autonomously through the use of artificial intelligence software and 

the autonomous operation of the motor vehicle is authorized by law. A companion bill was also 

introduced in the Senate (SB 1135). Neither of these bills were enacted.  
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2.4.1.2. Arkansas 

Arkansas enacted HB 1754 that regulates the testing of vehicles with autonomous technology and 

specifically added provisions regarding DATP systems and reduced the following distances of 

such systems. 

The Act defines “driver-assistive truck platooning system” as technology that integrates sensor 

array, wireless communication, vehicle controls, and specialized software to synchronize 

acceleration and braking between two or more vehicles while leaving the designated vehicle’s 

steering control and systems command in the control of its human operator. It additionally defines 

“autonomous technology” as technology installed on a motor vehicle that has the capability to 

drive the vehicle without the active physical control or monitoring by a human operator for any 

duration of time. Finally, “autonomous vehicle” is defined as a vehicle equipped with autonomous 

technology that can drive the vehicle without the active physical control or monitoring of a human 

operator for any duration of time. 

The Act amended Arkansas Code §27-51-305 regarding following too closely to not prevent 

overtaking and passing of vehicles equipped with DATP systems. Under the Act at Section 1 (c) 

vehicles equipped with DATP systems may follow other vehicles closer than allowed under 

subsection (a) and (b) (1). These previously required a motor vehicle to follow not more closely 

than reasonable prudent having due regard for speed, and for a motor truck on a roadway outside 

of a business or residence district could not follow within 200 feet of another vehicle.  

DATP is defined as technology that “integrates sensor array, wireless communication, vehicle 

controls, and specialized software to synchronize acceleration and braking between 2 or more 

vehicles while leaving and designated vehicle’s steering control and systems monitoring in the 

control of its human operator.”  

Section 2 of the bill amends Arkansas Code Title 27, Chapter 51 at Subchapter 15, (§27-51-1408) 

to add an additional section that authorizes DATP truck platooning systems on a street or highway 

if a plan for general platoon operations is filed with the State Highway Commission. A person may 

operate a DATP system upon approval of the plan by the State Highway Commission, or 45 days 

after the plan is not rejected by the State Highway Commission. The bill was enacted as at April 

1, 2017.  

2.4.1.3. California 

California enacted SB 1 in April 2017 (SB 1, April 28, 2017). As part of the transportation funding 

program, it created at Chapter 2 the Road Maintenance and Rehabilitation Program to address 

deferred maintenance on the state highway and local street and road systems. Chapter 2 §2030 §(d) 

provides that to the extent possible and cost effective, and where feasible, the department and cities 

and counties receiving funds under the program shall use advanced technologies and 

communications systems in transportation infrastructure that recognize and accommodate 

advanced automotive technologies that may include, but are not necessarily limited to, charging 
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or fueling opportunities for zero-emission vehicles, and provision of infrastructure-to-vehicle 

communications for transitional or full autonomous vehicle systems. 

2.4.1.4. Colorado 

Colorado’s SB 213, effective on August 1, 2017, provides definitions for “automated driving 

system,” “dynamic driving task,” and “human operator.” The Act notes that the use of motor 

vehicles with Level 0 through 3 automation as defined by SAE J3016 is legal under Colorado law 

with a human driver in the vehicle, and is not addressed in the Act.  

“Automated driving system” is defined as hardware and software that are collectively capable, 

without intervention or supervision by a human operator, of performing all aspects of the dynamic 

driving tasks for a vehicle on a part-time or full-time basis, described under J3016 as Levels 4 and 

5. “Dynamic driving task” is defined to include all of the following: 

I. Operational aspects, including steering, braking, accelerating, and monitoring the 

vehicle and the roadway;  

II. Tactical aspects, including responding to events, determining when to change lanes, 

turning, using signals, and other related actions.  

Dynamic driving task does not include strategic aspects of driving, including determining 

destinations or way points. 

The Act allows a person to use an automated driving system to drive or control a function of a 

motor vehicle if the system is capable of complying with every state and federal law that applies 

to the function that the system is operating. If the vehicle cannot comply with every relevant state 

and federal law, it must be submitted for approval via vehicle testing. The department must submit 

a report on the testing of the automated driving systems by September 1, 2018. The Act preempts 

state agencies and local jurisdictions from adopting or enforcing a policy, rule, or ordinance that 

sets standards for an automated driving system different from standards set for a human driver.  

2.4.1.5. Connecticut 

In SB 260—which was enacted on June 27, 2017—Connecticut defined the terms “fully 

autonomous vehicle,” “automated driving system,” and “operator.” The bill requires the 

development of a pilot program for up to four municipalities for the testing of fully autonomous 

vehicles on public roads in those municipalities. It specifies the requirements for testing, including 

having an operator seated in the driver’s seat and providing proof of insurance of at least $5 

million. A task force is to be established to study autonomous vehicles. The study must include an 

evaluation of NHTSA’s standards regarding state responsibility for regulating AVs; an evaluation 

of laws, legislation, and regulations in other states; recommendations on how Connecticut should 

legislate and regulate AVs; and an evaluation of the pilot program. 
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2.4.1.6. Georgia 

In HB 472—enacted on May 9, 2017—Georgia provides for an exception for following 

requirements for vehicles following in a procession when speeds of the non-leading, participating 

vehicles are coordinated automatically and repealed conflicting laws. HB 472 specifies that the 

law prohibiting following too closely does not apply to the non-leading vehicle in a coordinated 

platoon. It defines coordinated platoon as a group of motor vehicles traveling in the same lane 

utilizing vehicle-to-vehicle communication technology to automatically coordinate the movement 

of the vehicles.  

2.4.1.7. Louisiana 

Louisiana’s HB 511 (from the 2017 regular session) regulates and provides for the operation of 

AVs, including definitions, insurance requirements, registration/title, accident reporting, and 

additional/related matters and rules. The bill was left pending in committee. 

The bill provides definitions for “automated driving system,” dynamic driving task, fully 

autonomous vehicle, human driver, minimal risk condition (which is defined as a low-risk 

operating mode in which a fully autonomous vehicle operating without a human driver achieves a 

reasonably safe state, such as bringing the vehicle to a complete stop upon experiencing a failure 

of the vehicle’s automated driving system that renders the vehicle unable to perform the entire 

dynamic driving task), on-demand autonomous vehicle network, and operational design domain. 

The bill then specifies under which specific conditions fully autonomous vehicles may be operated 

on public roads. These conditions include: 

(1) if the failure of the automated riving systems occurs that renders the system unable to 

perform the entire dynamic driving task relevant to its intended operation design domain, 

the vehicle will achieve a minimal risk condition…  

(2) the AV must be capable of complying with traffic and motor laws of Louisiana, and  

(3) the AV must bear the manufacturer’s certification label indicating that it was in 

compliance with federal law at the time of its manufacture.  

The bill additionally provides for insurance requirements; the AV must be insured in compliance 

with current statues and regulations at (R.S. 32:861 and R.S. 32:900) and a person must submit 

proof of financial responsibility for this to the Department of Public Safety and Office of Motor 

Vehicles. Any accident with an AV must be reported in accordance with 32:871. A person may 

operate an on-demand AV network, and provide transportation for multiple passengers. 

Additionally, registration and title of an AV must be completed in accordance with general 

registration and title laws. Finally, this bill would be exclusively governed by said chapter of the 

law.  

2.4.1.8. Nebraska 

Nebraska’s LB 627 (which was left pending in committee) provides for operation of AVs and 

harmonizes with previous motor vehicle laws. The bill provides definitions for autonomous motor 
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vehicle, and autonomous technology. The bill provides that a person is considered the operator of 

an AV when they cause the technology to engage. A person may operate an AV when they have a 

valid operator’s license.  

Per safety of the vehicle, the AV must meet all federal and state regulations. In addition, the AV 

must have a safety alert system that alerts the operator to technology failure, at which point the 

operator must take control of the AV or bring the AV to a stop in the event that they cannot take 

control. The operator must also have a means of visually indicating when the AV is in autonomous 

mode. The bill further provides that prohibitions against using handheld written communications 

do not apply to a person operating an AV.  

2.4.1.9. New Jersey 

New Jersey’s A3745 (which was reported out of Assembly Comm., with amendments on second 

reading in December 2016) would permit the testing and use of AV’s under certain circumstances. 

The bill provides definitions for autonomous mode, autonomous technology, autonomous vehicle, 

commission, manufacturer, operator, and sensors.  

The bill provides that an AV may be operated on public roads for testing purposes provided that 

(1) it is being operated solely by persons designated by the manufacturer, (2) the operator is inside 

the vehicle, capable of taking control, and (3) the manufacturer obtains insurance in the amount of 

$5 million.  

Before public road operation, the manufacturer of an AV must apply for authorization by the 

commission. The application must contain certification that the AV may be disengaged from the 

operator, may visually indicated when it is in autonomous mode and contain a safety alert system 

of technology failure, at which point the operator will be required to take action to control or stop 

the vehicle. The manufacturer must provide certification that the AV has been tested on private 

property. The AV must also have the capability of recording and storing sensor data before and 

after a collision. Finally, the manufacturer must provide a disclosure to a purchaser of an AV of 

what personal information is collected by the technology of the AV. 

2.4.1.10. North Dakota 

North Dakota’s HB 1202, which was enacted on April 13, 2017, provides for a Department of 

Transportation Study by creating a new section for Chapter 39-06 of the North Dakota Century 

Code. The Act provides that the North Dakota DOT shall collaborate with the AV technology 

industry to study the use of, and data collected by, AVs on state highways. The North Dakota DOT 

must review current laws of licensing, registration, insurance, and data ownership to be applied to 

AV use. North Dakota’s DOT would report this study to the 66th legislative assembly of North 

Dakota. 
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2.4.1.11. Oklahoma 

Oklahoma’s SB 202 (which was left pending in committee in February 2017) provides for the 

Department of Public Safety to adopt regulations relating to autonomous vehicles. The bill would 

add a new section of law in Oklahoma States at Section 12-103 of Title 47. The act defines 

autonomous vehicles as a motor vehicle that uses artificial intelligence sensors and global system 

coordinates to drive itself without the active intervention of a human operator. It established that 

the Department of Public Safety would adopt regulations regarding operation of autonomous 

vehicles on the highway. These regulations include setting the minimum safety standards for AVs, 

as well as the requirements for operation and insurance, and providing for testing of AVs. 

2.4.1.12. South Carolina 

South Carolina’s HB 3289, enacted on May 31, 2017, relates to the distance that must be 

maintained between vehicles traveling along a highway, and provides that this section does not 

apply to the operator of any non-leading vehicle traveling in a procession of vehicles if the speed 

of each vehicle is automatically coordinated.  

The Act revised the term “driver” to “operator” in regard to these vehicles. At section (b) it notes 

that “the operator of a truck or motor vehicle that is drawing another vehicle traveling upon a 

roadway outside of a business or residence district and which is following another truck or motor 

vehicle drawing another vehicle shall, whenever conditions permit, leave sufficient space so that 

an overtaking vehicle may enter and occupy such space without danger, except that this shall not 

prevent a truck or motor vehicle drawing another vehicle from overtaking and passing any vehicle 

or combination of vehicles.” 

For motor vehicles operated upon roadway outside of a business or residence district in a caravan 

or motorcade—whether or not towing other vehicles—shall be operated as to allow sufficient 

space between each vehicle or combination of vehicles to enable any other vehicle to enter and 

occupy such space without danger. 

This Act does not apply to the operator of any non-leading commercial motor vehicle subject to 

federal motor carrier safety regulations and traveling in a series of commercial vehicles using 

cooperative adaptive cruise control or any other automated driving technology. 

2.4.1.13. Tennessee 

Tennessee’s SBN 1561, which was enacted in 2016 established certification program through its 

department of safety for manufacturers of AVs before such vehicles may be tested, operated, or 

sold. The law was enrolled and chaptered on April 27, 2016 at Pub.Ch 927. It also created a per 

mile tax structure for AVs (with a “use tax” that is in addition to the traditional gas tax). The Act 

distinguishes between a non-operator-required autonomous vehicle (NORAV) and an operator-

required autonomous vehicle (ORAV). 
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A NORAV is defined an autonomous vehicle that may have operational controls for a human 

operator, including a steering wheel, accelerator, or brake, but does not require a human operator 

to be present in the vehicle during vehicle operation. There are two special license requirements 

for operators of NORAVs appropriate to the class of vehicle based on weight rating or number of 

passengers. An ORAV is defined as an autonomous vehicle equipped with operational controls for 

a human operator, including steering wheel, accelerator, and brake, and requires a human operator 

to be present in the vehicle for vehicle operation.  

Tennessee’s SB 2333, which was enrolled and chaptered on March 22, 2016, allows a motor 

vehicle to be equipped with an integrated electronic display visible to the operator while the motor 

vehicle’s autonomous technology is engaged.  

2.4.1.14. Washington 

The governor signed an executive order in June 2017 (Washington State Governor: EO 17-02, 

2017) to set up an autonomous vehicle work group and to begin to address autonomous vehicle 

testing and enabling pilot programs within the state. The working group is to have at least one 

representative from the Governor’s office, and from other state agencies (that are listed). Pilot 

programs are authorized within the state in partnership with entities developing autonomous 

vehicle technology equipment. Pilot programs conducting testing and operation of autonomous 

vehicles with human operators physically present in the vehicle shall comply with these 

requirements: 

“Vehicles shall be operated or monitored only by a trained employee, contractor, or other 

person authorized by the entity developing autonomous technology. 

Vehicles shall be monitored, and an operator must have the ability to direct the vehicle’s 

movement if assistance is required. 

Individuals able to exercise operational control of an autonomous vehicle during operation 

shall possess a valid U.S. driver license. 

Vehicle owners shall attest to proof of financial responsibility as required by RCW 

46.30.020.  

Developing entities shall self-certify to DOL that they are compliant with the above 

requirements before beginning a pilot program.”  

In addition, the pilot programs that are conducting testing without a human operator present in the 

vehicle shall comply with these requirements: 

“Vehicles shall be equipped with an automated driving system that performs all aspects of 

the driving task on a part- or full-time basis within the vehicle’s operational design limits, 

and it must be capable of bringing the vehicle to a safe condition in the event of a system 

failure. 
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Vehicles shall be capable of being operated in compliance with Washington State motor 

vehicle laws relevant to the vehicle’s operational design limits. 

Vehicle owners shall attest to proof of financial responsibility as required by RCW 

46.30.020.  

Developing entities shall self-certify to DOL that they are compliant with the above 

requirements before beginning a pilot program.”  

2.4.1.15. Wisconsin 

The Governor signed an executive order in May 2017 that will create a Steering Committee on 

Autonomous and Connected Vehicle Testing and Deployment (Wisconsin, 2017). 

2.4.2. States Amending Their Regulations 

States that could be considered pacesetting or leading-edge states, such as California, Nevada, 

Florida, and Michigan, have also begun to make amendments to current legislation and regulations.  

2.4.2.1. California 

California legislation and regulation provides oversight for AV testing and deployment. California 

DMV requirements for manufacturer testing include registering the AV with the DMV, completing 

previous AV testing under controlled conditions, using qualified test drivers who sit in the driver’s 

seat with the ability to take control of the AV, and a $5 million insurance or surety bond maintained 

by the manufacturer (CA Vehicle Code 38570(A)(5)). Currently, in order to deploy a vehicle in 

California after testing, the vehicle must be approved by the California DMV.  

In March 2017, the California DMV proposed regulations to amend Article 3.7 on Testing of 

Autonomous Vehicles, and to add in a new section Article 3.8 on Deployment of Autonomous 

Vehicles (California DMV, 2017 (a) and (b)). The department notes that it is adding Article 3.8 to 

specify the requirements to deploy autonomous vehicles, including the stipulation that these 

vehicles do not require a driver inside the vehicle. However, the deployment of these vehicles still 

necessitates obtaining a permit and certification by the manufacturer that it will maintain an 

instrument of insurance and that the vehicle meets any federal safety standards. The manufacturer 

also has to certify that the autonomous technology has a mechanism to engage and disengage the 

autonomous technology, and that a communication link with a remote operator allows continuous 

two-way communication with any passengers in the vehicle. Finally, the permit requires a process 

to display or communicate the vehicle owner or operator information in the event there is a 

collision or if there is a need to communicate with law enforcement. 

In February 2018 California’s Office of Administrative Law approved driverless testing 

regulations. The department posted a notice of this approval on its website and will begin 

approving applications after April 2, 2018 (California DMV, 2018b). California DMV’s website 

had posted application requirements for the driverless autonomous vehicle tester program as of 

writing this report, including the required application forms to be submitted.  
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Within the definitions section of the testing of autonomous vehicles at Article 3.7 under Title 13, 

Division 1, Chapter 1, autonomous mode, autonomous test vehicle, autonomous test driver, 

convention mode, dynamic driving task, minimal risk condition, remote operator and operational 

design domain are specifically defined. The new regulations are linked to SAE’s taxonomy under 

J3016 (California DMV, 2018 (a)). At section 227.041 manufacturers can conduct testing of 

autonomous vehicles on public roads. Proof of insurance is required to be kept in the test vehicles 

at all time, and these must be identified in writing to the department under Section 227.16 with 

make, model, year, vehicle identification number and license plate and state of issuance. Section 

227.18 details that a driverless vehicle cannot be tested on a public road without a permit to conduct 

such testing issued by the department.  

Manufacturers shall not test autonomous vehicles (including driverless autonomous vehicles) on 

public roads unless they have tested them under controlled conditions that have simulated, as 

closely as practicable, each operation design domain where the manufacturer intends the vehicles 

to operate on public roads. The manufacturer’s testing permit for a driverless vehicle will be valid 

for two years (§227.23); the fee for a manufacturer’s testing permit application is $3600 for 

processing (§227.22). For this permit, the manufacturer under Section 227.38 must certify that 

local authorities where the vehicle will be tested have provided written notification that contains 

all of the following:  

(1) The operational design domain of the test vehicles 

(2) A list of all public roads in the jurisdiction where the vehicles will be tested. 

(3) The date that testing will begin.  

(4) The days and times that testing will be conducted on public roads. 

(5) The number of vehicles to be tested and the types of vehicles to be tested. 

(6) Contact information, including name, telephone number, address, and email for  

contact person for the manufacturer conducting the testing.  

 

In addition, the application must state that the manufacturer also complies with elements such as: 

 Ensuring a communication link between the vehicle and remote operator to provide 

two-way communication and location information.  

 Ensure that communication between the remote operator and any passengers occurs if 

the vehicle experiences any failures or would endanger the passengers’ safety or other 

road users 

 Descriptions of how the manufacturer will monitor the link, and also that the 

communication link will be continuously monitored. 

 There is a process to display or communicate vehicle owner or operator information if 

the vehicle is involved in a collision and this information must be provided to a law 

enforcement officer for any reason (§227.38 (b (1-3)).  

 The manufacturer certifies the vehicle is capable of operating without the presence of 

a driver and meets SAE’s J3016 taxonomy descriptions for level 4 or 5 operating 

system ((§227.38 (c)).  

 The vehicle complies with all federal motor vehicle safety standards (§227.38 (d)).  

 Manufacturer provides a copy of a law enforcement interaction plan (§227.38 (e)).  
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 Manufacture maintains a training program for its remote operators (§227.38 (f)).  

 Under Section 227.42, a testing permit can be suspended or revoked and there is a 

mechanism to appeal this within the regulations.  

 All collisions must be reported under Section 227.48, as well as disengagement of 

autonomous mode under §227.50.  

 The vehicle must be licensed and titled, and transfer of title can only be conducted by 

manufacturers under §227.54. 

 

California has also now authorized the deployment of autonomous vehicles. Under new Modified 

Express Terms within Title 13, Division 1, Chapter 1 a new Article 3.8 Deployment of 

Autonomous Vehicles is also added to the DMV’s adopted regulatory text (California DMV 2018 

(a) at page 20). Manufacturers cannot deploy an autonomous vehicle unless it submits, and 

receives approval for, an application for a permit to deploy autonomous vehicles on public streets. 

The permit application is on form OL 321 and has a fee of $3,275 for application processing 

(§228.06 (a) (4)). The manufacturer shall certify in the application that the autonomous vehicles 

are equipped with an autonomous technology data recorder that captures and stores autonomous 

technology sensor data for all vehicle functions that are controlled by the autonomous technology 

at least 30 seconds before a collision with another vehicle, person, or other object while the vehicle 

is operating in autonomous mode. The data captured and stored by the autonomous technology 

data recorder, in a read only format, must be capable of being accessed and retrieved by a 

commercially available tool (§228.06 (a) (6)). Under (§228.06 (a) (8) the manufacturer must 

certify it meets all federal motor vehicle safety standards, and under (§228.06 (a) (9)) the 

manufacturer must certify that it can detect and respond to roadway situations in compliance with 

California Vehicle Code and local regulations that are applicable to the dynamic driving task in 

the vehicle’s operational design domain, except when necessary to enhance the safety or the 

vehicle’s occupants or other road users.   

Under (§228.06 (a) (10)) the manufacturer must certify that the autonomous vehicles meet 

appropriate and applicable current industry standards to help defend against, detect, and respond 

to cyber-attacks, unauthorized intrusions, or false vehicle control commands. Under subsection 11 

they manufacturer must certify it has conducted test and validation methods and is satisfied, based 

on the results of the tests and validations, that the vehicles are safe for deployment on public roads 

in California.  

Section (§228.06 (b) requires that the manufacturer also certify that: 

(1) A communication link between the vehicle and the remote operator, if any, to provide 

information on the vehicle’s location and status and allow two-way communication between the 

remote operator and any passengers, if applicable, should the vehicle experience any failures that 

would endanger the safety of the vehicle’s passengers or other road users while operating without 

a driver. 



38 

(2) The ability to display or transfer vehicle owner or operator information as specified in Vehicle 

Code section 16025 in the event that the vehicle is involved in a crash, and collision, or accident 

or if there is a need to provide that information to a law enforcement officer for any reason 

(3) For any vehicle that is not equipped with manual controls for the completing the dynamic 

driving task, that it complies with all applicable federal motor vehicle safety standards and has an 

exemption approved by NHTSA.  

2.4.2.2. Michigan 

Michigan initially allowed C/AV testing so long as the vehicle is operated by an authorized agent 

of the manufacturer, and an individual is present in the vehicle and able to take control immediately 

if necessary. The State did specifically ban operation of AVs for non-testing purposes (Mich. 

Comp. Laws §§ 257.663, 665) as of 2015. However, in December 2016 Michigan passed 

legislation (SBs 995, 996, 997, and 998) that authorized driverless cars to be driven for any of the 

following purposes: personal use; road testing; as part of a SAVE program or “on-demand 

automated vehicle network;” and as part of a platoon. For example, under SB 995-998, the list of 

eligible drivers will expand to include people driving for personal use, university researchers who 

are conducting road testing, and Michigan DOT employees who are conducting road-testing. This 

means HAVs, or driverless cars, will operate without a human driver or any human present in the 

car. The news laws authorize operation of an automated motor vehicle without any control or 

monitoring by a human operator. 

Michigan also had SB 927 drafted and introduced in 2016. This would amend Public Act 53 of 

1979, which prohibits access to computers, computer systems, and computer networks for certain 

fraudulent purposes, to prohibit a person from intentionally gaining access, or causing access to 

be made, to an electronic system of a motor vehicle in order to willfully destroy, damage, impair, 

alter, or gain unauthorized control of the vehicle. It was referred to the Committee on 

Communications and Technology in November 2016 and was not introduced in the 2017 

legislative session.  

2.4.2.3. Tennessee 

In May 2017 Tennessee enacted SB 151, which moved the state beyond the existing statute enacted 

in 2016. SB 151 establishes requirements for AVs to operate on public roads and highways. It 

defines an automated driving system (ADS) and authorizes motor vehicle manufacturers to 

commence a SAVE project. SAVE is an initiative by a manufacturer that makes ADS-operated 

vehicles available to the public for operation on the public roads and highways as determined by 

the manufacturer. As outlined in SB 151, a SAVE project also includes making an on-demand 

ADS-operated vehicle network available to the public.8 The Act establishes the following 

procedures for manufacturers to operate ADS-operated vehicles. [Note: in the following list, 

                                                 
8 This bill was obviously crafted with input from transportation network companies and the major car manufacturers who are looking to bring AV 

fleets into major metro areas in the next 3 to 4 years.  
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asterisks denote subsections later amended by Tennessee’s SB 676, as discussed later in this 

section.]  

1) * Only motor vehicle manufacturers are eligible to participate in a SAVE project, and 

each manufacturer is responsible for the safe operation of its participating fleet. The 

manufacturer must submit a letter to the department of revenue that includes the 

geographical areas in which the fleet will operate and a certification that:  

(A) The vehicles in the fleet are owned or controlled by the manufacturer and are 

equipped with an automated driving system, automatic crash notification 

technology, and a data recording system that has the capability of recording 

the automated driving system’s status and other vehicle attributes, including 

speed, direction, and location, during a specified time period before an 

accident;  

(B) The fleet complies with all applicable state and federal laws; and  

(C) Vehicles in the fleet are capable of being operated in compliance with 

applicable traffic and motor vehicle laws of this state;  

2) * A manufacturer must maintain incident records and provide periodic summaries 

related to the safety of the fleet to the department of revenue, the transportation and 

safety committee of the senate, the transportation committee of the house of 

representatives, and the National Highway Traffic Safety Administration (NHTSA);  

3) * Prior to commencement and during the operation of a SAVE project, the 

manufacturer must make a privacy statement publicly available that discloses its data- 

handling practices in connection with the fleet;  

4) While the ADS is in control of the vehicle, the manufacturer will assume liability for 

incidents where the ADS is at fault. A manufacturer is immune from any liability for 

damages from any modification made to an ADS-operated vehicle or an ADS by 

another person without the manufacturer’s consent; and  

5) The department of revenue may charge the manufacturer a fee for the operation of a 

SAVE project, but the fee must not exceed an amount necessary to implement this bill.  

 

Under this Act, it is an offense for any person to knowingly operate a motor vehicle on Tennessee 

public roads or highways without a human driver in the driver’s seat of the vehicle and without 

satisfying the requirements of the Act. A violation will be a Class A misdemeanor. The Act 

prohibits the following persons from operating an ADS-operated vehicle:  

(1) Any person who operates/has operated an ADS-operated vehicle on a public road or 

highway without satisfying the eligibility requirements of the applicable jurisdiction; 

and  

(2) Any person who was cited or found by law enforcement, a court, a state agency, or 

other applicable governing body to have violated a statute or regulation requiring prior 

notification or authorization to operate a vehicle equipped with an ADS.  
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The Act prohibits political subdivisions, by ordinance, resolution, or any other means, from 

banning or regulating the use of an ADS-operated vehicle or SAVE project that is operating under 

the Act’s authority and otherwise complies with all laws of the political subdivision. The Act 

revised various laws regarding motor vehicles to reflect the existence of ADS’s, such as child seat 

belt laws and accident-reporting laws.  

On May 4, 2017, the Tennessee Senate adopted SB 676, which made amendments to SB 151 sub-

sections one through three (highlighted with asterisks [*] in the earlier text detailing SB 151) and 

a fourth amendment regarding preemption of local control of ADS.  

Amendment number one removed the requirements regarding the commencement of a SAVE 

project and all SAVE-project related provisions and instead provides that an ADS-operated vehicle 

may drive or operate on Tennessee streets and highways with the ADS engaged without a human 

driver physically present in the vehicle if the vehicle meets the following conditions: 

1) Unless an exemption has been granted under applicable federal or state law, the vehicle is 

capable of being operated in compliance with applicable provisions of Tennessee’s motor 

vehicle safety and traffic, and has been, at the time it was manufactured, certified by the 

manufacturer as being in compliance with applicable federal motor vehicle safety 

standards; 

2) In the event of a failure of the automated driving system that renders that system unable to 

perform the entire dynamic driving task relevant to its intended operational design domain, 

the vehicle is capable of achieving a minimal risk condition; 

3) Is registered, and if registered in Tennessee, the vehicle is identified on the registration as 

an ADS-operated vehicle; and 

4) The manufacturer that owns the vehicle maintains primary automobile liability insurance 

providing at least $5 million for death, bodily injury, and property damage; or the non-

manufacturer owner maintains primary automobile liability insurance providing at least 

$50,000 for death or bodily injury, per person; $100,000 for death or bodily injury, per 

incident; and $30,000 for property damage. 

 

This amendment also: 

(1) Removes references to ADS’s having automatic crash notification technology and 

specifies, for purposes of this state’s seat belt laws, that a passenger or human operator 

required to be restrained by a safety belt will be solely responsible for the passenger’s or 

human operator’s compliance with such requirement; and  

(2) Adds that liability for accidents involving an ADS-operated vehicle will be determined in 

accordance with product liability law, common law, or other applicable federal or state 

law. When the ADS is fully engaged, operated reasonably and in compliance with 

manufacturer instructions and warnings, the ADS will be considered the driver or operator 

of the motor vehicle for purposes of determining: 

(A) Liability of the vehicle owner or lessee for alleged personal injury, death, or 

property damage in an incident involving the ADS-operated vehicle; and 
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(B) Liability for non-conformance to applicable traffic or motor vehicle laws; and 

(3) Requires that no later than February 1, 2021, the commissioner of safety and the 

commissioner of commerce and insurance submit a report to the transportation and safety 

committee of the senate and the transportation committee of the house. The report must 

make recommendations with appropriate rationale as to whether the insurance and bonding 

coverages and coverage amount requirements of this bill should be increased, decreased, 

extended, or otherwise amended. 

 

Amendment number 2 rewrote SB 151’s requirement that a manufacturer owner of an ADS-

operated vehicle maintain primary automobile liability insurance providing at least $5 million for 

death, bodily injury, and property damage; and that a non-manufacturer owner maintain primary 

automobile liability insurance providing at least $50,000 for death or bodily injury, per person; 

$100,000 for death or bodily injury, per incident; and $30,000 for property damage. This 

amendment instead requires that such vehicles be: 

(1) Covered by a single-limit primary automobile liability insurance policy that provides at 

least $5 million for death, bodily injury, and property damage and that satisfies the 

requirements of the law governing uninsured motor vehicle coverage; 

(2) Covered by a surety bond executed and filed with the commissioner of safety in the amount 

of $5 million for death, bodily injury, and property damage; or 

(3) Self-insured for at least $5 million for death, bodily injury, and property damage, by a 

person certified to be a self-insurer by the commissioner of safety. 

 

This amendment will expire on July 1, 2022, unless re-enacted, extended, or amended prior to such 

date. The amendment states that it is the legislative intent that any such proposed legislation to re-

enact, extend, or amend be referred to the transportation and safety and transportation committees 

of the Tennessee house and senate. The amendment requires that the Commissioners of Safety and 

Commerce and Insurance submit a joint report to the transportation and safety and transportation 

committees of the house and senate no later than February 1, 2021. The Commissioner’s Joint 

Report is to make recommendations that shall include:  

 the appropriate rationale for reenactment, extension, or amendment and any proposed 

legislation thereto,  

 whether the insurance and bonding coverages and coverage amount requirements of this 

amendment should be increased, decreased, extended, or otherwise amended.  

Amendment number 3 rewrote SB 151’s requirements regarding primary automobile liability 

insurance coverage of ADS-operated vehicles and requires vehicles are covered by primary 

automobile liability insurance in at least $5 million per incident for death, bodily injury, and 

property damage, and the automobile liability insurance satisfies the requirements of the law 

governing uninsured motor vehicle coverage. Again, this provision will expire on July 1, 2021. 

This amendment also changed the dates for the report required in amendment two from February 

1, 2021 to February 1, 2020, which aligns this with the date of the Commissioners’ Joint Report.  
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A fourth amendment also extends this bill’s prohibition on political subdivisions, by ordinance, 

resolution, or any other means, banning or regulating the use of an ADS-operated vehicle to 

include a motor vehicle operated at any level of autonomous technology. It specifies that for motor 

vehicles operated at any other level of autonomous technology, the motor vehicle and driver will 

be held to the same laws as conventionally operated motor vehicles, including the financial 

responsibility requirements, unless an exemption is specifically set out for a vehicle operated with 

any level of autonomy.  

On May 5, 2017 the House substituted SB 151 for House Bill 381. It adopted amendment number 

four and passed SB 151 as amended. Amendment number four incorporated amendments one and 

three, and amendment two was rewritten by Senate amendment number three.  

The SAVE project in the final enrolled bill was also made manufacturer-specific and has a network 

initiated by the manufacturer (§55-54-102). 

In April 2017 Tennessee also enacted SB 676, which permits the operation of a platoon on streets 

and highways in the state after the person provides notification to the department of transportation 

and the department of safety. Vehicles are not caravan; and operator controls the lead vehicle. 

Platoon is defined as a group of individual motor vehicles that are traveling in a unified manner at 

electronically coordinated speeds.  

2.5. Conclusions 

As this chapter notes, there has been much statewide activity regarding C/AVs, with states such as 

California entering into new phases of regulation amendment and development. At the federal 

level, no bills have yet passed out of the U.S. Congress. NHTSA, FTC, FCC, and other federal 

agencies are continuing to develop regulations and opportunities within this area, and this is 

expected to continue as this new technology evolves.  

One critical component that we note is still problematic is nomenclature/terminology. The review 

of draft legislation within U.S. state legislatures shows a patchwork of definitions using different 

nomenclature/terminology, with some referring to SAE-defined levels, and some not. 

Harmonization of terminology in this area will be helpful for future policymakers entering into the 

field, and for the general public in understanding how these vehicles work. The use of standardized 

nomenclature will reduce confusion for the general public in this emerging area, set clear 

definitions, make reciprocity and other interstate compact agreements easier to manage for 

multiple public agencies and the federal government, and most importantly, reduce litigation 

anomalies within circuits due to terminology definitions. 

Another critical component that will need to be reviewed by TxDOT as well as other public 

agencies and local governments is the role of preemption. While NHTSA has outlined the 

traditional areas of federal and state roles, they may well be grey areas where jurisdictional 

authority may not always be clear between federal and state, and within the states themselves 

between the state, state agencies, and local jurisdictions.  
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Critical preemption issues also arise between the state and local levels. Some local jurisdictions 

are taking a keen interest in state legislative activities and expect to serve as partners as legislation 

and regulations are developed. State legislators may need to address this shared responsibility more 

directly since no one wants to see a patchwork of legislative and regulatory authorities emerge 

through a haphazard process. Indeed, across the United States state legislatures are beginning to 

preempt local jurisdictions from instigating competing regulations while preserving the flexibility 

to address critical local concerns that may emerge as these vehicles are introduced.  

A final recommendation for TxDOT staffers—particularly those within the policy realm—is to 

continue to monitor activities by key agencies and states who have been at the forefront of this 

realm. Monitoring activities within NHTSA, FCC, California, Michigan, and Nevada would be 

prudent. 



44 

  



45 

Chapter 3. Information Sharing for Connected and 

Autonomous Vehicles 

3.1. Introduction 

Connected vehicles (CVs) can communicate with their internal and external environments (Lu et 

al., 2014), and provide a two-way wireless communication environment enabling vehicle-to-

vehicle and vehicle-to-infrastructure communications (Lee and Park, 2012). Thus, CVs and 

infrastructure can collect high-fidelity traffic data, such as vehicles’ origins or destinations and 

their trajectories, and also share such information with other CVs and infrastructure managers. 

This chapter describes the impacts of information sharing on the routes chosen by CVs, and the 

resulting impacts on traffic. This adaptive routing carries both potential benefits (allowing drivers 

to avoid non-recurring congestion) as well as risks (“overreaction” to transmitted information can 

overload alternative routes). To model this, we consider a scenario where an incident happens in 

the network, increasing the travel costs on those affected roads, using a stochastic shortest path 

approach with recourse to model re-routing and diversion. 

Stochastic shortest path problems with recourse were first mentioned in the early 1990s (Andreatta 

and Romeo, 1988; Bertsekas and Tsitsiklis, 1991; Polychronopoulos and Tsitsiklis, 1993). This 

research drew on similar concepts including shortest or optimal path in probability or stochastic 

network. These shortest path problems are defined on networks with random link costs, under two 

different sets of assumptions. First, that information on link cost values is accumulated as the 

network is being traversed, with the objective to find a policy that leads from an origin to 

destination node with minimal expected cost; and second, that link costs become known only after 

a path is chosen, so the objective is to find a path with minimal expected value of the link lengths. 

For the first class of problems, one should not look for a best path, but rather for an optimal policy, 

the rule for deciding where to go next given the currently available information. Miller-Hooks and 

Mahmassani (2000) extended the problem to time-varying networks, with their concept of least 

expected time paths comparing to the stochastic shortest paths. Link costs are random variables 

with probability distribution functions that vary with time. Two procedures are presented in the 

paper, the first procedure determines the a priori least expected time paths from all origins to a 

single destination for each departure time in the peak period, and the second procedure determines 

lower bounds on the expected times of these a priori least expected time paths. 

Online shortest paths (OSP) and user equilibrium with recourse (UER) are related areas of work. 

OSP is the sub-problem to UER, in the same manner that the traditional shortest path forms the 

sub-problem to the static user equilibrium (UE) problem (Unnikrishnan and Waller, 2009). 

Recourse can be viewed as the opportunity for a decision-maker to reevaluate his or her remaining 

path at each node based on knowledge obtained en route (Waller and Ziliaskopoulos, 2002). The 

UER definition implies that all used routing policies will have equal and minimum expected cost. 

Unnikrishnan and Waller (2009) developed a convex mathematical program for static UE under 

uncertain link states and update their route choice in an online manner. Gao (2005) presented an 
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algorithm when link costs are time-dependent, stochastic and have general dependency, with the 

concepts of adaptive routing. This same terminology is used in optimal information location for 

adaptive routing (Boyles and Waller, 2011) and adaptive transit routing in stochastic time-

dependent networks (Rambha et al., 2016). 

Generally speaking, vehicles can get incident information one of two ways: from an operator, or 

merely by observing traffic conditions such as long queue, low travel speed and spill back (this 

kind of information may cause poor judgments). But for connected autonomous vehicles (CAVs), 

their perception of the incident state in the network may evolve while traveling in response to 

received information or from experiencing abnormal congestion on links affected by an incident. 

Consequently, the perception of the incident state will influence routing decisions and diversions 

when available. However, we only use the concept of incident perception of CAVs in this chapter; 

that is, we ignore the technological details about how the CAVs perceive the incident, but take the 

incident perception of CAVs as uncertain behaviors. Markov decision processes (MDP) are 

applied to model the routing behavior of a single CAV when it obtains information. 

The following section presents a freeway instance for a single CAV and introduces the concept of 

an MDP. The generalized MDP formulation is provided, followed by numerical experiments that 

explore the impacts of CAVs’ real-time congestion awareness on minimum expected-cost routing 

policies. 

3.2. Motivating Example 

This section demonstrates the model’s capacity for information sharing and rerouting. To facilitate 

explanation, this model and notation are introduced in the context of a freeway corridor; the 

following section generalizes to an arbitrary network. For the purposes of this section, an incident 

may happen on the freeway, which would increase travel time on an affected road segment. 

However, upstream of the affected road segment, vehicles may divert into alternative routes to 

avoid congestion. As shown in Figure 3.1, the freeway includes four nodes and six links. 

A node-state, denoted by (j,Info,Inc), includes three components: j is the node that a vehicle arrives 

at; Info indicates whether the vehicle perceives information about an incident (there are two ways 

that the vehicle could perceive incident information—receiving information from the system’s 

side, or inferring the incident by its own observation); and Inc indicates whether an incident occurs 

in the first place. Let p be the probability of an incident and q the probability that a vehicle learns 

about the incident; in the example below, p = 0.1. 

Thus, the state space is 

𝒳 = { (𝐴, 0, 0), (𝐴, 0, 1), (𝐴, 1, 1), (𝐵, 0, 0), (𝐵, 0, 1), (𝐵, 1, 1), 

(𝐶, 0,0), (𝐶, 0, 1), (𝐶, 1, 1), (𝐷, 0, 0), (𝐷, 0, 1), (𝐷, 1,1)} 
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Figure 3.1 Freeway network with affected and alternative links (red numbers are link costs) 

An action for a state, denoted by u, is the link a vehicle will travel next from this state. Action 

space for a state x = (j,Info,Inc), denoted by U(x), contains all possible links that the vehicle may 

next travel based on this state. For instance, in Figure 3.1, if a vehicle makes a route choice at node 

A, then it can travel link 1 or link 4, regardless of the state at this node, so the action space for 

states (A,0,0), (A,0,1) and (A,1,1) is: 

𝑈(𝑥 = (𝐴, 0, 0)) = 𝑈(𝑥 = (𝐴, 0, 1)) = 𝑈(𝑥 = (𝐴, 1, 1)) = {1, 4} 

Similarly, 

𝑈(𝑥 = (𝐵, 0, 0)) = 𝑈(𝑥 = (𝐵, 0, 1)) = 𝑈(𝑥 = (𝐵, 1, 1)) = {2, 5} 

𝑈(𝑥 = (𝐶, 0, 0)) = 𝑈(𝑥 = (𝐶, 0, 1)) = 𝑈(𝑥 = (𝐶, 1, 1)) = {3, 6} 

For the node D is the destination and the vehicle does not need to make route choices, so there is 

no action for states at node D. 

Given a vehicle’s current state and the action it will take, there are a set of probabilities for each 

of the next states that the vehicle may get to, and this set of probabilities are called the transition 

probabilities from current state to the next possible states. For example, if a vehicle arrives at 

node A, there are three possible states that the vehicle may get to, i.e., (A, 0, 0), (A, 0, 1) and (A, 1, 

1). If the vehicle is in the state (A,0,0) and decides to travel link 1, there are three possible next 

states: (B,0,0), (B,0,1), and (B,1,1). If the next state is (B,0,0), which indicates that no incident 

happens, then the transition probability from (A,0,0) to (B,0,0) with the action of link 1 is given by, 

𝑃((𝐵, 0, 0)|(𝐴, 0, 0), 1) = 1 − 𝑝 

Likewise, 

𝑃((𝐵, 0, 1)|(𝐴, 0, 0), 1) = 𝑝(1 − 𝑞)
𝑃((𝐵, 1, 1)|(𝐴, 0, 0), 1) = 𝑝𝑞

 

If the state is (A,0,1) and the vehicle decides to travel link 1, there are two possible next states: 

(B,0,1), (B,1,1). Then the transition probability is given by, 

𝑃((𝐵, 0, 1)|(𝐴, 0, 1), 1) = 1 − 𝑞
𝑃((𝐵, 1, 1)|(𝐴, 0, 1), 1) = 𝑞
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If the vehicle is in the state (A,1,1) and decides to travel link 1, according to the assumption, the 

next state can only be (B,1,1); thus the transition probability is one, i.e.: 

𝑃((𝐵, 1, 1)|(𝐴, 1, 1), 1) = 1 

The probability distribution for transition from one state to the next remains the same for other 

states and actions. 

Generally, the vehicle will get a reward after one-step transition from one state x to next state 𝑥′ 

with an action u. Our MDP model replaces reward with cost, denoted by 𝑐(𝑥′|𝑥, 𝑢), which gives 

one-step expected cost of transitioning from the current state to the next state based on an action. 

A policy is a mapping from states to actions, which can be viewed as a rule to decide where to go 

next given the current available information. Optimal policy gives an optimal action, 

corresponding to one state when a vehicle travels to this state. 

The objective of the MDP model for a single CAV is to minimize the sum of the expected cost for 

each state among all possible policies, 

 

where the expected cost for each state represents the expected cost from the node in this state to 

the destination. 

3.2.1. Backward induction 

MDPs can be solved by dynamic programming. Backward induction is one of the main methods 

for solving the Bellman equation in dynamic programming, which is defined by the equation below 

when the algorithm converges, 

𝑉𝑖+1(𝑥) ≔ max
𝑢
∑𝑃

𝑥′

(𝑥′|𝑥, 𝑢) ∙ [−𝑐(𝑥′|𝑥, 𝑢) + 𝑉𝑖(𝑥′)] 

where i is the iteration number.  

We apply backward induction to calculate the minimal total expected cost (which can be viewed 

as the Bellman equation in this model) in the objective function. Starting from the destination node 

D, determine the optimal policy and the corresponding minimal cost traveling from node C to node 

D.  

Given current state (C, 0, 0) 
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𝑐((𝐶, 0,0),3) = 𝑃(𝑛𝑜_𝐼𝑛𝑐) ⋅ 𝑐((𝐷, 0,0)|(𝐶, 0,0),3) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 1,1)|(𝐶, 0,0),3) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 0,1)|(𝐶, 0,0),3)
= 4(1 − 𝑝) + 16𝑝(1 − 𝑞) + 16𝑝𝑞
= 4 × 0.9 + 16 × 0.1
= 5.2

𝑐((𝐶, 0,0),6) = 𝑃(𝑛𝑜_𝐼𝑛𝑐) ⋅ 𝑐((𝐷, 0,0)|(𝐶, 0,0),6) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 1,1)|(𝐶, 0,0),6) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 0,1)|(𝐶, 0,0),6)
= 8(1 − 𝑝) + 8𝑝(1 − 𝑞) + 8𝑝𝑞
= 8

 

 

Since 5.2 < 8, 𝑢(𝐶,0,0)
∗ = 𝑢∗(𝑥 = (𝐶, 0,0)) = 3, the corresponding minimal expected cost is 

𝑐∗((𝐶, 0,0), 𝑢(𝐶,0,0)
∗ ) = 5.2 

If the current state is (C,1,1), then 

𝑐((𝐶, 1,1),3) = 𝑐((𝐷, 1,1)|(𝐶, 1,1),3) = 16
𝑐((𝐶, 1,1),6) = 𝑐((𝐷, 1,1)|(𝐶, 1,1),6) = 8

 

Since 8 < 16, then u_((C,1,1))^*=u^* (x=(C,1,1))=6, 

c^* ((C,1,1),u_((C,1,1))^* )=8 

The state (C,0,1) is special, for the vehicle does not perceive any information that an incident 

indeed happens in this state. The vehicle will follow the policy as if it were in the state (C,0,0). 

Thus, 𝑢(𝐶,0,1) = 𝑢(𝐶,0,0)
∗ = 3, 

𝑐((𝐶, 0,1), 𝑢(𝐶,0,0)
∗ ) = 𝑐((𝐶, 0,1),3)

= 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 1,1)|(𝐶, 0,1),3) +

𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 0,1)|(𝐶, 0,1),3)
= 16𝑞 + 16(1 − 𝑞)
= 16

 

Next, we need to determine the optimal policy and corresponding minimal expected cost for node 

B. Given current state (B,0,0), the expected costs with different actions are given by, 

𝑐((𝐵, 0,0),2) = 𝑃(𝑛𝑜_𝐼𝑛𝑐) ⋅ [𝑐((𝐶, 0,0)|(𝐵, 0,0),2) + 𝑐∗((𝐶, 0,0), 𝑢(𝐶,0,0)
∗ )] +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐶, 1,1)|(𝐵, 0,0),2) + 𝑐∗((𝐶, 1,1), 𝑢(𝐶,1,1)
∗ )] +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐶, 0,1)|(𝐵, 0,0),2) + 𝑐((𝐶, 0,1), 𝑢(𝐶,0,0)
∗ )]

= (1 − 𝑝) ⋅ [1 + 𝑐∗((𝐶, 0,0), 𝑢∗)] + 𝑝𝑞 ⋅ [3 + 𝑐∗((𝐶, 1,1), 𝑢∗)] +

𝑝(1 − 𝑞) ⋅ [3 + 𝑐((𝐶, 0,1), 𝑢(𝐶,0,0)
∗ )]

= (1 − 𝑝)(1 + 5.2) + 𝑝𝑞(3 + 8) + 𝑝(1 − 𝑞)(3 + 16)
= 6.2 + 12.8𝑝 − 8𝑝𝑞

= 7.48 − 0.8𝑞   (∵ 𝑝 = 0.1)
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𝑐((𝐵, 0,0),5) = 𝑃(𝑛𝑜_𝐼𝑛𝑐) ⋅ 𝑐((𝐷, 0,0)|(𝐵, 0,0),5) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 1,1)|(𝐵, 0,0),5) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 0,1)|(𝐵, 0,0),5)
= 10(1 − 𝑝) + 10𝑝(1 − 𝑞) + 10𝑝𝑞
= 10

 

 

Since 7.48 − 0.8q ≤ 7.48 < 10, then 𝑢(𝐵,0,0)
∗ = 𝑢∗(𝑥 = (𝐵, 0,0)) = 2, 

𝑐∗((𝐵, 0,0), 𝑢(𝐵,0,0)
∗ ) = 7.48 − 0.8𝑞 

 

Note that if we change the values of p and q, the optimal policy may turn into link 5. 

If the current state is (B,1,1), then 

𝑐((𝐵, 1,1),2) = 𝑐((𝐶, 1,1)|(𝐵, 1,1),2) + 𝑐∗((𝐶, 1,1), 𝑢(𝐶,1,1)
∗ ) = 3 + 8 = 11

𝑐((𝐵, 1,1),5) = 𝑐((𝐷, 1,1)|(𝐵, 1,1),5) = 10
 

Since 8 < 11, then 𝑢(𝐵,1,1)
∗ = 𝑢∗(𝑥 = (𝐵, 1, 1)) = 5, 

𝑐∗((𝐵, 1, 1), 𝑢(𝐵,1,1)
∗ ) = 10 

If a vehicle is in the state (B,0,1), it will follow the optimal policy as if it were in the 

state (B,0,0). Thus, 𝑢(𝐵,0,1) = 𝑢(𝐵,0,0)
∗ = 2, 

𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ ) = 𝑐((𝐵, 0, 1), 2)

= 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐶, 1,1)|(𝐵, 0, 1),2) + 𝑐∗((𝐶, 1, 1), 𝑢(𝐶,1,1)
∗ )] +

𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐶, 0,1)|(𝐵, 0, 1),2) + 𝑐((𝐶, 0, 1), 𝑢(𝐶,0,0)
∗ )]

= 𝑞(3 + 8) + (1 − 𝑞)(3 + 16)
= 19 − 8𝑞

 

However, 𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ ) = 19 − 8𝑞 ≥ 11 > 10 = 𝑐((𝐵, 0,1), 𝑢(𝐵,1,1)

∗ ), which indicates that 

when the incident indeed happens but the vehicle neither receives the incident information nor 

perceives the information at former states by itself, following the optimal policy as if the incident 

would not happen is never the optimal policy. 

Finally, we determine the optimal policy and minimal expected cost for node A. Similarly, given 

current state (A,0,0), the expected costs with different actions when p = 0.1 are given by 
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𝑐((𝐴, 0,0),1) = 𝑃(𝑛𝑜_𝐼𝑛𝑐) ⋅ [𝑐((𝐵, 0,0)|(𝐴, 0,0),1) + 𝑐∗((𝐵, 0,0), 𝑢(𝐵,0,0)
∗ )] +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐵, 1,1)|(𝐴, 0,0),1) + 𝑐∗((𝐵, 1,1), 𝑢(𝐵,1,1)
∗ )] +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐵, 0,1)|(𝐴, 0,0),1) + 𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ )]

= (1 − 𝑝) ⋅ [1 + 𝑐∗((𝐵, 0,0), 𝑢∗)] + 𝑝𝑞 ⋅ [2 + 𝑐∗((𝐵, 1,1), 𝑢∗)] +

𝑝(1 − 𝑞) ⋅ [2 + 𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ )]

= (1 − 𝑝)(1 + 7.48 − 0.8𝑞) + 𝑝𝑞(2 + 10) + 𝑝(1 − 𝑞)(2 + 19 − 8𝑞)

= 0.8𝑞2 − 2.42𝑞 + 9.732
𝑐((𝐴, 0,0),4) = 𝑃(𝑛𝑜_𝐼𝑛𝑐) ⋅ 𝑐((𝐷, 0,0)|(𝐴, 0,0),4) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 1,1)|(𝐴, 0,0),4) +

𝑃(𝐼𝑛𝑐) ⋅ 𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ 𝑐((𝐷, 0,1)|(𝐴, 0,0),4)
= 11.5(1 − 𝑝) + 11.5𝑝(1 − 𝑞) + 11.5𝑝𝑞
= 11.5

 

Since 0.8𝑞2 − 2.42𝑞 + 9.732 ≤ 9.732 < 11.5, then 𝑢(𝐴,0,0)
∗ = 𝑢∗(𝑥 = (𝐴, 0,0)) = 1, and 

𝑐∗((𝐴, 0,0), 𝑢(𝐴,0,0)
∗ ) = 0.8𝑞2 − 2.42𝑞 + 9.732 

Note that if we change the values of p and q, the optimal policy may turn into link 4. 

Moreover, if the current state is (A,1,1), then, 

𝑐((𝐴, 1,1),1) = 𝑐((𝐵, 1,1)|(𝐴, 1,1),1) + 𝑐∗((𝐵, 1,1), 𝑢(𝐵,1,1)
∗ ) = 2 + 10 = 12

𝑐((𝐴, 1,1),4) = 𝑐((𝐷, 1,1)|(𝐴, 1,1),4) = 11.5
 

Since 11.5 < 12, then 𝑢(𝐴,1,1)
∗ = 𝑢∗(𝑥 = (𝐴, 1,1)) = 4, 

𝑐∗((𝐴, 1,1), 𝑢(𝐴,1,1)
∗ ) = 11.5 

If a vehicle is in the state (A,0,1), it will follow the policy as if it were in the state (A,0,0). 

Thus, 𝑢(𝐴,0,1) = 𝑢(𝐴,0,0)
∗ = 1, 

𝑐((𝐴, 0,1), 𝑢(𝐴,0,0)
∗ ) = 𝑐((𝐴, 0,1),1)

= 𝑃(𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐵, 1,1)|(𝐴, 0,1),1) + 𝑐∗((𝐵, 1,1), 𝑢(𝐵,1,1)
∗ )] +

𝑃(𝑛𝑜𝑡𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑) ⋅ [𝑐((𝐵, 0,1)|(𝐴, 0,1),1) + 𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ )]

= 𝑞(2 + 10) + (1 − 𝑞)(2 + 19 − 8𝑞)

= 8𝑞2 − 17𝑞 + 21

 

However, 𝑐((𝐴, 0,1), 𝑢(𝐴,0,0)
∗ ) = 8𝑞2 − 17𝑞 + 21 ≥ 12 > 11.5 = 𝑐((𝐴, 0,1), 𝑢(𝐴,1,1)

∗ ). 

3.2.2. Properties for Minimal Expected Costs 

We will further discuss about the properties of minimal expected cost calculated by backward 

induction below. 

1. Monotonicity of the expected costs with respect to q 
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Recall the expected cost for state (B,0,0) with action of link 2 and the expected cost for state (A,0,0) 

with the action of link 1,  

𝑐((𝐵, 0, 0), 2) = (−8𝑝)𝑞 + (6.2 +  12.8𝑝) ≔ 𝑐1(𝑞, 𝑝) 

c((𝐴, 0, 0), 1) = (1 −  𝑝)(1 +  7.48 −  0.8𝑞) +  𝑝𝑞(2 +  10) +  𝑝(1 −  𝑞)(2 +  19 −  8𝑞)

= (8𝑝)𝑞2 − (0.8 +  16.2𝑝)𝑞 + (12.5𝑝 +  8.48) ≔ 𝑐2(𝑞, 𝑝) 

Because 

𝜕𝑐1(𝑞, 𝑝) 𝜕𝑞⁄ = −8𝑝 < 0,  

𝜕𝑐2(𝑞, 𝑝) 𝜕𝑞⁄ = 16𝑝 − (0.8 + 16.2𝑝) = −0.2𝑝 − 0.8 < 0 

i.e., if we keep p unchanged, these two specific expected costs are all non-increasing functions 

with respect to q, the expected cost for individual state will decrease when q goes up. The 

conclusion still holds when 𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ ) changes from 19 − 8q to 10. 

2. Changes of optimal policies with different values of p and q 

Recall the expected cost for state (B, 0, 0), 

𝑐((𝐵, 0, 0),2) = 6.2 + (12.8 − 8𝑞)𝑝
𝑐((𝐵, 0, 0),5) = 10

 

when 6.2 + (12.8 − 8q)p < 10, i.e., 𝑞 + 0.475 𝑝⁄ > 1.6,Because 

𝜕𝑐1(𝑞, 𝑝) 𝜕𝑞⁄ = −8𝑝 < 0,  

𝜕𝑐2(𝑞, 𝑝) 𝜕𝑞⁄ = 16𝑝 − (0.8 + 16.2𝑝) = −0.2𝑝 − 0.8 < 0 

i.e., if we keep p unchanged, these two specific expected costs are all non-increasing functions 

with respect to q, the expected cost for individual state will decrease when q goes up. The 

conclusion still holds when 𝑐((𝐵, 0,1), 𝑢(𝐵,0,0)
∗ ) changes from 19 − 8q to 10. 

3. Changes of optimal policies with different values of p and q 

Recall the expected cost for state (B, 0, 0), 

𝑐((𝐵, 0, 0),2) = 6.2 + (12.8 − 8𝑞)𝑝
𝑐((𝐵, 0, 0),5) = 10

 

when 6.2 + (12.8 − 8q)p < 10, i.e., 𝑞 + 0.475 𝑝⁄ > 1.6, the best action for this state is link 2, i.e., 

𝑢(𝐵,0,0)
∗ = 𝑢∗(𝑥 = (𝐵, 0,0)) = 2, then according to the assumption, the action for state (B, 0, 1) is 

also link 2, so 𝑢(𝐵,0,1) = 𝑢(𝐵,0,0)
∗ = 2. Correspondingly, the expected costs are 

𝑐((𝐵, 0, 1), 𝑢(𝐵,0,0)
∗ )  = 19 − 8𝑞

𝑐((𝐴, 0, 0), 1) = (8𝑝)𝑞2 − (0.8 + 16.2𝑝)𝑞 + (12.52𝑝 + 8.48)
 

 

In contrast, when 𝑞 + 0.475 𝑝⁄ ≤ 1.6, the best action for this state is link 5, i.e., 
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 𝑢(𝐵,0,0)
∗ = 𝑢∗(𝑥 = (𝐵, 0,0)) = 5,  

then  

𝑢(𝐵,0,1) = 𝑢(𝐵,1,1)
∗ = 5, 

𝑐((𝐵, 0,1), 𝑢(𝐵,1,1)
∗ ) = 10 < 19 − 8𝑞

𝑐((𝐴, 0,0),1) = (1 − 𝑝)(1 + 7.48 − 0.8𝑞) + 𝑝𝑞(2 + 10) + 𝑝(1 − 𝑞)(2 + 10)
= (0.8𝑝 − 0.8)𝑞 + (3.52𝑝 + 8.48)

≤ (8𝑝)𝑞2 − (0.8 + 16.2𝑝)𝑞 + (12.52𝑝 + 8.48)

 

Therefore, different values of p and q have varying impacts on optimal policy and further affect 

total expected cost. 

3.3. Model Generalization 

Consider a traffic network 𝒢 = (𝑁, 𝐴) with set of nodes N and set of links A. 

Let ℐ be the set of possible incidents, which represent decreases in capacity due to temporary events 

such as construction or vehicle collisions. Each incident 𝒾 ∈ ℐ increases travel times on one or 

more links. Denote by ⋄∈ ℐ the state of no known incident occurring. If a traveler believes the 

incident state is ◊, then the traveler believes that no incidents are active and will choose routes 

accordingly. 

Let 𝜏𝑎(𝒾) be the travel time on link 𝑎 ∈ 𝐴 when the incident state is 𝒾. The travel time without any 

incidents is 𝜏𝑎(◊). 

We make the following assumptions: 

1. Vehicles know ahead of time (a priori), the probabilistic description of the network, and 

could get personalized information (e.g., by Google Maps). 

2. Once a vehicle gets the incident information from the operator, it has the knowledge from 

then on. 

3. If the vehicle gets the incident information, then an incident has occurred (the information 

is reliable); otherwise, an incident may or may not have occurred. 

4. If the vehicle neither receives any incident information from the operator, nor perceives 

any incident, it will follow the optimal policy as if there was no incident happening. 

We further assume that incidents are mutually exclusive, i.e. if incident 𝒾 occurs then incident 𝒾′ ≠

𝒾  does not occur. Travelers are aware of this mutual exclusion. The assumption that incidents are 

mutually exclusive is not limiting; because any incident 𝒾 ∈ ℐ may affect multiple links, multiple 

distinct events may be coded as one “incident” in ℐ . However, note that including combinations 

of many distinct capacity reductions in ℐ will greatly increase its’ size. Therefore, it may be 

reasonable to restrict incidents in ℐ  to singular causes in capacity reductions. This is likely fairly 

realistic: the probability of multiple distinct causes of capacity reductions occurring 
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simultaneously is low, and furthermore travelers may not react to every distinct capacity reduction 

in their adaptive routing. 

3.3.1. State Space 

A state consists of the vehicle’s location in the network as well as the perception of the incident 

state. Let 𝒳 ≜ 𝑁 × ℐ be the state space. A state 𝑥(𝑘) ≜ (𝑛(𝑘), 𝒾(𝑘)) consists of a location 𝑛(𝑘) ∈

𝒩 and the incident perception 𝒾(𝑘) ∈ ℐ. Note that the step k is distinct from time. A step consists 

of traversing a link in the network. 

The vehicle also has a destination, s. The states (𝑠,⋅) are all termination states that the traveler will 

remain in after reaching one. 

The network location is deterministic and controlled by the vehicle. The incident perception, 

however, is stochastic from the perspective of the vehicle. If an incident occurs, 𝒾(𝑘) may update 

if the system informs the vehicle. Both the occurrence of the incident, and whether a vehicle is 

informed, are stochastic. We assume that the system does not falsely inform vehicles of incidents. 

In other words, if the actual incident state is 𝒾𝑛𝑒𝑡, the vehicle will either receive information that 

the incident state is 𝒾𝑛𝑒𝑡, or that the incident state is ◊, but not anything else. 

3.3.2. Action Space 

At each location, the traveler has the option to proceed on any of the downstream links. Let 𝛤𝑛
+ ⊆ 

denote the set of links outgoing from node n. Let U(x) denote the action space when the state is 

𝑥 = (𝑛, 𝒾). If 𝑛 = 𝑠, 𝑈(𝑥) = {𝒫}, where 𝒫 is the action to park or remain parked, because (s,·) is 

a termination state (the traveler’s destination). Otherwise, 𝑈(𝑥) = 𝛤𝑛
+. The traveler can choose 

any downstream links, and will be able to traverse that link deterministically. 

3.3.3. Transition Function 

As there are two components of the state, there are two components to the transition. The vehicle’s 

location in the network is deterministic and depends entirely on the choice of action. On the other 

hand, the perception of the incident state is stochastic as it depends on information propagation. 

Let 𝑓(𝑥, 𝑢) define the next state when the state is 𝑥 = (𝑛, 𝒾) and the action taken is u. 𝑓(𝑥, 𝑢) is 

defined in two components as 

𝑓(𝑥, 𝑢) = (𝑓N(𝑥, 𝑢), 𝑓ℐ(𝑥, 𝑢))                                                       

The location transition is deterministic. 

𝑓N(𝑥, 𝑢) = {
𝑠 if 𝑛 = 𝑠
𝛾+(𝑢) else

 

where γ+(a) ∈ N is the downstream end of link a. Recall that if u 6= P, then 𝑢 ∈ 𝛤𝑛
+ is the 

downstream link. 
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The incident perception is stochastic. Let 𝑝𝒾  be the probability that incident 𝒾 ≠◊ occurs. Let 𝑞𝒾 be 

the probability that the system informs the vehicle that incident 𝒾 is occurring. The probability of 

receiving information about 𝒾 is 𝑝𝒾𝑞𝒾. However, the vehicle can learn about 𝒾 another way. If the 

vehicle enters an affected link, the higher travel times will be noticed and cause the vehicle to infer 

that incident 𝒾 is occurring. Therefore, the transition in the incident perception is 

𝑓ℐ(𝑥, 𝑢) =

{
 
 

 
 
⋄ if 𝑢 = 𝒫
𝒾 if 𝒾 ≠◊
𝒿 w. p.  𝑝𝒿𝑞𝒿  if 𝜏𝑢(◊) = 𝜏𝑢(𝒿)

𝒿 w. p.  𝑝𝒿  if 𝜏𝑢(◊) ≠ 𝜏𝑢(𝒿)

⋄ else

 

The incident perception updates through observation because traveling through a link affected by 

an incident will be noticeable both to travelers and autonomous vehicles. Travelers will notice the 

congestion and may be able to visually identify the incident itself. Although AVs may not visually 

recognize the incident, they will recognize any discrepancy in the travel time from what is 

expected. Furthermore, they can compare the experienced travel time with those expected for each 

possible incident. 

From a modeling standpoint, updating the incident perception with observation ensures that 

vehicle perceptions of travel times remain accurate. 

3.3.4. One-step Costs 

If 𝑢 = 𝒫, then there is not any associated cost. The cost of traveling along a link is the associated 

travel time. Let 𝑐(𝑥, 𝑢) be the cost when the state is 𝑥 = (𝑛, 𝒾) and the action is u. 𝑐(𝑥, 𝑢) is 

defined as 

𝑐(𝑥, 𝑢) = {
0 if 𝑢 = 𝒫
𝜏𝑢(𝒾) else

 

Based on this definition, 𝑢 = 𝒫 is the termination state. After reaching s, the cost-to-go is 0. 

3.3.5. Cost-to-go and Solution Algorithm 

This is a non-discounted infinite horizon MDP, which can be solved by value iteration (Bellman, 

1957). Pseudocode for value iteration is shown below:  
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Algorithm 1 Value Iteration for MDP 

Require: S, state space; 𝑢(𝑥), actions; P, transition probability matrix; C, cost functions; 𝜖, the 

maximum error 

Ensure: A utility function  

repeat 

𝑉′ ← 0, 𝑉 ← 𝑉′, 𝛿 ← 0 

for each state x in S do 

for each action in u(x) do 

 𝑉′(𝑥) ← max𝑢 ∑ 𝑃𝑥′ (𝑥′|𝑥, 𝑢)[−𝑐(𝑥′|𝑥, 𝑢) + 𝑉(𝑥′)]  

end for 

if |𝑉(𝑥) − 𝑉′(𝑥)| > 𝛿 then 

 𝛿 ← |𝑉(𝑥) − 𝑉′(𝑥)| 

end if 

end for  

until 𝛿 < 𝜖 

3.4. Numerical Experiments 

In this section, we conduct experiments on two networks, representing the city of Sioux Falls, and 

downtown Austin, Texas. Numerical results are shown based on the following two aspects: the 

adaptive routing behavior of a single CAV across multiple origins and destinations in both 

networks, including average expected link costs and the impacts of incidents and CAVs’ 

perception of incident on the minimum expected cost and optimal routing policy by changing the 

probability of an incident and CAVs’ incident perception. 

In addition to running base scenarios, we perform sensitivity analysis with respect to three 

parameters: the probability of incident occurrence, the incident severity, and CAVs’ perception of 

incident information. This analysis focuses on the following questions:  

1. how will a CAV make its routing decisions under different incident environments, such as 

regular congestion with high incident probability and car accidents with fairly low incident 

probability? 

2. how does a CAV react facing different severity of incidents? 

3. how does a CAV’s capability of information gaining such as incident perception, impact 

its’ routing behavior? 

The results should somehow demonstrate the overall value of receiving information for CAVs. 

Since incidents may happen at each location of the network, it is complicated to show the entire 

probabilistic description of each incident throughout the network. Thus, for convenience of 

presentation, we show results for a single incident instance, rather than probabilistically describing 

the incidents over the whole network. For example, in Sioux Falls network, we assume that link 
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46 is the only potential location for an incident, and will affect links 41, 57, 28, 32, 48, 25, 13, 21, 

by increasing their cost if an incident occurs. 

3.4.1. Sioux Falls Network 

Primarily, we explore the difference in expected travel times across multiple origins and 

destinations (Figure 3. 2). Based on the incident instance above, we arrive at a quick conclusion: 

the optimal policies remain the same for the state with the same node regardless of the probability 

of an incident and CAVs’ perception of incident, if node 1 to node 6 is taken as the destination, 

because for these six nodes, the shortest paths do not include affected links. 

In the base scenario, we assume that the probability of an incident is 0.1 and the probability of 

CAVs’ incident perception takes a value of 0.6. In Sioux Falls network, there are 24 nodes. We 

take one node as the destination and other nodes as the origins at one time, then calculate the 

average travel times across 23 origin-destination pairs.  

 
Figure 3.2 Average expected costs across multiple origins and destinations (p = 0.1, q = 0.6) 

Secondly, we examine how much the expected costs depend on the probability of an incident. 

Starting from the base scenario, we keep the probability of incident perception for CAVs, q, 

constant, and change the incident probability, p. The average expected link costs for each 

destination and the increase of expected costs are shown in Figure 3.3: 
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Figure 3.3 Average expected costs with different incident probabilities (q = 0.6) 

The optimal policies and average expected costs remain the same for the state with the same node 

if node 1 to node 6 is taken as the destination, this is because the shortest paths do not include 

affected links for these six nodes. 

Besides those seven nodes, the expected link costs will increase when the probability of an incident 

increases. In addition, the expected costs for incident-affected nodes as destinations are higher than 

those nodes which are not affected by the incident, and also the costs will increase more with the 

probability of the incident increases. 

Thirdly, we explore how much the expected costs depend on the probability of CAVs’ incident 

perception (Figure 3.4).  
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Figure 3.4 Average expected costs with different perception probabilities (p = 0.1) 

The main results from this analysis are as follows: 

1. Out of 24 nodes as destinations, only 7 destinations witness the slight decrease in average 

expected costs with the probability of CAVs’ incident perception increasing. However, 

since the average expected costs merely decreased by 0.037% for node #19 as the 

destination, this node is not included in figure 4. For other nodes, the average expected cost 

remains invariant for all perception levels with the same destination. 

2. The expected costs will decrease when CAVs’ perception probability increases. This is 

simply because on average, the more incident information the vehicle gets, the wiser 

routing decisions it will take, which directly cause decreases in travel costs. Therefore, in 

spite of the fact that the minimal expected cost for an individual state increases 

monotonically with respect to q, higher perception probability will result in lower expected 

costs. 

3. The average expected costs are more sensitive to change when the probability of the 

incident changes than when the probability of CAVs’ perception of incidents changes. 

3.4.2. Downtown Austin Network 

We choose node #5469, which is located on the center of the downtown, as the destination to 

examine the extent to which both incident probability and CAV’s perception probability have 

impact on the average expected costs. 

Similar results are shown in Figure 3.5: Two average expected costs change in opposite directions 

for incident probability and CAV’s perception probability. Along with increase of the incident 
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probability, the average expected costs would rise, but the rate of increase would lower. The 

average expected costs will decrease when the perception probability increases, with an exception 

of  q = 0.8. The possible reason is that this value of q = 0.8 is a threshold for vehicle to choose 

optimal links, when q goes up, the vehicle will choose a link with lower expected cost when there 

is no incident and with high cost when there is an incident based on a certain state, then increase 

the expected cost of its previous states. 

However, two rates of change are almost negligible, at 0.03% and -0.004%, respectively. So for a 

single CAV, both the incident and perception of incident have slight impacts on the expected travel 

times in Austin network. 

 
Figure 3.5 Average expected costs for downtown Austin. Left: Average expected costs with 

different incident probabilities (q = 0.6) ; Right: Average expected costs with different perception 
probabilities (p = 0.1) 

Overall, for CAV’s perception probability, the rate of change from the lowest to the highest is 

almost negligible, with the largest rate of 2% in Sioux Falls network and less than 0.02% in Austin 

network. Thus, we can conclude that the perception probabilities have minute impact on the 

expected costs for a single CAV. However, intuitively, the situation would be utterly different if it 

comes to the scenario with multiple CAVs. 

3.5. Conclusions 

Value iteration is employed to solve the non-discounted infinite horizon MDP. Similar results are 

shown in different networks in numerical experiments—if the vehicle gets the incident 

information, the best actions are always to travel the alternative routes to avoid the increased link 

cost. While for the uncertain states, without receiving incident information, the best actions are 

always to travel on the direct links. 

Considerable future work remains. There are two possible extensions of the MDP model described 

in this chapter, including the activation and deactivation of incidents, which would get more 

stochastic link costs based on the time the vehicle receives the incident information, as well as the 

simulation for multiple CAVs, which would apply the UE model to solve the problems. 
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Chapter 4. Autonomous Intersection Management 

This chapter presents Hybrid-AIM (H-AIM), an efficient intersection management protocol for 

early CAV penetration stages. H-AIM builds on the FCFS+Signals policy, which is part of the 

Autonomous Intersection Management (AIM) protocol developed by Dresner and Stone (2008). 

This chapter provides an overview of both AIM and the FCFS+Signals policy as well as surveying 

other relevant work.  

4.1. Autonomous Intersection Management 

AIM is a reservation-based protocol in which CAVs request to reserve trajectories crossing an 

intersection. The AIM protocol assumes that computer-controlled vehicles attempt to obtain the 

right to pass through the intersection by sending a reservation request message to the intersection 

manager. When using a “first come, first served” (FCFS) policy, the intersection manager 

approves reservation requests that do not conflict with any previously approved reservation or 

potential HVs. In brief, the protocol proceeds as follows (see Figure 4.1 for an illustration of the 

process). 

 
A green signal is assigned to all northbound lanes while all other lanes are assigned a 

red signal. Green trajectories marked with solid or dashed green lines across the 
intersection. Active green trajectories marked only by dashed green lines. 

Figure 4.1 Four-way intersection 

1. An approaching CAV, v, sends a message to the intersection manager requesting a 

reservation. The request-reservation message contains data such as the vehicle’s size, 

predicted arrival time, velocity, acceleration, and arrival and departure lanes.  

2. The intersection manager processes the request message by simulating the trajectory of v 

through the intersection; the simulated trajectory is denoted by path(v). 

3. If path(v) does not conflict with any previously approved reservations or potential HVs 

then the intersection manager issues a new reservation based on path(v) and sends an 

approve message containing the new reservation details back to v. 
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4. If path(v) does conflict with a previously approved reservations or potential HVs then the 

intersection manager sends a reject message to v which, after a predefined time period, 

may request a new reservation. 

5. After receiving an approve message, it is the responsibility of v to arrive at, and travel 

through, the intersection as specified in path(v) (within a range of error tolerance). A CAV 

may not enter the intersection unless it successfully obtained a reservation. 

6. Upon leaving the intersection, the CAV informs the intersection manager that its passage 

through the intersection was successful. 

The AIM protocol does not rely on communication capabilities between vehicles (V2V) but only 

between vehicles and the intersection manager (V2I). The protocol is robust to communication 

failures: if a message is lost, either by the intersection manager or by the CAV, the system’s 

efficiency might be reduced, but safety is not compromised. Safety is guaranteed also when 

considering a mixed scenario where both HVs and CAVs are present. To address such a scenario, 

Dresner and Stone (2008) introduced the FCFS+Signals policy. 

4.1.1. FCFS+Signals 

Dresner and Stone’s (2008) FCFS+Signals policy is a combination of AIM and traditional traffic 

signals. Whenever the traffic signal is green for a given lane, all vehicles arriving at that lane have 

the right to pass. However, when the traffic signal shows a red signal, only CAVs that were granted 

a reservation may drive through the intersection. 

Since the protocol is not assumed to know the location and trajectory of HVs, such vehicles are 

assumed to occupy all trajectories that are approved by the traffic signal. In this report we define 

such trajectories as green trajectories. 

Definition 1 (Green trajectories). A trajectory through the intersection is green if its 

incoming lane is assigned a green signal. 

Figure 4.1 shows an example of green trajectories across an intersection (both the solid and dashed 

lines represent green trajectories). Note that green trajectories are dynamically changing; once the 

signal changes, the green trajectories will also change. The signal’s timing is assumed to be known 

to the intersection manager, so it is able to predict green trajectories in advance. 

The FCFS+Signals policy prohibits CAVs from obtaining reservations that conflict with green 

trajectories. In our example from Figure 4.1, all reservation requests will be automatically denied 

except those made by southbound or eastbound CAVs that are requesting to turn right.9 

                                                 
9 This report assumes driving on the right side of the road. However, the ideas can trivially be generalized to a left-side driving policy. 
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4.1.2. Experimental Results for AIM 

Dresner and Stone (2008) reported average delay for a mixture of CAVs and HVs obtained from 

the AIM simulator running the FCFS+Signals policy. 

Definition 2 (Delay). Delay is defined as the increase in travel time for a vehicle caused 

by red traffic signals or other vehicles. In other words, it is the difference between the 

vehicle’s observed travel time and its theoretical travel time in free-flow conditions (no 

congestion) with full right-of-way (green signals). 

For CAV penetration of 90% and below, FCFS+Signals yielded a mild improvement over 

traditional traffic signals. The improvement is attributed to CAVs that make right turns on red. If 

HVs are assumed to be able to turn right on red (as is common in the U.S.) or right-turning vehicles 

have a designated lane bypassing the intersection, then this policy would likely result in no 

improvement at all. 

For CAV penetration greater than 90% the one-lane signal policy was suggested, which yielded a 

significant reduction in average delay. In the one-lane signal policy, the right to pass for HVs (i.e., 

green signal) is given to a single lane at a time instead of an entire road (all lanes arriving from the 

same direction). The one-lane signal policy results in a significant reduction in green trajectories 

at the cost of increased delay for HVs. As a result, the one-lane signal policy proved to be 

inefficient when considering lower CAV penetration (less than 90%). 

4.1.3. Other Related Work 

In recent years, different variants and enhancements to the basic AIM protocol were suggested. A 

line of work developed techniques for ordering reservation requests in ways that are more efficient 

than FCFS. The intuition behind such work is that, in some cases, approving a reservation that 

conflicts with several other requests is inefficient, even if that request was submitted first. Au et 

al. (2011) presented the notion of batch reservations where a batch of vehicles arriving from the 

same incoming road is granted the right to pass as a group. This approach was shown to be superior 

to FCFS for imbalanced intersections where an arterial road intersects with a low capacity road. 

Zhu et al. (2009) suggested a protocol named LICP that uses a look-ahead approach where the 

intersection manager optimizes reservation allocation within a defined moving time window (the 

look-ahead). LICP presented up to 25% reduction in average delay compared to the traditional 

FCFS approach. In contrast to our work, LICP assumes that all vehicles are connected and 

autonomous. 

Market-inspired approaches for ordering reservation requests were also presented (Vasirani and 

Ossowski, 2009; Carlino et al., 2013). In this line of work, automated agents bid for the right to 

pass through intersections and auction mechanisms are used to determine the winners. Such 

auction-based approaches were shown to apply for traditional intersections using stop signs and 

traffic signals, as well as to intersection management protocols. These studies focus on fairness 

issues and network wide efficiency where vehicles travel through a network that is composed of 
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several intersections. By contrast, our work focuses on minimizing delay and maximizing 

throughput in a single intersection. 

Another line of work assumed that the intersection manager is able to control the speed of incoming 

vehicles (Lee and Park, 2012; Bento et al., 2012). Controlling the vehicle’s speed allows the 

intersection manager to precisely coordinate the vehicles’ time of arrival and crossing schedule in 

a way that dramatically reduces the vehicles’ need to stop, which, in turn, reduces emissions and 

delays. Work covering this approach usually assumes that all vehicles are connected and 

autonomous, and that the intersection manager is able to manipulate the speed and trajectory of 

incoming vehicles prior to entering the intersection. Our work makes none of these assumptions. 

VanMiddlesworth et al. (2008) presented a protocol for coordinating CAVs through an unmanaged 

intersection. In the presented protocol, vehicles negotiate the right to pass amongst themselves. On 

the one hand, this protocol is cheap to implement as it doesn’t require any road side equipment—

on the other hand, it was shown to be less effective than AIM except in very low traffic volumes. 

To date, no version of this protocol that can handle a mixture of CAVs and HVs has been presented. 

Bento et al. (2013) presented an intersection management protocol for mixed traffic named legacy 

early method for intelligent traffic management (LEMITM). When LEMITM detects an incoming 

HV, it computes an upper and lower bound for its arrival time. LEMITM then tries to reserve all 

possible trajectories through the intersection for the given time interval. If the reservation does not 

conflict with any previous reservation, it is approved and a designated traffic signal will turn green, 

indicating the right to pass for the HV. Similar to FCFS+signals, LEMITM was shown to be 

efficient only for high CAVs penetration rates (≥ 90%). The focus of our work, by contrast, is early 

adoption stages where most of the traffic is composed of HVs. 

4.1.4. Autonomous Intersection Management Protocol for Mixed 
Traffic 

CAVs are expected to penetrate the automobile market gradually over many years. Reaching 90% 

AV penetration rates will probably not happen in the near future (Bansal and Kockelman, 2016). 

Hence, a new intersection management protocol is required for managing traffic that is comprised 

mostly of HVs. 

4.1.5. Assumptions and Desiderata 

When compared to traditional traffic signals, the new intersection management protocol should 

provide the following:  

 Reduce the average delay experienced by vehicles crossing the intersection. 

 Reduce queue length on incoming lanes. Once the vehicle queue is longer than the length 

of the incoming link, a phenomenon known as queue spillback occurs (Abu-Lebdeh and 

Benekohal, 1997). 
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 Prevent queue spillbacks, which have a negative cascading effect and should be avoided as 

much as possible (Liu and Chang, 2011). 

 Increase throughput. Higher intersection throughput helps reduce congestion accumulated 

on links leading to the intersection. 

 Provide a relative advantage to CAVs over HVs so as to incentivize drivers to transition to 

CAVs, which are assumed to be safer (Furda and Vlacic, 2011) and more efficient (Regele, 

2008). 

 Preserve safety guarantees. Similar to traditional traffic signals, the suggested protocol 

must guarantee that vehicles on conflicting trajectories are not given right-of-way 

simultaneously. This guarantee must hold also for cases of faulty communication and 

dropped messages. 

The protocol presented in this report makes these same assumptions that were made by the original 

AIM protocol: 

 CAVs can communicate with the intersection manager through a commonly known 

message protocol. 

 A CAV may not enter the intersection without a fitting reservation. 

 When crossing the intersection, a CAV precisely follows its reserved trajectory. 

 An HV may not enter the intersection while its incoming lane is assigned a red signal (by 

a traditional traffic signal). 

In addition to these assumptions, H-AIM also makes the following assumptions: 

 Using a sensor (loop detector, camera, or radar), the intersection manager is able to detect 

approaching vehicles on each lane (sensing speed and heading is not assumed).  

 A CAV may not pose as an HV. Even if a CAV is arriving on a lane with a green signal, it 

may not enter the intersection unless it follows an approved reservation. 

 HVs may not change incoming lanes within sensing distance. That is, it is safe to assume 

that once an HV is detected on an incoming lane, it will occupy the same lane until it enters 

the intersection. 

4.1.6. Hybrid AIM 

Next, we present the Hybrid-AIM (H-AIM) protocol. Similar to FCFS+Signals, H-AIM grants 

reservations in a FCFS order. However, while FCFS+Signals automatically rejects reservation 

requests that conflict with green trajectories, H-AIM rejects reservation requests that conflict with 

active green trajectories. 
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Definition 3 (Active green trajectories). A green trajectory (see Definition 1) is active if 

an HV is present on it or on its incoming lane. 

Figure 4.2 illustrates active green trajectories shown as dashed green lines across the intersection 

(notice vehicle 1 on the incoming lane). Active green trajectories are a subset of the green 

trajectories making H-AIM at least as efficient as FCFS+Signals; there can be no reservation that 

is approved by FCFS+Signals and denied by H-AIM. However, the reverse is possible. As an 

example, consider the setting depicted in Figure 4.2. Assume vehicle 2 is a CAV and is heading 

north. Under the FCFS+Signals policy, vehicle 2 would be automatically denied a reservation as 

it crosses a green trajectory. H-AIM, on the other hand, would consider such a reservation as it 

doesn’t cross an active green trajectory. 

 
Figure 4.2 Flowchart presenting the working principle of H-AIM 

Note that the existence of a CAV on an incoming lane does not create an active green trajectory. 

As a result, the system is required to be able to identify whether an approaching vehicle is of type 

CAV or HV. For doing so we suggest the following procedure: 

1. Let v = the number of vehicles detected on a given lane, l. 

2. Let r = the number of reservation requests from unique vehicles seeking to enter the 

intersection from lane l. Reservations are considered only if the specified exit time is 

greater than the current time. 

3. If v > r then assume a human vehicle on lane l. 

Note that the above procedure is safe in the sense that it will never misidentify an HV as a CAV. 

In the case of faulty communication this procedure might misidentify a CAV as an HV but doing 

so does not pose a safety issue. It might, however, hurt efficiency since a green trajectory might, 

mistakenly, be considered active. Safety can be compromised, however, if HVs are allowed to 
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change lanes in close proximity to the intersection. For this reason HVs must be prohibited from 

changing lanes within detection range. 

Figure 4.3 illustrates the H-AIM protocol. As in traditional traffic signals, HVs approaching the 

intersection may cross it only if a green signal is given to their incoming lane. Else, they may 

continue to approach the intersection but may not cross it. An approaching CAV, on the other 

hand, sends a reservation request to the intersection manager. The intersection manager checks if 

the reservation request’s exit time minus the current time is larger than a given threshold. The 

threshold represents the minimal duration of time taken between the identification of an 

approaching HV and the time that the same HV reaches the intersection. Considering requests that 

are within the threshold guarantees that all potentially threatening HVs are identified. If the exit 

time is beyond the given threshold, the intersection manager inquires whether the reservation 

request’s entrance time and entrance lane align with a green signal. If this is the case, it is still safe 

to consider the reservation, as no conflicting green trajectories can exist. Once the intersection 

manager determines that it is safe to consider the reservation request, it examines whether the 

request conflicts with any previously approved reservations or active green trajectories. If this is 

not the case, the reservation request is approved and an approve message is sent to the CAV, which, 

in turn, must precisely follow the reservation (or risk losing the right-of-way). 

 
Figure 4.3 Three turning assignment policies for a three-lane road approaching a four-way intersection 

4.2. Reducing the Number of Green Trajectories 

Green trajectories (as a super-set of active green trajectories) can limit CAVs from obtaining 

reservations. As such, CAVs benefit from reducing the number of green trajectories to a minimum. 

On the other hand, HVs cannot cross the intersection unless traveling on a green trajectory. Thus, 

HVs generally benefit from an increased number of green trajectories. 

Dresner and Stone (2008) presented the one-lane signal policy (see Section 4.1.3). This policy 

results in green trajectories that originate from a single lane at a time, which significantly reduces 

the number of green trajectories. On the other hand, the one-lane signal policy was shown to have 

a dramatic negative effect on HVs. 

We suggest a more conservative approach for reducing the number of green trajectories. Revisiting 

Figure 4.1, assume vehicle 3 is autonomous and is heading west. When applying H-AIM, vehicle 

3 is automatically denied a reservation since the requested reservation crosses an active green 

trajectory. Currently, the lane on which vehicle 1 approaches the intersection allows continuing 

straight or turning right. If the turning policy on that lane is changed to “right only,” the dashed 

straight green trajectory will no longer exist, allowing vehicle 3 to obtain a reservation. 
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4.2.1. Turning Assignment Policy 

As was shown in the previous section, the performance of a managed intersection is affected by 

the allowed turning options in each lane. When considering a four-way intersection, each incoming 

lane has between one and three turning options from the set {left, straight, right}. The turning 

assignment policy assigns each incoming lane with allowed turns. 

Assuming three incoming lanes, this study considers three representative turning assignment 

policies that are depicted in Figure 4.3. The policies are ordered and labeled according to degrees 

of freedom. 

Definition 4 (Turning policy degree of freedom). Define degree of freedom for a lane as 

the number of turning options minus one. Define degree of freedom for a turning 

assignment policy as the sum of degrees of freedom over all lanes. 

A restrictive turning policy is one that has a low degree of freedom, which, in turn, translates to 

fewer green trajectories. Policy 0 is an extreme case, representing the most restrictive turning 

policy (0 degrees of freedom). On the other hand, policy 4 is an extreme case of a liberal turning 

policy. 

Definition 5 (Consistent turning policy). A turning assignment policy is said to be 

consistent if trajectories originating from the same road never cross each other. 

In our representative policy set, turning policy 4 is not consistent, while 0 and 2 are. When 

considering more than one type of vehicle, different turning policy combinations might be 

considered. For instance, we might choose to assign one turning policy for HVs and a different 

one to CAVs (illustrated in Figure 4.4). 

 
Figure 4.4 An inconsistent policy combination. Top: AV policy (blue arrows); Bottom: HV policy (white 

arrows)  

Definition 6 (Consistent turning policy combination). A set of turning assignment policies 

are said to be a consistent combination if no trajectory from one policy crosses any 

trajectory from any other policy when both originate from the same road. 

In our representative policy set, {0, 4} is a consistent turning policy combination (even though 4 

is not a consistent policy on its own), while {2, 4} is not a consistent turning policy combination. 
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For safety reasons we don’t consider assigning an inconsistent policy to HVs. On the other hand, 

assigning such a policy to CAVs is reasonable since conflicting reservations are automatically 

denied by the intersection manager. During our empirical study, we observed that assigning 

inconsistent policy combinations for CAVs and HVs is counterproductive from an efficiency 

standpoint and should be avoided. Figure 4.4 demonstrates the inefficiency that stems from an 

inconsistent turning policy combination. The figure presents a single road approaching a four-way 

intersection. CAVs are assigned the turning policy shown on the top level (checkerboard texture) 

while HVs are assigned the bottom turning policy (plain texture). Vehicle 1 is autonomous. It is 

located in the middle lane and would like to turn right. Assuming a green signal for this incoming 

road and that HVs are arriving on the rightmost lane, vehicle 1 will not be able to obtain a 

reservation as it crosses an active green trajectory. Vehicle 1 will thus be stuck and will jam all the 

vehicles behind it despite having a green signal. 

4.3. Empirical Study 

This section presents results from a comprehensive empirical study. The goals of these 

experiments are two-fold: 

1. Study the effectiveness of H-AIM for mixed traffic with an emphasis on low CAV ratios. 

2. Indicate which turning policy should be assigned to HVs and CAVs in different traffic and 

CAV penetration levels. 

Similar to the experiments presented by Dresner and Stone (2008), our experiments assume that a 

CAV may communicate with the intersection manager starting at a distance of 200 meters. 

Following Dresner and Stone, results are presented as averages over 20 instances per setting where 

each instance simulates one hour of traffic. Unlike Dresner and Stone’s, our experiments assume 

a speed limit of 15 meters/second and a safety distance of 0.5 second between CAVs’ trajectories. 

Dresner and Stone considered a speed limit of 25 meters/second, which is uncommonly high for 

signaled intersections, and a safety distance of 0.1 second, which might cause discomfort among 

passengers. 

In line with our desiderata (presented in Section 4.1.5), we present average results for the following 

measurements: 

 Average delay – see Definition 2. 

 Maximal queue length – the maximal number of vehicles that simultaneously occupy a 

single incoming lane. Note that 29 vehicles is the maximal queue length for any lane in the 

simulator; no new vehicles will be generated on a lane as long as this limit is reached. 

When high traffic volumes are considered, the maximal queue length is often reached and 

queue spillbacks occur. In such cases it is hard to compare different policies as they all 

return similar results, making the maximal queue length measurement less valuable. Hence, 

we also report throughput. 
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 Throughput – the number of vehicles that cross the intersection in one hour. When low 

traffic volumes are considered, the maximal throughput is often reached since all 

approaching vehicles eventually cross the intersection. At high traffic volumes, when 

queue spillbacks occur, throughput can give evidence on the severity of spillbacks, i.e., the 

degree to which the spillbacks block new vehicles from entering the system. 

The experiments presented in this section were obtained using the AIM4 simulator 

http://cs.utexas.edu/ ~aim/. Several adaptations were required in order to run these experiments. 

4.3.1. Modifications to the AIM Simulator 

Below is a list of changes introduced to the AIM simulator in order to simulate H-AIM. The reader 

is encouraged to view a video presenting the modified simulator at: 

http://youtube.com/watch?v=79UwpfD0u6s 

 Vehicles are spawned with equal probability on all roads, and are generated via a Poisson 

process governed by the probability that a vehicle will be generated at each time step. Each 

vehicle is randomly assigned a type (HV or CAV) and destination. Given the assigned 

destination, a vehicle is placed on an incoming lane from which it can continue to its 

destination (the incoming lane must allow turning to the vehicle’s destination). If several 

such lanes exist, it will be placed on the lane with the least number of vehicles currently on 

it. For instance, considering the example of Figure 4.1, a vehicle arriving at the intersection 

from the south heading north would be assigned the middle lane since the left lane does 

not allow continuing north and the right lane already has one vehicle (versus zero in the 

middle lane). 

 Reservation requests for exiting the intersection more than 6 seconds in the future are 

queued but not processed. Only once the exit time drops below the 6-second threshold, a 

request is processed and might be approved. We add this constraint in order to allow the 

system enough time to detect all relevant approaching HVs. This restriction is not enforced 

for reservations entering the intersection on a green signal (HVs cannot be in conflict with 

such a reservation). At maximal speed (15 meters/second) a vehicle can travel a maximal 

distance of 90 meters in 6 seconds, resulting in it still being about 100 meters or 6.6 seconds 

away from the intersection, which is a considerable safety distance. 

 A reservation is not necessarily denied if it conflicts with a green trajectory. 

 A reservation is necessarily denied if it conflicts with an active green trajectory. 

 HVs may turn right on red if the path is clear. This practice is a common case in the U.S. 

Figure 4.5 presents a snapshot from the modified AIM simulator. HVs (in purple) wait at the 

entrance of the intersection for a green signal while CAVs (in yellow) are allowed to enter the 

intersection as long as they are following an approved reservation. 
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HVs (in purple) may not enter the intersection on a red signal. CAVs (in yellow) may enter 

the intersection on a red signal when following an approved reservation. 

Figure 4.5 A screenshot from the modified AIM simulator 

4.3.2. Four-way Intersection 

Following Dresner and Stone (2008), we start by presenting results from simulating a four-way 

intersection with three lanes on each of the incoming roads (similar to the intersection presented 

in Figure 4.5). Thirty percent of the vehicles turn right at the intersection, 20% turn left, and 50% 

continue straight regardless of the incoming road and vehicle type.10 A fixed six-phase traffic 

signal timing was used (the signal timing is presented in Table 4.1). 

Table 4.1 Six-phase traffic signal timing  

Phase Direction Green Yellow 

1 East-west 30 0 

*2 Westbound 15 3 

*3 Southbound 15 0 

4 North-south 30 0 

*5 Northbound 15 3 

*6 Eastbound 15 0 

 

Recall that under our assumption that HVs can turn right on red, the FCFS+Signals protocol has 

no advantage over traditional traffic signals (unless using the one-lane signal policy; see Section 

4.1.3 for more details). Since FCFS+Signals using the one-lane signal policy was found to be 

helpful when considering 90% CAVs or more, it is not relevant to our current study, which focuses 

on early CAV adoption stages. 

Results are presented for low, medium, and heavy traffic demand scenarios where 300, 900, and 

1500 vehicles are spawned per incoming road per hour. The top part of Figure 4.6 presents three 

graphs for the four-way intersection scenario with low traffic demand. Each graph presents average 

delay for CAVs and HVs in seconds (y-axis) versus CAV penetration rates (x-axis). Each graph 

                                                 
10 Dresner and Stone (2008) do not report the turning ratios for their mixed traffic experiment. Our turning ratio was chosen since it results in a 

good balance between the incoming queues when 100% of the vehicles are HVs. 
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refers to a different consistent turning policy combination based on the policies presented in Figure 

4.3. 

 
Note: The 95% confidence intervals are provided for each data point. 

Figure 4.6 Average delays (y-axis) for different CAV penetration rates (x-axis) according to vehicle type in 
a four-way intersection scenario with low, medium, and heavy traffic demands (100, 900, 1500 

vehicles/road/hour) 

For low traffic demand, assigning a restrictive turning policy to HVs (policy 0) combined with a 

liberal turning policy (policy 4) for CAVs results in reduced delay for CAVs (especially at the 

early adoption stages) while having no significant negative effect on HVs’ delay. The average 

delay over all vehicles (the “Average” line) is lower than the base case (where all vehicles yield to 

traffic signals, i.e., 100% HVs) and is decreasing as the CAV ratio increases. 

The second row in Figure 4.6 presents results for a similar scenario with medium traffic demand. 

The trends are somewhat similar to those observed in the low traffic demand scenario in the sense 

that policy combination {HV-0, CAV-4} is most beneficial for CAVs while not hurting the 

performance of HVs. Unlike ({HV-0, CAV-0} and {HV-2, CAV-2}), the low traffic demand 

scenario, we see that other policy combinations present no advantage for CAVs over HVs. 

Nonetheless, the total delay is still clearly decreasing, which gives evidence that H-AIM is 

effectively improving the intersection’s performance with regard to delays. 

Finally, the bottom part of Figure 4.6 presents results for heavy traffic demand. Similar to the low 

and medium traffic demand cases, policy combination {HV-0, CAV-4} is most beneficial for 

CAVs at early adoption stages (until 0.2). However, as CAVs ratio increases, we observe an 

anomaly in the behavior of policy combination {HV-0, CAV-4}: the delay imposed on both HVs 
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and CAVs increases with the CAVs ratio. We explain this anomaly through the example depicted 

in Figure 4.7. In this example HVs are assigned a strict turning policy (policy 0) while CAVs are 

assigned a liberal policy (policy 4). Vehicle 1 is a CAV and would like to turn left from the middle 

lane. Assuming that a green signal is assigned to the east and westbound roads (phase 1 in Table 

4.1), vehicle 1 is blocked from obtaining a reservation due to an active green trajectory. This active 

green trajectory is caused by continually arriving eastbound HVs (vehicle 2 for instance). Vehicle 

1, being unable to obtain a reservation, blocks all vehicles behind it from entering the intersection. 

Imagine vehicle 3 is an HV and would like to continue straight. As long as vehicle 1 blocks the 

way, it is unable to cross the intersection despite having the right to pass (green signal). 

 
Figure 4.7 An example where a combination of strict turning policy for HVs and liberal policy CAVs is 

counterproductive [vehicle 1 (CAV) blocks vehicle 3 (HV) from passing the intersection] 

Table 4.2 presents average results for maximal queue length and throughput for the four-way 

intersection scenario. Results are presented for different CAV penetration and traffic demand 

levels. An asterisk in front of a value indicates that it is significantly better (lower queue or higher 

throughput) compared to the values of the other two policies. There is no turning policy 

combination that is globally better for avoiding congestion (minimizing queue length or 

maximizing throughput). The best performing turning policy combination is a function of the 

traffic demand levels and CAV penetration levels. For most cases, policy {HV-0, CAV-4} 

performs best. A significant exception is observed at high traffic levels (500 vehicles/road/hour 

with> 0.1 but lower than 1). This result is consistent with the anomaly that is medium and high 

CAV ratios (discussed above) preventing policy {HV-0, CAV-4} from performing well in such 

cases.  
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Table 4.2 Results for a four-way intersection scenario using different turning policy combinations 
and different CAV penetration levels (CAV ratio) 

CAV ratio 

Maximal Queue  Throughput  

HV-0, CAV-

4 

HV-0, CAV-

0 

HV-2, CAV-

2 

HV-0, CAV-

4 

HV-0, CAV-

0 

HV-2, CAV-

2 

300 vehicles/road/hour   

0 9.33 8.80 9.78 1,162 1,157 1,157 

0.01 9.30 9.05 9.70 1,150 1,165 1,152 

0.05 8.85 8.90 9.70 1,172 1,170 1,171 

0.1 8.75 8.93 9.63 1,154 1,151 1,157 

0.3 * 7.10 8.50 9.65 1,164 1,147 1,164 

0.5 * 6.15 8.30 8.70 1,182 1,161 1,174 

0.7 * 4.60 8.00 8.95 1,179 1,170 1,167 

1 * 2.00 3.75 3.60 * 1,194 1,159 1,163 

 900 vehicles/road/hour   

0 28.03 27.93 28.10 3,103 3,097 2,869 

0.01 28.05 28.00 28.05 3,111 3,107 2,891 

0.05 27.95 28.00 28.15 3,109 3,122 2,897 

0.1 27.95 27.90 28.05 3,144 3,139 2,945 

0.3 27.55 27.50 28.00 * 3,266 3,233 3,089 

0.5 24.20 25.55 27.90 * 3,384 3,287 3,259 

0.7 * 16.20 20.30 27.25 * 3,465 3,340 3,377 

1 *4.90 9.70 10.25 * 3,540 3,351 3,358 

 1500 vehicles/road/hour   

0 28.43 28.28 28.28 3,758 3,763 3,257 

0.01 28.30 28.40 28.25 3,762 3,777 3,259 

0.05 28.35 28.40 * 28.05 * 3,818 3,797 3,281 

0.1 28.40 28.43 28.33 * 3,879 3,821 3,314 

0.3 28.55 28.40 28.40 3,887 * 3,978 3,422 

0.5 28.40 28.30 28.25 3,848 * 4,143 3,564 

0.7 28.45 28.20 28.35 3,880 * 4,339 3,757 

1 * 25.40 27.90 27.95 * 5,756 5,129 5,203 

*An asterisk in front of a value indicates that it is significantly better (lower queue or higher throughput) compared 

to the values of the other two policies. 

4.3.3. Three-way Intersection 

Next, we present results from simulating a three-way intersection with two lanes in each of the 

incoming roads (similar to the intersection presented in Figure 4.8). Sixty percent of the eastbound 

or westbound vehicles continue straight while the rest (40%) turn (either right or left depending 

on the incoming road). Fifty percent of the northbound vehicles turn right and the rest (50%) left. 

We used a three-phase fixed traffic signal timing that is presented in Table 4.3. 

Figure 4.8 also depicts three representative turning policies (with 0, 3, and 6 degrees of freedom). 

Since a three-way intersection is not symmetrical, each turning policy is broken into three policies 

(one per origin). 
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Figure 4.8 Three different turning assignment policies for a two-lane road approaching a three-way 

intersection 

Values represent maximal queue length and throughput. An asterisk represents a significant 

advantage for one policy over the two others using a single tale unpaired t-test with 95% 

confidence. We chose these three policies as they resemble the ones used in the four-way 

intersection experiment. Policy 0 is the most restrictive policy, similar to policy 0 in the four-way 

case. Policy 3 has the highest degree of freedom among the consistent policies, similar to policy 2 

in the four-way case. Policy 6 has the maximal degrees of freedom overall, resembling policy 4 in 

the four-way case. 

Figure 4.9 presents nine graphs for the three-way intersection case. The layout of these graphs is 

similar to those presented for the four-way case (Figure 4.6). Each graph is affiliated with one of 

the three consistent turning policies combinations shown in Figure 4.8. Results show a general 

trend that is similar to the one observed in the four-way intersection scenario. For low and medium 

traffic demand, assigning a restrictive policy to HVs (policy 0) and a liberal one to CAVs (policy 

6) is most beneficial for reducing delays as well as giving CAVs the biggest relative advantage 

over HVs. At high traffic demand, on the other hand, policy combination {HV-0, CAV-6} is 

counterproductive, similar to the anomaly observed in the four-way case). (Figure 4.7 can be easily 

adapted to apply for a three-way intersection.) 

Similar to Table 4.2, Table 4.3 presents maximal queue length and throughput but for the three-

way intersection scenario. For this scenario we observe that policy {HV-0, CAV-0} is never 

significantly superior to the two other policies. This result seems to be in contradiction to the 

results presented in Figure 4.9 where, for the case of heavy traffic demand, policy {HV-0, CAV-

0} seems to outperform the others. 

Table 4.3 Three-phase traffic signal timing 

Phase Bound Green Yellow 

1 East-west 30 0 

*2 Westbound 15 3 

*3 Northbound 15 3 
(Green and yellow duration are given in seconds. An 

asterisk next to a phase number means that left turns are 

allowed during that phase.) 
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Note: The 95% confidence intervals are provided for each data point. 

Figure 4.9: Average delays (y-axis) for different CAV penetration rates (x-axis) according to vehicle type 
in a three-way intersection scenario with low, medium, and heavy traffic demands (100, 900, 1500 

vehicles/road/hour) 

This discrepancy is due to the fact that north and westbound vehicles that request to turn left can 

do so only from the leftmost lane under policy {HV-0, CAV-0}. As such, the leftmost lane becomes 

congested and, once the queue reaches 29 vehicles, no more left-turning vehicles are spawned. In 

such cases the throughput and queue length decrease and increase, respectively, while the average 

delay decreases, since left-turning vehicles that suffer from more delays are less abundant. The 

same explains the fact that policy {HV-3, CAV-3} produces shorter queues in many cases, allowing 

left-turning vehicles to use both lanes alleviates the congestion formed on the leftmost lane.  

4.4. Hardware and Costs for Smart Intersection and Micro-Tolling 
Applications 

In order to accomplish an implementation of AIM, H-AIM, or D-tolling, the most critical piece of 

hardware necessary is a roadside unit (RSU) capable of supporting vehicle-to-infrastructure (V2I) 

communication. One solution to this requirement, provided by Applied Information and which 

leverages both cellular and DSRC communication technologies, costs approximately $6,000 per 

intersection. In addition to providing sufficient communication capabilities for implementing AIM 

or HAIM, this solution may also provide data on travel times over a road segment. Such a solution 

has been tested successfully for less involved projects by the Alabama Department of 

Transportation as well as Purdue University. 



77 

In implementing H-AIM, the need to continue operating traditional signal controllers requires a 

traditional traffic signal controller capable of network communication, and it must also provide a 

suitable advanced traffic controller (ATC) interface. An example of such a controller would be the 

Siemens M60 ATC signal controller, which is capable of running Linux and features a minimum 

of two network interfaces. The estimated price for this model controller is $5,000, which in most 

use cases is sufficient to control a single intersection. This model can be found commonly in the 

field where newer traffic controllers have been installed. 

4.5. Conclusion and Future Work 

Though previous intersection management protocols were shown to be extremely efficient in 

coordinating CAVs through an intersection, they were shown to provide no or little improvement 

until 90% of the processed vehicles are CAVs. This chapter presents Hybrid-AIM (H-AIM), an 

efficient intersection management protocol for early CAV penetration stages. H-AIM builds on 

the values representing maximal queue length and throughput. 

Table 4.4 provides results for a three-way intersection scenario using different turning policy 

combinations and different CAV penetration levels (CAV ratio). The AIM protocol (Dresner and 

Stone, 2008) is applicable under the assumption that vehicles approaching the intersection can be 

sensed (on top of the assumptions required by AIM).
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Table 4.4 Results for a three-way intersection scenario using different turning policy combinations and different CAV penetration levels 
(CAV ratio) 

CAV ratio 

 Maximal Queue   Throughput  

HV-0, CAV-6 HV-0, CAV-0 HV-3, CAV-3  HV-0, CAV-6 HV-0, CAV-0 HV-3, CAV-3 

  300 vehicles/road/hour   

0 6.00 6.10 * 5.28  583 587 587 

0.01 5.90 5.85 * 5.00  575 571 589 

0.05 5.70 6.10 * 4.95  575 582 576 

0.1 5.88 6.25 * 5.10  580 590 587 

0.3 5.15 5.65 * 4.70  587 579 589 

0.5 * 4.00 5.30 4.90  590 582 592 

0.7 3.60 5.65 3.95  587 578 585 

1 * 2.15 3.20 2.45  595 589 600 

   900 vehicles/road/hour   

0 18.93 18.83 * 14.10  1,679 1,670 * 1,716 

0.01 15.95 19.50 * 13.20  1,689 1,687 1,700 

0.05 17.45 19.30 * 13.15  1,682 1,680 1,696 

0.1 14.67 15.28 * 13.08  1,695 1,683 1,707 

0.3 * 11.40 13.75 12.30  1,716 1,691 1,713 

0.5 * 10.00 12.85 11.40  * 1,759 1,694 1,723 

0.7 * 8.25 10.90 10.30  * 1,756 1,680 1,723 

1 * 4.65 6.35 5.15  * 1,775 1,699 1,727 

   1500 vehicles/road/hour   

0 28.15 28.05 28.18  2,356 2,360 2,313 

0.01 28.10 28.10 28.10  2,381 2,373 2,319 

0.05 28.05 28.05 28.20  * 2,405 2,389 2,348 

0.1 28.05 28.08 28.10  * 2,467 2,412 2,373 

0.3 28.00 28.05 28.05  * 2,523 2,476 2,496 

0.5 28.15 28.00 27.95  2,534 2,562 * 2,632 

0.7 28.05 27.90 * 26.95  2,629 2,637 * 2,781 

1 13.00 18.30 * 9.85  * 2,905 2,726 2,791 

*An asterisk represents a significant advantage for one policy over the other two, as determined using a single tale unpaired t-test with 95% confidence. 
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When an approaching HV is sensed by H-AIM, the protocol examines whether the current traffic 

signal assignment allows the HV the right to pass. If this is the case, H-AIM reserves the relevant 

trajectory through the intersection and denies any conflicting reservation requests. 

Results obtained from a comprehensive empirical study support the following general conclusions: 

 At non-extreme CAV penetration levels (between 0 and 0.9), H-AIM is superior to 

previous approaches (AIM, traffic signals). 

 At low and medium traffic demands, a turning policy that restricts HVs while allowing 

maximal flexibility to CAVs is recommended for reduced average delay, reduced 

congestion, and encouraging CAV adoption (since CAVs suffer from lower delays 

compared to HVs). 

 At high traffic demand, restricting HVs while allowing CAVs maximal flexibility is 

beneficial only at early CAV adoption stages (≤ 0.1). Beyond early adoption stages, such a 

policy combination is counterproductive and other policies should be considered. 

Future work will study the effects of H-AIM when semi-autonomous vehicles are considered (Au 

et al., 2015) and are assigned different turning policies. Future work will also examine how 

different traffic conditions affect the performance of H-AIM, where traffic conditions relate to the 

number of lanes on different incoming roads, turning ratios, traffic signal timing, imbalanced 

traffic (different volume of vehicles arrive on different incoming roads), safety buffer size, and 

speed limit. Ultimately, our goal is to test H-AIM on real intersections with real vehicles.  
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Chapter 5. Methods for Implementing Smart 

Intersections 

5.1. Background 

This project’s Phase 1 report (0-6838-2) demonstrated via simulations of various Austin, TX 

networks that when autonomous vehicle (AV) penetration is high, changing traffic signals to smart 

intersections that adopt a “first come, first served” (FCFS) tile-based reservation (TBR) system 

control can often improve local throughput and system-wide conditions. For example, in the 

arterial Congress Avenue network, with all AVs in simulation, TBR slightly outperformed traffic 

signal control for all demand scenarios, except for the highest demand. Both scenarios greatly 

improved travel times when compared to the network with current conditions [traffic signals and 

only human-driven vehicles (HVs)]. 

However, this improvement trend was not evident for all networks tested, and a paradoxical effect 

was seen in some scenarios. In the Lamar & 38th Street arterial network, TBR control actually 

hindered system conditions at higher demands with a higher total system travel time (TSTT) than 

even the current conditions network. This system-wide degradation was most likely due to queue 

spillback onto links surrounding the major intersection and adjacent minor intersections of Lamar 

& 38th Street. The large spillback may have been due to the close proximity of major and minor 

intersections in the network along with the FCFS priority function of the reservation intersections. 

Because of FCFS, a small demand coming from a minor street approach to a TBR intersection 

could interrupt the progression of a much larger demand of vehicles approaching from a major or 

arterial street. It was also seen in the Congress Avenue network that at the highest demand, signals 

outperformed TBR with AVs. Although this paradoxical effect of smart intersection control 

appeared in the smaller arterial networks, the larger downtown Austin network covering both 

arterial networks saw only great improvements in system conditions, with a 55% lower TSTT 

using TBR compared to signal control at the highest demand. The paradoxical effect in the larger 

network was prevented due to the dynamic route choice of vehicles, which could allow avoidance 

of such intersection clusters.  

This chapter presents methods to identify subsets of intersections where smart TBR-controlled 

intersections would provide not just local benefits of increased throughput in the intersection, but 

system-wide benefits specifically in terms of congestion and travel time. As previously found, 

reservation control can possess retrogressive impacts on system-wide congestion and some 

combination of TBR-controlled and signal-controlled intersections would offer better results than 

a network with only TBR control or only signalized control. To assess this proposition and identify 

favorable smart intersections, two main methods were used. First, a multilinear regression model 

was estimated to predict the differential impacts of individual intersection characteristics on travel 

times as a smart and as a signalized intersection. Second, a genetic algorithm (GA) was used in 

coordination with a dynamic traffic assignment (DTA) model solving for dynamic user 

equilibrium (DUE) to find system-optimal allocations of smart intersection subsets. Next, this 
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chapter presents results of the two methodologies when applied to a large-scale Austin city 

network. Finally, this chapter develops easy-to-use guidelines and prioritization rules for 

deploying smart intersections in a way likely to maximize benefits, and for the selection of real-

world implementation testbeds. 

5.2. Methodology 

This section presents the formulation and methodology of two methods used to develop 

quantitative measures of the benefits and costs associated with replacing a traditional signal with 

a reservation-based smart intersection. To quantitatively identify a deployment strategy, the 

calculation of costs and benefits should be fairly simple and rely on a parsimonious set of 

independent variables, using regression from simulation results. Finding a system-optimal 

grouping of smart and signalized intersections in a network giving the minimum TSTT is a more 

difficult task. Due to the bi-level nature of the optimization problem, with the second layer defined 

by the solving of DUE on a large-scale network, the overall problem is NP-hard to solve exactly. 

Thus, a meta-heuristic is used to find a solution. 

In an effort to generalize the effect of individual intersection characteristics on the differential 

impact of travel times of smart versus signalized control, a multilinear regression model is 

estimated using a mixture of DTA simulation data and readily available intersection data such as 

signal properties and turning demand. The model input data is collected from subsets of signalized 

intersections in different large-scale city networks. The aim of this model is to apply the regression 

to a subset of a network’s intersections and output a ranking of the best smart intersection 

candidates. This ranking can then be tested in simulation to evaluate model accuracy, and the 

model can be used to easily develop smart intersection selection and prioritization rules.  

In order to find a system-optimal grouping of smart and signalized intersections in a network, a 

GA is used. This section details the specific algorithm used to find a feasible solution and its steps. 

5.2.1. A Mesoscopic Dynamic Traffic Assignment Model 

This subsection serves to define the DTA model used to simulate all networks when solving for 

DUE, including the model specifications and assumptions/submodels. The mentioned model is a 

custom implementation of a mesoscopic DTA model in Java that can capture HV and AV behavior 

either separately or together on any network. A multiclass cell transmission model (CTM) is used 

to propagate flow through network links based on hydrodynamic flow theory. To model 

reservation-based intersection control, a conflict region model is used that divides an intersection 

region into larger and simplified conflict regions, each with a capacity, either accepting or rejecting 

vehicle requests based on some priority function. The priority function assumed in this study is a 

FCFS function in which the first vehicle to make a request with the intersection manager is 

processed by the manager first. The DTA model solves for DUE using the method of successive 

averages to a convergence defined by a 1% relative gap. Primarily, to simulate AV behavior, AVs 

are assumed a 0.5-second reaction time compared to HVs, which have a 1-second reaction time. 

This difference in reaction time leads to increased roadway capacity caused by increased backward 
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wave speed and reduced following headways as the proportion of AVs in a network increases, 

with the greatest increased capacity associated with 100% AVs. It is also assumed that only AVs 

can use the TBR intersections; thus, for the sake of this study, all DTA simulation runs are 

evaluated with only AVs in the networks.  

For reference, the two real city networks used in simulation include the downtown Austin and 

downtown Dallas networks with a total demand of 62,783 and 167,592 vehicle trips over a 4-hour 

observation period, respectively. This total demand is considered 100% demand as the next two 

sections may refer to a proportion of this demand. 

5.3. A Multilinear Regression Model 

5.3.1. Motivation 

The goal of the multilinear regression formulated in this section is to quantitatively predict any 

intersection’s relative utility under smart control compared to traditional signal control, given some 

basic intersection characteristics. If this can be accomplished, then a set of intersections can 

effectively be ranked according to this utility and smart intersection deployment strategies can be 

easily developed based on quantitative metrics. 

5.3.2. Formulation 

To summarize the utility or performance of any intersection in a network, a difference in effective 

TSTT of an intersection under signal control and TBR control is used as the primary response 

variable. To obtain the regression input dataset, a set of 𝑁 intersections is selected from a parent 

network. In order to effectively measure the effect on system-wide TSTT of a single intersection 

in a large network, a small subnetwork is created involving the observed intersection and the 

immediately adjacent links and nodes, with the nodes only acting as origins and destinations. The 

intersection is then assumed a control (TBR or signal) and is solved for DUE using a DTA 

simulator and a user specified origin-destination (OD) demand matrix. The response variable is 

then found by subtracting the TSTT under TBR control from the TSTT with signalized control. 

Multiple predictor variables described in Section 5.3.3 are obtained from given network input data 

and from simulation. Specific methods and sources of data collection are presented in Section 

5.3.4. The general regression formula is as follows: 

𝑇𝑆𝑇𝑇𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑇𝑆𝑇𝑇𝑇𝐵𝑅 = 𝛥𝑇𝑆𝑇𝑇 = 𝐹𝐹𝑇𝑇 + 𝛽 ∗ �⃑�  

where 𝛽 is the vector of variable coefficients and 𝑋is the vector of predictor variables. 

To encapsulate effects of different levels of demand on an intersection, the single intersection 

network is solved for DUE with the DTA simulator under each of six different demand levels: 𝑑 =

{10%, 30%, 50%, 75%, 85%, 100%}. The OD demand matrices for the listed demands are 

obtained through simulation, as detailed earlier. With 𝑁 intersections selected to observe from the 

parent network and six demand levels considered, a total of 𝑁 ∗ 6 data points are found to estimate 
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the desired multilinear regression model in which a 𝛥𝑇𝑆𝑇𝑇 is predicted given some intersection 

characteristics, 𝑋⃑. 

The lower the 𝛥𝑇𝑆𝑇𝑇, the better the intersection performs under TBR control compared to signal 

control. By obtaining this response variable, intersections can effectively be ranked according to 

the differential utility between the two controls. 

5.3.3. Variables 

Table 5.1 lists the set of possible predictor variables used in the regression model to predict the 

difference in TSTT between an intersection under signal control and TBR control. 

Table 5.1 Possible predictor variables 

 Predictor 

Variable 

Description of Variable Variable type 

1. Number of 

phases 

The total number of signal phases across a cycle Number of phases 

2. Cycle length  The signal’s time of one complete phasing cycle Time (seconds) 

3. Number of 

moves 

The total number of non-restrictive turning movements for 

the intersection. Turning movements are defined by an 

approach link and an exit link. 

Number of turning 

movements 

4. Average lane 

vehicle count 

The average number of total vehicles using the intersections 

incoming and outgoing lanes 

Number of 

vehicles/hour/lane 

5. Number of 

through turns 

The total cumulative through demand of the intersection 

across all approaches 

Number of vehicles 

6. Number of left 

turns 

The total cumulative left-turn demand of the intersection 

across all approaches 

Number of vehicles 

7. Number of right 

turns 

The total cumulative right-turn demand of the intersection 

across all approaches 

Number of vehicles 

8. Minimum 

length 

The minimum length of a link entering or exiting the 

intersection 

Length in feet 

9. Maximum 

length 

The maximum length of a link entering or exiting the 

intersection 

Length in feet 

10. Average length The average length of a link entering or exiting the 

intersection 

Length in meters 

11. Minimum link 

capacity 

The minimum capacity of a link entering or exiting the 

intersection 

Number of 

vehicles/hour 

12. Total link 

capacity 

The total cumulative capacity of all links entering or exiting 

the intersection 

Number of 

vehicles/hour 

5.3.4. Data Collection  

The primary response variable for this regression model is a difference in TSTT between an 

intersection under signal control and TBR control. To find the TSTT of an individual intersection, 

a new subnetwork of only the specified intersection is created. The new single-intersection 

network contains only one intersection, which acts as a real intersection to move vehicles across 

links, and all directly adjacent nodes to the intersection, which merely act as the network’s origins 
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and destinations in which vehicles enter and exit the network. The new network also contains 

centroid nodes and connectors that act as the network’s loading points in which vehicles exit and 

enter. To define the subnetwork’s OD demand for a specific control at any given demand level, a 

DTA simulation of the larger parent network is run at the desired demand level with all eligible 

intersections assuming the specified control. (The demand level describes the proportion of total 

demand seen in a network.) The “eligible” intersection set is defined in Section 5.3.5. A cumulative 

count of vehicles is kept during simulation for each possible turning movement in each 

intersection, and because the new subnetworks contain only one intersection each, the counts for 

each turning movement in the parent run can be combined to define OD demand for each 

intersection. For each intersection, this demand is then set as the new subnetwork OD-demand 

matrix, a DTA simulation run of the network is completed under TBR and signal control with a 

TSTT output for each, and a 𝛥𝑇𝑆𝑇𝑇is found through the difference. 

Average lane vehicle count, through turns, right turns, and left turns are all predictor variables 

found through simulation as well. While running the parent network DTA simulation to find OD-

demand matrices for each intersection as described above, a cumulative count of vehicles using 

each possible turning movement was recorded, which was simply translated into total through, 

left, and right turns for the intersection. The average lane vehicle count was found by averaging 

the total experienced vehicle counts for all incoming and outgoing lanes in the intersection. 

All other potential variables defined in Section 5.3.3 were obtained through city network datasets. 

In this report, two parent networks—downtown Dallas and downtown Austin—were used to obtain 

regression input datasets and estimate the respective regression models. A total of 174 and 152 

intersections were observed from the downtown Austin and downtown Dallas networks 

respectively.  

5.3.5. Assumptions 

The following assumptions were made while developing the regression model: 

 The set of intersections that can be switched to autonomous intersections are the set of 

traffic signals in the network. The model does not consider the set of merges, diverges, or 

stop-sign-controlled intersections. This is assumed as signalized intersections are likely to 

be the priority intersections to change because TBR provides little system-wide benefit 

when applied to non-signalized intersections, as shown in previous studies (Patel and 

Levin, 2016). 

 All DTA simulations are run using a demand composed only of AVs. Because HVs are 

assumed to not use TBR intersection control, a demand of only AVs is required for stable 

results and analysis between networks with mixtures of TBR and signal intersections. 

 Because an independent subnetwork is created for each intersection containing only the 

intersection, it is assumed for the DTA simulation that the intersection is independent of 
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all others in the network. Other intersections do not impact the observed intersection over 

time; however, as described in Section 5.3.4, OD-demand matrices are found through 

observed vehicle counts in the parent DTA simulation run. The parent DTA simulation 

does include all intersections (which are eventually isolated as subnetworks), and so 

demand in the subnetwork OD matrices is from a complete network with intersection 

interactions. 

5.3.6. Model Metrics 

The following metrics are used to evaluate the performance and accuracy of the estimated linear 

regression models, including their variables and other specifications. 

(1) 𝑅2, or the regression’s coefficient of determination is a statistical measure of how close 

the actual data are to the fitted regression model. It is measured as: 

𝑅2 = 𝑆𝑆𝑟𝑒𝑔/𝑆𝑆𝑡𝑜𝑡𝑎𝑙  

where 𝑆𝑆𝑟𝑒𝑔is the total variance in the data explained by the model and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total 

variance in the data. 

𝑡 − 𝑡𝑒𝑠𝑡𝑠 

(2) A standard t-test is conducted for each predictor variable with a confidence interval 

threshold of 95% (𝑡.95  =  1.645), translating to a variable being significant if: 𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≥

1.645with 95% confidence. Although this defines a threshold for significance, some 

variables may be chosen to remain in the model if some other significance is seen. 

5.4. A Genetic Algorithm for System-optimal Placement of 
Reservation-based Intersections 

The goal of the GA approach is to identify the spatial orientation of smart intersections and 

traditional intersections in the network that provides the best benefit in terms of TSTT. However, 

it is impractical to assume that a smart intersection can be installed at every intersection in the 

network. Therefore, this section explores two sub-problems. First, it identifies the system-optimal 

allocation of reservations in the network that produces the best system-wide benefits. The second 

experiment finds the optimal allocation of TBRs that produces the best benefit when there is a 

limit to the number of TBRs that can be installed. In both cases, the GA is used in coordination 

with a DTA model to find the DUE solution. 

5.4.1. Assumptions 

The following were assumed while developing the model: 
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 The set of intersections that can be switched to autonomous intersections are the set of 

traffic signals in the network. The model does not consider the set of merges, diverges, and 

left and right turns. 

 In the DTA model, the only demand in the network is the demand due to AVs. 

5.4.2. A Background on Genetic Algorithms 

A GA is a class of computational methods inspired by genetic evolution used to solve constrained 

and unconstrained optimization problems. In a GA, an initial random population of candidate 

solutions is created. An evaluation metric is used to determine the fitness value of each of these 

parents. At each step of the algorithm, a pair of parents is selected at random from the population 

to reproduce to create child individuals. A GA follows a set of steps at each iteration to create 

children, which ensures that the best characteristics of the parent generation are preserved. In our 

target problem, each individual in the population is a specific orientation of the network where 

each intersection is modeled either as a traffic signal or as a TBR. The characteristic that evolves 

from one generation to the next is the orientation of each of these intersections in the network. The 

algorithm is designed such that the orientation of each intersection that results in the best observed 

TSTT is retained in future generations. These steps are outlined below. Section 5.4.4 describes the 

specific design of the GA used to solve the problem at hand. A pseudocode of the algorithm is 

presented below. 

5.4.3. Pseudocode 

In this section, we define the steps involved in a GA followed by a detailed discussion of each of 

the steps. A pseudocode of the algorithm is presented below:  

1. Create an initial random population of n individuals with random intersection controls. 

2. Evaluate the goodness of each individual in the population to the problem. 

3. Sort the population in decreasing order of the fitness measure. 

4. While iteration < maxIterations repeat 

a. Select a pair of the individuals in the population at random as candidate parents to 

cross over to form children. 

b. Generate child individuals by crossing over candidate parents.  

c. Introduce mutation in the children. Evaluate the goodness of the child individuals 

created. 

d. Sort the population in decreasing order of the fitness measure. 

e. Remove the lowest-performing 50 individuals from the population. 

5.4.4. Genetic Algorithm Steps 

5.4.4.1. Candidate Selection 

A pair of individuals is selected as parents at random from the best-performing individuals of the 

current generation. This depends on the proportion of the current population we choose to keep at 
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each step of the algorithm. For example, if we wish to create 20% children at each step of the 

algorithm, the GA chooses parents from the best-performing 80% of the current generation. 

5.4.4.2. Crossover Probability 

The crossover probability quantifies how often crossover will occur between parents. This helps 

decide which characteristics of each parent enters a child in the next iteration. We have developed 

a heuristic to determine this probability, described below. The probability is as follows: 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑖𝑦 = 0.5 + 0.5 ∗
|𝑇𝑆𝑇𝑇(𝑃𝑎𝑟𝑒𝑛𝑡1) − 𝑇𝑆𝑇𝑇(𝑃𝑎𝑟𝑒𝑛𝑡2)|

𝑇𝑆𝑇𝑇(100% 𝑆𝑖𝑔𝑛𝑎𝑙𝑠) − 𝑇𝑆𝑇𝑇(100% 𝑇𝐵𝑅𝑠)
 

This probability equation’s denominator is the upper bound on observable difference in TSTT 

between two different orientations of the network—one where every intersection is modeled as a 

traffic signal and one where every intersection is modeled as a TBR. The crossover probability is 

designed to ensure that the parent with the better TSTT has a higher chance of having its 

intersection orientation passed on to the child.  

5.4.4.3. Mutation 

Mutation is a genetic operator used to maintain genetic diversity from one generation to the next. 

It is usually applied with a low probability. There are many types of mutations used in GAs. In 

this model, we have chosen an inversion mutation. An inversion mutation is one in which the 

orientation of each intersection in the individual is inverted if the inversion probability is met. 

Mutation is done to introduce a degree of diversity to the genetic structure of each generation. In 

the experiments, the probability of mutation has been set to 0.7% 

5.4.5. Model Inputs 

5.4.5.1. Population Size 

The population size is the number of parents created at the beginning of the GA. The population 

size often determines the quality of the solutions obtained from a GA. A small population size will 

result in quicker convergence but may result in the algorithm getting trapped in a local optimum. 

However, a large population will slow the model down significantly. It is prudent to choose a 

population size that avoids both of these pitfalls. The experiments use a population size of 100 

parents to start our GA. 

5.4.5.2. Proportion of Children 

This parameter determines the proportion of children to generate at each iteration of the GA. 

Consequently, this affects the quality of the population in each generation.  
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5.4.5.3. Maximum TBRs 

This parameter limits the number of TBRs in each individual in the population. This has been 

modeled as a parameter in the model, since it was observed that an all-TBR network performed 

significantly worse in some scenarios. 

5.4.5.4. Convergence (Max Iterations) 

The convergence criterion is the maximum number of iterations to be completed before the 

algorithm terminates. The max iterations criterion suffers from extremes. A small value for 

maximum iterations will result in the algorithm converging prematurely, sometimes before it hits 

a local optima. Similarly, a large value of maximum iterations will slow the algorithm from 

converging and may result in cycling after it reaches a local optima. It is thus prudent to choose an 

optimal convergence criterion that avoids both these problems. 

5.4.6. Model Output: DTA DUE Solution 

When a new individual is generated, a goodness calculation is performed to evaluate how good 

the solution is. In the problem at hand, the goodness calculation is the TSTT observed from solving 

the specific orientation of the network to equilibrium using a simulation-based DTA model.  

5.5. Experimental Results 

This section presents experimental results of applying the linear regression and the GA models, as 

described in Section 5.2, to a large-scale city network. The presented regression model is used to 

find a ranking of the “best” candidate intersections in the network to assume reservation control 

and the GA is used to find an optimal subset of intersections in various set sizes that minimize the 

TSTT of the network. The network used for all experimental simulation results is the downtown 

network of Austin, which contains 1,247 links, 546 intersections (174 signalized), 171 zones, and 

a total demand of 62,783 vehicle trips over a 4-hour observation period. This network includes the 

smaller arterial networks discussed in Section 5.1, including Congress Avenue and Lamar & 38th 

Street, where paradoxes in the benefit of TBR were seen. The DTA model used in this section is 

described in Section 5.4.6.  

5.5.1. Linear Regression Results 

With the input data for the Dallas network, a linear regression model was estimated with the goal 

of identifying significant intersection characteristics that affect the relative system-wide utility of 

a single intersection under reservation control compared to signal control. It is the primary goal 

that with an accurate regression model, a set of eligible (signalized) intersections in a network can 

be ranked in terms of their relative utilities. A subset of these intersections, starting with the 

intersection holding the largest utility value and moving in decreasing order, can be chosen to 

assume reservation control and provide the most benefit to the system’s TSTT compared to any 

other same-size subset of the eligible set. Recall that the relative utility is 𝛥𝑇𝑆𝑇𝑇 = 𝑇𝑆𝑇𝑇𝑠𝑖𝑔𝑛𝑎𝑙 −
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𝑇𝑆𝑇𝑇𝑇𝐵𝑅, so a larger 𝛥𝑇𝑆𝑇𝑇means a larger benefit to the system with the intersection under TBR 

control. This section presents the estimated regression model and results of applying this ranking 

system to a network in simulation. 

5.5.2. Model Outputs 

This section presents the regression model used to predict 𝛥𝑇𝑆𝑇𝑇 and the variables found to be 

significant in identifying an intersection suitable for reservation control compared to signal control. 

Table 5.2 presents the results of the regression model. In using the intersections from Dallas as 

training data for the regression model, the model is able to predict 75% of the variation in the data 

for the Austin network. This is evident from the 𝑅2 value of 0.754 in Table 5.2.  

Table 5.2 Summary of the accuracy of the linear regression model 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .868 .754 .752 360.81758 

5.5.3. Significant Variables 

From the pool of variables presented in Section 5.3.3, the variables presented in Table 5.3 were 

found to be significant predictors for the regression model. The relative importance of each 

variable can be gauged by the magnitude of the coefficient of the variable in the model. This is 

also evidenced from the value of t-value for each variable at 95% confidence level. Recall that a 

variable is considered significant if 𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ≥ 1.645. Table 5.3 presents the relative importance 

of each variable in predicting the difference in TSTT for each intersection. From the model, it is 

evident that cycle length, number of moves, number of through turns, number of left turns, number 

of right turns, and minimum length have high t-values and are thus significant predictors in the 

model. However, the minimum capacity of link has t-value lower than the set threshold value. It 

has been retained in the model because it is indicative of queue spillback in the network (a link 

with a low capacity entering an intersection could result in spillback if there is significant network 

congestion). 
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Table 5.3 Summary of the significant variables in the regression model 

Coefficients 

Model 
Unstandardized Coefficients 

t 
B Std. Error 

1 

(Constant) -717.296 146.626 -4.892 

Cycle length 3.286 .295 11.126 

Number of moves 9.495 4.411 2.153 

Number of through turns .261 .011 23.621 

Number of left turns .430 .028 15.412 

Number of right turns .414 .031 13.191 

Minimum length .409 .231 1.767 

Minimum link capacity -.025 .022 -1.140 

5.5.4. Regression Results in Simulation 

Before testing the regression model in simulation by applying it to the Austin intersections, the 

input data used to train the regression is tested to ensure this base data offers desirable results in 

simulation. To test the base data, the 𝛥𝑇𝑆𝑇𝑇 objective function values for each eligible intersection 

in the Austin network are used to rank the intersections in descending order of their objectives, 

leaving the intersections which perform better as reservations to improve system-wide congestion, 

higher in the ranking list. To evaluate the ranking, an experiment with each of a different 

proportion (including 20%, 40%, 60%, and 80%) of the highest ranked intersections is conducted 

by forcing this subset of intersections to assume TBR control and the rest to assume signal control. 

For example, in the 40% experiment, intersections ranked 1 through 70 (40% of 174 eligible 

intersections) are chosen to take on TBR control, and the rest signal control. This subset of 

intersections is predicted to provide more system-wide benefit to TSTT than any other same sized 

subset of intersections. A DTA simulation was then run for each before mentioned proportion of 

the top TBR candidate intersections. To analyze the margin of effect seen in TSTT for all presented 

results, two control or base case scenarios are run to provide a bound on currently known TSTT’s. 

The first is the case of the network with only signal control and the second is the case of the 

network with only TBR control for all eligible intersections, yielding a TSTT of 6443.22 hours 

and 4560.14 hours respectively. Keep in mind that all experiments in this study are run with a 

demand of only AVs.  

As shown in the graph in Figure 5.1, results for the base input data at 20% TBR-controlled 

intersections show a 20% drop in TSTT from the network with only signals which is to be 



92 

somewhat expected. In general, TSTT decreased at a slightly decreasing rate as the proportion of 

TBR control in the network increased which is also to be expected. However, the base data results 

actually show a 4% and 8% lower TSTT at 60% and 80% TBR control, respectively, compared to 

the base case with 100% TBR control. The graph in Figure 5.1 shows a red and green horizontal 

line showing the 100% signal and 100% TBR base cases respectively, and the Raw TSTT_DELTA 

data points show the decreased TSTT of the 60% and 80% experiments, and even show that at 

40% TBR control, the difference in TSTT with the 100% TBR control base case is quite small. 

These decreased TSTT’s, although not large in size, show that more system-wide benefit can be 

seen using only a fraction of the reservation control. This also backs the notion that some 

intersections, typically lower in the ranked list of TBR candidates, tend to help the traffic system 

as signals. In the 100% TBR base case, great improvement is seen over the 100% signals base case 

and there is no real sign of TBR causing any increased congestion compared to a better performing 

and smaller subset of possible TBR intersections, partially due to dynamic route choice. As 

vehicles can dynamically alter paths based on their observation of the network’s state, they can 

avoid such TBR intersections which become very congested, however this can lead to congestion 

in other portions of the network. Such rerouting due to paradoxical queue spillback seen near TBR 

intersections can be avoided with the right intersections. 

Next, the Dallas-based regression is applied to the 174 eligible Austin intersections to predict their 

relative utilities, and the intersections are ranked in descending order as was done with the base 

input data. The same experiments for the predicted ranked list of intersections were then conducted 

and shown on the graph in Figure 5.1. Results show the same general trend of decreasing TSTT as 

the proportion of TBR control increased held, however all simulation outputs of TSTT were 

approximately 17% higher than those found in the pre-regression input data experiments. This 

large difference is not expected as the predicted regression model showed a somewhat close fit to 

the data with an 𝑅2 of 0.754. Although the regression results outperformed the 100% signals base 

case, this was to be expected of almost any network with a subset of intersections using reservation 

control. At a TBR proportion of 80%, there does seem to be a TSTT falling very close to the base 

case of 100% TBR control showing that a similar result can be seen with 35 less reservation 

intersections, however it does not outperform the 100% case like the data the regression was 

modeled after.  

To confirm the validity of a set of downtown Dallas intersections being able to accurately predict 

a set of Austin intersections, the Austin network base characteristic data was used to estimate a 

new regression model so that the Austin network could predict the relative utilities of its own 

intersections. DTA simulation results show a set of points nearly identical to that seen in the 

Dallas-based regression, shown in Figure 5.1. This confirmed that intersections from the two 

different networks seem to have no significant difference in their respective characteristics’ 

relation to their differential impact on system-wide congestion under the two intersection controls. 

Finally, it is not clear the magnitude of the regression ranked list’s inaccuracy compared to the 

original input data only through simulation. As a comparison and means of testing the accuracy of 

the regression’s predicted results, for each analyzed proportion of TBR control in a network, 20 

networks are randomly generated subject to the number of TBRs remaining equal to the respective 
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proportion and their TSTT values are averaged for a new data point. As shown in Figure 5.1 with 

the dashed plotted line, on average, the randomly generated networks actually outperformed both 

regressions for each TBR proportion, suggesting that the ranked list predicted by the regression 

was inaccurate.  

The shortcomings of the regression model are most likely due to uncaptured interdependencies 

between intersections. Results show that the base data obtained through the simulation of single-

intersection networks yielded a high performing ranking of intersections in terms of their 

differential utility under reservation and signal control. This suggests that some intersections are 

better for system-wide congestion under TBR control compared to others, and that this trend 

cannot be captured linearly. Most likely, because demand for the single-intersection networks for 

each intersection was directly obtained through simulation of the parent network, some intersection 

dependency was captured even though intersections were tested as independent. The regression 

also only identifies single intersections as TBR-controlled and does not identify the clustering of 

intersections where reservations could provide the most benefit. This interdependency between 

intersections may heavily impact the system-wide effect that a single intersection carries, most 

likely through demand allocation. A group of intersections may not necessarily improve the TSTT 

unless they are placed optimally in the network. Regression results showed the most significant 

predictor variables to be different turning demands which may be true, however these most likely 

cannot captured linearly, as previously stated.  

 

 
Figure 5.1 A summary of regression and raw data results in simulation across TBR control proportions 
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5.6. Genetic Algorithm Results 

The regression identifies the intersections with characteristics desirable for a reservation. 

However, the regression model is incapable of identifying the optimal subset of intersections in a 

network that would produce the best benefit in terms of TSTT. As discussed earlier, previous 

studies found that a system with 100% reservations did not necessarily improve TSTT. The 

methodology explained in Section 5.2 was used to identify the subset of intersections in Austin 

that produce the best benefit when modeled as a reservation. Two sets of problems were solved 

using the GA: 1) identify the system-optimal allocation of reservations in the network that produce 

the best system-wide benefits, and 2) find the optimal allocation of TBRs that produces the best 

benefit when the number of TBRs is limited to 35 and 70 intersections. In all these cases, the GA 

was used in coordination with a DTA model to find the DUE solution. In the model used, an initial 

population of 200 individuals was used with a proportion of 0.75 of the population kept at each 

iteration. The probability of mutation was set at 0.7% per intersection and the convergence 

criterion was set at a maximum number of iterations of 100. 

5.6.1. System-Optimal GA 

For the system-optimal experiment, the initial population had 200 individuals with 50-50 split 

between traffic signal and reservations. The initial solution for the system-optimal genetic 

algorithm (SOGA) is much lower than that produced by the solution from the regression. In fact, 

the SOGA starts with a TSTT that is comparable and quickly reaches the levels produced when 

100% of intersections are modeled as reservations. The algorithm terminates abruptly just as it 

begins to converge, as evidenced from Figure 5.2. This indicates that for a larger proportion of 

reservations, a larger convergence criterion must be used. Figure 5.3 shows that the proportion of 

reservations in the solution increases gradually with the number of iterations. The proportion of 

reservations in the solution when the GA terminated is at 0.9. This validates the paradox observed 

in earlier studies. 
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Figure 5.2 Variation of TSTT with number of iterations 

 
Figure 5.3 Variation of proportion of TBR with number of iterations 
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produced, containing 20% and 40% TBRs in each individual. The population was then evolved by 
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criterion was kept at 100 iterations again. It is evident from Figure 5.2 that the TSTT drops with 

increase in the proportion of TBRs in the network. For the 40% TBR experiment, the GA evolves 

to produce results comparable with the default 100% TBR case. This indicates that a 40% TBR 

network can provide the benefit of a 100% TBR network if the location of TBRs is chosen wisely. 

This is also indicative of the paradoxes observed in earlier studies. Although the system-wide 

benefit of implementing TBRs increases with the proportion of TBRs in the system, the 

improvement is not uniform. From Figure 5.2, the SOGA reaches the 100% TBR solution at 

iteration 30. At this point, the proportion of TBRs in the model is 65% (approximated from Figure 

5.3). However, the limited 40% TBR solution reaches achieves the 100% TBR solution by iteration 

90. This implies that an optimal placement of a limited number of TBRs can achieve the system-

wide benefit of a network with a higher number of TBRs.  

5.6.3. Network Trends 

In order to observe trends and find commonalities between methods of finding optimal TBR 

placement, experimental results are plotted onto maps using the ArcGIS software. In Figure 5.4, 

both the pre-regression base data and the Dallas-based regression solutions are mapped in the 

Austin network. Interestingly, both maps show most of the TBR intersections in series along 

corridors. Although both maps show similar clusters of TBR control, the regression map shows 

little to no reservations in the center of downtown, whereas the base data map shows short corridors 

of reservations along highly congested streets. Both show TBR corridors along Lamar Blvd, 1st 

Street, and 15th Street, all of which are known to be major arterial roads and/or become very 

congested in peak hour traffic. 
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Figure 5.4 Intersection placements found by pre-regression raw input data (left) and the Dallas-based 

regression (right) 

As Figure 5.5 demonstrates, the GA mapping at a 20% proportion of TBRs shows a similar trend 

in TBR corridors along major arterials and roadways such as Lamar Blvd and 1st Street. However, 

these corridors are not as continuous as those seen in the regression and base data results, with the 

exception of 15th Street. On 15th Street, the GA placed seven consecutive TBR intersections of 

which there are almost no directly adjacent signalized/TBR intersections. This aligns with the 

prediction that those intersections that are not within very close proximity to other minor 

intersections would do better as reservations, as there is no significant interruption of major flow 

through the corridor. The 20% TBR GA solution had the lowest TSTT of all 20% TBR proportion 

experiments. Similar trends are seen in the map of the 40% TBRs GA solution in Figure 5.5. The 

GA places TBR intersections in longer chains of multiple intersecting corridors, especially in the 

central downtown areas. Aside from some of the intersections in the middle of central downtown, 

most TBR intersections tend to have few signals within close proximity and are clustered mainly 

in straight corridors. 
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Figure 5.5 Intersection placements found by the limited reservation GA with 20% TBRs (left) and 40% 

TBRs (right) 

As seen previously and in Table 5.4, the pre-regression raw data at 80% TBRs, when simulated, 

actually slightly outperformed the GA’s system-optimal solution, which came to an 86% 

proportion of TBR control in the network. This could be because the GA was allowed too much 

freedom when adding to the proportion of TBRs, and skipped over a more optimal solution, as was 

found in the pre-regression base results. Although TSTT was approximately the same between the 

two, as seen in Figure 5.6, the orientation of signals across the network was different. The base 

data ranking of intersections left more clusters of signals crowded together compared to the GA, 

which had a wider spread of signal locations. Still, similarities were seen in signal placement at 

certain nodes, such as around the UT campus and in parts of central downtown. The same trend of 

TBR corridors is seen in both map visualizations of the two results, which gave the two lowest 

TSTT values seen across all experiments in the study. 
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Figure 5.6 Intersection placements by pre-regression raw input data at 20% TBRs (left) and the SOGA 

solution 

 

Table 5.4 A summary of used methods and TSTT 
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5.7. Conclusion 

This chapter discussed three methods to identify the intersections where reservations would 

produce the best system-wide benefits in terms of TSTT in Austin. In this section, the three 

methods are discussed in detail with regard to their relative utility in addressing the problem at 

hand. The raw data approach and the regression model approach look to identify the best-

performing intersections when modeled as reservations while the GA targets the best spatial 

orientation of a limited number of TBRs that produce the best system-wide benefits. 

The raw data method ranks intersections in the decreasing order of 𝛥𝑇𝑆𝑇𝑇 when the intersection 

is modeled as a reservation and as a traffic signal. Although this approach may be naïve in 

identifying a solution, it produces encouraging results in terms of TSTT. In fact, a 50% TBR raw 

data solution produces the TSTT observed by the base 100% TBR solution. This indicates that 

each intersection has an effect on TSTT and optimizing for each intersection can produce 

significant benefits in terms of TSTT. However, the raw data approach cannot identify the 

interdependencies within the network and, hence, cannot identify congestion due to queue 

spillback at intersections with low capacity links. 

The regression approach alleviates some of the drawbacks of the raw data approach. The regression 

model helps quantify the characteristics that contribute to the performance of an intersection 

modeled as a traffic signal and as a reservation. This method can be used to characterize 

intersections as TBR or signal simply based on the properties of the intersection. However, the 

regression model did not produce satisfactory results in doing so. This is partly because the data 

may contain several interdependencies that the regression is incapable of identifying. It is entirely 

possible that data from the Dallas network was insufficient for the model to learn enough about 

the subtle differences between different intersections and, hence, the model did not generalize well 

enough when used to predict on the Austin network. This was evident from the different 𝛥𝑇𝑆𝑇𝑇 

observed between the raw data approach and the regression. Although the regression was able to 

generalize sufficiently well in most cases, for some intersections the regression produced a 

significantly different 𝛥𝑇𝑆𝑇𝑇 than the raw approach. The regression and the raw data approach 

look to address a fundamental aspect of the problem—they try to classify an intersection as a TBR 

or a signal based on its characteristics. However, neither model does well enough to capture subtle 

interactions in the network.  

The GA approach is different from the previous two approaches in that it captures the interactions 

in the network, such as congestion due to spillback from low-capacity intersections. However, the 

GA cannot identify classify intersections as TBR or traffic signal from the characteristics of each 

intersection and neither is it designed to do so. The GA approach is an optimization problem that 

identifies the spatial orientation of a given number of TBRs that produce the best system-wide 

benefits. This is evident from the discussion in Section 5.4.4. For example, among the 40% TBR 

solutions for the raw approach, regression approach and the GA, the GA produces the best TSTT. 

Thus, it is imperative to find a middle ground between the regression approach and the GA 

approach in solving the problem of identifying intersections to model as TBRs.  
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Trends in the networks for the optimal placement of smart intersections were primarily seen in the 

form of corridors of consecutive smart intersections. These corridors are highly congested 

roadways within the Austin network, including streets such as Lamar Boulevard and 1st Street, 

and seemed to be primarily targeted by all methods of intersection placement. Many networks, 

such as the regression resulting network and the raw data resulting network, appeared to have 

many similar features, including similar corridors in areas of the network in which few adjacent 

intersections were present. However, some slight differences in smart intersection placement 

caused a rather large difference in TSTT between the two networks. The placement of smart 

intersections in corridors with few adjacent intersections seems to be a trend seen enough to be 

considered a general rule. However, further experimentation would need to be done to confirm the 

relationship between smart intersection placement and clustering. 

It would be wise to combine the relative benefits of the GA and regression approaches to identify 

a solution that produces the best system-wide benefits for a given budget of TBRs. One of the 

drawbacks of the GA model is that the initial population consists of individuals where TBRs are 

randomly distributed in the network. Due to this randomization, it is necessary to produce a large 

number of individuals in the initial population so as to ensure every possible orientation of the 

network is captured. It would be desirable to reduce the number of individuals in the initial 

population because such a change would drastically reduce the running time of the GA and would 

also ensure that the GA converges to the optimal solution quickly or at least converges to a local 

minimum quickly. It is worth exploring the possibility of using the results of the regression to 

identify the initial population of the GA. This would enable the GA to solve the problem quickly 

and also combine the benefits of both approaches. 

Future work includes obtaining more data for a possibly different type of nonlinear regression as 

well as developing different optimal solution heuristics and algorithms tailored to the DTA model 

used. Including clustering into an algorithm or conducting isolated intersection experiments would 

be useful in deciding the relation between smart intersection proximity and system-wide 

congestion and would help to uncover possible network interdependencies between intersections 

and generalize them.   
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Chapter 6. Road Pricing 

This chapter proposes ∆-tolling, a simple adaptive pricing scheme that requires only travel time 

observations and two tuning parameters. These tolls are applied throughout a road network and 

can be updated as frequently as travel time observations are made. Notably, ∆-tolling does not 

require any details of the traffic flow or travel demand models other than travel time observations, 

rendering it easy to apply in real time. The flexibility of this tolling scheme is demonstrated in 

three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: 

a day-to-day pricing model using static network equilibrium with travel time functions; a within-

day adaptive pricing model using the cell transmission model (CTM) and dynamic routing of 

vehicles; and a microsimulation of reservation-based intersection control for connected and 

autonomous vehicles with myopic routing. In all cases, ∆-tolling produces significant benefits over 

the no-toll case, measured in terms of average travel time and total travel time cost, while requiring 

only two parameters to be tuned. The team further examined the use of reinforcement learning for 

tuning the parameters used by ∆-tolling. Some optimality results are also given for the special case 

of the static network equilibrium model with BPR-style travel time functions. 

6.1. Related Work 

Road pricing has received considerable attention due to its potential to reduce congestion, and the 

economic fairness of charging users for the delays they cause to other travelers. It has long been 

established that in a static equilibrium setting, marginal tolls can eliminate the inefficiency 

associated with selfish routing (Pigou, 1920a; Beckmann et al., 1956). A detailed history along 

with practical aspects of congestion pricing can be found in de Palma and Lindsey (2011). 

However, such steady-state conditions rarely exist in practice. Changes in supply, demand, and 

other driver characteristics such as bounded rationality and value of time result in traffic that is 

dynamic both day-to-day and within-day. To control congestion in the presence of these factors, 

researchers have proposed a wide range of tolling models, based on different representations of 

traffic flow and different assumptions on the source of variability. In this section, we review these 

studies and highlight some of the gaps that will be addressed in this article. 

6.2. Pricing Models Using Travel Time Functions 

The simplest way to model congestion is by using travel time functions that predict the travel time 

on links as a function of its traffic volume. In this subsection, we review adaptive pricing articles 

built on this assumption. These studies can be broadly grouped into the following three categories: 

(1) pricing models with route switching behavior, (2) congestion pricing under supply and demand 

side uncertainty, and (3) trial-and-error methods for congestion pricing. 

Friesz et al. (2004) proposed an optimal control formulation for finding tolls that minimize total 

travel time cost, while also achieving a minimum revenue target. Traveler choices were 

represented by an ordinary differential equation that corresponds to a tˆatonnement route switching 
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process. In a similar vein, Yang et al. (2007) suggested an adaptive tolling framework that reaches 

the system optimum state, assuming that travelers follow the proportional switch adjustment 

process (Smith, 1984). Tan et al. (2015) incorporated user heterogeneity in such day-to-day pricing 

models by proposing a multi-class flow evolution dynamic in which users with different values of 

time respond differently to current congestion levels. Adaptive tolls that minimize a weighted sum 

of system cost and time were sought. Guo et al. (2016) and Rambha and Boyles (2016) studied 

similar problems with slightly different objectives in discrete time settings where travelers’ choices 

depended on the previous day’s flow. While the former focused on the asymptotic behavior of the 

system under the rational behavior adjustment process (Guo et al., 2015), the latter supposed that 

users select routes according to the logit choice model and the tolls were used to minimize the 

average system travel time over an infinite horizon. 

Marginal tolls are usually computed assuming fixed trip tables and fixed network parameters such 

as capacity and free flow travel time. However, when these supply and demand inputs are 

uncertain, the marginal prices can be non-optimal and in some cases may worsen the network 

performance (Gardner et al., 2008, 2010; Boyles et al., 2010). To address this issue, Gardner et al. 

(2011) defined six scenarios that take into account the information states of the system manager 

and travelers and suggested different optimization models in which responsive tolls are designed 

based on the realizations of the supply and demand. Recently, Rambha et al. (2017) extended the 

problem of finding the optimal tolls under supply side uncertainty to cases in which travelers 

respond to online information by changing their decisions en route. 

A third class of adaptive pricing models is called trial-and-error methods. Tolls in these models 

vary across different days but are not set to address the variability in network congestion. Instead, 

the tolls are adaptive because the system manager may in reality not know the demand and delay 

functions. By levying certain “trial-and-error tolls” and updating them over different days using 

observed link volumes, provable convergence to system-optimal tolls can be guaranteed (Yang et 

al., 2004; Han and Yang, 2009; Yang et al., 2010). While travelers in these models are assumed to 

be aware of current day’s tolls and react rationally, extensions in which travelers respond using 

day-to-day route dynamics also have been proposed (Ye et al., 2015). The ∆-tolling framework 

with travel time functions that will be described in Section 6.10 can be seen as a variant of the 

trial-and-error method. 

6.2.1. Pricing Models Using Macroscopic Traffic Simulators 

The earliest work studying dynamic congestion used Vickrey’s (1969) bottleneck model. Road 

pricing also affects the number of trips and their departure times, and this elasticity was added by 

Arnott et al. (1993). Demand elasticity could be affected by alternative modes, so Danielis and 

Marcucci (2002) combined the bottleneck model with a railroad mode. Similarly, Huang (2002) 

studied a bottleneck model with a parallel mass transit alternative mode and compared the effects 

of several pricing schemes on congestion and overall system efficiency. Verhoef (2003) proposed 

a heuristic for adaptive tolling for dynamic traffic congestion in continuous time. In their study, 

van den Berg and Verhoef (2011) extended the results to continuous distributions of values of time 
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and found that congestion pricing could improve the total travel time cost of the majority of 

travelers even without returning toll revenues. 

Adaptive tolling has also been widely studied in the context of managed lanes. Yin and Lou (2009) 

suggested a feedback control approach in which tolls are raised or lowered proportionally to the 

difference between the current and desired occupancy. They also proposed a self-learning 

approach in which the willingness to pay is estimated in an online manner and the lane choice is 

captured using a logit choice model, which was later extended to a multi-lane hybrid traffic flow 

model (Lou et al., 2011). Gardner et al. (2013) analyzed managed lane pricing using an additive 

logit model and an all-or-nothing assignment. Extensions that incorporate demand uncertainty 

(Gardner et al., 2015) and departure time choices (Boyles et al., 2015) were also studied. 

For pricing at a network level, Carey and Srinivasan (1993) define dynamic externalities and tolls 

using exit flow functions as defined by Merchant and Nemhauser (1978). Wie and Tobin (1998) 

formulated optimal control programs assuming point-queue models. Wie (2007) suggested a bi-

level model in which the lower level involves a simplified dynamic traffic loading mechanism. It 

was assumed that a subset of arcs can be tolled and the objective was to maximize net consumer 

surplus. However, the traffic flow models in these approaches do not capture queue spill-backs. 

Tsekeris and Voß (2009) review several studies that used bottleneck or point queue models, and 

therefore did not capture the effects of queue spillback. Waller et al. (2006) and Lo and Szeto 

(2005) showed that these traffic flow dynamics were important to the effectiveness of congestion 

pricing, and that ignoring them could result in tolls that increased congestion. Therefore, it is 

important to study tolling schemes such as ∆-tolling on mesoscopic or microscopic models that 

properly capture spatial propagation of congestion. 

For more realistic flow models applied to large networks, such as the hydrodynamic model 

(Lighthill and Whitham, 1955; Richards, 1956), marginal costs are much more difficult to compute 

because of discontinuities in the flow model and congestion effects that transcend link boundaries. 

For such models it is not known how to reduce the problem beyond its fundamental bi-level form. 

The upper-level problem chooses the optimal tolls subject to route choice constraints, which form 

the lower-level problem. These route choice constraints are often in the form of dynamic traffic 

assignment (DTA) (Chiu et al., 2011), which itself is a difficult optimization problem. Such bi-

level problems have been studied extensively for both static and dynamic flow models as network 

design problems (Farahani et al., 2013), and are known to be NP-hard even when both the upper-

level and lower-level problems are convex. Consequently, they are typically solved using 

heuristics or meta-heuristics. Lin et al. (2011) formulated such a bi-level program in which route 

and departure time choices for a single destination network were captured with the CTM. A dual 

variable-based heuristic was used to solve the proposed MPEC (mathematical program with 

equilibrium constraints). Joksimovic et al. (2005a) and Joksimovic et al. (2005b) included both 

departure time and route choice in the lower level through a discrete choice model (stochastic user 

equilibrium). Although results used a small test network, tolls were observed to encourage travel 

on less congested routes or departure times. Ekstrm et al. (2016) devise a surrogate-based 
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optimization method in which a small number of dynamic cordon tolling schemes are tested on 

the Stockholm network using VisumDUE, a DTA tool. 

When applied to real-world traffic networks, ∆-tolling can be classified as a within-day pricing 

scheme, as described in Sections 6.3 and 6.4. Within-day pricing varies the tolls at different times 

of day in response to (expected) congestion. Within-day strategies can affect both route choice and 

departure times because travelers may respond to congestion pricing by delaying their trip until a 

less congested time. While many within-day strategies set a predictable schedule of tolls that 

human drivers can react to, ∆-tolling assumes the use of route guidance software that can more 

quickly react to rapidly changing tolls. Furthermore, ∆-tolling is responsive to fluctuations that 

may be caused due to uncertain demand. 

6.2.2. Pricing Models Using Microscopic Traffic Simulators 

Very few researchers have used microscopic traffic simulators to study congestion pricing. The 

outputs of microscopic simulators cannot be analytically expressed, a challenge in optimizing 

control strategies. Thus, existing studies have used feedback mechanisms for computational 

tractability. The ∆-tolling approach proposed in this article can also be seen as a feedback 

mechanism much like ramp metering strategies such as ALINEA (Papageorgiou et al., 1991). 

Zhang et al. (2008) developed a feedback control theory-based tolling for high-occupancy/toll 

lanes in VISSIM to avoid the potential hysteresis problem and was later extended by Cheng et al. 

(2014) to include the effects of travel time reliability and income levels of users. However, their 

pricing model is fairly complicated and may be difficult to apply to other traffic flow models, and 

testing was limited to several connected freeway segments. Zheng et al. (2012) and Simoni et al. 

(2015) used a hybrid approach involving a microscopic simulator MATSim and a macroscopic 

fundamental diagram flow model to set cordon tolls in the city of Zurich. This model was used to 

calculate the aggregate density, from which the cordon tolls were inflated or deflated based on a 

linear feedback control strategy. Grether et al. (2008) also used MATSim along with an activity-

based model that simulated users’ plans, modes of travel, and values of time, but only evaluated 

fixed time-of-day dynamic tolls. 

6.3. Framework 

The ∆-tolling framework is designed to be widely applicable across a broad range of traffic and 

user behavior assumptions. The modeling framework has three major components: 

 The traffic model. 

 The travel time calculation model. 

 The tolling model. 

These three models make use of four variables: 

 τ - the vector of tolls applied to each link. 
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 d - the travel demand, expressed in number of vehicles departing each origin towards each 

destination. 

 X - the system state, a tuple of sets or vectors reflecting current traffic conditions 

corresponding to a particular traffic model. 

 L - the vector of measured link travel times (travel time). 

If the underlying network is represented by G = (V,E,Z) where V and E are the sets of nodes and 

links, and Z ⊆ N is the set of origins and destinations where trips start and end, then we have τ ∈ 

R|E|, d ∈ R|Z|×|Z|, and T ∈ R|E|. We use le∈E to represent the travel time on link e; the same goes for xe 

and τe (a link (e) might also be expressed as a pair i,j representing the link connecting node i with 

j). Similarly, ds,t∈Z is the demand originating at node s towards node t. 

Each of these variables evolves over time according to the traffic flow, travel time, and tolling 

models, which are described next. The reader may find it useful to refer to Figure 6.1 during this 

discussion. Arrows in this figure reflect direct dependencies between the variables, as described 

below. 

The traffic flow model M encompasses the routing decisions made by drivers, as well as the 

congestion effects caused by interactions amongst drivers. We express this relationship as 

 Xi = M(Xi−11,Li−1,di,τi). (6.1) 

This equation represents the following potential dependencies: the system state at time step k may 

depend on the system state at the previous time interval (Xk−1); the measured link travel times at 

the previous time interval (Lk−1); the vehicles departing during time k (dk), and the current tolls 

(τk).1 Particular traffic flow models may not make use of all of these dependencies (for instance, 

the traffic state for Model A in Section 6.4 does not explicitly depend on previous time intervals) 

but they are included for generality. All of the models in this article assume that the last measured 

travel times Li−1 and current tolls τk are communicated to all vehicles (based on the assumption of 

CAV technology), but in principle the framework could allow for route choice decisions made 

without perfect knowledge of these. Specific examples of traffic models M and the corresponding 

system states X are given in Sections 6.4–6.6. 

The travel time calculation model L maps the system state to link travel times used for tolling: 

 Li = L(Xi). (6.2) 

Although the travel times Lk−1 may be part of the system state Xk−1, we include a separate 

dependence on Lk−1 to allow for measurement errors, as might occur in practice if travel times are 

measured from sensors or probe vehicles in the field, or to allow for approximate travel time 

                                                 
11 The time interval between time steps (k, k + 1) may differ between models and between instances of the same model. Examples are given in the 

following sections. 
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calculations, as are often obtained from simulation-based traffic models (such as Models B and C 

below). This separation also emphasizes that the toll calculation only relies on travel times and 

does not require additional information about the system state or demand. Examples of travel time 

models are also found in the sections that follow. 

The toll calculation model for ∆-tolling is found in Equation 6.3: 

 τi = (1 − R)τi−1 + Rβ(Li−1 − T0) (6.3) 

where T0 is the vector of link free-flow times,12 and R and β are tuning parameters. Parameter β is 

the proportionality constant relating travel time and the toll value, while R is a weighting parameter 

that results in an exponential decay effect for tolls assigned in previous time steps. Both the R and 

β parameters must be tuned for a given network. 

To summarize, the dependencies between the variables are intended to fit the following story: at 

time step i all users are informed with the tolls (τk) imposed during time interval k to k +1, as well 

as the travel times (Lk−1) measured at the end of the previous time interval. Given this data, users 

choose and follow a route leading from their current location to their destination that optimizes 

their utility. Based on the routes they choose, the system evolves to state Xk, and at the end of this 

time interval, the updated travel times (Lk) are measured. These updated travel times, along with 

the updated tolls, are fed-back to all users which, once again, re-optimize their route. Figure 6.1 

presents a schematic illustrating these dependencies. 

 
Dashed lines reflect the traffic model, dotted lines the travel time calculation model, and 
solid lines the tolling model. Note that the toll calculation only requires travel times, and 

no other details of the demand or traffic model. 

Figure 6.1 Schematic for ∆-tolling framework 

Note that allowing users to predict and react to future congestion and tolls can have a positive 

effect on the system as the convergence towards a user equilibrium would be faster or even instant. 

On the one hand, assuming such capabilities is reasonable from a practical standpoint (recurring 

congestion can be predicted). On the other hand, considering such capabilities significantly 

complicates our theoretical and empirical models. As a result they are not assumed in this study. 

Nonetheless, due to its relevance to the application of ∆-tolling, we intend to explore this topic in 

future work. 

The following three sections show specific instantiations of this framework for varied traffic 

models: one inspired by day-to-day pricing in static traffic assignment, and two meant to represent 

                                                 
12 Free flow travel time T0 may change over time, e.g., due to weather conditions, and should be appropriately updated. 
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within-day pricing in dynamic models (the CTM and a microsimulator). The intent of these 

demonstrations is to study the performance of ∆-tolling across different modeling contexts, in 

contrast to many prior studies that demonstrate effectiveness only in a single traffic model (often 

the same model used to derive the tolling scheme). The focus of the presented experiments is on 

robustness of performance across widely varying models, rather than claiming that any of the 

specific models is the “right” one for any particular application. 

6.4. Model A: Link Performance Functions 

In the first model, the traffic model is based on link performance functions that map the flow on 

each link to its travel time (travel time). The presumption is that the intervals between successive 

time steps (and toll updates) are large enough that most trips can be completed during a single time 

interval, and that delays and flows can be well-approximated by deterministic, steady-state 

conditions. In this model, we assume that drivers choose routes to minimize their travel cost 

(time+tolls). Because delays are deterministic and the interval between time steps is assumed long, 

we further assume that CAV technology can choose routes rationally, leading to a Nash 

equilibrium in which each vehicle chooses a route with minimum cost (Wardrop, 1952). 

6.4.1. Model Specification 

For a source-target pair (s,t) ∈ Z2, let Πst denote the set of simple paths in G connecting source s to 

destination t, Πt 
= ∪s∈ZΠst the set of paths ending at t, and Π = ∪t∈ZΠt the set of all network paths. Let 

dk be the demand during time period k. The vector of path flows hk ∈ R|Π| is feasible if each element 

is nonnegative, and if  (each vehicle is assigned a path leading to its target). Each 

vector of path flows generates a vector of link flows fk ∈ R|A| given by . 

Furthermore, we assume that each link (i,j) ∈ E is equipped with an increasing and differentiable 

travel time function lij(fij), giving the travel time on link (i,j) as a function of its flow fij alone. Let 

X(dk) denote the set of feasible link flows when the demand is dk, that is, the set of link flow vectors 

corresponding to a feasible path flow vector. 

For this model, the state vector is simply the vector of link flows: 

Xk = fk 

and the traffic model M in Equation (6.1) is specified with the following formula: 

(6.4) 

  (6.5) 

In this formula we assume that the value of time is homogeneous among all travelers, allowing us 

to choose units so that the tolls τ and travel time l can be directly added. The minimizer of the 

function on the right-hand side is known to satisfy the Nash equilibrium principle, and to be unique 

under the assumption that the lij are increasing. Note that there is no explicit dependence on Xk−1 in 

Model A. 
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One special case of Model A occurs when the demand is stationary with time, dk ≡ d. In this case, 

Model A can be thought of as a day-to-day tolling model, where the tolls are updated on sequential 

days as drivers make the same trips. 

6.4.2. Scenario Specification 

Every scenario simulated through Model A follows the following principles: 

 Demand model - demand is modeled as a fixed amount of flow that needs to be routed 

between any two given nodes in the network at any time step. 

 Vehicle model - in model A there is no notion of atomic vehicles; traffic is viewed as a set 

of infinitely divisible flows. 

 Path assignment model - instead of assigning paths to vehicles, Model A assigns flows to 

paths. The vehicles comprising each flow are assumed to be self-interested and are assigned 

the minimal generalized cost path (travel time + tolls). Such a policy leads to the Nash 

equilibrium that is defined by Equation 6.5. 

6.4.3. Theoretical Results 

One advantage of Model A is that the analytical form of the traffic model (6.5) is amenable to 

mathematical analysis. In particular, we are able to show several optimality results if demand is 

stationary with time and the link performance functions are of the form specified by the Bureau of 

Public Roads (BPR), 

! 

(6.6) 

where Tij0 is the free-flow travel time, uij the practical capacity, and A and B are shape parameters 

assumed uniform throughout the network. In this section, we mean “optimality” in the sense of 

minimizing the average travel time, which is proportional to P
(i,j)∈E fijlij(fij). This is a convex 

function of the link flows, so optimal link flows  exist and are unique. 

The next results make use of the following well-known facts. (Both can easily be shown by writing 

the optimality conditions of the associated convex minimization programs.) 

Fact 1. Let fk ∈ X(dk) and let hk be any feasible path flow vector generating fk. The flows fk 

satisfy (6.5) if and only if every positive component of hk corresponds to a path whose 

generalized cost (the sum of lij
k +τij

k along its links) is minimal for its source-target pair. 

Fact 2. Let fk ∈ X(dk) and let hk be any feasible path flow vector generating fk. The flows fk 

are optimal if and only if every positive component of hk corresponds to a path whose 

marginal cost (the sum of lij
k + fij

k lij
0 (fij

k ) along its links) is minimal for its source-target 

pair. 
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The first result shows that the ∆-tolling rule is equivalent to marginal cost pricing if the parameter 

β is chosen correctly: 

Proposition 1. If the link performance functions are of the BPR form and β = B, then β(lij − Tij0 ) 

= fijlij0 (fij) = BATij0 (fijk /uij)B. 

Proof. Routine.  
 

Next, we show that if the tolls do not change from one time step to the next, then the resulting link 

flows must be optimal. Furthermore, the system has reached a stable state, and the optimal state 

will persist for future time iterations. In other words, if the tolls are stable, the flows are optimal 

and stable. 

Proposition 2. Let the link performance functions have the BPR form, and let demand be 

stationary with time. If β = B and τk = τk+1 for any time interval k, then fk is optimal, and furthermore 

fK is optimal for any K > k. 

 

Proof. Stationary demand implies that the set of feasible f and h are stationary. By the ∆-

tolling update rule (6.3), if τk = τk+1 then we must have τk = τk+1 = β(Lk − T0) = BAT0(fk/u)B, where 

this vector equation holds component-wise. Let ht be a feasible path flow vector generating fk. By 

Fact 1, every positive component of hk corresponds to a path whose sum of  

along its links is minimal. But by Proposition 1, this implies that every component of ht 

corresponds to a path whose sum of is minimal, and thus fk is optimal by Fact 2. 

Furthermore, since the minimizer of (6.5) is unique, τk = τk+1 implies fk = fk+1, and thus τK = τk and 

fK = fk whenever K > k.  
 

The converse of Proposition 2 is not true, because the vector of tolls which produce a particular 

flow f under the mapping (6.5) is not unique, and only the marginal-cost tolls corresponding to 

Proposition 1 are fixed points of the toll update rule (6.3). If fk is optimal but generated by a 

different toll vector, we will not have τk = τk+1. Nevertheless, we can show that if fk is optimal, the 

flows are stable in subsequent iterations, even if the tolls still change. 

Proposition 3. Let the link performance functions have the BPR form, and let demand be 

stationary with time. If β = B and fk is optimal at any time interval k, then fK is optimal whenever K 

> k. 

Proof. Let ht be any feasible path flow vector generating fk. By Fact 1, every positive 

component of hk corresponds to a shortest path with link weights . Since these flows are 

optimal, Fact 2 and Proposition 1 imply that these are also shortest paths with link weights lijk + 

β(lijk − Tij0 ). That is, for each node i and source s, there exist node potentials πis and ρsi such that 

  (6.7) 
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 ρsi + lijk + β(lijk − Tij0 ) ≥ ρsj (6.8) 

for each link (i,j) ∈ E and source s ∈ Z, with equality holding along all of the paths with positive 

flow at hk. Multiplying inequality (6.7) by 1 − R, inequality (6.8) by R, and adding, we have 

 , (6.9) 

implying that (1 − R)π + Rρ form valid node potentials for the new toll vector τk+1, with equality 

holding for exactly the same links and origins as before. Thus, the shortest paths with respect to Lt 

+ τk+1 are the same as those with respect to Lk +τk, and fk remains optimal for fk+1. The argument 

can be repeated for any K > k.  

6.4.4. Experiments and Results 

Model A was implemented in C using Algorithm B (Dial, 2006a) to solve the equilibrium 

subproblem. It was tested on two city networks, representing the cities of Sioux Falls, SD and 

Austin, TX. The Sioux Falls network is a standard test instance in the transportation network 

literature (Bar-Gera, 2014), with 76 links, 24 nodes, and 360,600 trips spanning 24 hours. The 

Austin network represents the central business district of the city, and contains 1247 links, 546 

nodes, and 62,836 trips over a two-hour morning peak period. Additional details on the Austin 

network can be found in Levin et al. (2015a). Figure 6.2 shows schematics of both networks. 

In both networks, the link performance functions are BPR functions, using the standard values of 

the shape parameters: A = 0.15 and B = 4. For the experiments in this article, the time intervals k 

were interpreted as subsequent days, so demand was assumed stationary and the experiment 

represents a day-to-day pricing scenario. 

Because Model A assumes fixed demand and homogeneous travelers, we can use the average 

travel time ATTk = (fk · Lk)/(d · 1) as a performance metric. In this demonstration, the weights Rk = 

1/(k + 1) were chosen, effectively setting the toll during time step k to the average of the daily 

“target” tolls β(Lk − T0). This choice of Rk value was inspired by the method of successive averages 

(Liu et al., 2009). 
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Figure 6.2 Sioux Falls (left) and Austin (right) networks 

Table 6.1 shows the steady-state average travel time for both networks as the sensitivity parameter 

β varies. For both networks, with the above choice of Rk, fairly rapid convergence was obtained to 

a steady state.13 For β values of 1, 2, 4, and 8, convergence on Sioux Falls required 95, 27, 11, and 

94 iterations, respectively. For Austin, these values required 24, 16, 27, and 42 iterations to 

converge, respectively. 

Table 6.1 Average travel time (minutes) at UE for different β values using Models A (Rt = 1/(t + 1)) 
and B (R = 10−4).  

Note that for Model A with β = 4 the UE and SO align (this is the provable SO for 
model A). The SO for Model B is not applicable. 

Scenario No tolls SO β = 1 β = 2 β = 4 β = 8 

  Sioux Falls   

Model A 20.74 19.95 20.09 19.98 19.95 19.96 

Model B 24.74 NA 20.28 20.08 19.92 20.26 

  Downtown Austin   

Model A 21.92 21.78 21.81 21.79 21.78 21.79 

Model B 20.67 NA 16.06 15.64 15.82 17.39 

 

Over the range of β values tested, the ∆-tolling strategy always reduced average travel time from 

the no-toll value. When β was set equal to the B exponent in the link performance functions, the 

travel times were the lowest observed, and in fact correspond to the system-optimal solution, as 

suggested by Proposition 1. Note that the performance of ∆-tolling seems to be insensitive to the 

                                                 
13 The system is said to converge to a steady state if the change in average travel time between successive time steps was less than a tenth of a 

millisecond. 
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chosen β value as beta values twice as big (8) or small (2) from the optimal (4) result in a system 

performance, which is almost identical to the optimal one. 

6.5. Model B: Cell Transmission Model 

Model B implements the ∆-tolling framework in the CTM developed by Daganzo (1994a, 1995a) 

as a discrete, explicit solution method for the hydrodynamic theory of traffic flow proposed by 

Lighthill and Whitham (1955) and Richards (1956). CTM is frequently used in DTA. The time 

step used in this model is typically short, on the order of a few seconds. When used with ∆-tolling, 

this allows for a truly adaptive toll that can be updated based on traffic conditions. Because the 

tolls are updated frequently, we believe that the equilibrium behavior assumed in Model A is not 

appropriate. Rather, we assume that CAVs dynamically receive updates of travel times and tolls, 

and may alter their route to the destination in response to receiving such information. This update 

is based on the currently reported travel times and tolls when they reach the diverge point.14 

6.5.1. Model Specification 

The CTM divides each link into a set of cells, each of length equal to the distance a vehicle would 

travel in one time step at free-flow conditions. Cells result from a fixed division of a link into 

discrete segments. The length of each segment corresponds to the distance a vehicle would travel 

on that link at free-flow speed in one time step. This choice of cell length ensures stability of the 

CTM (it satisfies the Cournout-Friedrich-Lewy conditions for the underlying system of partial 

differential equations). Let C be the set of cells in the entire network, and for a given cell c ∈ C, let 

C+(c) denote the set of cells immediately downstream of c, and C−(c) the set of sells immediately 

upstream of c. For cells in the interior of a link |C+(c)| = |C−(c)| = 1, whereas if c is at the upstream 

end of a link we may have |C−(c)| > 1 (if there are multiple links incident from upstream) and if c 

is at the downstream end we may have |C+(c)| > 1 (if there are multiple links adjacent downstream). 

Let denote the number of vehicles in cell c at the start of time interval k which are currently 

following path π ∈ Π, and  the total number of vehicles in the cell. Based on these 

values, the CTM respectively defines the sending flow Sck and receiving flow Rck as the maximum 

number of vehicles which could possibly exit cell c during time step k, and the maximum number 

of vehicles which could possibly enter cell c during time k. If we denote Qc as the capacity of cell 

c, Vc the maximum number of vehicles that can physically occupy cell c, and δ the ratio between 

the maximum backward shockwave speed and free-flow speed, common expressions for the 

sending and receiving flow are 

  (6.10) 

and 

 . (6.11) 

                                                 
14 Particularly, vehicles do not anticipate future changes in travel conditions, nor the impact of receiving future information, cf. Waller and 

Ziliaskopoulos (2002); Boyles (2009). While such computations are more involved, they may be feasible with CAV technology, and would be an 

interesting topic for future study. 
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See Daganzo (1995a,c) for additional details. 

The update rules for the CTM (the traffic model M) involve the auxiliary variables ycdk representing 

the number of vehicles moving from cell c to cell d ∈ C+(c) during time step k. If c and d belong to 

the same link, we have 

 . (6.12) 

If c and d belong to different links, ycdk is calculated using various intersection models representing 

traffic behavior at diverges, merges, traffic signals, roundabouts, or other intersection types; see 

Tampère et al. (2011) for discussion of intersection model desiderata and some examples. The 

simulations reported in this section use intersection models reflecting traffic signals. 

Once the yk values are calculated, cell occupancies update in the natural way: 

  (6.13) 

with the path-disaggregated  values updated according to the first-in, first-out principle. 

The travel time model for lijk calculates the average time spent on link (i,j) by the vehicles which 

most recently exited the link, based on the difference between their entry and exit times. This 

results in a slight lag in the travel times used for ∆-tolling and for the adaptive routing procedure, 

since link travel times for vehicles are not computed until they leave the link, even though the 

routing and tolls are based on decisions made as vehicles enter a link. 

6.5.2. Scenario Specification 

Every scenario simulated through Model B follows the following principles: 

 Demand model - demand is given as the number of vehicles originating at node n1 at time 

step k and are assigned a destination n2 for any n1,n2 ∈ V and k > 0 combination. 

 Vehicle model - each vehicle is affiliated with a value of time15 (V OT). Vehicles seek to 

minimize their generalized cost that is defined as travel time + tolls × value of time. 

 Path assignment model - let  be the sum of travel times along path π during time step k 

− 1 and let  be the sum of tolls along π during time step k. When reaching a diverge node 

n at time step k all paths (Πnt) leading from n to target t are considered. The vehicle in 

question is assigned the path argmin . An additional rule was 

added to prevent gridlock problems, which can arise in dynamic traffic models when a 

cycle of links is at jam density: if a vehicle is unable to enter a link because its receiving 

                                                 
15 Value of time represents the monetary value of a single unit of time. It is used to map time into monetary cost. 
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flow is zero for more than 96 seconds,16 the vehicle is assigned the least cost path to its 

destination that avoids that link, if such a path exists. 

6.5.3. Experiments and Results 

For running Model B we used the DTA simulator (Chiu et al., 2011) implemented in Java. Model 

B was tested on the Sioux Falls and Austin networks also used for the Model A results. A few 

changes were needed to accommodate the differences in time scale and modeling assumptions 

between Models A and B. Because the original Sioux Falls demand was specified over 24 hours, 

the demand was modified to fit a 3-hour experiment more suitable for DTA, including 28,835 trips 

over this time period. Both networks also required traffic signal timings. The Austin network data 

was originally used for DTA and contained real-world signal data. The Sioux Falls network does 

not include this data, so we generated an artificial timing based on Webster’s formula (1958) for 

signal timing. The variations in departure rates over time for these scenarios can be seen as the 

solid black line in Figure 6.4. Whenever a vehicle is loaded onto the network, it is assigned a value 

of time randomly drawn from a Dagum distribution with parameters ˆa = 22020.6, ˆb = 2.7926, 

and ˆc = 0.2977, reflecting the distribution of personal income in the United States; see 

Lukasiewicza et al. (2012). 

The average travel times for Model B for particular values of R and β are shown in Table 6.1. Since 

Model B allows heterogeneity in travelers’ values of time, in addition to evaluating average travel 

times, we also evaluate the total travel time cost, defined as the weighted sum of each traveler’s 

travel time according to his or her value of time.17 If A is the set of vehicles, and vehicle a 

experiences a travel time of la and has a value of time of αa, total travel time cost is defined as 
P

a 

laαa. The tolls are not included in the calculation of total travel time cost, because we assume that 

toll revenues are transfer payments which remain internal to society. This assumption was made 

implicitly in the use of average travel time as the metric for Model A. 

Figure 6.3 shows the effects of ∆-tolling on total travel time cost (denoted social welfare) as the 

responsiveness parameter R varies. The red series indicates the no-toll scenario used as a 

benchmark, while the blue series shows total travel time cost under the ∆-tolling regime. Each data 

point represents the average of ten scenario runs, and the bands represent 95% confidence intervals 

around each point. Scenario runs differ from each other in the value of time that is (randomly) 

assigned to each vehicle. For the experiments in this plot, a fixed value of β = 4 was used. This 

value was optimal in Model A for its assumption of BPR-type delay functions, but this choice is 

not necessarily optimal for Model B, which uses a dynamic network loading procedure. (As shown 

in Table 6.1, in Austin, a slightly better performance was obtained with β = 2 compared to β = 4.) 

In this plot, note that extreme R values are less effective, whether high or low: when R is near 1 

tolls oscillate rapidly (worsening performance over the no-toll baseline), and when R is near zero 

the tolls have little impact. The best performance occurred in a narrow band around R ≈ 10−4, 

yielding increases of 26% and 33% in total travel time cost for the Sioux Falls and Austin 

                                                 
16 This value was chosen by trial-and-error and resulted in the best performance. 
17 For Model A, where value of time is homogeneous, total travel time cost is directly proportional to the total travel time. 
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scenarios, respectively. Indeed, for any given β value, near-optimal tolls cluster around a single 

order of magnitude of R values. 

 
Note: The legend is identical in both plots. 

Figure 6.3 Total travel time cost (social welfare) in Sioux Falls (left) and Austin (right) as responsiveness 
parameter R varies using Model B 

Figure 6.4 shows the impacts on total travel time cost for travelers departing at different times 

during the simulation for R values in the range 10−5–10−3. All series in this plot correspond to β = 

4. This plot shows the superior performance of R = 10−4 in a different way and indicates that the 

benefits from tolling increase throughout the peak period, and that the onset of congestion is 

delayed. In the Sioux Falls scenario, which includes the end of the peak period, we see that the 

recovery from congestion occurs earlier as well. 

Figure 6.5 shows performance of the tolling scheme as both R and β vary, depicting the difference 

in total travel time cost (in percentage) compared to a scenario where no tolls are applied (a value 

of 126, for instance, correspond to a 26% increase in total travel time cost). For any fixed value of 

one parameter, there is a near-optimal value for the other parameter. This observation leads us to 

suspect that there are dependencies between the two parameters. We leave exploring such 

dependencies for future work. Nonetheless, this observation justifies the use of a single β value in 

the results described earlier. 

 
Note: The legend is identical in both plots. 

Figure 6.4 Total travel time cost (social welfare) over time in Sioux Falls (left) and Austin (right), R varies 
using Model B 
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Figure 6.5 Heat maps showing the difference (in percentage) in total travel time cost (social welfare) 
compared to the no-tolls scenario for different R and β values in Sioux Falls (left) and Austin (right) 

(Model B) 

6.6. Model C: Microsimulation 

AIM (Autonomous Intersection Manager) is a traffic microsimulator first developed by Dresner 

and Stone (2004) to model the flows of CAVs at intersections where priority is granted by 

reservation, rather than with signals. 

AIM provides a multiagent framework for simulating autonomous vehicles on a road network grid, 

and it presents a much more detailed traffic flow model than Models A or B. The AIM simulator 

uses two types of agents: intersection managers and driver agents. Intersection managers are 

responsible for directing the vehicles through the intersections, while the driver agents are 

responsible for controlling the vehicles to which they are assigned. To improve the throughput and 

efficiency of the system, the driver agents “call ahead” to the intersection manager and request a 

path reservation (space-time sequence) within the intersection. The intersection manager then 

determines whether or not this request can be met. If the intersection manager approves a driver 

agent’s request, the driver agent must follow the assigned path through the intersection. On the 

other hand, if the intersection manager rejects a driver agent’s request, the driver agent may not 

pass through the intersection but may attempt to request a new reservation. AIM has been used in 

various studies on reservation-based intersection control: Dresner and Stone (2006, 2007) studied 

variants of the reservation protocol that provided intersection access to human drivers through an 

occasionally activated traffic signal, and Fajardo et al. (2011) found that reservations had lower 

delays than optimized traffic signals for a symmetric intersection. Figure 6.6 shows a typical 

snapshot of simultaneous vehicle flow at a congested intersection. 
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Figure 6.6 The AIM simulator depicting a reservation-based intersection in operation 

Link travel times Lk−1 are estimated as an average of the time spent on each link by the vehicles 

most recently exiting. The scenario specifications for this model are identical to those specified 

for model B. As with Model B, due to the frequency of updates there is no presumption that an 

equilibrium is reached when vehicles choose routes. 

Unlike Models A and B, the microsimulation environment is not well-suited to explicit 

mathematical description. The state vector can be defined as Xk = (Ak,wk), where Ak is the set of 

vehicles on the network at the start of time step k, including associated information such as their 

value of time and position, velocity, and acceleration in the network, and wk is the set of 

intersections and associated information at time k, such as the trajectories of scheduled 

reservations. This information is updated according to the rules described above. 

6.6.1. Experiments and Results 

For running Model C we used the AIM4 microsimulator (http://www.cs.utexas.edu/ 

aim/aim4sim/aim4release-1.0.3/aim4-root/docs/install.html). AIM4 is unable to model large 

networks of the type used for Models A and B, because of the level of detail in its representation 

of agent behavior (both vehicles and intersection reservations). Hence, the Sioux Falls and Austin 

scenarios are intractable within AIM. Figure 6.7 shows the 3×3 grid network used for these 

experiments. Vehicle agents are generated randomly according to a Poisson process, at a mean rate 

of 500 vehicles per hour per incoming lane. Each vehicle is assigned either to destination D1 or 

D2. The network also includes alternative destinations for vehicles headed to either of these 

destinations. Alternative destinations are used to simulate route choice effects on a network much 

smaller than the city networks used in Models A and B. These alternative destinations, marked as 

A1 and A2 in Figure 6.7, are associated with a time penalty if vehicles leave the network through 

them instead of their original destination. Vehicles may opt for a path ending at an alternative 

destination when performing the A∗ search when arriving at each intersection. 
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Figure 6.7 Grid network used for Model C results, with destinations and alternatives marked 

Figure 6.8 present results that are similar in format to those presented for Model B (Figures 6.3 

and 6.5). That is, in the left figure, total travel time cost as responsiveness parameter R varies and 

β is set (β equals 16). In the right figure, heat map showing total travel time cost with different R 

and β values.18 Each data point in the right figure, and each bracket shade in the left figure, 

represents the average travel time cost over 30 simulation runs, where travel time cost for a single 

simulation is the average utility over all agents (vehicles). Each run simulates one hour of traffic. 

Error bars reflecting 95% confidence intervals are shown in the right figure (social welfare vs R). 

The general trends that are observed in these results are very similar to those observed in the CTM 

model: that is, reducing R to approximately 10−4 improves system performance (due to mitigation 

of oscillation and spike effects), and that near-optimal performance can be achieved with most β 

values by properly tuning the R values. Nonetheless, there are two notable differences between 

these results and those presented for the CTM: 

 Low β values (< 8) do not have a suitable R that yield optimized performance. We believe 

this discrepancy stems from differences in the congestion accumulation model. Recall that 

AIM manages intersections in a way that is conceptually different than traffic signals. 

When traffic signals are considered, the marginal impact of a single vehicle is negligible 

at low traffic levels (low demand) since vehicles must wait for a green signal regardless of 

the number of vehicles arriving from other directions. With AIM, however, the marginal 

impact of a vehicle is noticeable even at low traffic levels. 

                                                 
18 Results in a format similar to that in Figure 6.4 are not presented for this model since, unlike the Model B results, traffic demand is not time 

varying in this experiment. 
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Figure 6.8 Results from running AIM in the 3 × 3 grid network. Left: Heat map showing the difference (in 

percentage) in total travel time cost (social welfare) compared to the no-tolls scenario for different R and β 
values. Right: Total travel time cost as responsiveness parameter R varies (Model C) 

 

 R = 1 (rightmost data point in the right figure) presents performance that is better than 

applying no tolls. We believe this discrepancy also stems from the fact that AIM does not 

use traffic signals, which contributes to the negative effect of spikes and oscillation. 

Though these results are not identical to those obtained by the CTM, their similarity still provides 

additional evidence of the robustness of ∆-tolling across different models and network topologies. 

On the other hand, the listed discrepancies suggest that the parameters used by ∆-tolling need to 

be re-tuned following changes in traffic flow modeling (such as changes to the intersection 

management policy). 

6.7. Enhanced Delta-tolling 

∆-tolling, as presented above, includes two global parameters: β, which is a proportionality 

parameter, and R, which influences the rate of change of toll values across all links. We now turn 

to introduce a generalization of ∆-tolling that accounts for different β and R values on each link in 

the network. While this enhanced ∆-tolling algorithm requires setting significantly more 

parameters, we show that they can be tuned effectively via policy gradient reinforcement learning. 

Experimental results from several traffic scenarios indicate that enhanced ∆-tolling reduces total 

travel time by up to 33% compared to the original ∆-tolling algorithm, and by up to 52% compared 

to not tolling. Our detailed empirical study in Section 6.10 validates our claim that enhanced ∆-

tolling has the potential to greatly improve upon the already impressive results of ∆-tolling when 

it comes to incentivizing self-interested agents to coordinate towards socially optimal traffic flows. 
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6.8. Background 

Policy gradient RL is a general-purpose optimization method that can be used to learn a 

parameterized policy based on online experiential data. While there are several different methods 

for estimating the gradient of the policy performance with respect to the parameters (Peters and 

Schaal, 2006), one of the most straightforward, and the one we use in this report, is Finite 

Difference Policy Gradient RL (FD-PGRL) (Kohl and Stone, 2004), which is based on finite 

differences. 

FD-PGRL is presented in Algorithm 1 (see Section 6.9). Under this framework, the policy is 

parameterized using the parameter vector π = [θ1,...,θN]|. The algorithm starts with the initial 

parameters π0 = [θ10,...,θN0 ]| (line 1). At each step k, the policy gradient is estimated by running a 

set of randomly generated policies (lines 5–7) where each policy is defined as: 

 , (6.14) 

where . The generated policies in (6.14) are obtained by randomly changing each 

parameter from the previous policy by a small n, relative to θn. The cost of each newly created 

policy, πmk , is observed and denoted by ckm (lines 8- 9). 

To estimate the policy gradient, the policy set in (6.14) is partitioned to three subsets (lines 11–14) 

for each dimension depending on whether the change in the policy in that dimension is negative, 

positive or zero, that is the three subsets are: 

  (6.15) 

The average costs of above policy subsets are denoted by  and  (lines 15–17). 

The adjustment vector | can be constructed by the following equation for each 

dimension (lines 18–21): 

 (2.16) 

The adjustment vector Ak is normalized and multiplied by a constant step size η to update the 

parameter vector at the end of each step k (lines 22–23). 

Unlike other policy gradient methods that rely on within-episode reward signals to search for an 

optimal policy, or those in which the agent must learn the policy with no prior knowledge of a 

reasonably performing starting policy [for example, El Bsat et al. (2017) and Levine and Abbeel 

(2014)], in the method employed in this report, the policy is parameterized with a finite set of 

parameters and the overall system performance at each episode is optimized using an empirical 

estimate of the policy gradient based on finite differences. This approach is well-suited for the 
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traffic optimization problem for two reasons. First, the agent can leverage an existing policy with 

reasonable system performance. Second, the agent is required to proceed towards the optimal 

policy only by slight changes of the policy parameters in contrast to approaches in which 

randomized exploration policies can be executed more freely. Our empirical study suggests that 

considering such slight changes results in a total cost that is within an acceptable bound. 

6.9. Enhanced Delta-tolling Mechanism 

We now present the main contribution of this report: the enhanced ∆-tolling mechanism for solving 

the micro-tolling assignment problem. Enhanced ∆-tolling extends the ∆-tolling mechanism.  

Algorithm 1: Finite Difference Policy Gradient RL uses two global variables to set tolls on every 

link in the network. Since different links possess different attributes—e.g., capacity, length, speed 

limit, etc.—optimizing the β and R parameters per link can potentially yield greater benefits (higher 

social welfare). However, doing so would require optimizing a set of 2|E| parameters instead of 

only two. Optimizing such a high dimensional function cannot be done in a brute force way. 

1 π0 ← [θ10,...,θN0 ]|; 

 

This report introduces enhanced ∆-tolling, which extends ∆-tolling by first considering unique β 

and R parameters per link and then incorporating policy gradient RL for optimizing these 

parameters. 
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In order to apply policy gradient RL (specifically FD-PGRL, as described in Section 6.8), the 

traffic assignment policy that maps the current state of the traffic to the appropriate actions, which 

are assigning tolls to each link of the network, should be parameterized. Since the ∆-tolling scheme 

inherently implemented a policy that takes into account the real-time state of the traffic by 

assigning the toll proportional to the current travel time, we only use RL policy gradient method 

to optimize the performance metric at the end of each traffic cycle. Therefore, we define the cost 

to be the total travel time at the end of each day and consider following three parametrizations of 

∆-tolling: 

πR = [R1,...,Rn] 

πβ = [β1,...,βn] 

 πR,β = [R1,...,Rn,β1,...,βn] (6.17) 

The experimental results presented by Sharon et al. (2017b) suggest some correlation between the 

optimally performing β and R values. They state “For any fixed value of one parameter (β or R), 

there is a near-optimal value for the other parameter. This observation leads us to suspect that there 

are dependencies between the two parameters.” This conjecture, if correct, means that optimizing 

only one of these parameters while keeping the second one constant would still allow optimized 

performance. 

As the relation between the β and R parameters remains unclear, we consider three variants of 

enhanced ∆-tolling based on the parametrized policies listed in (6.17): 

 E∆-tollingβ - this variant uses a global R parameter and link-specific β parameters (|E|+1 

parameters in total). It should perform well under the assumption that there is a correlation 

between the best-performing β and R values and when FD-PGRL estimates the gradient 

over link-specific β parameters more accurately than it does for link-specific R parameters. 

 E∆-tollingR - this variant uses a global β parameter and link-specific R parameters (|E| + 1 

parameters in total). It should perform well under the assumption that there is a correlation 

between the best-performing β and R values and when FD-PGRL estimates the gradient 

over link-specific R parameters more accurately than it does for link-specific β parameters. 

 E∆-tollingβ,R - this variant uses link-specific β and R parameters (2|E| parameters in total). 

It should perform best if there is no correlation between the best-performing β and R values 

and if sufficient computation time is given (converting on 2|E| parameters is usually slower 

than on |E|+1). 

6.10. Empirical Study 

Our experimental evaluation focuses on real-life road networks. Traffic is evaluated using the 

CTM (Daganzo, 1994a, 1995a), which is a discrete, explicit solution method for the hydrodynamic 

theory of traffic flow proposed in Lighthill and Whitham (1955) and Richards (1956). 
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CTM is frequently used in DTA. The time step used in this model is typically short, on the order 

of a few seconds. When used with enhanced ∆-tolling, this allows for a truly adaptive toll that can 

be updated based on observed traffic conditions. 

6.10.1. Experiments and Results 

For running CTM we used the DTA simulator Chiu et al. (2011) implemented in Java. Whenever 

a vehicle is loaded onto the network, it is assigned a value of time (VOT) randomly drawn from a 

Dagum distribution with parameters aˆ = 22020.6, ˆb = 2.7926, and ˆc = 0.2977, reflecting the 

distribution of personal income in the United States (Lukasiewicza et al., 2012; Gardner et al., 

2013).19 

The step size in FD-PGRL , η, is 0.4. The policy perturbation parameter is set to 0.01 and the 

number of policy runs at each step, M, is 60 for all the experiments. These values presented best 

performance overall. Our empirical study focuses on three traffic scenarios: 

 Sioux Falls - LeBlanc et al. (1975) — this scenario is widely used in the transportation 

research literature (Levin and Boyles, 2015), and consists of 76 directed links, 24 nodes, 

(intersections), and 28,835 trips spanning 3 hours. 

 Downtown Austin - Levin et al. (2015b) — this network consists of 1,247 directed links, 

546 nodes, and 62,836 trips spanning 2 hours during the morning peak. 

 Uptown San Antonio — this network consists of 1,259 directed links, 742 nodes, and 

223,479 trips spanning 3 hours during the morning peak. 

The networks affiliated with each scenario are depicted in Figure 6.9. All of these traffic scenarios 

are available online at https://goo.gl/SyvV5m. 

                                                 
19 The simulation settings were chosen to be identical to those presented in Sharon et al. (2017). 

https://goo.gl/SyvV5m
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 (a) Sioux Falls (b) Austin (c) San Antonio 

Figure 6.9 Maps of traffic networks used in the experiments 

6.10.1.1. System Performance 

Our first set of results aims to evaluate the performance of the different variants of enhanced ∆-

tolling, by comparing them with each other and basic ∆-tolling. 

Figure 6.10 presents normalized values of total travel time summed over all trips (top figure) and 

social welfare that is the summation of costs, i.e., travel time times VOT, over all agents (bottom 

figure). The values are normalized according to the system’s performance when no tolls are 

applied. Table 6.2 presents the total travel time and social welfare performance when applying no-

tolls (representing the value of 1.0 in Figure 6.10). 

The results present a clear picture in which ∆-tolling improves on applying no tolls in both total 

travel time and social welfare. E∆-tollingβ further improves the system’s performance and both 

E∆-tollingR and E∆-tollingβ,R achieve the best performance. 

The fact that E∆-tollingR results in system performance that is similar to E∆-tollingβ,R suggests a 

correlation between the best-performing β and R values. 

The fact that E∆-tollingβ performs worse than E∆-tollingR suggests that policy FD-PGRL estimates 

the gradient over link-specific R parameters more accurately than it does for link-specific β 

parameters. 

Convergence rate applying E∆-tolling to real-life traffic raises two concerns: 

1. Convergence rate - the system should converge to a good solution with as few learning 

iterations as possible. 

2. Worst case performance - during the learning process E∆-tolling should perform at least 

as well as ∆-tolling. 
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Table 6.2 Average total travel time and total generalized cost when applying no tolls 

 Sioux Falls Austin San Antonio 

Travel time 

(hr) 
11,859 21,590 26,362 

Cost ($) 353,169 637,086 780,739 

 

 
Figure 6.10 Total travel time and total generalized cost for different tolling schemes and scenarios 

Figure 6.11 presents the system performance with regard to total travel time (y-axis) versus 

learning iteration step (x-axis) for each of our three scenarios and every E∆-tolling variant. The 

error regions are obtained using 10 different runs of the algorithm for each example and E∆-tolling 

variant and they show the standard error of the average performance in each iteration. Results for 

basic ∆-tolling are also included for comparison. The results are consistent with each other, 

showing that E∆-tollingR performs best overall w.r.t convergence rate. 

Table 6.3 presents the area under the curve for each scenario and E∆-tolling variant. These results 

give a quantitative comparison of the convergence rates. We learn that E∆-tollingR has the best 

overall performance with a total AUC of 4,285,353. Nonetheless, E∆-tollingβ,R performs better on 

the Sioux Falls scenario. 

All the experiments are initialized with β = 4 and R = 10−4 for all the links. A set of experiments 

(not presented) with different starting parameter values show that the performance is sensitive to 

the initial settings. However, the mentioned default starting values (β = 4 and R = 10−4) perform 

relatively well across all scenarios and E∆-tolling variants. 

Table 6.3 Area under the convergence curves from Figure 6.11 

Scheme S. Falls Austin S. Antonio Total 

∆-tolling 962,000 1,640,900 2,300,700 4,903,600 

E∆β 943,076 1,619,928 2,257,830 4,820,834 

E∆R 779,990 1,360,861 2,144,502 4,285,353 

E∆β+R 777,469 1,415,094 2,162,006 4,354,569 
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(a) Sioux Falls 

 
(b) Austin 

 
(c) San Antonio 

Figure 6.11 Total travel time and total generalized cost for different tolling schemes and scenarios 

6.11. Discussion and Future Work 

The promising experimental results reported suggest that E∆-tolling can have practical 

applications where traffic optimization is performed constantly and in real time through 

manipulations to the R and or β parameters. Nonetheless, implementation of E∆-tolling raises 

several practical issues that must first be addressed. 

 Limitations - E∆-tolling is limited in its convergence rate. General traffic patterns might 

change frequently, preventing E∆-tolling from advancing in a promising direction. 

Practitioners must evaluate the convergence rate of E∆-tolling versus the rate in which 

traffic patterns change in order to determine the applicability of E∆-tolling in a specific 

network. 
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 Assumptions - E∆-tolling, as presented in this report, assumes that all agents traversing the 

network are self-interested and responsive to tolls in real time. Real-world scenarios might 

violate these assumptions and the trends observed in our results cannot be assumed in such 

cases. 

Practical aspects of E∆-tolling present many promising directions for future work. Since the 

convergence rate of E∆-tolling plays an important role in determining its applicability, one 

promising direction for future work is developing heuristics and utilizing advanced RL methods 

to guide the gradient exploration towards promising directions in order to facilitate faster learning. 

Examining the effects of partial compliance to tolls is another promising direction. Building on 

recent theoretical study that examines the effects of partial compliance on similar micro-tolling 

schemes (Sharon et al., 2018), studying the practical impacts of partial compliance on E∆-tolling 

is a promising direction to pursue. 

Lastly, another promising direction is examining variants of E∆-tolling that are adapted to 

scenarios where traffic congestion is predictable to some extent. 

6.12. Conclusions 

This chapter presented ∆-tolling, a simple road pricing scheme that makes minimal assumptions 

on the traffic flow model or driver behavior. This scheme involves only two parameters, and only 

requires link travel time and free flow travel times measurements to set tolls. The flexibility of ∆-

tolling was demonstrated by applying it in three very different contexts: a day-to-day pricing 

framework where delay is determined by link performance functions and a static equilibrium 

model; a within-day adaptive tolling framework using the CTM for dynamic network loading, with 

adaptive route choice but no equilibrium; and an adaptive tolling application using a new 

reservation-based intersection scheme for automated vehicles, evaluated in microsimulation. In all 

of these cases, the ∆-tolling scheme was able to achieve significant benefits (measured in average 

travel time or social welfare) over the no-toll case, even without knowledge of the different traffic 

models being used, or the different assumptions on driver behavior. Benefits were seen both in 

small, artificial grid networks with randomized parameters as well as in larger networks 

representing real-world cities. We also note that ∆-tolling does not necessarily require a computer-

controlled vehicle; it only requires computer-controlled route choice. Current smartphone software 

already provides navigation to human drivers, and such software could be modified to interact with 

tolling systems. 

The ∆-tolling scheme represents an advance over previously suggested toll schemes, by not 

requiring any of the following assumptions: that demand is known or fixed, that roadway capacity 

is known or fixed, that the value of time is homogeneous; that the traffic model is known. 

Furthermore, ∆-tolling is applicable across large networks and aims to optimize social welfare. As 

discussed in Section 6.1, all previous work we are aware of makes one or more of these 

assumptions, all of which have significant practical implications. As a few examples, drivers are 

unlikely to voluntarily report all of their trips to the tolling agency (so that demand is not fully 
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known), all traffic models are approximations to real traffic flow, and what is optimal for a single 

corridor may not be optimal over a larger network. Our aim in presenting ∆-tolling is to show that 

substantial benefits can be obtained even without knowing all of this information. 

∆-tolling is simple to implement since it requires measuring only two variables: current travel time 

and free flow travel time, both measurements are feasible with current technology. It is robust to 

the underlying traffic model and does admit optimality results under certain assumptions (Model 

A). Even when optimality is not provable, ∆-tolling results in significant average travel time 

reduction in Models B and C. The fact that ∆-tolling gains significant improvements over three 

different traffic models suggests it may be beneficial in other models as well, including real-life 

traffic. 

This chapter also introduced enhanced ∆-tolling, a micro-tolling assignment scheme that builds on 

the previously suggested ∆-tolling scheme. The previously suggested ∆-tolling scheme makes use 

of two global parameters, β and R, to tune the system for optimized performance (minimal total 

travel time or maximal social welfare). 

Enhanced ∆-tolling generalizes ∆-tolling in two complementary ways. First, recognizing that 

different links in the network have different attributes (length, capacity, speed limit), enhanced ∆-

tolling considers individual β and R parameters per link. Second, given the resulting large 

parameter set (twice the number of links), enhanced ∆-tolling suggests a policy gradient RL 

approach for tuning and optimizing these parameters. 

Experimental results suggest that tuning the R parameter while keeping a global β parameter 

performs best overall (with regard to total travel time, social welfare, worst case performance, and 

convergence rates). 
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Chapter 7. Partial Compliance with Tolls 

This chapter examines the impact of tolls on the travel time cost of a transportation network when 

only a portion of the agents traversing the network take tolls into account when planning their 

route. More specifically, we address the question: which subset of agents provides the most system 

benefit if they are compliant with an approximate marginal cost tolling scheme? Since previous 

work suggests this problem is NP-hard, we present three different heuristic methods as possible 

answers to this question. Our experimental results on three real-life traffic scenarios suggest that 

evaluating the marginal impact of a given agent serves as a particularly strong heuristic for 

selecting an agent to be compliant. Results from using this heuristic for selecting 7.6% of the 

agents to be compliant achieved an impressive increase of up to 10.9% in social welfare over not 

tolling at all. The presented heuristics and conclusions can help practitioners target specific agents 

to participate in an opt-in tolling scheme. 

In this chapter, we consider a routing scenario in which a subset of agents is controlled centrally 

(compliant agents), while the remaining are self-interested agents. We model the system as a 

Stackelberg routing game (Yang et al., 2007) in which the decision-maker for the centrally 

controlled agents is the leader, and the self-interested agents are the followers. In this chapter, we 

provide a computationally tractable methodology for: 

1. Determining the maximum number of self-interested agents that a system can tolerate at 

optimal flow. 

2. Determining whether a given subset of centrally controlled agents is sufficient to achieve 

system optimum (SO). 

3. Computing the actions the leader should prescribe to a sufficient set of compliant agents 

in order to achieve SO. 

A known fact in routing games is that agents seeking to minimize their private travel time need 

not minimize the total system’s travel time (Pigou, 1920b; Roughgarden and Tardos, 2002). That 

is, self-interested agents may reach a user equilibrium (UE) that is not optimal from a system 

perspective. However, if all agents are assigned paths with minimum system marginal cost then 

the system will achieve optimal performance (Pigou, 1920b; Beckmann et al., 1956; Dietrich, 

1969). 

Therefore, from a system manager perspective, it is desirable that all agents traversing a network 

would strictly utilize minimal marginal cost paths, even if such paths are not of minimum travel 

time for an individual agent. However, in many important scenarios, it will not be possible to 

enforce path assignment on all agents, but it may be possible to affect the behavior of a subset (the 

compliant agents). As a motivating example, consider an opt-in tolling system where drivers are 

given positive incentives to enroll but, in exchange, they will be subject to tolls that affect their 

route choice (Sharon et al., 2017a). 
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We show that, in the general case, computing the optimal assignment of compliant agents is NP-

hard. Therefore, we focus on the specific scenario where the portion of compliant agents is 

sufficiently large to achieve SO. We present a novel linear program (LP) representation for 

computing the maximal portion of self-interested agents that allow the system to achieve SO and 

to determine whether a given set of compliant agents is sufficient to achieve SO. Furthermore, we 

provide a method to tractably compute the flow assignment for the compliant agents such that SO 

performance is guaranteed. 

Experimental results, obtained using a standard traffic simulator, are provided and demonstrate 

that the number of compliant agents necessary to achieve SO can be a relatively small percentage 

of total flow (between 13% and 53%). 

7.1. Motivation 

Political factors deter public officials from allowing micro-tolling scheme such as ∆-tolling to be 

realized. Road pricing is known to cause a great deal of public unrest and is thus opposed by 

governmental institutions Schaller (2010). To tackle this issue and avoid public unrest, we suggest 

an opt-in micro-tolling system where, given some initial monetary sign-up incentive, drivers 

choose to opt in to the system and be charged for each journey they take based on their chosen 

route. The vehicles belonging to such drivers would need to be equipped with a GPS device as 

well as a computerized navigation system. Given the toll values and driver’s value of time (VOT), 

the navigation system would suggest a minimal cost route where the cost is a function of the travel 

time and tolls. 

While addressing the issue of political acceptance, an opt-in system would result in traffic that is 

composed of a mixture of self-interested and compliant agents (compliant in the sense that the 

system manager can influence their route choice). Such a scenario raises some practical questions 

which are the focus of this chapter, namely, what portion of self-interested agents can the system 

tolerate while still reaching optimum performance? The answer to this question can help 

practitioners to determine both the level and the targeting of incentives in an opt-in system. 

7.2. Problem Definition and Terminology 

The terminology in this chapter follows that presented in the previous chapter. We review the 

relevant concepts and notation in this section. 

7.3. The Flow Model 

The flow model in this work is composed of a directed graph G(V,E), and a demand function d(s,t) 

→ R+ mapping a pair of vertices s,t ∈ V 2 to a non-negative real number representing the required 

amount of flow between source, s, and target, t.20 An instance of the flow model is a {G,d} pair. 

                                                 
20 The demand between any source and target, d(s,t), can be viewed as an infinitely divisible set of agents (also known as a non-atomic flow) 

(Rosenthal, 1973). 



133 

Πs,t denotes the set of acyclic paths from s to t. Define π as the collection of all Πs,t (i.e.,
 ∪s,t∈V 2Πs,t). 

The variable fπ represents the flow volume assigned to path π (in contrast to the previous section). 

Similarly, fe is the flow volume assigned to link e. By definition, the flow on each link (fe) equals 

the summation of flows on all paths of which e is a part. Define the system flow vector as f = 

vect{fπ}. f is said to be feasible if for all s,t ∈ V 2, 
P

π∈Πs,t fπ = d(s,t). 

Each link e ∈ E has a travel time function le(fe) which, given a flow volume (fe), returns the travel 

time (travel time) on e. Following Roughgarden and Tardos (2002) we make the following 

assumption: 

Assumption 1. The travel time function le(fe) is non-negative, differentiable, and non-decreasing 

for each link e ∈ E. 

The travel time of a simple path π for a given flow f, is defined as lπ(f) = 
P

e∈π le(fe). A feasible flow 

f is defined as a user equilibrium (UE) if for every s,t ∈ V 21 and πa,πb ∈ Πs,t with fπa > 0 it holds that 

lπa(f) ≤ lπb(f) [see Lemma 2.2 in Roughgarden and Tardos (2002)]. In other words, at UE, no amount 

of flow can be rerouted to a path with lower travel time when the rest of the flow is fixed. 

Define the system cost associated with link e as ce(fe) = le(fe)fe, the cost of a path π as cπ(f) = 
P

e∈π 

ce(fe) and the cost of a flow f as c(f) = 
P

e∈E ce(fe). Define ) and ). A 

feasible flow f is defined as a system optimum (SO) flow if for every s,t ∈ V 2 and πa,πb ∈ Πs,t with 

fπa > 0 it holds that ) [see Lemma 2.5 in Roughgarden and Tardos (2002)]. In other 

words, at SO, the benefit from reducing the flow along any path is always less than or equal to the 

cost of adding the same amount of flow to a parallel, alternative path. We follow Roughgarden 

and Tardos (2002), and make the following assumption: 

Assumption 2. The cost function ce(fe) is convex for each link e ∈ E. 

Assumptions 1 and 2 imply that the set of SO flows corresponds to the set of solutions of a convex 

program where the objective is to minimize c(f) = 
P

e∈E ce(fe) [see Roughgarden and Tardos (2002) 

Corollary 2.7]. 

7.3.1. Problem Definition 

The focus of this chapter is a scenario where the demand is partitioned into self-interested and 

compliant agents. We define two types of controllers that assign paths to all of the agents. These 

controllers are viewed as players in a Stackelberg game (Yang et al., 2007). 

 SO-controller—Stackelberg leader: the SO-controller aspires to assign paths to the 

compliant subset of agents that, taking into account the self-interested agents’ reaction, 

                                                 
21 The UE enforced by the UE-controller applies only for the self-interested subset of agents. That is, no self-interested agent can benefit from 

unilaterally deviating from its assigned path. 
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optimizes the systems performance (i.e., minimizes total travel time). We refer to flow 

assigned by the SO-controller as compliant flow. 

 UE-controller—Stackelberg follower: considering the compliant agents’ path assignment 

as fixed, the UE-controller assigns paths to the self-interested agents, the UE flow, such 

that a state of UE (as defined above) is achieved.2 

This report addresses these questions: 

1. Given an instance of the flow model {G,R}, what is the maximum number of self-

interested agents that can be assigned to the UE controller and still permit the optimal 

flow? 

2. Given a set of compliant agents and an instance of the flow model {G,R}, can the SO 

controller assign paths to them in such a way that the system achieves SO? 

3. If SO is achievable, how should the SO-controller assign the compliant flow? 

Equivalently, what is the optimal Stackelberg equilibrium? 

To the best of our knowledge, this work is the first to answer these questions in a general setting. 

7.4. Related Work 

Previous work examined mixed equilibrium scenarios where traffic is composed of UE and 

Cournot-Nash (CN) controllers. A CN-controller assigns flows to a given subset of the demand 

with the aim of minimizing the total travel time only for that subset. For instance, a logistic 

company with many trucks can be viewed as a CN-controller. 

It was shown that the equilibrium for a mixed UE, CN scenario is unique and can be computed 

using a convex program (Haurie and Marcotte, 1985; Yang and Zhang, 2008). On the other hand, 

no tractable algorithm is known for computing the optimal Stackelberg equilibrium for scenarios 

that also include a SO-controller. 

Korilis et al. (1997) examined mixed equilibrium scenarios that do include a SO-controller. In their 

work, a technique for computing a solution for the above questions #1 and #3 was suggested for 

specific types of flow models. Their technique was proven to work for networks with a common 

source and a common target with any number of parallel links. Moreover, the travel time functions 

were assumed to be of a very specific form (linear function with a capacity bound). As a result, 

their solution is not applicable when general networks with arbitrary travel time functions are 

considered. 

Other work (Roughgarden, 2004; Immorlica et al., 2009) studied a variant of the scheduling 

problem where infinitesimal jobs must be assigned to a set of shared machines each of which is 

affiliated with a non-negative, differentiable, and non-decreasing travel time function that, given 

the machine load, specify the amount of time needed to complete a job. When considering a 

scenario where some of the jobs are assigned to machines by a UE-controller while the rest are 

assigned by a SO-controller, they show it is NP-hard to compute the optimal Stackelberg 
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equilibrium (Roughgarden, 2004). Their problem can be viewed as a special case of our problem, 

specifically a network with a single source and target with multiple parallel links between them. 

Given that in this more restrictive setting, computing the optimal Stackelberg equilibrium is 

intractable, the same yet general question in our setting will also be computationally intractable. 

7.5. Computing the Maximal UE Flow 

Given that finding the optimal Stackelberg equilibrium is NP-hard for an arbitrary size of 

compliant flow, this work focuses on scenarios where the size of the compliant flow is sufficient 

to achieve SO. As we will show, finding the optimal Stackelberg equilibrium can be done in 

polynomial time for such cases. In this section, we will present a computationally tractable method 

to compute the maximal UE flow given an instance of a flow model {G,R}, and we will provide a 

method to check, for a given level of compliant flow, whether SO is achievable. 

We define d∗UE as the maximal amount of demand comprised of self-interested agents that the 

system can tolerate and still achieve SO. Additionally, we define d∗s,t as the amount of demand 

from source s to target t that is assigned to the UE-controller. That is, computing d∗UE is equivalent 

to maximizing 
P

s,t d∗s,t. 

We can cast the problem of maximizing  as an optimization problem, specifically a linear 

program (LP). Assigning values to all variables of type  must follow some constraints. 

Specifically, the UE flow from each origin to each destination must be both a subflow of the SO 

flow and must follow a least travel time path. 

Definition 7 (Subflow of flow f). For a directed graph G(V,E) and demand function d, a 

flow f∗ is a subflow of flow f if for all links  and for each pair of nodes 

s,t ∈ V 2, there exists 0 ≤ ds,t ≤ d(s,t) such that 

 
and 

. 

Definition 8 (Zero reduced cost path). A path π, leading from vertex s to vertex t. For a 

flow model {G, d}, a zero reduced cost path with regard to flow assignment f is a path π ∈ 

Πs,t such that ∀π0 ∈ Πs,t : 𝑙𝜋(𝑓) ≤ 𝑙𝜋0(𝑓) and 𝑐𝜋
′ (𝑓) ≤ 𝑐𝜋0

′ (𝑓). A link, e, is defined as a zero 

reduced cost link, with respect to source s, if it is part of any zero reduced cost path 

originating from s and terminating at t for some origin-destination pair (s, t) ∈ V 2. We 

denote the set of zero reduced cost links with respect to source s as 𝐸𝑅𝐶
𝑠 .  

We require that the UE flow (flow routed by the UE-controller) is routed solely via zero reduced 

cost links/paths. This is because the UE controller can only assign flow to minimal travel time 
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paths (otherwise self-interested agents would deviate). The UE flow is also required to follow 

minimal marginal cost paths else it cannot be a subflow of the SO flow. 

Note that it is sufficient to only consider whether or not a link e is part of a reduced cost path from 

the origin s to some destination t (not a specific t) because either link e is along a reduced cost path 

from (s, t), or there is no path only along links in 𝐸𝑅𝐶
𝑠  that includes e. 

We can efficiently compute the set of zero reduced cost links for any origin-destination pair (s, t) 

by applying uniform cost search from s to t and marking all links that are part of optimal paths, 

once with regard to minimal total travel time ( 𝑎𝑟𝑔𝑚𝑖𝑛
𝜋∈Π𝑠,𝑡

(𝑙𝜋(𝑓
𝑆𝑂))), and second with regard to 

minimal marginal cost (𝑎𝑟𝑔𝑚𝑖𝑛
𝜋∈Π𝑠,𝑡

(𝑐𝜋
′ (𝑓𝑆𝑂))). 

Let the constant 𝑓𝑆𝑂  denote the flow vector at a SO solution.22 The SO flow is not unique when 

travel time functions are non-decreasing, and the maximal amount of UE flow permitted may, in 

general, depend on the specific SO flow. Therefore, we must efficiently search over the space of 

SO flows. This is possible due to the following lemmas. 

Lemma 1. For any two flows that achieve SO, fSO and fˆSO, le(fe
SO) = le(f

ˆ
e
SO). 

Proof. Given Assumption 2, a SO flow is the solution to a convex program (Roughgarden 

and Tardos, 2002). The solutions to a convex program form a convex set. Suppose that there are 

two flows that both achieve SO, but for which . Then ce(fe) = le(fe)fe must be a linear 

function between  and  (to see this, note that any convex combination of fSO and fˆSO is also 

an SO solution, but if ce(fe) is not linear, then the total system travel time would be strictly less, a 

contradiction). Since le(fe) is a non-decreasing function, the only way for ce(fe) to be linear is for 

le(fe) to be constant between  and .  

Lemma 2. The set of zero reduced cost paths is identical for all SO solutions. 

Proof. By Lemma 1, all SO flows have the same travel time on each link, so the SO 

solutions can differ by at most flows along a set of links with constant travel time over the range 

of which the two flows differ on those links. Since we assume that the travel time functions are 

differentiable, the derivatives of the travel time function are zero over the range at which they are 

constant. Therefore, ) is constant over the range as well. This implies that any 

path that is reduced cost in one flow is also reduced cost in the other flow, since the travel time 

functions and ) are constant for every link e.  

Define the constant 𝑓�̅�
𝑆𝑂  = sup{f : le(f) = le(feSO)}, i.e., 𝑓�̅�

𝑆𝑂  is the largest flow value such that the 

travel time on link e is equal to the travel time at a SO solution. Note that if le is strictly increasing 

at feSO, then 𝑓�̅�
𝑆𝑂 = feSO. However, if le is constant at feSO, then 𝑓�̅�

𝑆𝑂 > feSO. 

                                                 
22 A SO flow can be efficiently computed as a solution to a convex program (Roughgarden and Tardos, 2002; Dial, 2006b). 
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Given that the zero reduced cost paths are the same for all SO flows (Lemma 2), and any SO flow 

has the same travel time on all links (Lemma 1), it will be sufficient to only search over flows that 

are less than 𝑓�̅�
𝑆𝑂 on each link e ∈ E. 

For each vertex, s, and link, e, define variable 𝑥𝑒
𝑠 denoting the amount of UE flow originating from 

source s that is assigned to link e. Let in(v) denote the set of links for which v is the tail vertex and 

out(v) the set of links for which v is the head vertex. 

Definition 9 (UE linear program). For a given flow model {G,d}, the UE linear program 

is the following: 

 

  (7.1) 

subject to 

 ∀s,t ∈ V 2 (7.2) 

 ∀s ∈ V (7.3) 

 ∀s,t ∈ V 2 (7.4) 

 ∀e ∈ E, s ∈ V (7.5) 

 ∀s,t ∈ V, e ∈ E (7.6) 

 ∀s ∈ V, e ∈ E \ ERCs (7.7) 

The flow  defined by a feasible solution to the UE linear program [given constraints 

(7.2)–(7.7)] is a UE subflow. The flow defined by an optimal solution to the UE linear program is 

an optimal UE subflow. 

Note that the number of variables is |{∀s ∈ V, ∀t ∈ V, ∀e ∈ E : d∗s,t, xe
s}| = O(|V |2 + |V ||E|), and 

the number of constraints is also O(|V |2 + |V ||E|). Therefore, since the number of variables and 

constraints are polynomial in the flow model, the optimal solution to the UE linear program can 

be computed in polynomial time (Karmarkar, 1984). 

Theorem 1. A UE subflow, fUE, defined by a feasible solution to the UE linear program is a 

subflow of a SO flow. 

Proof. First, note that by equations (7.2)–(7.4), the UE subflow, , satisfies flow 

conservation constraints. Equation (7.2) states that the flow along all zero reduced cost paths from 

origin s to destination t must be less then total demand for (s,t). Then Equations (7.3) and (7.4) 

state that the flow out of node v must either be due to the demand generated by node v or the flow 
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into it, minus the flow that reaches v as a destination. Therefore, fe
UE is a subflow of a feasible 

flow. 

What must be shown is that there must exist a SO flow, fSO, such that  for all e. If e is such 

that le is strictly increasing at an SO solution, and therefore will be strictly increasing at all SO 

solutions by Lemma 1, then  and constraint (7.5) guarantees this claim. Let E0 be the set 

of links such that the travel time function is constant at a SO flow. Therefore, it only needs to be 

shown that there exists a SO solution, f, such that for . 

Suppose that there existed a set of links e ∈ E0 such that for all SO flows fSO, feUE > feSO. Let fˆSO be 

an SO flow. Then there must exist an origin-destination pair (s,t) such that there are two sets of 

paths Π>,Π< ⊂ Πs,t for which for all , and for all  and all paths 

only differ by links in E0. This is because the total flow between any origin-destination is larger in 

the SO flow by Equation (7.2). Moreover, ) since the flow 

along non-constant travel time links constrains the total flow. Move ) units of flow 

from paths in set Π> to paths in set Π< in the SO flow fˆSO. Denote the new flow by f0. The total 

travel time for f0 cannot increase because the flow has only increased on constant travel time links, 

and the new flow does not exceed  on any link. The total travel time also cannot have decreased 

because fˆSO was an SO flow, so f0 is also an SO flow. Continue this procedure until there does not 

exist a link e ∈ E0 for which  exceeds the transformed SO flow. Then we have constructed an SO 

flow, f, in which, for all links , a contradiction.  

Lemma 3. For a network {G,d}, let f∗ be a subflow of a feasible flow f. Then the flow f0 such that 

 is also a subflow of f. 

Proof. First, 0 , by the definition of a subflow. Now set d0
s,t = d(s,t) − d∗s,t. Then for 

all s,t ∈ V 2, , and similarly for

  

Theorem 2. The optimal value of the UE linear program for a network instance {G,d} is the 

maximum amount of UE agents that the network can support and achieve SO. 

Proof. First, by Theorem 1, there exists an SO flow such that the optimal UE subflow, fUE, 

is a subflow of the SO flow, and by Lemma 3, there exists a subflow of compliant agents that can 

achieve the SO solution. Moreover, by the definition of the UE linear program and Lemma 2, the 

UE flow is only along zero reduced cost paths. By the definition of zero reduced cost paths, all UE 

agents are willing to take the assigned paths. Therefore, the SO solution is achievable with the UE 

flow, and there is some volume of UE flow that is equal to the objective of the UE linear program. 

Now, suppose that there was another UE flow assignment, f0, for which compliant flow could be 

assigned in such a way that the SO total system travel time was achieved and the total UE flow 

volume was larger than the value returned by the UE linear program. Note that this flow assignment 

(f0) must be a subflow of some SO flow, f. Moreover, by the definition of UE flow and the fact that 

all paths in a SO solution are minimum marginal cost paths, all paths assigned with a UE flow 
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greater than zero must be a zero reduced cost path. Therefore, the flow f0 satisfies the equations 

(7.2)-(7.6), and since the UE linear program returns the optimal UE flow assignment under these 

constraints, this is a contradiction.  

While we’ve demonstrated that we can compute the maximal UE flow that permits an SO solution 

given the appropriate assignment of the compliant flow, it is likely that a more common problem 

would be to determine, for a given set of compliant agents, whether or not it is possible to achieve 

SO with that set. Our methodology also provides an answer to this question, as the following 

Corollary demonstrates. 

Corollary 1. For a given network instance {G,d} and given a set of compliant demand, dC
s,t, from 

each origin-destination pair s, t ∈ V 2, there exists a compliant flow fC such that the network 

achieves SO if and only if there exists an  for all s ∈ V and e ∈ E such that ds,t
UE

 = d(s,t) − ds,t
C

 

and  are a solution to the UE linear program. 

Proof. By Theorem 1, any solution to the UE linear program defines a subflow of an SO 

flow. Therefore, if dUE
s,t and xs

e is a solution, there exists an assignment of the compliant flow that 

achieves SO. 

Moreover, if there exists an assignment of the complaint flow, fC, such that a UE subflow with 

demands rs,tUE achieves SO, then the UE flow is only along zero reduced cost paths by definition 

of UE flow and SO, and the UE subflow is feasible. Therefore, the decomposed UE flow satisfies 

the constraints of the linear program.  

7.6. Flow Assignment for Compliant Agents 

Given that we can now determine both the maximal amount of UE flow that a system can tolerate 

and achieve SO and, for a given set of compliant agents, whether or not a system can achieve 

optimum, we are only left with assigning the compliant flow to paths. This section tackles the 

question of how to assign paths to a, sufficiently large, set of compliant agents such that SO is 

achieved. 

The methodology from the previous section immediately suggests a solution. Given a network 

instance {G,d}, suppose that we have compliant demand equal to rs,tC for all s, t ∈ V 2. Then we must 

find a SO flow, fSO, such that dCs,t and dUEs,t = d(s,t) − dCs,t permit subflows of the SO solution. Such 

a SO flow must exist by Theorem 1 and Corollary 1. 

The first step is to compute the UE subflow, fUE, given UE demand. From the previous section: 

this exists and is computationally tractable. Any feasible subflow, fC, with demand dCs,t such that 

the total flow along link e satisfies  has travel time equal to the SO solution, and 

the flow , by Lemma 1, is an SO solution. 
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We can compute fC with the following linear program: 

max 1 
feC 

subject to 

 

 
∀v ∈ V 

 
∀v ∈ V 

 ∀e ∈ E 

We know that a solution to the above linear program exists and it can be computed tractably. 

The final step is to decompose the compliant flow, fC, into a per path assignment for each origin-

destination pair (s,t) in order to assign individual agents to a path. This can be done in time O(|V 

||E|) using standard flow decomposition algorithms [see Section 3.5 of Ahuja, Magnanti, et al. 

(1993) for a discussion]. 

7.7. Experimental Results 

We are interested in the viability of opt-in micro-tolling schemes to more efficiently utilize road 

networks. As such, we have undertaken an empirical study to investigate the minimal amount of 

compliant flow required for SO (d∗UE) in six realistic traffic scenarios over actual road networks. 

7.7.1. Scenarios 

Each traffic scenario is defined by the following attributes: 

1. The road network, G(V,E), specifying the set of vertices and links where each link is 

affiliated with a length, capacity and speed limit. Networks are, following standard 

practice, partitioned into traffic analysis zones (TAZs) and each zone contains a node 

belonging to V called the centroid. All traffic originating and terminating within the zone 

is assumed to enter and leave the network at the centroid. 

2. A trip table which specifies the traffic demand between pairs of centroids. The demand 

function R between nodes other than centroids is set to zero. 

The following benchmark scenarios were chosen both for their diversity of topology and traffic 

volume and their widespread use within the traffic literature: Sioux Falls, Eastern Massachusetts, 

Anaheim, Chicago Sketch, Philadelphia, and Chicago-regional. All traffic scenarios are available 

at https://github.com/bstabler/TransportationNetworks. Figure 7.1 depicts three representative 

network topologies (the three smallest networks). 
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Figure 7.1 Three representative network topologies: I - Sioux Falls, SD, II - Eastern Massachusetts 

(ellipsoids represent different zones), III - Anaheim, CA 

7.7.2. Results 

Our results were obtained using a macroscopic simulator (see Section 7.11). Table 7.1 presents the 

percentage of flow that must be compliant in order to guarantee an SO solution for six different 

traffic scenarios. Each scenario is affiliated with the number of vertices, links, and zones 

comprising the affiliated road network as well as the number of trips that make up the affiliated 

demand. 

Table 7.1 Required fraction of compliant agents given as “% compliant” for different scenarios 

Scenario Vertices Links Zones Total Flow UE TTT SO TTT % Improve Threshold % compliant 
Sioux Falls 24 76 24 360,600 7,480,225 7,194,256 3.82 6.19E-11 13.04 
Eastern MA 74 258 74 65,576 28,181 27,323 3.04 3.04E-13  

Anaheim 416 914 38 104,694 1,419,913 1,395,015 1.75 8.05E-11  

Chicago S 933 2,950 387 1,260,907 18,377,329 17,953,267 2.31 9.14E-10 

 
Philadelphia 13,389 40,003 1525 18,503,872 335,647,106 324,268,465 3.39 4.20E-09  

Chicago R 12,982 39,018 1790 1,360,427 33,656,964 31,942,956 5.09 4.14E-07  

Note: The required fraction of compliant agents is given as “% compliant” for different 
scenarios along with network specifications for each scenario: number of vertices, links 

and zones followed by the Total Travel Time (TTT) at UE (0% compliant agents) and SO 
(100% compliant agents). The percentage of improvement of the SO TTT over the UE 

TTT is given as “% improve.” 

 

The columns “UE TTT” and “SO TTT” represent the total travel time (in minutes) over all agents 

for the case where 100% of the agents are controlled by the UE controller (UE solution) and when 

100% of the agents are controlled by the SO controller (SO solution) respectively. The percentage 

of improvement in total travel time between UE TTT and SO TTT is also shown under “% 

improve.” 
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The percentage of required compliant flow (formally rUE∗ /|R| where  )) as computed 

by the UE linear program (Definition 9) is presented for each scenario under “% compliant.” 

The results suggest that as the size of the network (i.e., the number of nodes and vertices) increases, 

a greater fraction of compliant travelers is needed to ensure the network achieves SO. This appears 

to be due to an increasing number of used paths at the SO solution as the network size increases. 

As the number of paths grows, the set of zero reduced cost paths grows more slowly, and, therefore, 

a higher percentage of compliant agents is required. 

7.8. Targeting the Compliant Drivers in Non-stylized Traffic 
Models 

A key problem towards implementing an opt-in micro-tolling system in real-life setting is the 

problem of identifying the set of agents who provide the most benefit to the system if they opt in. 

While it was shown above that it is possible to achieve system-optimal performance with partial 

compliance (Sharon et al., 2018), it is an open question as to how the set of compliant agents 

should be selected in the general case. Solving this problem would allow practitioners to identify 

the set of agents that maximizes system benefit and target them with specific incentives to become 

compliant. Next, we address this problem by answering the question, “Given that we can select n 

compliant agents, how should we select the n agents to maximize system social welfare?” 

Prior work on a related problem suggests that computing the optimal set of compliant agents is 

NP-hard (Sharon et al., 2018). Thus, we develop heuristic methods for determining the set of 

compliant agents that will maximize social welfare for arbitrary n. These heuristics estimate the 

system’s marginal benefit from assigning a given agent as compliant. In particular, our proposed 

Time Evaluation heuristic selects agents with lower VOT; the Path Travel Time heuristic selects 

agents with longer routes; and the Difference in Marginal Cost Paths heuristic selects agents 

according to the difference between the expected marginal impact of their chosen path if non-

compliant and that of the path chosen if they are compliant. We present experimental results 

obtained from a dynamic traffic assignment simulation of three real-world traffic scenarios. The 

results show that assigning the compliant set according to the Difference in Marginal Cost Paths 

heuristic results in the best overall performance over the different scenarios. Moreover, the results 

suggest that a significant improvement in traffic flow can be achieved when as little as 7.6% of the 

agents are compliant 

7.9. The Traffic Model 

We consider a scenario where a set of agents, A, must be routed across a traffic network given as 

a directed graph, G(V,E). Each link e ∈ E has a travel time, le, defined to be the amount of time 

needed to traverse e. While le may change with the number of agents using e, we use le to denote 

the travel time assuming current conditions remain the same. A path, π, is an ordered set of 

adjacent links. The travel time of π is defined to be lπ = Pe∈π le. Each link e is also assigned a toll 
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value τe that may change at every discrete time-step k. For any path π we define the total tolls 

along π as τπ = Pe∈π τe. 

Each agent a ∈ A begins from a source node, sa ∈ V at time ta and travels towards a target node, ta 

∈ V . A path, π, is valid for a given agent, a, if it leads from sa to ta. We denote the VOT for agent 

a as va, i.e., the agent’s valuation of a delay of one time unit. Agents are assumed to be self-

interested and, hence, follow the least cost path leading from sa to ta. In this work, we define two 

types of agents: 

 Compliant - compliant agents are subject to tolls. As a result, a compliant agent, a, seeks 

to minimize the generalized cost of its route: Cg(a,π) = lπ · va + τπ. 

 Non-compliant - non-compliant agents are not subject to tolls. As a result a non-compliant 

agent, a, seeks to minimize only the travel time component of its route: Cl(a,π) = lπ · va. 

Since travel time and toll values change, we assume agents continually re-optimize their chosen 

route according to current conditions.23 As a result, an agent might change its planned route at 

every node along its path. 

In addition to agents traveling the network, this work considers a system manager that selects the 

set of compliant agents. We assume selected agents always opt in to the system. The compliant set 

must be chosen in a way that minimizes travel cost, defined to be 

. 

where la is the actual travel time experienced by agent a. Toll costs are considered as transfer 

payments and thus excluded from total travel cost. 

7.10. Selecting Compliant Agents 

This section focuses on traffic scenarios where a subset of the agents is compliant with ∆-tolling 

and are thus traveling on a path, π, that minimizes Cg(a,π) over all valid paths. The rest of the 

agents are considered as non-compliant with tolls and are thus traveling on a path, π, that minimizes 

Cl(a,π) over all valid paths. In contrast to the research presented above (in Section 7.4), the 

following research also considers scenarios where the set of compliant agents is insufficient to 

achieve a SO flow. Specifically, we address the question, “Given limited resources that allow 

recruiting n agents to be compliant. Which set of n agents will the system benefit most from them 

being compliant?” 

We propose three heuristic methods for selecting the compliant set of agents. These methods all 

fit into a family of methods that first assign each agent, a ∈ A, a value from a heuristic function 

and then select n compliant agents using the inverse of the cumulative distribution function (CDF) 

                                                 
23 In principle, agents may predict changing latencies and toll values. However, including prediction in our work requires assuming a model for 

how agents would predict travel time and tolls. 
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of the heuristic value for a single agent selected uniformly from A. More formally, each method is 

defined by a heuristic function, h : A → R, that maps agents to real values. Let A ∼ A be an agent 

sampled from A with uniform probability on all agents and define H as the random variable giving 

the value h(A). Let F be the CDF of H, i.e., F(x) is the probability that h(A) < x. Each method 

selects n compliant agents by selecting all agents with 

) 

to be compliant where F−1 is the inverse of F. In practice, the true inverse CDF is likely unknown 

and will need to be estimated empirically. 

We propose three instantiations of this general method that differ in how they define h: Time 

Evaluation, Path Travel Time, and Difference between Marginal Cost Paths. 

7.10.1. Time Evaluation 

The Time Evaluation (TE) heuristic gives higher preference to agents with lower VOT (va). The 

intuition behind this heuristic is that agents with low VOT are more influenced by tolls. As a result, 

such agents are more likely to change their route to one that has lower tolls and, consequently, less 

marginal impact on the system. The TE heuristic function is defined as hTE(a) = −va. This function 

value can be computed in time O(1) for any agent. 

7.10.2. Path Travel Time 

The Path Travel Time (PTT) method gives higher preference to agents that are traveling for longer 

time. The intuition behind this heuristic is that agents traveling for longer time tend to have more 

alternative routes to choose from. Consequently, they are more likely to have the option to reroute 

to a path with less marginal impact. The PTT heuristic function is defined as hPTT(a) = lπ where π 

= argminπ Cl(a,π) and π is valid for a. Computing this heuristic requires computing the shortest 

path [time complexity of O(|V |2)] (Dijkstra, 1959).24 

7.10.3. Difference between Marginal Cost Paths 

Our final heuristic, denoted DMCP, uses the difference between the tolls along the compliant path 

and tolls along the non-compliant path. The marginal cost tolls for agent, a, along any path, π, 

represent the system’s utility loss from agent a when routing through path π. The system’s benefit 

from assigning an agent as compliant can, therefore, be computed as the difference between 

marginal cost tolls along its compliant and non-compliant routes. For agent a, denote the compliant 

path πg = argminπ Cg(a,π) and the non-compliant path πl = argminπ Cl(a,π). The DMCP heuristic 

function is defined as hDMCP = (1−α)(τπg −τπl)+αhTE(a) where α is a small, positive constant (we use 

0.01). The effect of the second term is to act as a tie-breaker when many agents have similar values 

for the first term. Unlike our previous two methods, preliminary experiments showed that 

approximately 80% of the agents had similar DMCP values on one of our tested scenarios. When 

                                                 
24 Optimizations may be applied to lower the complexity. In any case, the heuristic is feasible to compute. 
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a large number of agents have a similar h value, it becomes difficult to differentiate which ones 

we want to select as compliant. The weighted combination allows us to prefer lower VOT agents 

when agents have similar values for τπg −τπl. Computing this heuristic requires computing the 

shortest path with each cost function [time complexity of O(|V |2)]. In our experimental setting, a 

marginal cost toll (MCT) is infeasible to compute in practice. Thus, we use ∆-tolling to compute 

the tolls for the DMCP heuristic. 

7.11. Empirical Study 

We compare the relative performance of the proposed heuristics in several simulated traffic 

scenarios. In contrast to prior work on partial compliance presented in Section 7.4, we use a more 

realistic cell-transmission model simulator and use ∆-tolling as a real-time approximation method 

to MCT. We design our empirical study to address the following questions: 

1) Do the proposed heuristics improve over a random assignment of compliant and non-

compliant agents? 

2) Which of the proposed heuristic methods performs best and under what compliance 

levels? 

Analyzing the results of the initial experiments led us suspect that the optimal R parameter in ∆-

tolling changes as a function of the compliance levels. This understanding, in turn, led us to a 

second set of experiments, aiming to address the question: 

3) How does the compliance level relate to the optimal R value in ∆-tolling? 

In all experiments, our metric of interest is total travel cost as defined in Section 7.9. 

We compare the relative performance of the proposed heuristics within a dynamic traffic 

assignment simulator (Chiu et al., 2011), which models traffic through the cell transmission model 

(Daganzo, 1994a, 1995a). See Section 7.4 for more details. 

7.11.1. Traffic Scenario Specification 

We evaluated the performance of the different heuristics using three traffic scenarios: Sioux Falls, 

Austin, and San Antonio. Each scenario is specified by a network and a demand table that provides 

the source node (sa), start time (ta), and destination node (da) for each agent. Following are the 

network and demand table sizes for each scenario: 

 Sioux Falls – (LeBlanc et al., 1975) — this scenario is widely used in the transportation 

research literature (Bar-Gera et al., 2013; Levin and Boyles, 2015), and consists of 76 

directed links, 24 nodes (intersections), and 28,835 agents spanning 3 hours. 

 Austin – (Levin et al., 2015b) — this network consists of 1,247 directed links, 546 nodes, 

and 62,836 agents spanning 2 hours during the morning peak. 

 San Antonio - this network consists of 1,662 directed links, 864 nodes, and 10,858 agents. 
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The networks for all scenarios are depicted in Figure 7.2. The traffic scenarios are available online 

at https://goo.gl/SyvV5m. 

 
 (a) Sioux Falls (b) Austin (c) San Antonio 

Figure 7.2 Traffic scenarios used in the experiments 

During simulation, agents respond to changing link travel times and toll values by adapting their 

routes at each node. In particular, agents compute the minimum cost path from their current node 

n to their target ta according to their cost function (Cg if compliant; Cl if non-compliant). 

The simulation settings were identical to those presented earlier. For each compliance level and 

heuristic method we run the simulator 10 times and average the resulting total social welfare 

values. 

7.11.2. Determining Heuristic Thresholds 

Our three proposed heuristic methods require the empirical CDF of heuristic values over agents. 

For the TE heuristic, we simply use the inverse Dagum distribution. For the PTT and DMCP 

heuristics we estimate the inverse CDF by running the simulation with all vehicles as non-

compliant.25 When an agent, a, enters the system we compute h(a) and sort the heuristic’s values 

of all agents once the simulation is complete. If the sorted h values are indexed as h0...hi...h|A| then 

the empirical CDF is defined as F−1(x) = h|A|·x for 0 ≤ x ≤ 1. 

Due to stochasticity in the VOT of agents, using the empirical inverse CDF may result in greater 

or fewer than n compliant agents. When plotting results we use the true compliance level but then 

aggregate results to the nearest 5% of compliance level when averaging performance for each 

compliance level. For example, if a threshold results in 16% agents being compliant then we record 

and present the compliance level as 15% when averaging results. 

                                                 
25 In real-life scenarios, a CDF function can be approximated for the PTT and DMCP heuristics through sampling of real-life observations. 

https://goo.gl/SyvV5m
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7.11.3. Heuristics Comparison 

Our main empirical analysis compares our three heuristic methods for various levels of 

compliance. We also include a baseline (denoted RANDOM) that selects compliant agents 

randomly. The top row of Figure 7.3 shows results for each heuristic as we vary the compliance 

level with R = 1 × 10−4,β = 4 [the parameter settings used by Sharon et al. (2017a)]. 

We first note that in all scenarios and for all heuristics (Figure 7.3, top row), the system’s 

performance increases to an optimum and then remains constant or decreases. We hypothesize that 

the decrease in performance is most likely related to an R value that is too high—causing 

performance to deteriorate as more agents become susceptible to spiking toll values and 

oscillation. We test this hypothesis by repeating the same set of experiments with R = 1×10−5. We 

display results for these experiments in the bottom row of Figure 3.3. These results suggest that 

the system can benefit from a higher R value when less agents are compliant. In the following 

subsection we will revisit this observation. 

 
 (a) Sioux Falls (1 × 10−4) (b) Austin (1 × 10−4) (c) San Antonio (1 × 10−4) 

 
 (d) Sioux Falls (1 × 10−5) (e) Austin (1 × 10−5) (f) San Antonio (1 × 10−5) 

 

The x-axis gives the fraction of agents who are compliant and the y-axis gives the total 
social welfare: Pa∈A −va · la. The “No Tolls” baseline corresponds to zero compliant agents 

(|C| = 0). The ideal result is to have as high a social welfare value as possible with a small 
number of compliant agents. 

Figure 7.3 Each figure shows the average social welfare for each heuristic method 

We observe the DMCP heuristic to perform best—in Sioux Falls and San Antonio it reaches the 

maximal or near maximal observed performance with approximately 20% of agents compliant 

when R = 1×10−4. In Austin (R = 1 × 10−4), DMCP requires 40% of agents to be compliant to reach 

optimal social welfare—half as many as TE or the baseline. With R = 1×10−5, DMCP also leads to 
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greater social welfare with less agents compliant. The PTT heuristic performs second best until 

approximately 60% of agents are compliant at which point the performance gap between all 

heuristics is small. Using agent’s VOT (TE) is a small improvement over randomly selecting 

compliant agents (RANDOM). We also note that RANDOM perform slightly better than the 

proposed heuristics in the San Antonio (R = 1×10−4) experiment for high compliance levels. This 

result may indicate that it is possible for our heuristics to find local optima since they are selecting 

compliant agents greedily. 

7.11.4. Setting Delta-tolling Parameters 

As noted in the previous subsection, it may be better to have less compliant agents for certain 

values of the R parameter. Sharon et al. 2017b reported β = 4 and R = 10−4 as the best performing 

static values overall. However, these values were reported for a scenario where 100% of the agents 

were compliant with ∆-tolling. Lower R values mitigate negative effects due to rapidly changing 

tolls. When tolls change quickly, many agents may switch to a new path which causes the travel 

time (and tolls) on the new path to spike causing demand to swing back the other way. When only 

a subset of agents complies with tolls, we hypothesize that a higher R value (> 10−4) will perform 

better. The reasoning behind this hypothesis is that only agents that are affected by the tolls are 

susceptible to oscillation, and so fewer compliant agents would result in less oscillation of traffic. 

Moreover, a higher R value contributes to a toll value that is more reactive to observed traffic. 

To test this hypothesis, we evaluate different values of R for each of our heuristics at different 

compliance levels. We also compare different R values for our RANDOM baseline. β = 4 in all 

experiments. Figure 7.4 contains the results for each method. 

Across heuristics we see that higher R values lead to worse social welfare as the number of 

compliant agents increases. In Figure 7.4(a), we see that the maximal performance obtained by the 

DMCP heuristic is sensitive to the R parameter. For R ≥ 1 × 10−4, social welfare peaks at 

approximately the 20% compliance level and then remains constant or decreases. The height of 

the peak is greatest for R = 1 × 10−3. In Figure 7.4(b), we see that PTT is less sensitive to the R 

parameter. R = 1 × 10−4 performs the best across all compliance levels. With R = 1 × 10−4, 

performance does not decrease as the number of compliant agents increases. Finally, we see similar 

performance between TE and RANDOM: higher R values lead to better performance with less 

compliant agents. However, as the compliance level increases performance decreases more for 

higher R values. 
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 (a) DMCP (b) PTT 

 
 (c) TE (d) RANDOM 

 
Each figure shows seven curves, each representing a different R value. The x-axis 

represents different compliance levels (between 0 and 1) while the y-axis gives the social 
welfare (higher values are better). 

Figure 7.4 Compliance level (x-axis) vs. social welfare (y-axis) for different R values and different 
heuristics 

7.12. Discussion and Future Work 

This chapter discussed a scenario where a set of agents traverse a congested network, while a 

centralized network manager is seeking to optimize the flow (minimizes total travel time) by 

influencing the route assignment of a set of compliant agents. For a stylized, macroscopic traffic 

model a methodology was presented for computing the minimal volume of traffic flow that needs 

to be compliant in order to reach a state of optimal traffic flow. Moreover, the methodology extends 
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to inferring which agents should be compliant and how exactly the compliant agents should be 

assigned to paths. Experimental results demonstrate that the required percentage of agents that are 

compliant is small for some scenarios but can be greater than 50% in others. 

For non-stylized traffic models, we consider the problem of how to select compliant agents. Since 

selecting the optimal set of compliant agents has been suggested to be NP-hard, we proposed three 

heuristic methods for doing so. In experiments with a dynamic traffic assignment simulator we 

demonstrate that across all traffic scenarios and all heuristics, any number of compliant agents is 

better than none (assuming that the parameters for ∆-tolling are correctly tuned). This result 

indicates that if even a small number of agents can be incentivized to participate in a marginal cost 

tolling system (such as ∆-tolling) we may see an improvement in the system’s performance. 

Furthermore, this result demonstrates feasibility of an opt-in micro-tolling system when only a 

subset of agents opts in. 

While any number of compliant agents is better than none, we show that our proposed heuristic 

methods lead to further improvements in system performance compared to assigning a random 

subset of agents to be compliant. In particular, across all traffic scenarios we see that the DMCP 

heuristic can obtain close to the performance of 100% compliance. In fact, in the San Antonio 

scenario with 7.6% compliant agents, we see an improvement of 10.9%, and in Sioux Falls we see 

an improvement of 21.1% with 18.7% compliant agents. 

In our empirical analysis we make two assumptions that may not be reflective of opt-in micro-

tolling systems in practice. First, we assume that agents selected by one of our heuristic methods 

become compliant with probability 1. In the real world it is unlikely that all selected agents will 

decide to opt in. Future work should consider the robustness of our proposed heuristic methods 

when selected agents may remain non-compliant with some probability. Second, we considered 

traffic scenarios where each agent makes a single trip through the network while in the real world, 

people may make multiple trips every day. In such a setting, it may be possible to obtain better 

performance by considering the frequency of trips that an agent makes. 

Finally, it is also important to consider how to incentivize agents to participate in a micro-tolling 

system. A first step towards addressing this problem could be to investigate how travel times differ 

between compliant and non-compliant agents.  
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Chapter 8. Performance Guarantees for Micro-Tolling 

As was discussed above, charging marginal cost tolls (MCT) from self-interested agents 

participating in a congestion game leads to optimal system performance, i.e., minimal total travel 

time. This chapter studies the impact of charging MCT with some fixed factor error on the system’s 

performance. We prove that underestimating MCT results in a system performance that is at least 

as good as that obtained by not applying tolls at all. This result might encourage adoption of MCT 

schemes with conservative MCT estimations. Furthermore, we prove that no local extrema can 

exist in the function mapping the error value, r, to the system’s performance, TSTT(r). This result 

implies that accurately calibrating MCT for a given network can be done by identifying an 

extremum in TSTT(r) which, consequently, must be the global optimum. Experimental results 

from simulating several large-scale, real-life traffic networks are presented and provide further 

support of our theoretical findings. 

8.1. Preliminaries 

This chapter assumes a standard flow model that is common in the routing and congestion games 

literature (Yang et al., 2007; Pigou, 1920b; Roughgarden and Tardos, 2002). The terminology for 

this model follows the previous two chapters. 

8.1.1. The Flow Model 

Recall that the flow model is assumed to be composed of a directed graph G(V,E), and a demand 

function d(st) → R+ mapping a pair of vertices, s,t ∈ V 2, to a non-negative real number representing 

the required amount of flow between source, s, and target, t. 

As before, the variable fπ represents the flow volume assigned to a path, π. Similarly, fe is the flow 

volume assigned to link e. A flow is defined as valid if: 

• fπ ≥ 0 for all paths π; that is, no path is assigned negative flow. 

• the flow on each link (fe) equals the summation of flows on all paths of which e is a part. That 

is, fe = Pπ∈Πe fπ where Πe is the set of acyclic paths that include link e. 

A valid flow is defined as feasible if it satisfies d(st). 

Definition 10 (Feasible flow). A flow is defined as feasible if it is valid and the traffic 

demand is satisfied, that is, 
P

π∈Πst fπ = d(st) for all node pairs (s,t). 

For this work we make the following regularity conditions on the travel time functions, which are 

a standard assumption in the transportation literature (Patriksson, 1994). 

Assumption 3. The travel time function le(fe) is non-negative, convex, and non-decreasing for each 

link e ∈ E. 
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Define the total travel time associated with link e as Te(fe) = le(fe)fe. The total system travel time 

(TSTT), for a given flow f, is TSTT(f) = Pe∈E Te(fe). 

A feasible flow f is defined as a system optimum (SO) if TSTT(f) is minimal over the set of feasible 

flows. We use TSTT(UE) to denote the total travel time at the UE solution. Similarly, TSTT(SO) 

denotes the total travel time at the SO solution. 

It is easy to show that Assumption 3 implies that TSTT(f) is strictly convex in f. As a result, unique 

UE and SO flows exist26  (Beckmann et al., 1956; Dafermos and Sparrow, 1969). 

8.1.2. Applying Tolls 

A recent body of work (Yang et al., 2004; Zhou et al., 2015; Chen et al., 2018; Sharon et al., 2017a) 

examined mechanisms for assigning tolls to links with the goal of affecting the route choice of 

self-interested agents. Such work assumes that drivers are willing to sustain time delays in return 

for monetary gain (or avoiding monetary loss). This line of work requires translating time delays 

into monetary value using the agents’ value of time (VOT). VOT represents the agents’ monetary 

evaluation of a single unit of time. Following this line of work, we make the following definition 

and assumption. 

Definition 11 (generalized-cost UE (GUE)). Let τπ be the toll associated with path π (the 

sum of the tolls on its constituting links). A feasible flow f is a GUE if for every s,t ∈ V 2 

and πa,πb ∈ Πst with fπa > 0 it holds that lπa(f) × V OT + τπa ≤ lπb(f) × V OT + τπb. In other 

words, at GUE, no amount of flow can be rerouted to a path with lower generalized cost 

(travel time times VOT plus toll) when the rest of the flow is fixed. 

Assumption 4. A solution for a traffic scenario follows the GUE principle. 

Note that Definition 11 makes a latent assumption of homogeneous VOT. Nonetheless, 

Assumption 4 does not require homogeneous VOT. Dealing with heterogeneous VOT, however, 

requires a different definition for GUE, one that addresses a set of agents instead of a flow of 

agents. This, in turn, would require a discrete traffic model. Though we expect that the main 

contributions of this report ought to extend naturally to that case, for clarity of presentation, we 

leave consideration of discrete models for future work. 

A traffic scenario is said to be toll-optimized if the set of tolls (τ) causes the SO and GUE solutions 

to align. Specifically, a sufficient (yet not necessary) condition for an optimized system is that τ 

equals the set of marginal cost tolls, τMCT  (Beckmann et al., 1956; Dafermos and Sparrow, 1969). 

Definition 12 (Marginal cost toll). In marginal cost tolling, each agent (infinitesimally 

portion of the flow) is charged a toll equivalent to the damage it inflicts on the system. 

When the travel time functions are differentiable, the MCT for link e equals 

                                                 
26 A flow, f, is considered unique if it maps to a single assignment to all fe variables. The fπ variables, by contrast, might have non-unique values in 

f. 
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That is, the increase in travel time caused by adding one more unit of flow to link e (i.e., 

) multiplied by all the flow that suffers from this increase (i.e., fe). 

Assuming that the travel time functions are known and differentiable is not practical in many traffic 

models, e.g., the cell transmission model (Daganzo, 1994b, 1995b) or microsimulation models 

(Yang and Koutsopoulos, 1996; Dresner and Stone, 2008; Krajzewicz et al., 2002). Such an 

assumption is certainly not practical for real-life traffic networks. Consequently, Sharon et al. 

(2017a; 2017b) introduced ∆-tolling, a model-free method for approximating MCT when the travel 

time function is unknown. Despite showing reductions in TSTT across markedly different traffic 

models, ∆-tolling, or any mechanism that approximates MCT for that matter, is not guaranteed to 

be toll-optimized. This fact poses a major problem since applying tolls that are different than MCT 

might result in arbitrarily worse TSTT compared to that at the UE (such a scenario is discussed 

later). This chapter makes a first attempt to examine the impact of applying inaccurate MCT. 

Specifically, it provides conditions under which the system performance (TSTT) will be no worse 

than that at the UE solution. 

8.2. Inaccurate Marginal Cost Tolls 

We consider a scenario where the tolls assigned to all links in a network are off by some factor 

from the MCT. Such a scenario might represent a systemic error in evaluating the β parameter in 

∆-tolling [see Sharon et al. (2017b) for exact details]. Another relevant scenario is one in which 

MCT can accurately be computed in units of time delays (e.g., by computing ). In such cases, 

a systemic error in the evaluation of the VOT would result in a constant factor, MCT error. 

Definition 13 (Imperfect MCT scenario). A scenario is said to be Imperfect MCT if the toll 

affiliated with every link, e ∈ E, equals r · τe
MCT for some error factor r ≥ 0. Where τe

MCT is 

the true MCT for link e. 

Define the GUE flow for an Imperfect MCT scenario with error r as fr. As a result, TSTT(fr) 

denotes the TSTT for the GUE flow. Since fr is a function of r, we use TSTT(r) instead of TSTT(fr) 

for brevity. 

8.3. Bounding the System’s Performance 

The following section presents the main contribution of this work, i.e., provable bounds on the 

system’s performance (TSTT) as a function of the error factor r. We begin with several supporting 

lemmas. 

Lemma 4. A GUE flow, f, for an Imperfect MCT system minimizes 

  (8.1) 
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subject to f being feasible (see Definition 10). 

Proof. The Karush-Kuhn-Tucker (KKT) optimality conditions for the above optimization 

problem (see, for instance, Bertsekas, 1999) include the following: 

fp ≥ 0 

lp(fp) + rfplp0 (fp) ≥ cst 

 fp[lp(fp) + rfplp0 (fp) − cst] = 0 

∀p 

∀s,t ∈ V 2, p ∈ Πst 

∀s,t ∈ V 2, p ∈ Πst 

(8.2) 

(8.3) 

 

(8.4) 

The condition given in Equation 8.2 enforces non-negative path flows. The condition given in 

Equation 8.3 enforces that cst is the minimal generalized cost over all paths leading from s to t. The 

condition given in Equation 8.4 enforces that if a path is used (fπ > 0) its travel time must be equal 

to cst. These conditions are met if and only if the solution is a GUE flow (see Definition 11).  

Theorem 3. A unique GUE flow for an Imperfect MCT scenario exists. 

Proof. In order to prove this lemma it is sufficient to show that the objective function given 

in Lemma 4 (Equation 8.1) is strictly convex. The Hessian matrix for Equation 8.1 (H ∈ R|E|×|E|) is 

diagonal, where each entry on the diagonal (representing one edge, e ∈ E) equals: 

  (8.5) 

For any edge, e, the value of Equation 8.5 is strictly positive since: 

• r ≥ 0, see Definition 13. 

0, see Assumption 3. 

• fe ≥ 0, see Definition 10. 

0, see Assumption 3. 

A diagonal matrix with strictly positive entries along its diagonal is positive definite. As a result, 

Equation 8.1 is strictly convex. 

Given that a unique GUE flow that minimizes Equation 8.1 exists, we now turn to evaluating the 

TSTT value for three key r values: 0, 1, and ∞. 

Lemma 5. TSTT(0) = TSTT(UE) 

Proof. Setting r = 0 in Equation 8.1 results in the minimization of 

Z fe 

X le(z)dz 
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 e∈E 0 

subject to the feasibility constraint. This minimization problem results in the UE flow Beckmann 

et al. (1956).  

Lemma 6. TSTT(1) = TSTT(SO) 

Proof. Setting r = 1 in Equation 8.1 results in the minimization of 

X 

fele(fe) e∈E 

subject to the feasibility constraint. This minimization problem translates to minimizing TSTT, 

i.e., an SO flow Beckmann et al. (1956).  

Lemma 7. TSTT(∞) = TSTT(f∞) where f∞ is a UE solution for a scenario in which the travel time 

affiliated with every path, π, equals 

 

 

Proof. Dividing Equation 8.1 by a constant (specifically r) preserves the minimal 

assignment and yields 

 ] (8.6) 

Since limr→∞(1 − r)/(r) = −1, Equation 8.6 converges to 

 ] (8.7) 

The KKT optimality conditions for minimizing Equation 8.7 under the feasibility constraints 

include: 

fπ ≥ 0 

fπlπ0 (fπ) ≥ cst fπ(fπlπ0 

(fπ) − cst) = 0 

∀π 

∀st, π ∈ Πst 

∀st, π ∈ Πst 

(8.8) 

(8.9) 

 

(8.10) 

from which the UE definition (see Section 8.1.2) holds if the travel time function for any path π is 

replaced by 

.  

Lemma 7 implies that at r = ∞ the system performance (TSTT) can be arbitrarily worse than 

TSTT(SO) or TSTT(UE). As an example, consider the network depicted in Figure 8.1. The travel 
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time on the bottom link equals the fraction of flow that is assigned to it. If, for instance, 25% of 

the flow is assigned to the bottom link then the travel time on that link equals 0.25. The travel time 

on the top link equals a constant, C, regardless of the amount of flow that is assigned to it. For C 

≥ 2 the SO and UE align and TSTT(SO) = TSTT(UE) = 1 · R(st). Since the travel time on the top 

link is not a function of the flow, = 0 for the top link while MCT = x∂l∂xπ ≥ 0 for the 

bottom link. As a result, at r = ∞, 100% of the flow from s to t would travel the top link while 0% 

would travel the bottom link. Such a flow would result in TSTT = C ·R(st). It is easy to see that as 

C increases so does the difference between TSTT(∞) and TSTT(SO) or TSTT(UE), potentially to 

infinity. 

 
Figure 8.1 A network where setting r = ∞ results in an arbitrary worse system performance compared to 

both the UE and SO solutions 

Given that no bound on the system’s performance can be given for r = ∞ we turn to examine 

bounds on other values of r. We start by examining values of r that fall between zero and one. 

Lemma 8. Any two error values 0 ≤ r1 < r2 < 1 satisfy TSTT(r1) ≥ TSTT(r2). 

Proof. For simplicity of presentation we use U(r) to denote 

 

Any GUE flow fr must minimize Equation 8.1 (Lemma 4). That is, subject to being feasible, fr 

minimizes the expression rT(r) + (1 − r)U(r). Minimizing Equation 8.1 under r1 requires that 

r1T(r2) + (1 − r1)U(r2) ≥ r1T(r1) + (1 − r1)U(r1) 

and as a result  

r1(TSTT(r2) − TSTT(r1)) ≥ (1 − r1)(U(r1) − U(r2)) 

Similarly, minimizing Equation 8.1 under r2 requires that 

(8.11) 

r2(TSTT(r2) − TSTT(r1)) ≤ (1 − r2)(U(r1) − U(r2)) (8.12) 

Assume, in contradiction to the lemma, that TSTT(r2) − TSTT(r1) > 0. Since 1 − r2 > 0 and r2 > 0, 

Equation 8.12 would require U(r1) − U(r2) > 0. Since all the components of Equations 8.11 and 

8.12 are strictly positive, we can rewrite them as: 

  (8.13) 
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  (8.14) 

From Equations 8.13 and 8.14 we obtain 

  (8.15) 

Since the function f(r) = r/(1 − r) is continuous and strictly increasing for r < 1 then Equation 8.15 

must satisfy r1 ≥ r2 in contradiction to the lemma’s premise.  

Next we turn to examine the behavior of error values that are greater than one. 

Lemma 9. Any two error values 1 < r1 < r2 satisfy TSTT(r1) ≤ TSTT(r2). 

Proof. Assume, in contradiction to the lemma, that TSTT(r2) − TSTT(r1) < 0. Since 1 − r1 

< 0 and r1 > 1 > 0, Equation 8.11 requires U(r1)−U(r2) > 0. Even though the signs of (T(r2)−T(r1)) 

and (1−r1) and (1−r2) are in contrast to the case presented in Lemma 8, rearranging Equations 8.11 

and 8.12 still result in Equations 8.13 and 8.14, which leads to the inequality in Equation 8.15. 

Since the function f(r) = r/(1 − r) is continuous and strictly increasing for r > 1 then Equation 8.15 

must satisfy r1 ≥ r2 in contradiction to the lemma’s premise.  

Following Lemma 8 and 9, we can now provide bounds for an Imperfect MCT system. 

Theorem 4. If 0 ≤ r ≤ 1 then TSTT(r) ≤ TSTT(UE). 

Proof. TSTT(0) = TSTT(UE) (Lemma 5) and TSTT(r) is non increasing in the interval 

[0,1) (Lemma 8). Also TSTT(1) = TSTT(SO) ≤ TSTT(UE) (Lemma 6).  

Theorem 5. If r ≥ 1 then TSTT(r) ≤ TSTT(f∞) when f∞ is a UE solution for a scenario where the 

travel time on every path, π, equals . 

Proof. TSTT(∞) = TSTT(f∞) when f∞ is a UE solution for a scenario where the travel time 

for every path, π, equals fπlπ0 (fπ) (Lemma 7). TSTT(r) is non decreasing for r > 1 (Lemma 9). Also 

TSTT(1) = TSTT(SO) ≤ TSTT(∞) (Lemma 6).  

Theorem 4 implies that when underestimating MCT by a constant factor, 0 ≥ r < 1, the systems 

performance cannot be worse that the one obtained by the UE solution, TSTT(UE). 

Theorem 5 implies that when overestimating MCT by a constant factor, r > 1, the systems 

performance cannot be worse than TSTT(∞). However since TSTT(∞) can be arbitrary worse than 

TSTT(UE) and TSTT(SO), this bound is not as useful as the one provided for the previous case, 0 

< r < 1. 
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8.4. Empirical Study 

In order to validate our theoretical findings, we simulated different traffic scenarios while varying 

the MCT error factor (r). The total system performance (TSTT) was measured for each setting and 

the trends were compared to the above theoretical claims. 

The traffic scenario, traffic model, and experimental settings were chosen to be identical to those 

used in Section 8.1. 

8.4.1. Results 

Table 8.1 presents the six scenarios’ specifications and also the system’s performance (TSTT) for 

five different error values (r = {0,0.5,1,2,∞}). The SO solution (r = 1) provides the best performance 

(minimal TSTT), as expected. The performance for r = ∞ is slightly better than that at the UE 

solution (r = 0) in some cases, e.g., Sioux Falls and Philadelphia, but might be significantly worse 

in others, e.g., Eastern Massachusetts where TSTT(∞) was outperformed by TSTT(UE) by 15%. 
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Table 8.1 The system performance (TSTT) given as “T(x)” for different scenarios along with network specifications, for each scenario: 
number of vertices, links, zones, and total demand (Pst R(st)) 

Scenario Vertices Links Zones Total 

Demand 

T(UE) T(0.5) T(SO) T(2) T(∞) 

Sioux Falls 24 76 24 360,600 7,480,223 7,205,048 7,194,256 7,198,091 7,222,857 

Eastern MA 74 258 74 65,576 28,181 27,411 27,324 27,392 32,460 

Anaheim 416 914 38 104,694 1,419,913 1,397,216 1,395,015 1,398,631 1,549,075 

Chicago S 933 2,950 387 1,260,907 18,377,331 17,991,235 17,953,268 17,994,192 19,630,440 

Chicago R 12,982 39,018 1790 1,360,427 33,656,969 32,078,668 31,942,957 32,096,038 38,190,675 

Philadelphia 13,389 40,003 1525 18,503,872 335,647,096 325,211,099 324,268,465 325,176,216 335,296,306 
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Results for applying half and double the true MCT are also provided (T(0.5) and TSTT(2) 

respectively). Results for these values are mixed where in some cases TSTT(0.5) performs slightly 

better than TSTT(2) and vice versa in others. Nonetheless, r = 0.5 has a clear advantage over r = 2 

since, unlike TSTT(2), the value of TSTT(0.5) is bounded by TSTT(UE) for any scenario 

(Theorem 4). 

Figure 8.2 presents normalized values for TSTT as a function of the error factor r. The TSTT 

values (y-axis) for each curve are normalized according to TSTT(SO), e.g., a TSTT value of 2 

correlates to double TSTT(SO) for the relevant curve (scenario). Consequently, TSTT(1) = 

TSTT(SO) = 1 in all the curves. The data points were computed for the range r = [0,20] with a step 

size of 0.1. Each of the curves starts with a dot representing TSTT(UE). Additionally, dots on the 

right border of the plot represent TSTT(∞). Such dots are presented only for the Sioux Falls and 

Philadelphia scenarios as TSTT(∞) is out of the presented TSTT range for the rest (exact values 

are available in Table 8.1). 

 
Figure 8.2 Normalized TSTT (factor from optimal TSTT) as a function of the error factor (r) for six 

benchmark traffic scenarios 

As predicted by Lemmas 8 and 9, the curves are non-increasing in the range [0,1] and non-

decreasing in the range [1,∞]. 

8.5. Discussion 

Lemmas 8 and 9 and Theorems 4 and 5 as well as the presented experimental results lead to the 

following general conclusions: 

 Underestimating MCT by a constant factor across a traffic network would result in a system 

performance that is not worse than not applying tolls at all. 

 When calibrating a parameter that is a multiplier of the true MCT, a value that is locally 

optimal is guaranteed to be globally optimal. 
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The implication of these conclusions might be substantial when installing a new tolling scheme 

with a tunable parameter, θ, where the value of θ correlates to a fixed error in MCT. As stated in 

Section 8.2, this can occur when calibrating the expected drivers’ VOT or the β parameter in ∆-

tolling (Sharon et al., 2017a). 

A simple, yet effective, approach for tuning θ would be to set it to zero initially. Then, as long as 

the system’s performance does not deteriorate, θ can be safely increased by a small enough 𝜖. 

Once the system’s performance deteriorates this process is stopped and θ is reduced by 𝜖. The 

above conclusions suggest that, for a small enough 𝜖, traffic congestion will not deteriorate along 

the tuning process (excluding the step before the last) and system-optimal performance will be 

achieved at the final step. 

8.6. Summary and Future Work 

This chapter considers a traffic scenario in which MCTs with some fixed factor errors are imposed 

on all drivers. The system performance is analyzed with regards to the error rate and performance 

bounds are provided as a function of the error value. 

Three main claims are proven: 

1. If the error factor is lower than 1 (MCT is underestimated), the system will not perform 

worse than if no tolls were applied. 

2. As the error factor increases from 0 to 1, the system’s performance will not deteriorate. 

3. As the error factor increases from 1 to infinity, the system’s performance will not 

improve. 

These claims can allow the tuning of MCT-based tolling schemes while ensuring quality of service 

along the tuning process. 

There are many other conceivable errors besides a multiplicative, system-wide factor on the true 

MCT. Consequently, future work will examine scenarios with other assumptions on the toll error, 

such as when the assessed toll is within some bounded interval around the MCT. Finally, another 

promising direction for future work, inspired by Sharon et al. (2018), is to examine traffic scenarios 

where only a subset of the flow is compliant with errored MCT.  
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Chapter 9. CAV’s Impacts on Long-distance 

Household Travel across the U.S. and Texas  

9.1. Background 

As the U.S. population grows, it is expected that the demand for inter-city travel will rise, running 

up against the limited capacity of existing infrastructure. The federal government and states 

continuously seek to improve long-distance mobility; however, national-scale passenger travel 

demand modeling is still an emerging area of research. In efforts to enable proactive planning, the 

Federal Highway Administration (FHWA) commissioned several studies. One of the studies 

produced a passenger travel demand model called rJourney that models all long-distance travel in 

2010 for the entire United States (Federal Highway Administration, 2015). 

While the rJourney model surpasses the limitations of traditional travel demand forecasting 

methods by rigorously incorporating several forms of travel behavior, the prospect of applying the 

model to an increasingly automated future is challenged by the fact that automated vehicles (AVs) 

were not a mode of choice in 2010, and therefore are not represented in the model. While traveler 

behavior may gradually change as the future emerges and AVs continue to enter the marketplace, 

the most feasible and best-validated future-looking models at hand are inevitably based upon 

today’s knowledge.  

9.1.1. AVs and Long-distance Travel 

While there have been several simulations of AVs’ and shared AVs’ effects on intra-regional travel 

[e.g., Fagnant and Kockelman (2014) and Childress et al. (2015)], there is little research on inter-

regional travel and how longer-distance destination and mode choices will change. LaMondia et 

al. (2016) explored mode choices in Michigan for trips over 50 miles in length and forecasted that 

over 25% of airline trips under 500 miles will shift to AVs. Such changes will have important 

impacts on airlines, infrastructure planning and future land use (especially around long-distance 

transportation facilities), highway congestion, and the travel industry more generally.  

Long-distance travel is common in many countries and regions. Mercedes-Benz responded to the 

Google challenge in August 2013 with the S500 Intelligent Drive Autonomous Car long-distance 

test drive between Mannheim and Pforzheim without any driver input. Automated public vehicles 

may provide much of the long-distance travel between European countries (Heinrichs, 2016). 

Nineteen percent of Americans with disabilities report leaving their homes relatively infrequently, 

and are less likely to take long-distance trips (BTS, 2003). However, Meyer and Deix (2014) noted 

that if AVs allow disabled individuals to make the same length and number of car trips, their 

vehicle-miles traveled (VMT) would probably increase by more than 50%. 

AVs reduce the burden of travel for drivers and may improve the quality of travel for passengers, 

who can now focus on more meaningful interactions with those previously focused on driving. 

Thanks to easier “driving,” the value of travel time (VOTT) of the driver (or his/her willingness to 
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pay to save travel time) is expected to fall, by 20 to 50% or more, so the generalized cost of travel 

can fall by several dollars per hour to $6 or more per hour, for many travelers. Auld et al. (2017) 

applied an integrated transportation system model to analyze the impact of hypothesized CAV 

scenarios, varying the market penetration, capacity changes, and travel time valuations, on 

performance of the transportation network and changes in mobility patterns for Chicago region. 

The results show that an increase in capacity of 80% can be achieved with only 4% induced 

additional VMT. Changes in travel time cost, or VOTT savings, have a significant impact, 

especially at very low levels of VOTT, increasing VMT by up to 59%. 

9.1.2. Extensions of Prior Models 

With the impending introduction of AVs as a viable mode choice in the near future, it is necessary 

for today’s future-looking travel demand forecasting models to incorporate them. Childress et al. 

(2015) used a Seattle, Washington activity-based travel model (including short-term travel choices 

and long term work-location and auto-ownership choices) to anticipate the impacts of AV 

technology introduction on regional travel (attributed to higher roadway capacities, lowered 

VOTT, reduced parking costs, and increased car-sharing). They estimated that higher income 

households are more likely to choose the AV mode, as costly technology and VOTT reductions 

for higher-VOTT travelers are likely to be more significant. When shared automated vehicles 

(SAVs) are modeled to cost $1.65 per mile (similar to costs of current ride-sharing taxi services, 

like Lyft and Uber), drive-alone trips were estimated to be reduced by one-third and transit shares 

increased by 140%, as modeled households did away with traditional vehicles and bought AVs or 

shifted to SAVs as well as other travel options.  

Other existing projects introduced AVs as a new mode in mode choice or destination choice 

models. Gucwa (2014) used an activity-based model approach to simulate the travel decisions of 

individuals in the nine-county San Francisco Bay Area. The autonomous vehicle scenarios are 

modeled under different values of travel time and road capacity, using the Bay Area’s Travel 

Model One. The mode choice confirms to a random utility model. The result showed that the 

automation can expect a short-run increase of 4 to 8% in daily VMT. Zhao and Kockelman (2017) 

extended the Austin, Texas six-county region local municipal planning organization’s 

conventional travel demand model with new connected and autonomous vehicle (CAV) and SAV 

modes. The gravity model for trip distribution was replaced with a multinomial logit (MNL) model 

to allow destination choice to be influenced by the new modes. The mode choice model was also 

simplified and extended to support the new modes. Simulations varied the assumed operating and 

parking costs. Results suggested that by the year 2020, the introduction of these modes would add 

20% demand to the region’s current VMT. An added consequence is a reduction of transit system 

usage. Both of these were attributed to the relative value of time (VOT) of CAV and SAV travelers 

as well as an anticipated competitive SAV pricing scheme. Results of this report suggest that 

without full realization of other anticipated benefits of CAVs and SAVs (e.g., smaller headways, 

shared rides), overall congestion would worsen from that of today. 
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Energy and environment can also be affected by travel demand that corresponds to the introduction 

of AVs. Wadud et al. (2016) used a coherent energy decomposition framework to combine 

automation effects on travel and energy demand greenhouse gas emissions. Through illustrative 

scenarios, they found that autonomous vehicles provide potential, but not assured reductions in 

energy consumption and emissions, because the reductions are not directly a consequence of 

automation. Automation is considered to play an active role in vehicle operations, vehicle design, 

or transportation system design. The reductions are also related to connectivity, even without full 

automation. They also predicted that if the autonomous vehicles have a dominant market 

penetration, they could sharply reduce the energy consumption. Fagnant and Kockelman (2014) 

worked with an agent-based model for SAVs that simulated environmental benefits of such a fleet 

as compared to that of traditional, personally-owned vehicles, focusing on a dense urban core area. 

Simulation results indicated that each SAV may replace 11 conventional privately owned vehicles 

while increasing travel distances by up to 10%. When the simulation was extended to a case study 

of low market penetration (1.3% of trips) in Austin, Texas, each SAV was able to replace nine 

conventional vehicles and generated 8% more VMT on average due to empty, unoccupied travel 

(Fagnant et al. 2015).  

This chapter investigates a possible use of rJourney to forecast traditional personal car, commercial 

air carrier, and personal AV mode and destination choice offers insight on future U.S. inter-city 

travel. Since aircraft will still travel much faster than AVs between long-distance city pairs (e.g., 

New York City to Los Angeles), it is intuitive that those markets could be largely immune to this 

new mode alternative. However, looking at what routes will be significantly changed lacks 

research and is important for airline and infrastructure planning. If for example the 240-mile (385 

km) route between Houston and Dallas is largely dominated by AVs, interstate planners should 

expect higher traffic on Interstate 45 and the airport managers should expect less short-distance 

travel between the two cities. 

This remainder of this chapter is organized as follows. First, the rJourney data set used in this 

research is introduced, followed by the preliminary methodology. Then, results of the research 

model are identified, as well as an exploration of how the model can be used to estimate how the 

introduction of AVs may affect overall airline industry revenue. Finally, this chapter concludes 

and offers future research directions. 

9.1.3. Data Set Description 

The rJourney data that is leveraged in this research is part of an extensive, nationwide tour-based 

long-distance travel model created by RSG for the FHWA. The motivation for the creation of 

rJourney is to study intercity travel and to enhance interstate, long-distance modeling efforts. As 

noted earlier, long distance travel is modeled among almost all pairwise combinations of 4,486 

National Use Microdata Area (NUMA) zones as shown in Figure 9.1. As part of the rJourney 

effort, NUMAs are derived from both Census Bureau Public Use Microdata Areas (PUMAs) and 

county boundaries. The 1.17 billion rJourney tours are generated from a synthesized household 

population of 31.5 million, representing all long-distance travel in 2010. Destination and mode 
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choice are modeled with cross-nested logit, supporting four modes: automobile, bus, rail, and 

airlines. Trip models are organized among five purposes: business travel, commuting, personal 

business for shopping and relaxation, visiting friends and family, and leisure travel (Outwater et 

al., 2014). 

 
Figure 9.1 NUMA boundaries within the continental United States 

The generated tours provided in the rJourney set across all trip types are distributed as shown in 

Figure 9.2. Distances for all modes are measured as round-trip driving distance. All tours consist 

of one outbound and one return trip over the same path. Important aspects to note about this 

distribution are that no round-trips shorter than 100 miles (161 km) are expressed in the rJourney 

tours data set since rJourney only looks at longer-distance trips that involve originating in one 

NUMA and arriving at a distant NUMA. As expected, car usage largely dominates shorter trips 

(less than or equal to 500 miles, or 805 km), while air travel dominates for longer ranges. Bus and 

rail consistently account for a small portion of all trips. The average party size in a tour is 2.15 

people. 



167 

a. 

 
b. 

 
Figure 9.2 Distribution of rJourney trips for all trip types for a. all 

distances (shown logarithmically), and b. further distances 

 

The rJourney set also provides a skim file that includes mode statistics of traveling between most 

possible pairs of NUMAs. These include estimated travel time by car or air, access and egress 

times, traveling toll or cost, and other factors that would influence a traveler’s choice of 

transportation mode. Summary statistics of the skim files are shown in Table 9.1. Corresponding 

to these are mode choice and destination choice coefficients. In these coefficients, VOTT for car 

drivers is $12/hour (in 2010 dollars). These skims and data are used in this research for evaluating 

the effects of adding a new AV mode. 
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Table 9.1 Summary statistics for the rJourney skim file 

Variable Mean Std Min Max 

Air File, N = 18,424,925 

Time 218.73 97.94 25.00 812.00 

Transfers 82.37 50.19 0.00 200.00 

FreqDirect 10.58 24.07 0.00 339.00 

Freq1Stop 145.41 258.47 0.00 2,286.00 

Freq2Stop 348.81 932.69 0.00 10,968.00 

OnTime 88.79 4.00 0.00 100.00 

EconomyFare 519.13 327.69 0.00 50,776.00 

BusinessFare 1,199.61 955.59 0.00 152,328.00 

AccessDistance 38.15 25.99 0.00 101.00 

EgressDistance 38.22 26.34 0.00 102.00 

Rail File, N = 8,010,759 

Time 2,167.24 1,269.59 4.00 6,270.00 

Transfers 134.57 111.05 0.00 800.00 

Frequency 7.77 10.41 3.00 93.00 

EconomyFare 131.75 39.51 9.00 181.00 

BusinessFare 340.56 132.40 18.00 605.00 

AccessDistance 22.82 14.65 0.00 50.00 

EgressDistance 22.16 15.14 0.00 50.00 

Road File, N = 19,727,179 

CarTime 1,161.72 668.14 1.00 3,613.00 

Distance 1,185.41 706.49 1.00 3,582.00 

Toll 67.15 137.85 0.00 1,344.00 

BusTime 1,313.12 1,249.89 0.00 5,617.00 

BusFare 94.71 85.72 0.00 383.00 

 

9.2. Model Specification 

Implemented model leverages a subset of rJourney data and models and also uses pre-existing 

parameters as a means to quickly characterize the trip distributions for each mode, while leaving 

the opportunity to add a new mode such as AVs. The subset of data and coefficients were used to 

closely reproduce the mode choice results, and then a new AV mode was added. For this analysis, 

the model was set up as a nested logit model, where mode choice was a nest within an overarching 

destination choice model. Figure 9.3 shows how the rJourney model operates. 
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a. 

 
b. 

 
Figure 9.3 rJourney model summary 

For finding mode choice from each origin to each destination, parameters include direct costs 

(VOT, tolls, and fares), NUMA household density, service frequency, transfer frequency, and rail 

station/airport access and egress penalty. For simplicity, unavailable data and insignificant 

parameters in mode choice (e.g., with low T-stats) are not represented in utility functions as they 

are in the rJourney model, including household size, party size, and number of nights staying. Party 

size is currently assumed to be 1. 

In fact, the model subset does not produce an exact replication of the rJourney tours data set. 

Furthermore, the attempted addition of the AV mode inherently lacks supporting data, already 

necessitating the use of a subset of existing parameters. Although model subset results show a 

similar distribution to that of the rJourney tours data set, air travel in particular was 

underrepresented, showing a correlation of 0.71 overall, shown in Figure 9.4. To establish a closer 

representation, a strategy for adjusting (or “pivoting”) the results off of the rJourney tours data set 

is introduced.  
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a. 

 
b. 

 
Figure 9.4 Air travel comparison between model and rJourney 

data 

While future work related to this research will continue to improve upon the rJourney model usage, 

the preliminary exercise discussed in this chapter illustrates the kinds of analyses that are possible 

with such a model. These are the mode choice utilities, functions of NUMA zone, destination 

NUMA zone, and trip purpose. Refer to Table 40 in the long-distance passenger travel demand 

modeling framework report (FHWA, 2015) that contains the coefficient values and T-stats for each 

of the trip purposes identified by coefficient subscript number. In this analysis, the data series 

pertaining to cost of traditional vehicle operation was drawn using the estimated value of 

$0.17/mile. Because this model focuses on mode choice at the time of travel, the ownership cost 

is not incorporated as in (AAA, 2015). While this serves as a rough estimate, it would be possible 

with further research to better quantify operation costs as a function of each trip-maker’s annual 

driving distance. The results of the initial analysis shall inform how this function can be evaluated 

in the future. The rJourney data includes 285,579 NUMA pairs that lack car mode statistics. These 

NUMA pairs and corresponding trips are omitted from this analysis because of lack of car-distance 

data, which is needed in estimating the distance of all modes of travel. 
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The introduction of AVs into the model presents challenges in implementation, mainly in that the 

rJourney models and results obviously do not consider the presence of AVs, and little data 

currently exist to specifically justify model parameters. For AVs to be considered as a new modal 

alternative, existing data and coefficients are leveraged to arrive at a “best-guess” parameter set. 

In initially designing how the new modal alternative is integrated, the following assumptions are 

made: a) a future time is modeled where AVs cost on average $0.20 per mile to operate; b) the 

$6.00 VOT to the occupant is half of that of traditional car; and c) all other parameters are that of 

traditional cars.  

Probability splits for mode choice given each origin, destination, and purpose are found by the 

utility of choosing each mode. The destination choice portion of the model incorporates the logsum 

of the mode choice utility functions along with indicators pertaining to distance ranges, as well as 

household and employment counts that come from the NUMA zone data set. Again, for simplicity 

as well as lack of access to data, parameters that are not strongly influential in mode choice and 

destination choice were omitted. However, as noted later, preliminary results are helpful in 

identifying investigations of the model in future work. As an observation, the rJourney model does 

not include gross domestic product per NUMA zone, which could possibly be helpful for future 

efforts in better representing destination attractiveness. The destination choice model uses 

coefficients drawn from (Federal Highway Administration, 2015) Table 39. Future research efforts 

will evaluate how more of the rJourney destination-choice model can be leveraged for arriving at 

an improved representation of attractiveness. 

From this, joint mode/destination choice probabilities are found by combining the mode choice 

and destination choice conditional probabilities for each origin-destination (OD) pair. The last step 

is to use the joint probabilities to distribute trips that are generated from each origin across all 

modes and destinations. For this analysis, the number of generated trips is obtained from the 

rJourney tours data that was simulated from generated households across the United States. 

Because the idea is to study how mode choice and destination choice changes with the introduction 

of AVs, the mode choices represented in the rJourney tours dataset are ignored to allow the same 

number of generated tours to be redistributed according to the post-AV introduction model. The 

model implementation procedure is shown in Figure 9.5. 
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Figure 9.5 Model implementation 

Computation of this model (shown in Figure 9.6) can be classified as a big data problem. In 

representing the expanded 1.17 billion trips, 38 million rJourney trip records over 2 million NUMA 

pairs constitute 4 GB of data, and files representing the intermediate and final computational 

results for all trip purposes amount to gigabytes of additional storage requirements. The Python 

Pandas library is used to perform the computations along with HDF5 file format support. With a 

number of considerations made for vectorized matrix operations, the entire set takes on the order 

of 30 minutes to run on a modern, high-end computer. Operations that read and write files from 

flash storage account for over half of the run time.  

 
Figure 9.6 Computation procedure 
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9.3. Impacts of CAV on Model Choice and Destination Choice 

9.3.1. AV Trip Distribution 

Figure 9.7 shows the resulting number of trips after the AV mode is added to the initial model as 

described in the methodology. This can be compared with the tours data set distribution in Figure 

9.2. A notable observation is that the distribution of AV trips tracks the distribution of traditional 

vehicles with an increase in mode share at further distances. This can be attributed to high 

correlation of several parameters that are represented in the traditional vehicles. The key 

differences with AVs are the increase in operating cost, and reduced VOT driving. With similarity 

in parameters, this mode split is influenced by the independence from irrelevant alternatives (IIA) 

property (or, noted many times in the literature as the “red bus/blue bus paradox”) inherent in 

multinomial logit models. This property causes highly correlated inputs to be treated as 

independent, which creates an artificial demand that may not necessarily happen in reality. The 

high degree of correlation and presence of IIA can best be addressed by creating a nest (e.g., 

“personal vehicles”) that contains both of the AV and car results. 
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(a) 

 
(b) 

Figure 9.7 Number of trips from the mode choice/destination choice analysis, all purposes, at a. all 
distances (shown logarithmically), and b. further distances 

There are two notable outcomes that offer insight on the possible effects of AV introduction to the 

market, as well as a shift in destination choice. First, results show that the introduction of AVs 

deeply cuts into the number of trips that had formerly been air trips. See Table 9.2 for results in 

terms of shorter and longer trips (e.g., < 500 miles (805 km) versus  500 miles). For shorter trips, 

the number is dramatically reduced, whereas for longer trips, the number is far less affected by 

AV introduction. As largely influenced by the Car coefficient for one-way distance greater than 

500 miles as well as travel time, trips over 500 miles in length are penalized because of the negative 

“captivity factor” of remaining in a car for a long period of time possibly over several days. It is 

assumed in this model that this disutility would be similar for AVs as it would be for traditional 

cars. Note that in Table 9.2, “Car+AV” is shown as a means to represent respective totals of 

personally owned vehicles. 
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Table 9.2 Trip mode choice impact of AV introduction for all trip purposes 

TOURS 
AV Market 

Penetration 

Car+AV < 500 

mi. round trip 
Car+AV  500 

mi. round trip 

Air < 500 mi. 

round trip 
Air  500 mi. 

round trip 

Before AV 0% 860.5 M 168.8 M 9.3 M 79.5 M 

After AV 51% 906.9 M 189.0 M 4.9 M 42.0 M 

% change - 105.4% 112.0% 52.9% 52.8% 

 

VEHICLE- 

MILES 

Car+AV < 

500 mi. 

round trip 

Car+AV  

500 mi. 

round trip 

Car+AV 

Total 

Air < 500 

mi. round 

trip 

Air  500 

mi. round 

trip 

Air Total 

Before AV 400.8 B 821.0 B 1,221 B 6.4 B 437.9 B 444.3 B 

After AV 425.2 B 913.7 B 1,339 B 3.4 B 232.3 B 235.7 B 

% change 106.1% 111.3% 109.6% 52.9% 53.0% 53.0% 

 

Second, among traditional cars and new AVs, more destinations are chosen after introduction of 

AVs that are further in distance from origins. However, if all modes are considered, the trend is 

reversed, possibly because of the severe reduction of air trips that dominate the longer-distance 

trips. Table 9.3 shows a change in distribution across overall trip distances. For both pre- and post-

AV introduction the model uses the same number of trip generations per NUMA per trip purpose. 

The significant decrease of air travel may be a consequence of the aforementioned IIA property. 

In addition to treating cars and AVs as a single nest, further work on characterizing VOTT and 

operating cost, as well as specifying additional factors in the destination-choice portion of the 

model, may have the outcome of evolving how trip distances are biased among closer and further 

long-distance trips. 

Table 9.3 Trip distance shift for all trip purposes 

TOURS 
Tours < 500 

mi. one way 

VMT for tours 

< 500 mi. 
Tours  500 

mi. one way 

VMT for tours 

 500 mi. 

Before AV 914.1 M 422.4 B 256.1 M 1,294 B 

After AV 937.0 M 437.1 B 235.2 M 1,165 B 

% change 102.5% 103.5% 91.8% 90.0% 

 

9.3.2. Market Penetration of AV 

The degree that AVs penetrate the market varies according to trip distance. Figure 9.8 shows 

market penetration both for AVs among the personal vehicle modes (e.g., car and AV), and also 

AVs among all mode choices. With respect to personal vehicles, the market penetration increases 

as distance increases because of the significance of lower VOTT. However, air travel continues to 

be preferred for longer distances and results in the AV mode share diminishing at further distances. 

The deviation in penetration for the 7000-mile bin is likely a result of fewer trip samples for that 

furthest distance. 
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Figure 9.8 Penetration of AVs among personal vehicles (car+AV) and all modes 

9.3.3. Passenger Airline Sales 

Given that large-scale introduction of AVs has not yet happened and that no data can be collected 

directly from AV usage today, a model such as this rJourney subset with AVs added as a new 

mode can be helpful in roughly estimating market effects that could result from the widespread 

introduction of AVs. One question that can be addressed with this model is how much revenue the 

airline industry can possibly lose due to more travelers choosing AVs over air travel. The rJourney 

data set gives airfare estimates in USD for all NUMA pairs that have suitable access to airports 

served by commercial passenger carriers. Table 9.4 shows estimated airline sales before and after 

the addition of AVs for all modeled trips. Note that because these are based upon cost to the 

traveler, these sales figures include airport taxes.  

Table 9.4 Passenger airline sales for all trip purposes 

REVENUE 
Tours < 500 

mi. round trip 
Tours  500 

mi. round trip 

Total 

revenue 

Before AV $16.0 B $159.1 B $175.1 B 

After AV $8.4 B $83.9 B $92.3 B 

% change 52.7% 52.7% 52.7% 

 

In this result, the percent changes between sales between shorter and longer long-distance trips are 

similar. This is counterintuitive because of the idea that AVs should have a more significant 

attractiveness for shorter trips and thus cut more into the shorter distance market. It may be here 

that the model is dominated by the IIA property in adding AVs as a separate mode rather than as 

a car+AV “personal vehicle” nest. Additionally, with refinements in the mode choice and 

destination choice models the split may improve in accuracy. 
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9.3.4. AV Parameter Sensitivity 

As mentioned earlier, the parameters and assumptions given to AVs are largely unknown and must 

be estimated. Two notable parameters include cost of operating the vehicle, as well as personal 

VOTT. (Another parameter that is relevant but not yet analyzed includes a more pronounced 

representation of the 500-mile captivity factor, which may be different for car drivers than it is for 

AV passengers.) A thorough analysis should offer a set of scenarios that span a range of expected 

operational costs and personal VOTT, given the targeted years, expected AV market penetration, 

and socioeconomic classes of trip-makers that are being analyzed. 

To further understand the sensitivity of these variables on the resulting mode split and destination 

choice, six new scenarios are created for the “leisure” trip purpose. Scenarios are presented in 

Table 9.5. 

Table 9.5 Scenarios of sensitivity analysis 

Scenario Oper. Cost ($/mile) VOTT ($/hr) Notes 

A $0.20 $6.00 Base case 

B $0.10 $6.00 Operating cost is cheaper 

C $0.50 $6.00 Operating cost is more expensive 

D $0.20 $3.00 VOTT is decreased 

E $0.20 $9.00 VOTT is increased 

F $1.65 $6.00 AVs are modeled as shared vehicles 

 

Recall that dollar amounts are expressed in year 2010 dollars. The scenario of AVs having the 

same operating cost and VOTT of cars has been omitted because there would be no distinction 

between the car and AV modes. Scenario F in particular has been included as a hypothetical 

scenario to roughly model all AVs on the roadways as shared autonomous vehicles (SAVs). With 

SAVs, passengers do not own their vehicles, but rather pay per mile for travel in a borrowed 

vehicle that others can use for other trips, in this case $1.65 per mile. As more data emerges, an 

improved model would likely offer SAVs as a mode choice that is separate from personally-owned 

AVs. Table 9.6 shows the results of each of these scenarios.  
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Table 9.6 Trip generations with varied AV parameters, for “leisure” trip purpose 

Mode Dist. Scenario A B C D E F 

Car+AV 

Trips < 

500 mi. 

Before AV 253.5 M 253.5 M 253.5 M 253.5 M 253.5 M 253.5 M 

After AV 271.5 M 267.2 M 279.4 M 268.1 M 274.3 M 280.3 M 

% change 107.1% 105.4% 110.2% 105.7% 108.2% 110.6% 

Trips  

500 mi. 

Before AV 55.7 M 55.7 M 55.7 M 55.7 M 55.7 M 55.7 M 

After AV 63.4 M 65.7 M 57.8 M 65.3 M 61.7 M 46.7 M 

% change 113.8% 118.0% 103.7% 117.2% 110.7% 83.9% 

Air 

Trips < 

500 mi. 

Before AV 2.30 M 2.30 M 2.30 M 2.30 M 2.30 M 2.30 M 

After AV 1.23 M 1.20 M 1.28 M 1.21 M 1.24 M 1.40 M 

% change 53.2% 52.1% 55.7% 52.3% 54.0% 60.9% 

Trips  

500 mi. 

Before AV 18.11 M 18.11 M 18.11 M 18.11 M 18.11 M 18.11 M 

After AV 9.65 M 9.43 M 10.16 M 9.47 M 9.81 M 11.17 M 

% change 53.3% 52.1% 56.1% 52.3% 54.2% 61.7% 

 

In observing Scenarios B, A, and C in order of increasing operation cost, it can be seen that closer 

trip generations increase, and longer trips decrease, possibly because of the significance of 

operating cost on longer trips. Meanwhile, the cut into the air market decreases as the operation 

cost increases. In the rough SAV Scenario F, the results coincide with a similar trend, where longer 

distance trips are more significantly curtailed. For Scenarios D, A, and E in order of increasing 

VOTT, a similar phenomenon occurs. The reduction of air trips decreases as VOTT increases. 

In all cases, the variations that are evaluated do not show an extreme difference in outcomes. In 

considering travelers’ expenses and VOTT, it is possible to reason that the results should be more 

distinct. Two factors may be dominating the models as these inputs are varied. First, the addition 

of the AV mode as an independent choice may be an inaccurate model structure that is highly 

correlated and represented too significantly in the results. As mentioned earlier, it may be more 

appropriate to treat cars and AVs as a “personal vehicle” nest and estimate the correlation that is 

to be expected among the mode choices of hypothetical travelers. Second, the representation of 

AVs in the model is somewhat indistinct from cars, as few parameters exist to offer better 

differentiation. The addition of new parameters to the car and AV modes can help with this and 

reduce the correlation between the two modes. 

9.3.5. VMT Change 

Based on the mode choice and destination choice for all NUMA zones, traffic assignment is 

performed for OD matrix before and after AV scenario over the U.S. network in TransCAD. Total 

VMT data is collected from the simulation. Before AV scenario, we have 14.4 billion VMT of car, 

while the total VMT of Car+AV increase to 15.8 billion. The increase of VMT for all trips 

happened within Texas region (Texas as origin, destination, or through Texas) is about 9.78%.  

Table 9.7 shows the VMT change results of several states. VMT change across U.S. for each state 

showed an increment arranging from 8.09% in North Carolina to 13.52% in Kansas. VMT in 

border states like Texas and Illinois shows an increase approaching 10%. Coastal states like 



179 

California and Virginia have about 9% increase in VMT, while inlands states like Utah and 

Wyoming witness nearly 13% increase in VMT. 

Table 9.7 VMT change in state for interstate long-distance trip 

States Texas 
New 

York 
Florida California Pennsylvania Illinois 

Before 14.44 B 8.05 B 9.55 B 12.74 B 11.81 B 11.14 B 

After 15.85 B 8.73 B 10.50 B 13.91 B 12.94 B 12.21 B 

Increase 9.78% 8.39% 9.94% 9.18% 9.55% 9.57% 

States Washington Virginia Utah Kansas Wyoming 
North 

Carolina 

Before 2.63 B 10.72 B 1.62 B 3.14 B 3.56 B 6.89 B 

After 2.87 B 11.67 B 1.83 B 3.57 B 4.01 B 7.45 B 

Increase 9.06% 8.82% 12.9% 13.5% 12.8% 8.09% 

9.4. Summary of Anticipated Long-Distance Trips 

9.4.1. Data Set 

The Statewide Analysis Model (SAM) provides 4667 TAZs across the state of Texas, as shown in 

Figure 9.9(a). Figure 9.9(b) shows the highway, railway, and airline networks, which contain 

200,445 links and 168,507 nodes. The links and nodes cover the entirety of North America, though 

the highest detail is in Texas. This study focuses on travel within Texas, while some trips would 

take routes outsides Texas and come back.  
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a. SAM TAZs 

 

 
b. SAM Networks 

Figure 9.9 SAM’s geographic data 

9.4.2. Methodology of Four-step Model 

The four-step travel demand modelling process is used here to model traffic patterns across the 

entire state of Texas: trip generation, trip distribution, mode choice, and traffic assignment. The 

traditional trip distribution procedure is replaced in this study by a destination choice model, and 

a production-attraction matrix (PA) to origin-destination matrix (OD) procedure is conducted to 
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convert the PA matrix to OD matrix. The model is divided into four times of day, and AM peak 

results are reported here.  

9.4.2.1. Trip Generation 

Trip generation data is obtained from SAM generation results of its year 2040 scenario. Passenger 

trip generation of SAM is based primarily on the 2009 National Household Transportation Survey 

(NHTS). Of SAM’s seven trip purposes, intra-city trips include home-based work, home-based 

other, home-based school, non-home-based other, and non-home-based visitor. Intercity trips 

include infrequent long distance business trips and infrequent long distance other trips. This work 

assumes that all types of trips produced and attracted conform to the destination choice from 

random utility theory. However, the trip generation ignores external trips, either coming from or 

heading outside Texas. Freight trips are also ignored here, while freight trips in fact account for a 

great proportion of Texas traffic.  

9.4.2.2. Trip Distribution 

The general trip distribution procedure is replaced by a destination choice model in TransCAD for 

this study. The attraction of each destination depends on the mode accessibility and the 

destination’s attraction factors. Therefore, the destination choice is assumed to be dependent on 

the population of each TAZ and the mode choice logsum. Based on parameter assumptions from 

Yong and Kockelman 2017, the parameter assumption for this work is shown in Table 9.8: 

Table 9.8 Parameter assumption for destination choice model 

 Mode Choice Logsum Log of Population 

Parameter 0.855 1 

 

9.4.2.3. Mode Choice Model 

Four modes are considered in the base case scenario: auto, bus, rail, and air. Auto represents all 

modes utilizing a conventional vehicle (including driving alone, taxi, and transportation network 

company, e.g. Uber). SAM model considered 20 or more combination of mode choices, while this 

study considers only four basic modes for the purpose of easily accommodating the autonomous 

vehicle mode. Although bus and auto modes usually share the same network, the congestion 

caused between bus and auto are ignored in this study, since the SAM network employed here 

models the bus mode in the transit network instead of the highway network. Since these four modes 

share different networks, the base case scenario only assigns conventional automobiles on the 

highway and urban network. Fare and in-vehicle travel time of bus, rail, and air are obtained from 

the SAM model. Rail commuting time and fare are the average of all available rail modes in SAM 

model for a certain OD pair, including urban rail, intercity rail, and high-speed rail. When the AV 

mode is added, AV and conventional vehicle are nested under the auto mode, which itself is in the 

same level as bus, rail, and air, as shown in Figure 9.10(b). 
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a. Mode choice structure without AV 

 
b. Mode choice structure with AV 

Figure 9.10 Mode choice structure before and after AV 

The mode choice parameters for base case scenario and AV scenario are shown in Table 9.9: 

Table 9.9 Mode choice model parameters 

Base Case Auto Bus Rail Air 

Constant - -2.8 -2.8 -2.8 

Operating Cost -0.072 -0.14 -0.14 -0.14 

In-vehicle Time -0.019 -0.019 -0.019 -0.019 

With AV case Car AV Bus Rail Air 

Nest Coefficient 0.7 - - - 

Constant - -0.05 -2.8 -2.8 -2.8 

Operating Cost -0.072 -0.072 -0.14 -0.14 -0.14 

In-vehicle Time -0.019 -0.0095 -0.019 -0.019 -0.019 

VOTT 15.83 7.92 8.14 8.14 8.14 

9.4.2.4. Time of Day and PA to OD 

The time-of-day intervals are shown in Table 9.10, and Table 9.11 is the PA to OD departure and 

return table. The PA to OD departure and return table generally gives the trip distribution over a 

day, for both departure and return trips. 

Table 9.10 Time-of-day intervals 

Time of Day Time Interval 

AM Peak (AM) 6:00 am to 9:00 am (3 Hours) 

Mid-Day (MD) 9:00 am to 4:00 pm (7 hours) 

PM Peak (PM) 4:00 pm to 7:00 pm (3 hours) 

Hours Night (NT) 7:00 pm to 6:00 am (11 hours) 
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Table 9.11 PA to OD departure and return table 

Hour Departure Return 

0 0.35 0.35 

1 0.1 0.1 

2 0.4 0.4 

3 0.05 0.05 

4 0.05 0.05 

5 0.5 0.5 

6 1.6 1.6 

7 4.45 4.45 

8 2.05 2.05 

9 1.6 1.6 

10 1.95 1.95 

11 2.05 2.05 

12 2.6 2.6 

13 2.4 2.4 

14 2.45 2.45 

15 3.35 3.35 

16 4.65 4.65 

17 4.25 4.25 

18 3.2 3.2 

19 3.95 3.95 

20 2.95 2.95 

21 2.4 2.4 

22 1.6 1.6 

23 1.05 1.05 

 

9.4.2.5. Traffic Assignment and Feedback Loop 

Feedback loops are performed, using the congestion travel time to provide feedback to each 

subsequent iteration. Different congestion time will lead to different destination choices and mode 

choices, thereby altering traffic assignments. The static traffic assignment is conducted for the base 

case, where only conventional automobiles are assigned to the network. Multi-modal, multi-class 

assignment is conducted for the AV case, where both conventional vehicles and AVs are assigned 

to the network. The feedback loop is set to perform 10 iterations, with the stop criteria of a relative 

gap below 10-4. 

9.4.3. Results 

9.4.3.1. Mode Share 

Figure 9.11 shows the mode share for four modes before and after AV implementation. The auto 

mode is the sum of conventional automobile trips and those via autonomous vehicles. Rail mode 

and bus mode both remain relatively stable before and after AV introduction. After AV 



184 

introduction, auto mode share increases for distances between 200 miles and 800 miles, shifted 

mostly from air travel. This is likely due to the lower VOTT for traveling by AV, compared to 

other modes. However, there are still more trips taken by air between 500 miles and 650 miles in 

length. Trips of greater than 850 miles are only traveled by auto, possibly because the spatial 

location of airports: the longest distances between commercial airports within Texas are 

approximately 750 miles. It is also possible that trips by air would be costlier due to connecting 

time. 

 
a. Before AV implementation 

 
b. After AV implementation 

Figure 9.11 Mode share against trip distance 
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9.4.3.2. Trip Distribution Analysis 

Figure 9.12 shows the trip distribution of thousand trips of auto before and after AV introduction. 

After AVs are introduced, trips of distance greater than 60 miles increase a little, while the shortest 

trips nearly double. The peak remains around 15 miles trip distance both before and after AV 

introduction. However, as Figure 9.13 shows, when comparing conventional vehicle travel (“Car” 

mode) with that of AVs, the peak in trip frequency for conventional automobiles is lower, 

occurring at 13 miles, compared to 18 miles for AV trips. AVs dominate travel among auto modes, 

especially for distance greater than 10 miles and less than 500 miles. This shows that people are 

more willing to choose AVs over conventional automobiles for long trips, where the VOTT plays 

a larger role. 

 

 
Figure 9.12 Trip distribution of Car mode before and after AV 
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Figure 9.13 Distribution of AV and Car modes 

9.4.3.3. VMT Change  

Table 9.12 shows the VMT change for all modes after introducing AVs. Air mode has more VMT 

than auto mode before AV introduction, but they converge to similar VMT after AV introduction. 

Rail, bus, and air modes show a decrease in VMT, with rail travel decreasing by 19.3%, air travel 

by 11.7% and bus VMT shrinking by 1.8%. Overall auto modes show a 12.4% increase in VMT 

after AV introduction.  

Table 9.12 VMT change of modes before and after AV 

VMT (billion 

vehicle-mile) 
Auto Rail Bus Air 

Before 10.97 0.69 3.60 13.95 

After 12.33 0.56 3.54 12.31 

Change 12.4% -19.3% -1.8% -11.7% 

 

Table 9.13 details the VMT changes in cities of interest, which the SAM model identifies as the 

TxDOT districts. The Dallas and Fort Worth area show an increase in total VMT of 20%, while 

San Antonio, Houston, and Austin each show a small decrease. More cities located in border areas 

of Texas become more attractive as they are probably more accessible through the AV mode. AV 
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introduction increases total VMT across Texas, as these districts show a total VMT increase of 

3.2%. 

Table 9.13 VMT change in million vehicle-miles traveled in districts 

Area 
VMT 

before 

VMT 

after 
Change Area 

VMT 

before 

VMT 

after 
Change 

Abilene 72.59 85.88 18.3% Laredo 91.98 87.76 -4.6% 

Amarillo 64.64 73.21 13.2% Lubbock 86.83 103.27 18.9% 

Atlanta 45.92 59.01 28.5% Lufkin 97.34 92.61 -4.9% 

Austin 177.04 163.28 -7.8% Odessa 73.88 75.62 2.3% 

Beaumont 98.50 90.05 -8.6% Paris 67.83 81.61 20.3% 

Brownwood 88.96 90.51 1.7% Pharr 41.20 41.18 -0.1% 

Bryan 137.89 125.57 -8.9% San Angelo 113.91 110.17 -3.3% 

Childress 39.44 46.96 19.1% San Antonio 147.41 142.38 -3.4% 

Corpus Christi 66.87 63.77 -4.6% Tyler 85.07 100.01 17.6% 

Dallas 111.35 133.67 20.0% Waco 134.24 120.17 -10.5% 

El Paso 26.31 42.81 62.7% Wichita Falls 58.22 73.83 26.8% 

Fort Worth 92.62 109.15 17.8% Yoakum 121.53 103.37 -14.9% 

Houston 132.16 130.62 -1.2% Total 2273.73 2346.43 3.2% 

9.4.4. Discussion 

This work utilizes TransCAD software and SAM data to perform four-step model and provide a 

nested logit model to accommodate AVs in destination choice and mode choice model. Auto mode 

(conventional vehicle plus AV) trips increase for distance between 200 miles and 800 miles, 

largely shifted from air trips. People would also like to go further distances after AV is introduced, 

with peak of distance frequency as 18 miles rather than 13 miles of conventional vehicles. Results 

also show the VMT change for each region in Texas. Predictions of reduced air trips and increasing 

demand for highway infrastructure should provide insights in preparations for the advent of 

autonomous vehicles for counties and regions in Texas. However, a restriction of this work 

currently is its focus on the changes of internal passenger trips within Texas, although trips going 

across Texas border and coming back are allowed. The ignorance of external trips and freight trips 

would largely underestimate the AV trips, so AV trips are expected to have greater impact than 

discussed in current results. Further work would be look at the external passenger trips as well as 

the freight trips, and also the sensitivity analysis for various parameter assumptions for AVs, so to 

achieve a comprehensive of AV prediction on long-distance trips. 

9.4.5. Summary 

This chapter questions of how the rJourney model and extensions to it can be applied to other 

regions beyond the U.S. is relevant, especially as several other nations are amenable to the 

introduction of AVs onto their roadways. Data similar to the rJourney skims and land use records, 

including travel distances, travel time, airfare, transfers, housing density, and employment, can be 

readily collected for other regions. However, the application of the rJourney model in other nations 
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must be taken with a significant amount of care and additional work, as much of rJourney portrays 

traveler behavior that is specific to the United States. Indeed, the nation-scale trip generation is 

heavily dependent upon extrapolations from long-distance surveys that were issued in only 5 of 

the 48 lower continental states. The sparseness of the survey coverage is identified as an area for 

improvement, as there is a strong recommendation for a long-distance passenger travel survey to 

be issued for the entire United States (Federal Highway Administration, 2015). Regardless, many 

of the survey results are inevitably influenced by socioeconomic status, land use patterns within 

household surroundings, and infrastructure capacity—aspects that are specific to the respective 

region and nation. 

For an applicable model to be created for another region, it is advisable for one to acquire the 

region-specific data, both the quantitative regional facts as well as a sampling of qualitative results 

through surveying and research. Then, a process may be followed that is similar to the creation of 

rJourney’s underlying logit models and the generation of households and trips. The coefficients of 

the mode and destination choice models, as well as the tours records, would then properly reflect 

the region being examined. 

This chapter also addresses how distance traveled in Texas relates to the introduction of AVs. The 

area of Texas smaller than the rest of the U.S., which provides the possibility to obtain the detailed 

change of VMT for each county in Texas. However, a current restriction is its focus on the changes 

of internal passenger trips within Texas, although trips going across Texas border and coming back 

are allowed. The ignorance of external trips and freight trips would largely underestimate the AV 

trips, so AV trips are expected to have greater impact than discussed in current results. Further 

work would be look at the external passenger trips as well as the freight trips, and also the 

sensitivity analysis for various parameter assumptions for AVs, so to achieve a comprehensive of 

AV prediction on long-distance trips. 
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Chapter 10. Survey Analysis to Determine CAVs’ 

Impact on Travel  

10.1. Background 

 Public opinion regarding vehicle automation and fully automated, or autonomous, vehicles (AVs) 

are evolving rapidly. Past studies suggest that AVs, once a distant reality, are becoming more 

acceptable over time, and may be a real mode option in the relatively near future (see, e.g., Vujanic 

and Unkefer, 2011; Schoettle and Sivak, 2014; Bansal and Kockelman, 2016). Sommer (2013) 

reported that around half of Americans were concerned about riding in an AV, even though they 

admitted to the technology’s many benefits, and this view was supported by respondents to 

Schoettle and Sivak’s (2014) survey. A more recent U.S. survey, by Kelly Blue Book (2016), 

suggests that respondents believed conventional vehicles are still safer than AVs—at least for the 

time being. Schoettle and Sivak’s (2016) second AV survey revealed similar reactions, with more 

than 35% of U.S. respondents very concerned about AVs, and partial autonomy less feared. Bansal 

and Kockelman (2016), MIT AgeLab (Abraham et al., 2016), Deloitte (2014), and Lee et al. (2017) 

have all concluded that younger people are more likely to use AVs, so demographic evolution is 

also important to consider, when anticipating the future use and adoption of advanced transport 

technologies. Until AVs are widely available in showrooms, at reasonably affordable prices, there 

will be regular fluctuations in public perceptions in any country or setting. Thus, regular survey 

efforts, and better surveys, with greater nuance, can make valuable contributions to transportation 

planning, policymaking, and vehicle production decisions. 

With ride-hailing applications maintaining a steady increase in mode shares, especially in dense 

settings like San Francisco (SFMTA, 2015), and several studies illuminating the operational 

benefits of dynamic ride-sharing (DRS) (see, e.g., Agatz et al., 2010; Bischoff et al., 2016; Fagnant 

and Kockelman, 2016; Loeb et al., 2017; Farhan and Chen, 2017), a shift towards shared AVs 

(SAVs) with DRS options is expected. However, detailed studies on DRS have not yet been 

conducted. Bansal and Kockelman (2016) estimated SAV use for different pricing levels, but do 

not delve into ride-sharing. Quarles and Kockelman (2018) have recent, unpublished results that 

suggest about 16% of Americans are willing to share rides with strangers by paying about 40 

percent less (e.g., 60 cents/mile rather than $1 per mile of SAV use). However, response-time or 

waiting-time analysis has not been carried out. To the best of the author’s knowledge, only one 

study, in Australia (Krueger et al., 2016) captures such nuances, by modeling a discrete choice 

decision between SAVs without DRS, SAVs with DRS, and a respondent-specific travel 

alternative. They concluded that DRS is a preferred option among the young people and the people 

who regularly use car-sharing services, while recognizing the limitation of response bias that can 

emerge from posting such hypothetical questions. Similar studies in the United States have not yet 

been conducted. 

Privacy and data security are another relevant topic, with one survey suggesting that privacy is 

Americans’ top concern when choosing to not use AVs (Schoettle and Sivak, 2014). Existing work 
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in this area lacks many details: e.g., what are people willing to pay for privacy-enforcing measures? 

Related to this, automation can pose ethical dilemmas. Bonnefon et al. (2016) and Goodall (2017) 

believe that public opinion must be considered in crash-response programming and the like. 

Jenkins (2016) and Lin (2017) have described several possible outcomes of an inevitable crash 

scenario and Fleetwood (2017) censured algorithms that teach AVs to choose targets by force, 

arguing that they should not be readily allowed for public use. However, the public perception of 

what is most ethical in crash response contexts, and other situations, like who is to blame for a 

computer’s decision or criteria to pass to be allowed to use SAVs, is yet to be determined. This 

survey adds new questions and public opinions to that discussion. 

Finally, the long-distance (LD) travel implications of AVs are an important consideration. 

LaMondia et al. (2016) introduced AVs as new mode for LD trips originating in Michigan. Bansal 

and Kockelman (2016, 2017) suggested that LD-trip frequency may well double, and Perrine et al. 

(2017) are predicting major losses in U.S. airline revenues, long term, once AVs are widely 

available. However, many details are missing, especially questions that probe actual Americans 

on these topics. This study addresses many such investigative gaps. 

10.2. Survey Design and Data Processing 

The survey consists of 70 questions, tackling various aspects of AV and SAV use, including ride-

sharing preferences, privacy and security concerns, ethical implications of crash response 

algorithms, LD travel shifts, and future travel choices, with each subject section having about 5 to 

8 questions. 

The section on current AV perceptions included questions on impressions of and WTP for AVs, 

SAV use, and DRS with strangers. Questions regarding an acceptable age for children/young 

people to travel individually or in a group were also asked, along with questions regarding 

opportunities for serving persons with disabilities. A slider response was used to obtain continuous 

responses on WTP, including for DRS with a stranger—by time of day (night vs. daytime) and 

assuming different time delays. The value of providing one’s location en route (to a close friend 

or family member, to increase travelers’ sense of security) was also addressed, when sharing an 

SAV ride with an unknown person.  

To assess the ethical implications, three distinct ethical dilemmas were posed to the respondents: 

two regarding AV crashes with a pedestrian and other cars on the road, and one addressing crash 

responsibility. Questions on LD travel were based on mode-choice preferences for different types 

of trips and a respondent’s typical LD trip. A demographic section was included towards the 

survey’s end, to provide control variables and correct for various sampling biases, to better 

represent the U.S. population. 

10.2.1. Data Collection 

Survey Sampling International’s (SSI’s) panel of Americans was used to access respondents from 

across the United States. Nearly 10,000 Americans were targeted before the required sample 
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attributes were obtained, due to two screening procedures. The first screen blocked respondents 

from accessing the survey in its entirety if they failed to answer two initial basic questions 

regarding AVs and SAVs, after relevant information was provided. The second level of screening 

was done by removing respondents who took less than 15 minutes to complete the survey, since a 

low response time was deemed unrealistic for anyone going through this 70-question long survey. 

Both screens helped ensure respondents were intellectually engaged and paying attention. 

Most questions contained a text input option as “Other: _____” for respondents to elaborate and 

expand response options. These inputs were manually mapped to an existing option or to a new 

option, as appropriate. After screening respondents and remapping responses, usable sample size 

was n = 2,588 respondents, from across the United States, with purposeful oversampling (n = 1258) 

of Texans, due to a strong interest in understanding Texans’ preferences. Both sets of responses 

are given below, after a discussion on sample weighting or expansion. 

10.2.2. Population Weighting 

The 2,588 complete responses were associated with household and person-level weights to ensure 

that all reported statistics and regression analyses reflect the broader population of interest. The 

U.S. Census Bureau’s Public Use Microdata Sample (PUMS) for years 2011–2015 provided 

national and state percentages across various classifications: location (Texas vs. U.S.), income and 

race, household size and worker count, vehicle ownership, age, gender, educational attainment and 

marital status. Certain demographics were under-represented (e.g., males who had not finished 

high school) and some others were over-represented (e.g., gender ratio was 47/53 rather than 

49/51, 24% of the sample were people 65 years or older rather than 18%), resulting in slightly 

higher weights. A MATLAB code performed iterative proportional fitting over all the 

combinations of dimensions, ending once categorical percentages fell within 0.001% of the 

population percentages. Population-weighted sample characteristics are shown in Table 10.1. All 

of the following results reflect these adjustments to raw sample statistics. 

Table 10.1 Survey data’s population-weighted summary statistics 

Sample Demographics Mean SD Min Max 

Age (in yrs) 46.00 16.34 21 70 

Gender (Male) 48.64 % - 0 1 

Employed Full-Time 37.59 % - 0 1 

Education – Bachelor’s 17.56 % - 0 1 

U.S. License Holder 89.77 % 24.86 % 0 1 

Disabled 7.91 % - 0 1 

HH Size 2.330 1.047 1 11 

HH Annual Income $70,340 $47,226 $5,000 $250,000 

No. of Workers in HH 1.150 0.951 0 5 

No. of Children in HH 0.535 0.917 0 9 

No. of Vehicles in HH 1.750 0.960 0 6 
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10.3. Summary Statistics 

10.3.1. Current AV Perceptions 

As indicated earlier in this chapter, the survey’s first section gauged perceptions of AVs. Table 

10.2 summarizes the public’s opinion on driving preferences, benefits offered with AV use, 

concerns in using them, and considerations at play in owning an AV. In general, Texans’ responses 

do not differ by much, in any survey section, but there are some questions in which notable 

differences emerge. For example, 36.4% Americans enjoy driving conventional vehicles and do 

not plan on using AVs in the future, while just 26.7% of Texans give that response. In all, 31.8% 

Texans (versus 29.4% of Americans overall) want to keep the AV option open for their travel, 

even though they enjoy driving, while 15.0% of Texans (versus 11.6% of Americans) expect to 

prefer AV use to driving.  

The great majority (92.9% Americans and 90.5% of Texans) believe that safety is a major AV 

benefit, yet over 60% are concerned that AVs may not be safe enough, with faulty software being 

a top concern. The mixing of AVs and conventional vehicles on public roadway is also an 

important concern. Top factors favoring AV ownership, instead of U.S. households relying more 

on SAVs, are the ability to store items in one’s own vehicle and keeping one’s own vehicle 

relatively clean or free of other’s germs, while enjoying greater privacy and flexibility in their AV 

use decisions. It was unusual to find an AV’s self-parking ability to be chosen by less than 2% of 

Americans as a major benefit. Proxy information about individuals with a disability was assessed, 

and 59.2% of Americans and 60.3% of Texans acknowledged that they knew at least one person 

among their immediate family, relatives, friends, or neighbors, who was disabled and would 

benefit from the use of SAVs. 

Americans appear WTP, on average, $2073 more to own an AV as compared to a conventional 

vehicle, plus another $1078 if that new AV includes a human-driving mode option.  
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Table 10.2 Driving preferences and factors affecting AV ownership 

Response Variable U.S. Texas Response Variable U.S. Texas 

Current driving preferences 

Enjoys driving and does not 

plan to use AVs 

36.4% 26.7% Does not like driving and will 

prefer AV use 

11.6% 15.0% 

Enjoys driving but will prefer 

some AV use 

29.4% 31.8% Prefers only non-motorized 

modes of travel 

2.9% 0.9% 

Prefers some driving as well as 

some AV use 

17.5% 14.0% Does not like driving but 

does not plan to use AVs 

0.5% 1.3% 

Expected major benefits of AVs & SAVs 

Safety improvement offered by 

AVs 

92.9% 90.5% Reliability 1.7% 5.1% 

Congestion relief 2.8% 1.9% Self-parking 1.4% 2.2% 

Convenience of travel 2.6% 2.0%  

Expected major concerns of AVs 

Safety against crashes offered by AVs is still questionable 66.5% 62.5% 

Faulty software in AVs 75.6% 71.1% 

Confusion among human drivers and AVs on the streets 49.9% 51.9% 

Privacy breaches inside AVs 16.9% 19.1% 

Others tracking one’s home or work location is easier with AVs 30.3% 39.3% 

Factors causing one to own AVs instead of sharing SAVs 

Parking space availability 6.1% 7.4% Privacy benefits of owning an 

AV 

19.9% 15.4% 

Relative cost of AVs over 

conventional cars 

15.2% 11.0% Hygiene concerns about 

SAVs that are not clean due 

to previous use and possible 

presence of germs 

8.2% 11.6% 

Availability of children’s car 

seats in one’s own AV 

13.3% 14.7% Security and safety 0.4% 1.3% 

Ability to leave small items 

behind in one’s own AV 

21.4% 22.7%  

Storage space for large items 15.6% 15.4% 

10.3.2. Ride-Hailing and SAV Use 

The survey’s second section emphasizes ride-hailing applications and SAV use, including 

respondents’ willingness to allow children to use AVs. Responses, shown in Table 10.3, suggest 

that only 32.5% of Americans (and 33.3% of Texans) have personal ride-hailing experience. 

Among these ride-hailing users, only 27.3% (across the U.S., and 14.7% from Texas) have shared 

their rides with strangers.  

Texans appear to believe that children should be at least 17 years to use privately owned 

(household) AVs, while the average American appears comfortable with a 16-year-old threshold. 

However, 62.2% of Americans were against the idea of sending their own children, at any age, in 

an SAV, without an adult escort. Texans were slightly more comfortable in such private-AV-use 

behavior, with an acceptance rate of 45.7%. 
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Table 10.3 Americans' perspectives on ride-hailing and SAV use 

Response Variable U.S. Texas Response Variable U.S. Texas 

Age appropriate for RIDE-HAILING services Age appropriate for children to use parents’ AVs 

Median age (in years) 16.0 16.0 Median age (in years) 16.0 16.0 

Average age (in years) 16.0 16.3 Average age (in years) 16.4 17.4 

Response Variable U.S. Avg. 

Age 

Texas Avg. 

Age 

Is it acceptable to allow a group of children use an SAV without adult supervision? 

Yes, if there are all at least XX years old. 26.2% 16.2 yrs 27.9% 16.1 yrs 

Yes, if any one child in the group is at least XX years old. 23.0% 16.8 yrs 30.9% 16.7 yrs 

No, it is not acceptable to send children in SAVs. 62.2%  54.3%  

10.3.3. Ride-Sharing with Strangers and Willingness to Pay (WTP) 

Public opinion on ride-sharing with strangers (while using an SAV) was assessed in detail. First, 

a hypothetical 5-mile SAV trip was presented and rising travel times (to reflect delay from adding 

another passenger) were added to this trip. Next, each respondent’s willingness to share the same, 

hypothetical, 5-mile trip during the night was assessed. Maximum travel delays for sharing trips 

during the middle of the day and during the night were identified. Any added willingness to use 

DRS when their location was continuously available/broadcast to a family member (or friend) was 

also recorded, for both cases of day and nighttime trip-making. In addition to these preferences, 

the ideal cost of using an SAV in order to willingly let go of a currently owned household vehicle 

was obtained for different SAV response times (i.e., the time taken between a trip request and the 

SAV’s arrival at the traveler’s origin). All these results are summarized in Table 10.4. 

As shown in the table, only 62.5% Americans and just 54.9% of Texans may be willing to share 

their ride with strangers when no delay accrues (i.e., no time is added to their 5-mile trip). This 

willing-to-share-rides pool of respondents reported an average WTP of 74¢ per trip-mile. 

Interestingly, all scenarios of added travel time returned a similar average. Americans (and Texans) 

may be more interested in their trip distance than their travel time, once they have opted to share 

their ride.   
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Table 10.4 Ride-sharing preferences during daytime 

Response Variable U.S. Texas 

Willingness to use SAV with strangers, no additional time 

Yes 22.5% 30.0% 

Maybe 40.0% 24.9% 

No 37.5% 35.1% 

Average WTP (per mile) $0.74 $0.71 

Response Variable U.S. Texas Response Variable U.S. Texas 

Willingness to use SAV with strangers, 5 min. 

additional time 

Willingness to use SAV with strangers, 15min. 

additional time 

Yes 18.5% 23.2% Yes 6.0% 8.8% 

Maybe 34.8% 31.9% Maybe 19.1% 21.6% 

No 46.7% 45.0% No 75.0% 69.6% 

Average WTP (per mile) $0.73 $0.69 Average WTP (per mile) $0.79 $0.65 

Willingness to use SAV with strangers, 30 min. 

additional time 

Willingness to use SAV with strangers, 1 hr. 

additional time 

Yes 2.8% 2.7% Yes 2.2% 2.2% 

Maybe 7.9% 15.6% Maybe 4.2% 5.7% 

No 89.4% 81.7% No 93.6% 92.1% 

Average WTP (per mile) $0.77 $0.65 Average WTP (per mile) $0.74 $0.62 

 

Table 10.5 describes willingness to share rides (including trip durations, in DRS mode) during the 

day and the night. Very few Americans (just 4.4%, versus 11.0% of Texans) seem willing to share 

their rides at night (though this may well change, as people become more accustomed to SAV and 

DRS services in the future). Of those willing to use DRS during the middle of the day, 4.0% more 

Americans are willing if the service is offered only to people without a prior criminal record. 

Americans (and Texans) are willing to pay a 10¢-per–mile premium, on average, to share a ride 

during the night (presumably because they need more chauffeured trips at night [for consumption 

of alcohol, for example] or expect lower supply of SAVs at night). On average, respondents are 

more willing to tolerate trip delays at night, presumably because time constrains (on work and 

school arrivals, for example) are more severe during the daytime.  
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Table 10.5 Ride-sharing preferences at night 

Response Variable U.S. Texas Response Variable U.S. Texas 

Willing to share a ride with a stranger in an SAV during the night? 

Yes 4.4% 11.0% 

Maybe, if the stranger has no criminal record 8.0% 5.7% 

Maybe, if the stranger’s identifying information is given ahead of time 4.0% 5.0% 

No 83.7% 78.3% 

Average WTP for those willing to share (in $/mile) $0.87 $0.85 

Maximum trip duration for DRS (with a stranger) in an SAV during middle of day (in minutes) 

Mean  29.0 32.6 Median 25.0 26.0 

Maximum trip duration for a shared ride in an SAV during the night (in minutes) 

Mean 34.8 35.4 Median 29.0 30.0 

Maximum trip duration between day and night among those willing to share a ride both in the day 

and in the night 

Average during the day 

(in minutes) 

40.4 47.5 Average during the night 

(in minutes) 

34.8 35.4 

 

Additional DRS features, like location information broadcast to family or friends for safety 

purposes, resulted in more people (roughly 15%) willing to share rides (during the day and at 

night). However, as seen in Table 10.6, more than 60% of Americans (and Texans) remained 

unwilling to ride-share in an SAV. And over 90% seemed hesitant about paying for such a service. 

Among those willing to pay for such a service, Texans appear to be more concerned about their 

safety than other Americans. 

Table 10.6 Effects of ride-sharing trip locations being broadcasted 

Response Variable U.S. Texas Response Variable U.S. Texas 

Willingness to use SAV when location is continuously broadcast to family member or friend 

During the middle of the day… During the night… 

Yes, if the location is 

constantly broadcasted to 

family 

43.0% 50.1% Yes, if the location is 

constantly broadcasted to 

family 

21.8% 30.9% 

Yes, even without the 

location being 

broadcasted to family 

16.4% 18.7% Yes, even without the 

location being broadcasted 

to family 

10.4% 7.4% 

Not willing to share a ride 

with anyone 

40.6% 31.2% Not willing to share a ride 

with anyone 

67.8% 61.7% 

WTP for location to be broadcasted to family or friends (to enhance trip safety) 

During the middle of the day… During the night… 

Yes 8.6% 7.9% Yes 6.8% 14.3% 

Maybe 18.1% 30.2% Maybe 8.5% 8.0% 

No 73.2% 61.8% No 84.7% 77.7% 

WTP to share a ride with unknown person during the night if trip locations are continuously 

broadcast to family or friends 

Average WTP (in $/mile) $0.19 $0.23 
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Table 10.7 summarizes the cost that an SAV must be operated at, for different response times, so 

that the respondent is comfortable letting go of an existing household vehicle. The American 

Automobile Association (AAA, 2016) estimates that current vehicle ownership and operating costs 

average 50 to 80 cents per mile, once depreciation of purchase costs is reflected. Those costs can 

be higher or lower for vehicles driven fewer or more miles per year than the typical U.S. household 

vehicle. Interestingly, respondents are willing, on average, to pay about that same amount for SAV 

access—and Texans tend to offer more money than the average American. SAV users can avoid 

vehicle maintenance and parking costs and hassles, but they cannot guarantee how quickly SAVs 

will get to them, like they can when walking to their parked vehicle. Actual SAV system 

experiences will end up impacting everyone’s WTP, and service times may vary a fair bit by 

location (e.g., urban vs. suburban trip ends). It is an interesting evolution of supply and demand 

that should one day play out around the world. 

Table 10.7 Cost of SAVs at different response times to persuade reduction in current vehicle 
ownership 

Response Variable U.S. Texas Response Variable U.S. Texas 

Cost of using SAV in order to replace vehicles that a respondent’s household currently owns (in $/mile) 

Average response time under 

1 minute 

$0.75 $0.83 Average response time under 10 

minutes 

$0.52 $0.62 

Average response time under 

2 minutes  

$0.71 $0.75 Average response time under 30 

minutes 

$0.38 $0.54 

Average response time under 

5 minutes 

$0.64 $0.71    

10.3.4. Privacy Concerns using AVs and SAVs 

Privacy is not on top of respondents’ minds when AV-related concerns are requested at the survey 

start. However, when targeted as a separate topic, more privacy-related concern was observed. 

Table 10.8 demonstrates this, with 89% of Americans (and 83% of Texans) to at least some privacy 

concerns. However, many respondents (39.8% of Americans and 40.6% of Texans) appear 

unwilling to pay to anonymize their location while using SAVs. Respondents were also asked to 

rate their levels of comfort when their location data is used for different socially meaningful 

purposes. Nearly 48% Americans, on average, were comfortable or somewhat comfortable with 

this data being used for policing activities, managing traffic and for general community 

surveillance. However, more than half were against targeted advertising use.  
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Table 10.8 Privacy concerns related to AVs and SAVs and WTP for privacy 

Response Variable U.S. Texas Response Variable U.S. Texas 

WTP for anonymizing user location for the entire trip while using an AV or SAV if they opt in 

Average (in $/trip) 1.10 1.19 

Comfort level in allowing trip-location data usage… 

…to aid policing activities with a warrant …for general community surveillance 

Very uncomfortable 17.7% 15.9% Very uncomfortable 19.2% 26.1% 

Somewhat uncomfortable 6.2% 9.1% Somewhat uncomfortable 14.0% 15.1% 

Unsure 22.4% 29.7% Unsure 30.0% 26.3% 

Somewhat comfortable 27.8% 23.6% Somewhat comfortable 23.8% 21.6% 

Very comfortable 25.9% 21.7% Very comfortable 13.0% 10.9% 

…to manage traffic & forecast travel conditions …to facilitate directed advertising 

Very uncomfortable 15.4% 18.8% Very uncomfortable 42.5% 49.2% 

Somewhat uncomfortable 8.7% 12.6% Somewhat uncomfortable 17.9% 21.3% 

Unsure 22.4% 24.3% Unsure 24.0% 15.9% 

Somewhat comfortable 39.0% 30.2% Somewhat comfortable 11.8% 10.2% 

Very comfortable 14.5% 14.1% Very comfortable 3.8% 3.4% 

10.3.5. Crash Ethics While using AVs 

Two distinct crash scenarios were presented in the survey, describing an AV crashing into a group 

of pedestrians in one case and crashing into other cars on the road in another. Respondents picked 

from a broad list of options to describe ethical and non-ethical crash outcomes. Table 10.9 outlines 

the opinions regarding the most ethical outcomes along with the person or business that should be 

held accountable for such events.  

The most popular common believe is that AVs should not change course, once a crash is inevitable, 

and should crash into the first pedestrian or vehicle that crosses its path. Many others feel strongly 

that vehicle and pedestrian differences should be ignored while heading into a crash. Presumably, 

Americans recognize that there is not great solution to most crash situations and no new target 

(like a heavier vehicle or older adult) should be picked, leaving outcomes more to random chance 

and relatively similar to what humans may do under such difficult situations, with little response 

time available. Nevertheless, a strong share of respondents (about 20 percent) would like children 

to be avoided, when feasible, and more crash-hearty vehicles be selected, to minimize loss of life. 

More than 60% believe that AV manufacturers should be held responsible for such crashes.  
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Table 10.9 Crash choices and responsibilities 

Response Variable U.S. Texas 

Scenario 1: AV inevitably crashing into a group of pedestrians 

AVs must not change course, no matter what, and must crash into whoever is 

ahead. 

54.2% 47.6% 

The crash must should occur without any biases or preferences on age, race and 

gender of individuals in the group of pedestrians. 

24.8% 26.4% 

Children must be avoided under all circumstances. 19.2% 21.1% 

Respondent is unsure if any of the options correctly describes an ethical outcome. 6.8% 9.2% 

AVs must avoid crashing into friends identified in this group. 3.3% 4.2% 

The AV must change into its human-driven operation mode so that the human can 

instinctively decide. 

0.7% 0.3% 

The occupant of the AV must be sacrificed for agreeing to use such a vehicle. 0.3% 0.2% 

Scenario 2: AVs inevitably crashing into other vehicles on the road 

The crash must occur without any biases on vehicle-type, value or insurance. 38.4% 38.9% 

AVs must not change course, no matter what, and must crash into the first vehicle 

it encounters. 

31.8% 31.8% 

The crash must occur such that the overall harm to human-life is minimized (e.g., 

AVs can crash into bigger vehicles.) 

19.9% 19.5% 

The crash must occur such that the harm to the AVs occupants is minimized. 11.4% 12.7% 

Respondent is unsure if any of the options correctly describe an ethical outcome. 5.9% 6.5% 

The crash must occur such that cars identified as belonging to a friend must not be 

damaged. 

1.6% 2.7% 

Response Variable U.S. Texas Response Variable U.S. Texas 

Who should take responsibility for all damages in an unavoidable crash? 

The AV manufacturer should 

take responsibility. 

60.9% 59.7% Respondent does not hold an 

opinion. 

5.0% 4.8% 

The programmer who built the 

AV’s algorithm. 

23.2% 23.2% Should be decided by 

insurers. 

1.4% 0.4% 

Crashes will continue to 

occur; no one needs to take 

responsibility. 

19.6% 22.2% The courts should decide. 0.6% 1.7% 

The individual who owns the AV and knows the risks that entail operating the 

vehicle should be held responsible for the crash. 

0.4% 1.0% 

10.3.6. Long-Distance Travel Choices 

Various LD trip-making behaviors were investigated, including frequency of LD trip-making (per 

month), the longest trip made over the past year, share of LD trips with other persons (e.g., alone 

versus with friends, family, or colleagues), and mode preferences (across trip purposes and 

distance bands). Most LD trips occur with family members, and most respondents travel more LD 

often for personal trips than for business or vacation. 

Over 80% of Americans (and Texans) prefer to use their own household vehicle for any non-

business trip type under 500 miles. With the introduction of AVs and SAVs, conventional- 
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(human-driven) vehicle choice for non-business LD trips under 500 miles drops to 40%. AVs and 

SAVs enjoy a combined mode preference of 49.6% for business trips between 50 and 500 miles 

(one-way distance). For distances over 500 miles (one-way), air travel is preferred, for all trip 

types. Respondents may be expecting that they somehow can better afford air travel in the future, 

since this mode split is not consistent with current airline use splits. These results may be game-

changers for travel demand forecasting when included in LD mode choice analyses in all statewide, 

national, and international travel models. 

10.4. Model Results 

10.4.1. Willingness to Pay for Dynamic Ride-Sharing 

WTP for DRS in an SAV was estimated in two parts, to reflect the high number of respondents 

unwilling to share rides with strangers, as shown in Table 10.10. 

Table 10.10 Respondents unwilling to share rides (in an SAV, for different added times) 

Added Time % Respondents not 

WTP to Share Rides 

0 minutes  37.47% 

5 46.70 

15 74.99 

30 89.37 

60 93.63 

 

The two-part model is motivated by Cragg’s (1971) hurdle regression specification and was 

estimated using Stata software (StataCorp., 2015). This approach assesses the hurdle beyond which 

a particular event occurs. Here, the hurdle is one being WTP to share a ride and is estimated as a 

selection variable, 𝑠𝑖, using the maximum likelihood techniques while allowing for unobserved 

heteroscedasticity (across respondents) as a function of age. Correlation between responses from 

the same respondent was accounted for using data stratification in Stata, and an independent and 

identically distributed epsilon is assumed between respondents. A zero-dollar lower bound for 

each respondent’s WTP was imposed as shown below., where 𝐱𝐢 is the vector input of predictor 

variables affecting this $0 selection, 𝛃𝟏 is the associated vector of model coefficients and εi,1 is 

(assumed to be) a normally distributed error term. 

𝑠𝑖 = {
1     𝑖𝑓 𝐱i𝛃𝟏 + ε𝑖,1 > 0

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
 

The second part of the model estimates the specific amount that one is WTP using an exponential 

regression function, in cases where 𝑠𝑖 = 1. Both equations are estimated simultaneously using 

maximum likelihood estimation (MLE). An exponential regression function ensures that WTP 

estimates can only be positive, with 𝐳𝐢 serving as the vector of predictors or explanatory variables, 

𝛃𝟐 the vector of parameters to be estimated, and εi,2 as another set of independent, identically 

distributed normal error terms. 
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Yi = exp (𝐳𝐢𝛃𝟐 + εi,2) 

Table 10.11 shows the estimated parameters for both the selection model and exponential 

regression model. As expected, the travel time added via ride-sharing significantly affects 

respondents’ decision to ride-share. Presence of a worker in the household reduces one’s 

willingness, perhaps because workers have more constrained activity patterns, and so desire or 

need more independent travel. Interestingly, older people (everything else constant) and those with 

drivers’ licenses are estimated to be less likely to share a ride. Those in households with annual 

incomes between $75,000 and $125,000 appear more likely to share a ride, as compared to other 

income brackets. It is possible that lower income brackets cannot simply afford to use an SAV, 

while those in higher income brackets prefer private rides. 

Respondents with an associate’s degree or higher are more willing to share rides (i.e., offer a non-

zero valuation for such travel), everything else constant. Interestingly, those currently living in 

more densely populated but less densely employed neighborhoods appear less willing to share 

rides, and this could be people living close to downtown where walking gets you to most places. 

While coefficients of the exponential regression model cannot be used directly to infer changes in 

one’s expected WTP (due to the non-linear transformation that ensures non-negativity in this 

response variable), one finds that added travel time does not significantly affect WTP once a 

traveler is ready to share a ride. Older persons and those without any college education appear to 

be WTP a lower value, assuming they are already willing to share a ride, in this hurdle model 

specification.  



202 

Table 10.11 Model estimation results for WTP to share a ride 

Selection Model 

Independent Variables Coefficients T-stat 

Constant 1.14 4.86 

Time added to the shared ride (in minutes) -0.04 -13.80 

Worker present in the household? -0.30 -2.61 

Age of respondent (in years) -0.01 -3.83 

Have U.S. driver’s license? -0.47 -2.59 

Household income between $75k and $125k?  0.36 3.22 

Has attended some college? 0.26 2.14 

Population density (per square mile) -0.3E-4 -2.99 

Employment density (per square mile) 0.5E-4 3.08 

Exponential Regression Model 

Independent Variables Coefficients T-stat 

Constant -0.68 -4.82 

Age of respondent (in years) 0.01 3.13 

Has attended some college? -0.21 -2.66 

Functional Variables for Heteroscedasticity 

Age of respondent (in years): Exponential model -0.01 -8.00 

Fit statistics 

 Final log-likelihood -1992.5321 

 Pseudo R-square 0.7034 

 Likelihood Ratio Chi-Square 9450.88 

 Number of observations (number of respondents) 12,940 (2,588) 

F-test (2, 2586) 7.29 

 

The change in response when each of the covariates was changed by one standard deviation was 

computed to understand how the expected WTP to share rides may change and this is tabulated in 

Table 10.12. For continuous variables, like respondent’s age, the marginal expected value of WTP 

is calculated one standard deviation away from the mean age, in both directions. For indicator 

variables, the change in responses are determined by completely switching from a base level (like 

0), to the next or subsequent levels (for example, 1, 2, or 3) and then calculating the marginal 

expected value of WTP at that point. Essentially, a continuous covariate’s mean, plus/minus one 

standard deviation, is used to compute the new mean WTP for the sample and this percent change 

with respect to the previous mean is tabulated and for indicator variables, these percent change 

values are calculated by assuming all responses are at a high (that is, 1) or some intermediate point 

(like 2, 3 or 4 in a multi-level indicator) and then calculating the new mean. Computed changes in 

expected value of WTP with respect to the initial mean suggests that the lack of a driver’s license 

affects mean values the most, by increasing it by 38%. When everything else is constant, a one 

standard deviation in average age of Americans can reduce the expected WTP by 27%. However, 

as Americans continue to age, the increase in average age will bring it down. As more people fall 

into the middle-class household income category, results suggest that there will be a 26% increase 

in average WTP to share rides. 
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Table 10.12 Covariate elasticities for WTP to share rides 

Independent Variables  
% Change 

in WTP 

Worker present in the household? 
Y +19.6% 

N -7.84% 

Age of respondent (in years) 
+1SD -26.86% 

-1SD +18.07% 

Have U.S. driver’s license? 
Y -4.73% 

N +38.19% 

Household income between $75k and $125k?  
Y +26.06% 

N -6.61% 

Has attended some college? 
Y +6.71% 

N -10.02% 

Population density (per square mile) 
+1SD -19.54% 

-1SD +10.49% 

Employment density (per square mile) 
+1SD +21.56% 

-1SD -5.92% 

10.4.2. Willingness to Pay to Anonymize Location while Using SAVs 

A similar hurdle exponential regression was estimated to determine one’s WTP to anonymize pick-

up and drop-off locations while using SAVs. Table 10.13 shows the estimated coefficients for the 

two-part model. As expected, respondents who are concerned about privacy are more likely to be 

WTP to anonymize their location. Disabled people and females are more likely to be WTP, perhaps 

because they feel that they are relatively vulnerable and make an easier target for criminal 

behaviors. Vehicle ownership is also estimated to increase a respondent’s WTP to a non-zero value 

for this anonymization benefit. Older people and those in smaller households are estimated to be 

less likely to pay to anonymize their locations. Household income is an interesting factor in this 

decision, since it oscillates back and forth between different income groups. In terms of one’s level 

of payment, model results suggest that older persons and Caucasians are more WTP than those 

with a driver’s license or those in households with more children.  
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Table 10.13 Model estimation results for WTP to anonymize location while using SAVs 

Selection Model 

Independent Variables Coefficients T-stat 

Constant -0.40 -1.61 

Concerned about privacy? 1.73 9.26 

No disability? -0.69 -5.75 

Household owns 1 vehicle? 0.60 5.40 

              2 vehicles? 0.67 5.48 

              3 vehicles? 0.63 4.64 

              4+ vehicles? 0.66 4.14 

Household size equal to 2? 0.16 2.02 

             equal to 3? 0.27 2.67 

             equal to 4+? -0.11 -1.13 

Household workers equal to 1? -0.12 -1.54 

                equal to 2? -0.10 -1.07 

                equal to 3? -0.47 -3.14 

                equal to 4+? -0.51 -1.89 

Age of respondent (in years) -0.02 -11.14 

Is Male? -0.35 -6.35 

Household income: < $20,000 0.72 5.51 

Or              < $30,000 0.13 1.06 

Or              < $40,000 -0.02 -0.14 

Or              < $50,000 0.18 1.31 

Or              < $60,000 0.17 1.19 

Or              < $75,000 0.33 2.41 

Or              < $100,000 0.25 1.87 

Or              < $125,000 0.17 1.19 

Or              < $150,000 0.68 3.96 

Or              < $200,000 0.14 0.84 

Or              > $200,000 0.70 4.06 

Exponential Regression Model 

Independent Variables Coefficients T-stat 

Constant -0.86 -7.23 

Age of respondent (in years) -0.4E-2 -3.24 

Have U.S. driver’s license? 0.26 3.72 

Caucasian? -0.14 -3.10 

Household has 2 or less children? 0.48 6.11 

Household income: < $20,000 0.23 2.45 

Or              < $30,000 0.52 5.20 

Or              < $40,000 0.39 3.67 

Or              < $50,000 0.18 1.77 

Or              < $60,000 0.08 0.72 

Or              < $75,000 0.41 4.07 

Or              < $100,000 0.38 3.94 

Or              < $125,000 0.38 3.60 

Or              < $150,000 0.36 3.22 

Or              < $200,000 0.54 4.52 

Or              > $200,000 0.06 0.56 

Population density (per square mile) -0.2E-4 -3.13 

Employment density (per square mile) 0.1E-4 2.48 
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Variables with Heteroscedasticity 

Age of respondent (in years): Exponential model -0.6E-2 -16.62 

Fit statistics 

 Final log-likelihood -705.4893 

 Pseudo R-square 0.6140 

 Likelihood Ratio Chi-Square 2244.21 

 Number of observations 2,588 

 

The changes in responses and marginal expected value of WTP are calculated for this model 

similarly to the previous hurdle model, as shown in Table 10.14. The percentage deviation of the 

expected value of WTP helps identify potential policy impacts to privacy and location 

anonymization decisions. Negative changes on all covariates showed that, although Americans 

seem to want privacy and may be willing to pay for anonymized trips, it may be unlikely that 

privacy will of trip locations will be a concern in the future. They also suggest that, moving 

forward, with the aging population and increasing average wages, there may be a decline in dollar 

amount that Americans are WTP to anonymize a trip.  
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Table 10.14 Covariate elasticities for WTP to anonymize location in an SAV 

Independent Variables % Change in WTP 

No disability? 
Y: -35.14% 

N: -13.14% 

Household owns 0 vehicles? -55.58% 

              1 vehicle? -33.06% 

              2 vehicles? -30.49% 

              3 vehicles? -32.00% 

              4+ vehicles? -30.85% 

Household size equal to 1? -36.15% 

             equal to 2? -30.34% 

             equal to 3? -26.54% 

             equal to 4+? -40.16% 

Household workers equal to 0? -29.73% 

                equal to 1? -33.98% 

                equal to 2? -33.25% 

                equal to 3? -46.97% 

                equal to 4+? -48.47% 

Age of respondent (in years) 
+1SD: -55.57%  

-1SD: -15.00%  

Is Male? 
Y: -40.04% 

N: -27.38% 

Household income: < $20,000 -20.95% 

Or              < $30,000 -32.46% 

Or              < $40,000 -42.49% 

Or              < $50,000 -40.00% 

Or              < $60,000 -42.33% 

Or              < $75,000 -28.55% 

Or              < $100,000 -32.34% 

Or              < $125,000 -35.31% 

Or              < $150,000 -18.09% 

Or              < $200,000 -31.93% 

Or              > $200,000 -26.23% 

Have U.S. driver’s license? 
Y: -32.77% 

N: -39.13% 

Caucasian? 
Y: -35.15% 

N: -31.29% 

Population density (per square mile) 
+1SD: -36.51%  

-1SD: -29.98%  

Employment density (per square mile) 
+1SD: -29.50%  

-1SD: -34.41%  

10.4.3. Long-distance Mode Choice with and without AVs and SAVs 

Mode choice for LD travel was studied by first estimating a binary logit model when there are no 

AVs and SAVs available. Then, a multinomial logit model was estimated based on another survey 

question that included these modes. Correlation is allowed between responses from the same 
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respondent and an independent identically distributed Gaussian error term was assumed for 

observations between different respondents. 

Table 10.15 shows the estimated coefficients as well as changes in the expected mode share of 

airplane for the binary logit model between the mode choices of a private car and an airplane. The 

private car was chosen as the base case and all coefficients can be interpreted with respect to this. 

The model suggests that business and recreational trip types are typically completed by airplanes. 

Trips greater than 500 miles, as expected, also use airplane for travel. Households owning one or 

more vehicles are less likely to prefer flying, provided everything else is constant. Single-person 

households seem the most interested in preferring to fly. Changes in household occupancies 

estimates a 32% increase if more single households were to exist. It is interesting to see the gradual 

change in preference among different income groups towards air travel. This is shown 

considerably well by their elasticities (the gradual change from negatives to positives for air 

travel). It is expected that wealthier households are more likely to fly to their destination, 

irrespective of business or pleasure. Interestingly, older people prefer to travel in their own vehicle 

as compared to the time-luxury of air travel. This could be because of lowered comfort level in an 

airplane as compared to that of their own vehicle. Caucasians prefer to drive their own car as 

compared to flying and this is most likely due to the heritage of driving in America. Households 

with children are unlikely to travel by air as compared to households without children.  
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Table 10.15 Model estimation and covariate elasticities for mode choice in LD travel without AVs 
and SAVs 

Binary Logit Model 

Independent Variables Coefficient T-stat 
Changes in Mode 

Share 
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e 
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Constant 0.76 1.15  

Trip Type – Personal? (base) -20.63% 

         – Business? 0.97 5.48 +23.56% 

         – Recreation? 0.71 4.85 +10.87% 

Distance: 100 – 500 miles (base) -41.70% 

        > 500 miles 1.78 13.69 +43.95% 

Household owns 0 vehicles (base) +38.09% 

              1 vehicle? -0.69 -1.38 +5.20% 

              2 vehicles? -0.87 -1.69 -2.88% 

              3 vehicles? -0.79 -1.42 +0.91% 

              4+ vehicles? -1.45 -2.25 -26.72% 

Household size equal to 1? (base) +32.25% 

             equal to 2? -1.30 -4.84 -25.89% 

             equal to 3? -0.50 -1.42 +8.23% 

             equal to 4+? -0.67 -1.37 +0.82% 

Household workers equal to 0? (base) +14.44% 

                equal to 1? -0.62 -2.58 -13.40% 

                equal to 2? -0.16 -0.52 +7.02% 

                equal to 3? -0.59 -1.18 -12.31% 

                equal to 4+? 0.52 0.69 +39.84% 

Age of respondent (in years) -0.01 -2.12 
+1SD: -12.39% 

-1SD: + 8.70% 

Caucasian? -0.68 -3.37 
Y: -11.32% 

N: +19.60% 

No child in the household (base) +12.77% 

Children in the household: 1 child? -1.57 -4.51 -49.92% 

                      2 children? -0.22 -0.43 +2.53% 

                      3 children? -0.25 -0.40 +0.99% 

                      4+ children? -1.59 -2.12 -50.57% 

Household income: < $20,000 -1.53 -2.46 -64.76% 

Or              < $30,000 -1.09 -2.23 -52.29% 

Or              < $40,000 -0.58 -1.15 -34.44% 

Or              < $50,000 -0.36 -0.77 -25.43% 

Or              < $60,000 -0.78 -1.59 -41.89% 

Or              < $75,000 0.33 0.64 +5.76% 

Or              < $100,000 0.51 1.13 +14.70% 

Or              < $125,000 0.94 1.90 +37.07% 

Or              < $150,000 1.27 2.39 +54.04% 

Or              < $200,000 1.17 2.35 +48.82% 

Or              > $200,000 2.20 3.56 +100.16% 

Population density (per square mile) 0.4E-4 1.39 
+1SD: +14.08% 

-1SD:  - 6.60% 

Employment density (per square mile) -0.7E-4 -1.31 
1SD: -13.36% 

-1SD:  +4.81% 

Fit statistics 

Number of observations (number of respondents) 8,735 (2,039) 

F-test (33, 2006) 10.92 

Prob > F 0.00 

 

The multinomial logit model estimated under the assumption that AVs and SAVs are available 

and affordable shed some interesting inferences. Table 10.16 shows the estimated coefficients for 

this scenario. SAVs seem to be a dominating choice for business travel as compared to the other 
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modes as well as personal travel. Distance seems to only play a vital part in deciding to choose to 

fly. Current vehicle ownership does indicate that one may be less interested in AVs and SAVs, 

however, this is still a competing mode choice when other factors come into play. Older people 

still seem to prefer the private car as the most preferred alternative with AVs as their next choice, 

when everything else is constant. Having a current driver’s license also deters people from using 

these automated modes. Regardless of the household’s income bracket, there seems to be wide 

consensus in favoring SAVs as they are expected to turn out to be the most affordable alternative.  
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Table 10.16 Model estimation for future mode choice in LD Travel with AVs and SAVs 

Multinomial Logit Model 

Alternatives 

(Base Case – Private Car) 
AVs SAVs Airplane 

Independent Variables Coefficient 

(T-stat) 

Coefficient 

(T-stat) 

Coefficient 

(T-stat) 

Constant 1.79 (1.67) -0.48 (-0.34) 1.92 (1.49) 

Trip Type – Personal? (base) 

         – Business? -0.03 (-0.15) 1.23 (4.83) 0.56 (3.22) 

         – Recreation? -0.06 (0.78) 0.15 (0.86) 0.16 (1.94) 

Distance: 100 – 500 miles (base) 

        > 500 miles 0.10 (0.86) 0.05 (0.29) 1.55 (10.45) 

Household owns 1 vehicle? -0.84 (-1.23) -0.36 (-0.45) 0.20 (0.27) 

              2 vehicles? -1.27 (-1.85) -0.24 (-0.28) -0.21 (-0.27) 

              3 vehicles? -0.65 (-0.88) 0.41 (0.44) -0.26 (-0.31) 

              4+ vehicles? -0.72 (-0.83) 0.26 (0.26) -0.80 (-0.91) 

Household size equal to 2? 0.91 (2.21) 0.42 (0.74) -0.37 (-0.79) 

             equal to 3? 0.12 (0.21) -0.23 (-0.29) -0.01 (-0.01) 

             equal to 4+? -0.25 (-0.33) -0.51 (-0.48) -0.21 (-0.31) 

Household workers equal to 1? -0.45 (-1.20) -0.97 (-1.82) -0.97 (-2.29) 

                equal to 2? -0.30 (-0.69) -0.32 (-0.49) -0.12 (-0.25) 

                equal to 3? -0.59 (--0.84) -1.40 (-1.61) -0.94 (-1.30) 

                equal to 4+? 0.75 (0.60) -0.72 (-0.46) 0.07 (0.05) 

Age of respondent (in years) -0.02 (-2.14) -0.03 (-1.92) -0.03 (-2.63) 

Have U.S. driver’s license? -2.41 (-3.85) -2.26 (-3.30) -1.88 (-2.31) 

Caucasian? -0.26 (-0.81) -1.01 (-2.41) -0.75 (-2.12) 

Children in the household: 1 child? 0.50 (1.05) 0.90 (1.48) -0.96 (-2.07) 

                      2 children? 1.35 (1.75) 0.89 (0.86) -0.68 (-1.01) 

                      3 children? 2.30 (2.42) 1.87 (1.59) 0.21 (0.23) 

                      4+ children? -0.43 (-0.37) 0.19 (0.15) -1.10 (-1.27) 

Household income: < $20,000 0.78 (1.06) 1.75 (1.35) 0.34 (0.29) 

Or              < $30,000 0.94 (1.27) 3.21 (2.63) -0.21 (-0.22) 

Or              < $40,000 0.69 (1.00) 2.98 (2.48) 0.22 (0.25) 

Or              < $50,000 0.20 (0.32) 2.37 (2.04) 0.79 (0.90) 

Or              < $60,000 1.76 (2.32) 4.84 (3.83) 0.88 (0.90) 

Or              < $75,000 1.35 (1.87) 1.75 (1.42) 1.43 (1.53) 

Or              < $100,000 0.83 (1.17) 3.72 (3.16) 1.50 (1.60) 

Or              < $125,000 1.51 (2.20) 3.75 (3.27) 2.03 (2.23) 

Or              < $150,000 1.62 (1.99) 3.10 (2.50) 2.30 (2.29) 

Or              < $200,000 1.74 (2.22) 2.41 (1.87) 2.29 (2.50) 

Or              > $200,000 1.41 (1.72) 2.60 (2.04) 2.11 (2.08) 

Has attended some college? 0.23 (0.80) 0.89 (2.12) 0.75 (2.61) 

Currently working at least part-time? 1.52 (3.07) 1.34 (2.02) 1.36 (2.34) 

Single? 0.49 (2.17) 0.12 (0.37) 0.17 (0.65) 

Population density (per square mile) 0.2E-4 (0.65) 0.5E-4 (1.24) 0.4E-4 (1.53) 

Employment density (per square mile) -0.5E-4 (-0.96) -0.1E-4 (-1.06) -0.8E-4 (-1.59) 

Fit statistics 

Number of observations (no. of respondents)  9,257 (2,005) 

F-test (114, 1891)  5.74 

Prob > F  0.00 
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In this case, the expected change in mode shares for all the modes discussed above is calculated. 

This is done by identifying the expected value of the mode share at the new mean value of the 

covariate. This helps see the practical effect of each covariate on future mode share. Table 10.17 

shows the percentage change in mode-shares with respect to the previously determined share and 

gives an idea of the impact of each of the covariates. As evaluated from the coefficients previously, 

the absence of children may have a deep impact in choosing to fly compared to the other modes 

for LD travel. There may be a 67% increase in SAVs’ mode-share mainly due to business travel. 

Absence of vehicle in the household also seems to favor use of AVs for future LD travel. 

Households with few (up to three) children may and significant number of workers prefer AVs for 

their LD travel and this could be directly from high total household income. Interest in SAVs is 

spread out through all income groups while results suggest that some income brackets may not use 

SAVs for their LD needs. 
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Table 10.17 Covariate elasticities for future mode choice in LD travel 

Independent Variables 
Change in Mode Share 

AVs SAVs Airplane 

Trip Type – Personal? +3.84% -24.96% -7.22% 

         – Business? -22.15% +67.41% +11.91% 

         – Recreation? -5.01% -16.40% +1.43% 

Distance: 100 – 500 miles +19.53% +24.46% -38.74% 

        > 500 miles -18.62% -22.56% +37.34% 

Household owns 0 vehicles? +43.60% -10.43% -18.83% 

              1 vehicle? +2.08% -31.03% +12.20% 

              2 vehicles? -15.35% +1.82% +4.84% 

              3 vehicles? +14.32% +51.67% -18.32% 

              4+ vehicles? +22.59% +51.75% -37.60% 

Household size equal to 1? -8.90% +8.43% +11.65% 

             equal to 2? +33.38% +22.20% -27.20% 

             equal to 3? -14.94% -13.82% +14.08% 

             equal to 4+? -22.72% -20.15% +10.60% 

Household workers equal to 0? +0.61% +33.71% +8.97% 

                equal to 1? +6.23% -11.91% -17.88% 

                equal to 2? -10.77% +11.72% +14.82% 

                equal to 3? +1.96% -37.25% -12.84% 

                equal to 4+? +50.29% -44.93% -6.80% 

Age of respondent (in years) 
+1SD: -10.49% -11.84% -8.01% 

-1SD:  +9.47% -7.97% +4.60% 

Have U.S. driver’s license? 
Y:  -5.47% -3.45% -0.22% 

N: +57.88% +50.56% -7.35% 

Caucasian? 
Y:  +5.92% -22.51% -8.83% 

N:  -6.31% +32.34% +13.96% 

No child in the household -17.73% -23.61% +19.81% 

Children in the household: 1 child? +23.66% +65.69% -39.38% 

                      2 children? +64.14% +23.49% -43.47% 

                      3 children? +83.96% +38.39% -39.40% 

                      4+ children? -31.94% +36.73% -14.44% 

Household income: < $20,000 +14.55% -53.05% -29.39% 

Or              < $30,000 +23.18% +56.66% -54.99% 

Or              < $40,000 -3.97% +45.38% -32.73% 

Or              < $50,000 -32.27% -32.00% +6.72% 

Or              < $60,000 +23.35% +196.60% -44.63% 

Or              < $75,000 +22.17% -77.55% +6.73% 

Or              < $100,000 -23.53% +44.52% +17.40% 

Or              < $125,000 -5.78% +6.78% +30.00% 

Or              < $150,000 -4.64% -51.50% +45.19% 

Or              < $200,000 +5.64% -76.17% +43.47% 

Or              > $200,000 -8.94% -61.88% +44.25% 

Has attended some college? 
Y:  -3.13% +13.49% +7.77% 

N:  +9.88% -27.15% -16.67% 

Currently working at least part-time? 
Y: +54.87% +13.29% -8.15% 

N:  -8.89% -8.12% +0.62% 

Single? 
Y: -40.26% -7.50% +21.73% 

N: +21.98% -0.54% -16.15% 

Population density (per square mile) 
+1SD:  -5.41% +20.62% +10.06% 

-1SD:  +1.27%  -7.28% -5.04% 

Employment density (per square mile) 
+1SD:  -1.82% -15.68% -9.44% 

-1SD:  -0.53% +9.10% +2.07% 



213 

10.5. Practical Significance of CAVs 

Americans appear apprehensive about using AVs, with Texans more willing to employ such 

automation. While Americans anticipate many crash benefits, 67% are concerned about initial 

safety issues and 76% are concerned about software defects. Trip-making privacy and the ability 

to leave things behind in a personally owned AV are key factors in preferring to own, rather than 

share, an AV. Average WTP is $2073 (above the cost of a conventional vehicle to own), plus 

another $1078 to ensure the AV retains a human-driving option. While the average Texan was 

more WTP for SAV rides (per mile traveled) than the average American, Texans demonstrated 

somewhat lower WTP for these privately owned AV technologies (at $1948 plus another $949, 

respectively). 

More than 65% of survey respondents have not yet used a ride-hailing service, and only 25% of 

users had shared their ride (with an unknown traveler) in such vehicles. Most of these people (i.e., 

prior ride-hailing users) are not comfortable sending their children in a ride-hailing vehicle by 

themselves. Of those who are willing, the average minimum recommended age is 16 years old, for 

ride-hailing use. Their responses are similar for children using their parents’ personally owned 

AVs in the future, with Texans suggesting (on average) a 17-year-old age threshold. If children 

are traveling in a group, Americans appear comfortable with the idea if at least one child being 

almost 17 years old; alternatively, all travelers should be at least 16 years of age (which is the 

standard minimum driving age in the U.S.). 

Ride-sharing preferences among adults were assessed in detail here. For example, the WTP to 

share rides, with a stranger, is rather stable, at $0.75 per mile for the average American (and just 

$0.65 per mile for the average Texan), even in the face of added travel times up to 1 hour—at least 

for the small share of respondents willing to share rides under such trip-delayed circumstances. A 

hurdle model to predict this WTP during the day suggests that added travel time, respondent age 

and gender, household size and income (between $75k and $125k), disability and driver’s license 

status, and presence of a worker in the home are important predictors of one’s being WTP to share 

one’s ride. After clearing these criteria, added travel time was not statistically significant, but 

variables of household size and vehicle ownership, respondent age, race, and land use variables 

were valuable predictors. 

Few respondents appear willing to use DRS at night, but those who are willing state an average 

WTP of $0.87 per mile. Most people do not want to share a ride with someone they do not know 

for more than 30 minutes; but those who are most open to DRS are willing, on average, to ride-

share for 45 minutes. More respondents are willing to share rides at night if their location is made 

constantly available to a family member or friend, adding another WTP of $0.19 per trip-mile (for 

this security benefit). While Texans were less WTP for adding automation to a privately held 

vehicle, they are more WTP for SAV service, per mile traveled (83¢ per mile, on average, versus 

75¢/mile for the average American) when they have to give up one personal vehicle. 
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Higher levels of concern emerge when privacy is the focus of a survey question, rather than one 

among many potential issues to be selected by a respondent. Respondents are WTP, on average, 

more than $1 per trip to anonymize their location information (presumably wanting to obscure 

their home address most often). A hurdle model was used to estimate the WTP for anonymizing 

location while using AVs. Age, number of children in the household, vehicle ownership, and 

income were major predictors in determining one’s WTP. They are against targeted advertising 

(based on their trip coordinates, for example), but comfortable with their data being used for 

policing, community surveillance, and/or traffic management decisions. 

Crash ethics were also investigated, using three targeted questions based on different crash 

scenarios. The largest single share of Americans (54%) feel that any AV, when having no choice 

but to crash into one or more pedestrians (or other vehicles, in a related question [with 31% of 

respondents]) should not change its trajectory (to select a different pedestrian or vehicle to crash 

into), even if the current trajectory does not minimize overall harm. Avoiding children was also a 

popular response, but not the top response. AV manufacturers were dominantly (60.9% of 

respondents) deemed fully responsible for all such crashes. (Of course, some instances, like an 

inebriated pedestrian running about between two parked cars, would not be ascribed to 

manufacturers. Either way, the vehicle owner and specific design engineers are not being deemed 

responsible in such settings.) 

Americans expect much of their LD travel (for trips over 50 miles, one-way) to shift toward AVs 

and SAVs. For example, nearly 50% of trips between 50 and 500 miles (one-way) are expected to 

eventually take place in an AV or SAVs, and this is considerably lower than LaMondia et al.’s 

(2016) prediction of around 55%, on average for these ranges. Airplanes are expected to deliver a 

major share of business trips (more than currently stated by respondents, perhaps due to some 

future-optimism bias about affordability). A binary logit model estimated that income played a 

vital role in determining mode choice in the current scenario without AVs or SAVs. However, a 

multinomial logit for LD mode choices in the presence of affordable AVs and SAVs, suggests that 

Americans prefer SAVs, irrespective of their household’s income, ceteris paribus. Some business 

travel under 500 miles is also expected to be completed using SAVs. Older people are estimated 

to prefer to use their own vehicles, now and in the future. 

These results suggest that Americans are not yet very confident about AV use, but expect to 

develop heavy usage levels. WTP, demand levels, perception, and public opinion are helpful to 

transportation planners and policymakers, technologists and vehicle manufacturers, fleet managers 

and system operators, as well as airlines, land developers, attorneys, insurers, and the tourism 

industry. Privacy in trip-making is a concern, with some respondents WTP to anonymize location 

data. Perceptions of ethics in crash choices should facilitate design of anti-crash algorithms. The 

aviation sector may wish to adjust its investments and future marketing strategies in response to 

changes in market share for LD travel. Regardless of position, preferences will evolve, as designs 

are rolled out and experience by more and more people, around the world. Regular survey efforts 

help nations and regions, companies and public agencies, better prepare for the coming paradigm 

shifts, hopefully with equity, environment, and efficiency in mind. The limitation to keep the 
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survey relatively brief meant that some other new innovative questions were removed before final 

dissemination.  
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Chapter 11. Traffic and Trade Impacts of Automated 

Trucking  

11.1. Background 

11.1.1. Motivation 

Self-driving, fully automated, or autonomous vehicles (AVs) are an emerging transportation 

technology that may transform both passenger and freight transport decisions. Semi-automated 

trucks may enable automated driving under supervision and limited circumstances, such as driving 

long distances on an interstate. Fully automated self-driving trucks or “Atrucks” (autonomous 

trucks) are those that can leave the truck terminal and travel to a destination without human 

intervention or presence in the truck cab (Goodwill, 2017; Hawkins, 2018; Wakabayashi, 2018). 

Atrucks may be equipped with other automated functions, like drop-offs and pick-ups, but most 

experts expect an attendant on board, doing other types of work, sleeping as needed, and ensuring 

thoughtful deliveries and pick-ups. Such multi-tasking of vehicle attendants will allow for 

extended use of commercial trucks (e.g., every day, almost 24 hours a day) and greater labor 

productivity, resulting in lower per-mile and per-ton-mile freight delivery costs. 

In 2014, trucks carried 1,996 billion ton-miles of freight around the U.S., or 37.7% of the nation’s 

total ton-miles transported that year (BTS, 2017). Investment in and use of Atrucks will affect not 

only national and regional economies (Clements and Kockelman, 2017), but trade patterns, 

production levels, and goods pricing. Commercial trucks consume about 20% of the nation’s 

transportation fuel, and self-driving technologies are predicted to reduce those diesel fuel bills by 

4 to 7% (Liu and Kockelman, 2017; Barth et al., 2004; Shladover et al., 2006).  

Atrucks can reduce some environmental impacts, lower crash rates, and increase efficiency in 

warehousing operations, line-haul transportation, and last-mile deliveries. Platooned convoys 

should enable following truck drivers to avoid certain restrictions on service hours, enabling longer 

driving distances. Uranga (2017) predicts greater use of Atrucks before passenger vehicle 

automation, thanks to the more obvious economic benefits of self-driving trucks (which start with 

higher price tags, making the automation investments less of a cost burden). Of course, driver job 

loss is also a concern, and the International Transport Forum (O’Brien, 2017) predicts that up to 

70% of all U.S. truck-driving jobs could be lost by 2030 (due to vehicle automation). But trucks 

may still require driver presence, due to loading dock restrictions, unusual problems on the road, 

and more complex operating systems. 

While there is active investigative interest on the travel and traffic effects of self-driving cars, 

research into the travel and traffic impacts of Atrucks is dearly lacking. This chapter anticipates 

Atrucks’ trade pattern and production impacts across the U.S. and begins with a review of relevant 

works. It then discusses the random-utility-based multi-regional input-output (RUBMRIO) model 

methodology for tracking trade across zones or regions, describes a sub-nested mode choice model 
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for Atrucks (versus Htrucks), and the results of various trade-scenario simulations across U.S. 

regions, highways, railways, and industries. 

11.1.2. Review on Autonomous Trucking and Trade Model 

Two papers currently investigate U.S. travel shifts for long-distance (LD) passengers due to AV 

use (LaMondia et al., 2016; Perrine et al., 2017). Related topics include fuel consumption, 

congestion impacts, shared-fleet operations, dynamic ride-sharing, energy use, emissions, and 

roadside investments (see, e.g., Fagnant and Kockelman, 2014; Chen et al., 2016; International 

Transport Forum 2015; Land Transport Authority, 2017; Kockelman et al., 2016). LaMondia et 

al. (2016) forecasted U.S. mode shares for person-trips over 50 miles (one-way) from the state of 

Michigan, following the introduction of AVs. They predicted that 25% demand of airline 

passenger trips under 500 miles will shift to autonomous vehicles. Perrine and Kockelman (2017) 

anticipated destination and mode-choice shifts in LD U.S. person-travel, including a major loss 

(47%) of airline revenue, using 4,566 National Use Microdata Area zones (NUMAs). The 

anticipated long-term effects of AV access on LD personal travel are striking. 

Some companies have written about the potential benefits of Atrucks. A DHL report (Kückelhaus, 

2014) noted that Atrucks could lower their freight costs by 40% per vehicle- or ton-mile. Convoy 

systems would allow LD drives with large quantities of goods, through which Atrucks could 

reduce fuel use by 10 to 15% (Clements and Kockelman, 2017). Crash counts may fall by 50 

percent or more (Kockelman and Li, 2016), along with various insurance costs. Atrucks cost-

savings impacts on freight movement and industry siting and sizing decisions have been neglected. 

This new topic area of Atrucks is explored here. 

 Input-Output (IO) analysis, originally proposed by Leontief (1941), uses matrix algebra to 

characterize inter-industry interactions within a single region, as households and government 

agencies spend money on goods, which are produced by mixing inputs from other industries, and 

so on. Demand is met by production adjustments, based on expenditure linkages across industries. 

Isard’s (1960) spatial IO model allows for spatial disaggregation using fixed shares. More recent 

extensions exploit random utility theory and entropy-maximization properties, as evident in the 

MEPLAN (Echenique et al., 1990), DELTA (Simmonds and Still, 1998), TRANUS (De la Barra 

et al., 1984), PECAS (Hunt and Abraham, 2003) and KIM models (Kim et al., 2002). These models 

also allow a land-use transportation feedback cycle, with freight and person (labor and consumer) 

flows responding to changes in network routes and travel costs. 

The open-source RUBMRIO model is a similar extension, with applications to the state of Texas 

and U.S. counties. Kockelman et al. (2005) described the RUBMRIO’s application to Texas’s 254 

counties, across 18 social-economic sectors and two modes of transport, meeting foreign export 

demands at 31 key ports. Huang and Kockelman (2010) developed a dynamic RUBMRIO model 

to equilibrate production and trade, labor markets and transportation networks simultaneously for 

Texas’ counties over time (better recognizing starting distributions of labor and employment). Kim 

et al. (2002) used such a model for estimating interregional commodity flows and transportation 



219 

network flows to evaluate the indirect impacts of an unexpected event (an earthquake) on nine 

U.S. states, represented by 36 zones. 

Guzman and Vassallo (2013) used a RUBMRIO-style approach to evaluate the application of a 

distance-based charge to heavy-goods vehicles across Spain’s motorways. Maoh et al. (2008) used 

the RUBMRIO model to simulate weather impacts on Canada’s transportation system and 

economy. Du and Kockelman (2012) calibrated the RUBMRIO model to simulate U.S. trade 

patterns of 13 commodities among 3,109 counties, with its nested-logit model for input origin and 

truck-versus-rail mode choices. They noted how transportation cost changes (from generically 

more efficient or less efficient travel technologies, for example) were important, especially for 

central U.S. counties. 

This study builds off of the Du and Kockelman’s (2012) work by adding the Atruck option into a 

sub-nest for mode choice, allowing for strong correlation in the Atruck vs. Htruck choice (since 

these are two very similar modes). Thirteen aggregate “industries” or socio-economic sectors are 

used here, since all nested logit model parameters are calibrated from FAF4 data, which rely on 

SCTG commodity classes. Corresponding NAICS and IMPLAN codes are shown in Table 11.1, 

which is adapted from Du and Kockelman’s (2012) work. The application’s 13 sectors, technology 

costs, and other assumptions are described below. 

Table 11.1 Description of economic sectors in RUBMRIO model 

Sector Description 
IMPLAN 

Code 

NAICS 

Code 

SCTG 

Code 

1 Agriculture, Forestry, Fishing and Hunting 1~19 11 1 

2 Mining 20~30 21 10~15 

3 Construction 34~40 23 -- 

4 
Food, Beverage and Tobacco Product 

Manufacturing 
41~74 311, 312 2~9 

5 Petroleum and Coal Product Manufacturing 115~119 324 16~19 

6 
Chemicals, Plastics and Rubber Product 

Manufacturing 
120~152 325, 326 20~24 

7 Primary Metal Manufacturing 170~180 331 32 

8 Fabricated Metal Manufacturing 181~202 332 33 

9 Machinery Manufacturing 203~233 333 34 

10 
Computer, Electronic Product and Electrical 

Equipment Manufacturing 
234~275 334, 335 35, 38 

11 Transportation Equipment Manufacturing 276~294 336 36, 37 

12 
Other Durable & Non-Durable 

Manufacturing 

75~114, 

153~169, 

295~304 

313~316, 

321~323, 

327, 337 

25~31, 39 

13 Miscellaneous Manufacturing 305~318 339 40, 41, 43 
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11.2. Data Set Description 

Data sets used here include the disaggregated freight zonal data from the U.S. Commodity Flow 

Survey (CFS), trade flow data from the U.S. DOT’s Freight Analysis Framework (FAF) version 

4, industry-by-industry transaction tables and regional purchase coefficients (in year 2008) from 

IMPLAN, and railway and highway network data from Caliper’s TransCAD 7.0. 

11.2.1. Freight Data 

FAF4 integrates trade data from a variety of industry sources, with emphasis on the Census 

Bureau’s 2012 CFS and international trade data (Fullenbaum and Grillo, 2016). It provides 

estimates of U.S. trade flows (in tons, ton-miles, and dollar value) by industry, across 7 modes 

(truck, rail, water, air, pipeline, and others), and between FAF4’s 132 aggregate zones. FAF4’s 

origin-destination-commodity-mode annual freight flows matrices were used to predict domestic 

and export trade flows by zone. FAF4 data show foreign export flows exiting the U.S. from 117 of 

these 132 zones, as shown in gray in Figure 11.1(a). So these same 117 zones serve as both 

production and export zones in this paper’s trade modeling system.FAF4 zones were then 

disaggregated into county-level matrices using the 2012 CFS boundary data (which identify the 

counties belonging to each FAF4 zone). Ten metro areas were also added to the CFS data in year 

2012, and 3109 contiguous counties [as shown in Figure 11.1(b)] remain, after excluding the 

distant states of Hawaii and Alaska. Interzonal travel times and costs by rail, Atruck and Htruck 

were all computed using TransCAD software, for the 3109×3109 county matrix based using 

shortest highway and railway paths in terms of free flow travel time. All intra-county travel 

distances were assumed to be the radii of circles having that county’s same area.  
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(a) Continental United States’ FAF4 132 Zones, with 117 Export Zones (shown in grey) 

 
(b) Continental United States’ 3109 Domestic Freight Counties 

Figure 11.1 U.S. domestic and export zones for trade modeling 
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11.2.2. Economic Interaction Data 

The model’s embedded IO matrices’ technical coefficients and regional purchase coefficients 

(RPCs) were obtained through IMPLAN’s transaction tables, as derived from U.S. inter-industry 

accounts. Technical coefficients reflect production technology or opportunities (i.e., how dollars 

of input in one industry sector are used to create dollars of product in another sector) and are core 

parameters in any IO model. RPCs represent the share of local demand that is supplied by domestic 

producers. RPC values across U.S. counties are assumed constant here, since variations are 

unknown. However, counties closer to international borders are more likely to “leak” sales (as 

exports) than those located centrally, everything else constant. And production processes or 

technologies can vary across counties (and within industries, across specific manufacturers and 

product types, of course). This application assumes that all U.S. counties have access to the same 

production technologies, or technical coefficients table.  

IMPLAN’s 440-sector transaction table was collapsed into 13 industry sectors, plus Household 

and Government sectors to represent the U.S. economy in this trade-modeling exercise. Since 

FAF4 uses the same 43 two-digit Standard Classification of Transported Goods (SCTG) classes 

(BTS, 2017) as the 2007 U.S. Commodity Flow Survey (CFS), IMPLAN’s 440 sectors were 

bridged to a corresponding SCTG code based on the 2007 North American Industry Classification 

System or NAICS (Census Bureau, 2017). SCTG code 99 (for other good types) is not tracked 

here. See economic sectors for RUBMRIO model application table from Du and Kockelman 

(2012). 

11.3. Specification of the RUBMRIO Model 

In random utility choice theory, error terms enable unobserved heterogeneity in the decision-

making process. Here, the RUBMRIO multinomial logit model has three branches, for origin 

choice, rail versus truck mode choice, and autonomous vs human-driven truck choice, as shown in 

Figure 11.2.  
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Figure 11.2 Random utility structure for shipment origin, mode, and truck-type choices 

Equation (11.1) provides the three mode-choice utilities, conditioned on knowing a shipment’s 

origin (i), destination (j), and industry or commodity type (m): 
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Uij, truck, Atruck
m =Ṽij, truck, Atruck

m
+Ṽij, truck
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+Ṽij
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+εij, truck,Atruck
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m

Uij, truck, Htruck
m =Ṽij, truck, Htruck
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+Ṽij, truck
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+Ṽij

m
+εij, truck,Htruck

m +εij, truck
m +εij

m

  (11.1) 

where 

Ṽij

m
 = systematic utility of selecting origin i for acquisition of commodity m, 

Ṽij, rail

m
, Ṽij, truck

m
 = systematic utilities associated with selecting origin i and rail mode/any truck type 

for movement of commodity m, 

Ṽij, truck, Atruck

m
,Ṽij, truck, Htruck

m
 = systematic utilities associated with selecting origin i and 

Atruck/Htruck for movement of commodity m, and 

εij
m, εij, rail

m , εij, truck
m , εij, truck,Htruck

m , εij, truck,Atruck
m  = random error terms associated with shipment origin, 

rail mode, truck mode, human-driven truck and self-driving truck choice, respectively.  

11.3.1. Nested Logit Model  

11.3.1.1. Origin Choice (Level 3) 

Relying on nested logit formulae provided in Ben-Akiva and Lerman (1978), the probability of 

commodity-type m inputs coming to zone j from zone i (i.e., the choice likelihood [or input share] 

of zone i as an origin for this good’s demand in zone j) is given by: 

Choice of origin 

Choice of mode 

Choice of truck 

rail truck 

Atruck Htruck 

1 2 3 4 … 

Level 3 

Level 1 

Level 2 
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Pij
m=

exp(Vij
m)

∑ exp(Vij
m

)
i

   (11.2) 

where 

Vij
m=-p

i
m+γmln(pop

i
)+λ

m
θij,mode

m
Γij,mode

m     (11.3) 

is the system utility using origin i for commodity m, and 

Γij,mode
m =ln(exp (

Vij, rail
m

θij,mode
m )+exp (

Vij,truck
m

θij,mode
m )) (11.4) 

is the logsum of mode choice, with scale parameter θij,mode
m

=1.2.  

11.3.1.2. Mode Choice (Level 2) 

Since the mode choice nested logit’s random error terms are assumed to follow an independent 

and identically distributed Gumbel distribution, and setting the initial dispersion to scaling factor 

to 1, the probability of commodity m being transported by each of the two major modes (rail and 

truck), between any given ij pair, are as follows: 

Prail|ij
m =

exp(
Vij, rail

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

Ptruck|ij
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

 (11.5) 

where 

Vij, rail
m =β

0, rail

m
+βr,time

m
×timeij, rail+βr,cost

m
×costij, rail

and Vij, truck
m

=0+θij,truck
m

Γij,truck
m                    

  (11.6) 

are the general modes’ systematic utilities and 

Γtruck
m =ln(exp (

Vij, truck,Atruck
m

θij,truck
m )+exp (

Vij, truck,Htruck
m

θij,truck
m ))  (11.7) 

is the logsum for the truck-mode choice, with scale parameter θij,truck
m

 = 1.4 for base case. Travel 

time is a common component for the Atruck and Htruck utilities, since this work does not assume 

one is faster. In fact, Atrucks may complete long trips faster than Htrucks, since Atruck operators 

can sleep while the vehicle is en route. Here, the truck mode serves as the base mode, so only the 

rail mode has an alternative specific constant (ASC).  

11.3.1.3. Truck Choice (Level 1) 

The probability of freight flow commodity m from zone i to zone j using mode Atruck and Htruck 

respectively in nest truck is given by: 
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where 

Vij, truck,Atruck
m =β

0, Atruck

m
+βt,time

m
×timeij,truck+βt,cost

m
×costij,Atruck

Vij, truck, Htruck
m =0+βt,time

m
×timeij,truck+β

t,cost

m
×costij,Htruck

     (11.9) 

are the system utilities of moving commodity m from zone i to zone j using Atruck and/or Htruck 

modes (in the truck nest).  

11.3.2. RUBMRIO Model Specification 

An equilibrium trade-flow solution (where all producers obtain the inputs they need, and all export 

demands are met) can be achieved in RUBMRIO via Figure 11.3’s iterative equation sequence. 

Zhao and Kockelman (2004) proved this solution’s uniqueness. Flow-weighted averages of 

shipments’ travel costs create input costs, which merge together to create output costs, as 

commodities (and labor) flow through the production and trade system. Once the solutions have 

stabilities (with domestic flow value changing by less than 1% between iterations), final disutilities 

of travel and trade provide mode shares by origin-destination (OD) pair and commodity or industry 

sector.  

This iterative process’ calculations required about 2.25 hours using an Atruck-modified version of 

Kockelman et al.’s C++ open-source program.27 

 

                                                 
27 This program is available at http://www.caee.utexas.edu/prof/kockelman/RUBMRIO_Website/homepage.htm. 
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Figure 11.3 RUBMRIO solution algorithm (Adapted from Du and Kockelman [2012], Figure 2) 
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𝑚

𝑖
 

Sales price of commodity n in zone j 

𝑝𝑗
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𝑚𝑛 ∙ 𝑐𝑗
𝑚)

𝑚
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𝑝𝑖
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𝑚 = 0 

Input Export Demands, Travel Times & Transport Costs 
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RUBMRIO’s utility functions for domestic and export trade-flow splits (across shipment origin 

alternatives) depend on the cost of acquiring input type m from zone i, as well as zone i's “size” 

(measured as population here). Since there are three mode alternatives for these shipments, with 

the two truck modes sub-nested, the competing travel costs can be shown as logsums (which reflect 

the expected maximum utility or minimum cost of acquiring that input from different origin zones). 

After substituting those logsums into Figure 11.3’s trade-flow equations, one has Equations 

(11.10) and (11.11), where Vij
m and Vik

m are the utilities of purchasing one unit of industrial m’s 

goods from region i for use as inputs to zone j’s production process, or for export via zone k, 

respectively. 

Vij
m=-p

i
m+γmln(pop

i
)+λ

m
×θij,mode

m
×ln

(

 
 
 
 

exp (
β0, rail

m
+βr,time

m
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m
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m
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m
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 (11.11) 

 

Parameter assumptions for γm, λ
m

 and βm are based on Du and Kockelman’s (2012) work, which 

has two levels of random utility structure: for origin and mode choices. Here, the rail’s ASCs were 

set equal to the negative of the ASCs used for truck in their research, since a second type of truck 

mode was added as Atrucks. Moreover, the Atruck ASCs were assumed to be -0.1, because 

Atrucks should be somewhat preferred, after travel-cost and time considerations, thanks to safety 

and communications benefits. After assembling all these inputs, shown in Table 11.2, a series of 

different network and Atruck cost scenarios can be examined, using the RUBMRIO solution 

algorithms.   
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Table 11.2 Parameter estimates for origin, mode, and truck choice equations 

Secto

r 

Origin Choice 

Parameters 

Mode Choice Parameters Truck Choice Parameter VOTT 

($/hr) 

θij
m

=1 θij,mode
m

=1.2 θij,truck
m

=1.4 

γm λ
m

 β
0, rail

m
 βr,time

m
 βr,cost

m
 β

0, Atruck

m
 βt,time

m
 βt,cost

m
 

1 0.05 0.90 -3.38 -4.81 -4.85 -5.61 -5.66 -0.10 24.18 

2 0.41 7.66 -1.11 -1.03 -2.01 -1.20 -2.34 -0.10 2.12 

4 0.86 -2.86 -3.36 2.17 0.56 2.53 0.65 -0.10 6.15 

5 0.10 2.02 -1.00 -1.87 -4.09 -2.18 -4.77 -0.10 52.46 

6 0.79 1.60 -0.85 -1.21 -1.34 -1.41 -1.57 -0.10 26.61 

7 0.75 3.38 -0.86 -0.99 -1.54 -1.15 -1.79 -0.10 37.31 

8 0.90 0.35 -1.91 -0.57 -0.89 -0.67 -1.04 -0.10 37.17 

9 0.78 0.68 2.17 -10.20 -8.38 -11.90 -9.77 -0.10 19.71 

10 1.00 0.19 0.95 -7.20 -4.99 -8.40 -5.82 -0.10 16.64 

11 1.02 -1.68 2.08 -7.31 -6.32 -8.53 -7.38 -0.10 20.77 

12 0.89 2.18 -3.32 1.85 0.69 2.16 0.81 -0.10 8.96 

13 0.92 1.61 -1.70 -2.28 -2.35 -2.66 -2.74 -0.10 24.76 

11.4. Impact of Automated Trucking on Trade Flow across U.S. 
and Texas 

Figure 11.3’s RUBMRIO equations were used to estimate U.S. trade flows between the nation’s 

3109 contiguous counties, as well as to 117 FAF4 export zones, across 13 industries and 3 travel 

modes. $8.3 trillion in trade flows were generated to meet the year 2015 export demand of $1.04 

trillion, as obtained from FAF4 (with 24%, 18%, 17%, and 16% of those exports headed to Canada, 

Mexico, Europe and East Asia, respectively). The model’s total flow predictions account for 91.3% 

of FAF4’s total $15.0 trillion trade flow. It is not 100% because the nation has another $2.5 trillion 

in import flows (according to FAF4, coming from other countries), which are not tracked here.  

The base-case scenario assumes travel costs of $1.85 per Htruck-mile based on $1.38 in 2013 

(Truck report, 2013) and railcar costs of $0.6 per container-mile (with different commodities filling 

containers differently, in terms of dollars per container). Table 11.3 compares RUBMRIO trade 

flow results to those in the FAF4 database, after aggregating the model’s 3109 trade zones into the 

nation’s 129 FAF zones and counting the number of OD pairs that deliver the first 10 percent of 

trade flows (in dollar terms, rather than ton-miles or dollar-miles, for example), then the next set 

of OD pairs, and so forth (summing to 129 x 129 [domestic flows] zones pairs or 129 x 117 [export 

flows] zone pairs each). For example, the model’s smallest-value domestic shipments come from 

13,896 FAF-zone pairs, for $0.85 trillion, or the first 10% of the total ($8.5 trillion) in domestic 

flows. FAF4-based values (for highly aggregate regions/zones) suggest something similar: over 

12,000 FAF-zone pairs are involved in that first 10% (smallest-shipment-size) set of flows.  

Table 11.3’s comparison suggests that the base case RUBMRIO model equations and assumptions 

deliver reasonable trade-flow estimates, of FAF4 volumes. However, RUBMRIO tends to “spread 

out” the trades across more OD pairs (with fewer small-size shipments) than FAF4 data suggest. 
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In other words, RUBMRIO predictions suggest less concentration of trade dollars or shipment 

sizes in the biggest OD trading patterns, for both domestic and export flows. There is obviously 

much more to U.S. trade than an origin’s population and its relative location on railways and 

highways, versus competing shipment sources. It is interesting how close RUBMRIO can come to 

replicating many trade patterns with a concise and transparent set of equations (Figure 11.3 plus 

Equations 11.10 and 11.11). 

Table 11.3 Cumulative distribution of RUBMRIO and FAF4 trade flows 

 Domestic Flows Export Flows 

RUBMRIO FAF4 RUBMRIO FAF4 

0%-10% 13,896 12,646 14,217 13,971 

10%-20% 1,354 2064 617 552 

20%-30% 621 935 267 257 

30%-40% 324 479 149 146 

40%-50% 183 262 97 81 

50%-60% 118 134 65 40 

60%-70% 82 64 37 26 

70%-80% 49 36 19 14 

80%-90% 12 16 9 4 

90%-

100% 
2 5 3 2 

 

Figure 11.4 shows RUBMBRIO’s base case trip distribution by trade values and ton-miles and 

appears reasonable compared to FAF statistics (Strocko et al., 2014). However, truck trade-value 

flows are much greater than rail’s values across all distances. In ton-mile trading, truck dominates 

among lower-distance flows, while rail dominates at longer distances. 

 



230 

 
(a) Trade flow distribution in value before Atrucks Implementation 

 
(b) Trade flow distribution in ton-mile before Atrucks Implementation 

Figure 11.4 Trade distributions (by $ value and ton-miles) for base case (business as usual) scenario 

For a spatial perspective of these results, Figure 11.5 shows domestic trade flows and export trade 

flows pattern, without showing lines for value less than 5%. Many major domestic flows exist 

between western states, like California and Washington, to various eastern regions/FAF zones. In 

some contrast, major export flows (within the continental U.S., to access a port) also exist between 

coastal cities and their adjacent regions (often adjacent states). Moreover, exports from California 

ports appear to come largely from the Great Lakes region instead of from the Eastern Seaboard, 

thanks to a heavy export of Michigan-manufactured automobiles and trucks. Truck flows show 
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more intra-state trips with shortest distances, like trips within Texas, Florida and New York, while 

more longer rail flows tend to cross the nation. 

  
(a) Domestic Flows (Million $) (b)Export Flows (Million $) 

  
 

(c) Truck Flows (Million $) (d) Rail Flows (Million $) 

Figure 11.5 Base case domestic and export trade flows (per year), between FAF4 zones 

11.4.1. Sensitivity Analysis 

Since great uncertainty still exists about the relative costs of acquiring and deploying Atrucks, 

multiple scenarios were tested here, with different parameter assumptions. Atruck operating costs 

are expected to be much lower than Htruck costs, overall, thanks to a reduction in 

operator/attendant burden from the driving task and Atrucks’ greater utilization, as their attendants 

rest/sleep or perform other duties (and are not subject to strict hours of service regulations, since 

they cannot cause a fatal crash, for example). Wages and benefits may fall, or simply shift from 

administrative and service workers that used to be officed (e.g., those managing carrier logistics, 

customer service calls, or shipper billing) to workers that now travel between states on-board a 

moving office (and help with pick-ups and deliveries, as those arise).  

Scenario 1 serves as a reference, high-technology (Atrucks in operation) case for the following 

discussion of nine different Atruck scenarios. Base case is the mode share before Atrucks 

implementation. After the introduction of Atrucks, the mode share of trucks increases compared 

to rail, but the total ton-mile and dollar mile decreases. Compared to Scenarios 1 through 3, the 

cost of Htruck use is assumed to be 20% higher (in Scenarios 4 through 6) or lower (Scenarios 7 
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through 9), while Atruck costs are assumed to be 75%, 50%, and 25% of Htruck costs (per ton-

mile, container-mile or commodity-mile), respectively, resulting in 9 (3 x 3) separate scenarios. 

Table 11.4 presents basic mode split results for FAF4 and these 9 scenarios. Interestingly, Atruck 

splits (either by dollar-miles carried or ton-miles transported) are very stable across the 9 scenarios, 

regardless of the relative price variation.  

Sensitivity analysis is also applied for Atruck ASCs and scaling parameters for the nested logit 

model. With slight changes, the more attractive that one makes Atrucks, relative to Htrucks, the 

more dollar-miles and ton-miles will be carried by trucks. For the test of scaling parameter, if 

increased substitution is assumed between alternatives in the truck nest or the mode nest, the truck 

split will increase. 

Table 11.4 Sensitivity analysis 

(a) Operation Cost Test Results 

Scen

ario 

Cost of 

Htruck 

Cost of 

Atruck 

$ Trillion Billion dollar-miles Billion ton-miles 

Rail % Truck % Rail % Truck % Rail % Truck % 

Base - - 0.33 15.3 1.83 84.7 631 43.5 820 56.5 399 49.0 416 51.0 

1* 100% 75% 0.21 9.6 1.95 90.4 417 28.4 1,051 71.6 371 44.9 455 55.1 

2 100% 50% 0.24 11.2 1.91 88.8 505 33.7 995 66.3 380 45.2 461 54.8 

3 100% 25% 0.22 10.4 1.91 89.6 432 27.9 1,114 72.1 374 43.1 494 56.9 

4 80% 75% 0.24 10.9 1.92 89.1 494 33.0 1,003 67.0 383 43.8 493 56.2 

5 80% 50% 0.25 11.5 1.90 88.5 518 33.6 1,022 66.4 387 43.2 509 56.8 

6 80% 25% 0.22 10.1 1.92 89.9 425 26.9 1,154 73.1 379 41.1 543 58.9 

7 120% 75% 0.26 11.9 1.90 88.1 595 41.2 848 58.8 384 48.8 402 51.2 

8 120% 50% 0.23 10.9 1.91 89.1 459 30.2 1,059 69.8 373 45.0 455 55.0 

9 120% 25% 0.23 10.9 1.91 89.1 489 29.7 1,159 70.3 393 44.7 485 55.3 

 

(b) Atruck ASCs Test 

Scena

rio 

ASC for 

Atruck 

$ Trillion 
 

Billion Dollar-miles 
Billion Ton- miles 

Rail % Truck % Rail % Truck % Rail % Truck % 

1* -0.1 0.24 11.2 1.91 88.8 505 33.7 995 66.3 380 45.2 461 54.8 

2 -0.3 0.24 11.4 1.91 88.6 505 33.7 994 66.3 380 45.2 461 54.8 

3 0.1 0.24 11.3 1.91 88.7 505 33.7 995 66.3 380 45.1 462 54.9 

 

(c) Scaling Parameters Test 

Scena

rio 
θij,mode

m  θij,truck
m  

$ Trillion Billion Dollar-miles Billion Ton-miles 

Rail % Truck % Rail % Truck % Rail % Truck % 

1* 1.2 1.4 0.24 11.2 1.91 88.8 505 33.7 995 66.3 380 45.2 461 54.8 

2 1.2 1.3 0.21 9.9 1.92 90.1 426 26.4 1,187 73.6 385 39.0 603 61.0 

3 1.1 1.4 0.22 10.3 1.92 89.7 459 29.8 1,081 70.2 379 41.5 535 58.5 
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Figure 11.6 illustrates estimated changes in flow patterns for trucks and railroads before and after 

the introduction of Atrucks (where truck flows are the sum of Atruck and Htruck flows), with 

spider maps of rising versus falling flows shown separately. The measurement scale is adjusted to 

reflect only major flow values (million dollars between OD pairs greater than 5% of total flow 

value) since much more value is carried by truck [than by rail] in the U.S. and for domestic [rather 

than export] purposes). Results suggest that increases in domestic flow types occur most heavily 

along the nation’s western coast (through California) and between California and New York. 

Export flows have their greatest increases between the Great Lakes region (including Michigan 

and Illinois) and California. Both domestic and export flows are estimated to fall from trucking 

automation options along the nation’s northeastern areas and between Florida and Washington.  

As shown in Figure 11.6, truck flows are also predicted to lose many interactions between the 

western U.S. and Florida and northeastern states, while experiencing greater interactions between 

Northwestern (Washington and Oregon) and Eastern (Georgia and South Carolina), and also 

between the Great Lakes region (including Michigan and Illinois) and California. This is probably 

due to Atrucks being better able to meet freight demand in Florida and northeastern areas by 

obtaining more inputs from the nation’s northwestern areas. Rail flows are estimated to rise only 

in and around New Mexico, while noticeably elsewhere (e.g., in Texas and from San Francisco 

and Arizona to the Great Lakes and northeastern areas, respectively).   
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(a) Increase in Domestic Flow (Million $) (b) Decrease in Domestic Flow (Million $) 

  

(c) Increase in Export Flow (Million $) (d) Decrease in Export Flow (Million $) 

  
(e) Increase in Truck Flow (Million $) (f) Decrease in Truck Flow (Million $) 

  

(g) Increase in Rail Flow (Million $) (f) Decrease in Rail Flow (Million $) 

Figure 11.6 Principal U.S. trade flow patterns before and after Atrucks ($ million per year) 



235 

11.4.2. Analysis of Major Cities Trade Flow 

Table 11.5 shows estimates of flow changes across major U.S. cities. Most (like Sacramento, 

Washington DC, Indianapolis, and Nashville) experience increases in trucking flows, both into 

and out of the city. However, Miami, Detroit, Salt Lake City, and Houston are estimated to 

experience roughly a 10% decrease in their current outbound truck, alongside increases in their 

pass-through trucking volumes (due to the travel-cost benefits that automation brings the trucking 

mode). All major cities are predicted to see lower rail flows (inbound and outbound), with San 

Jose CA and Washington DC experiencing more than 70% reductions in outbound rail flows, and 

a similar situation happens for rail flows into Jacksonville FL and Washington DC.   
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Table 11.5 Automated trucking’s impact on trade flows originating from or destined for major U.S. 
cities 

State City 
Truck Flow (change in $) Rail Flow (change in $) 

Out In Out In 

AZ Phoenix 0% -3% -35% -42% 

CA Los Angeles 4% -1% -37% -45% 

CA Sacramento 22% 15% -40% -35% 

CA San Diego 10% 5% -25% -26% 

CA San Jose 19% 2% -72% -42% 

CO Denver 14% 9% -6% -15% 

DC Washington 38% 34% -77% -74% 

FL Miami -21% -3% -67% -53% 

FL Orlando 5% 5% -43% -39% 

FL Jacksonville 5% 19% -44% -73% 

GA Atlanta 11% 10% -40% -44% 

IL Chicago 7% 5% -46% -41% 

IN Indianapolis 18% 16% -42% -34% 

KY Louisville 15% 9% -40% -49% 

MA Boston 5% 10% -48% -38% 

MD Baltimore 8% 9% -41% -52% 

MI Detroit -12% 6% -43% -50% 

MN Minneapolis 17% 13% -44% -36% 

MO Kansas City 17% 17% -50% -42% 

NC Charlotte 14% 13% -42% -36% 

NJ New York 1% 4% -39% -37% 

NJ Philadelphia 8% 9% -40% -34% 

NV Las Vegas 8% 4% -34% -39% 

OH Columbus 14% 13% -41% -34% 

OK Oklahoma City 12% 9% -43% -39% 

OR Portland 17% 4% -53% -39% 

TN Memphis 16% 7% -45% -50% 

TN Nashville 22% 19% -41% -34% 

TX Austin 0% -7% -39% -38% 

TX Dallas -2% -3% -41% -41% 

TX Houston -11% -1% -42% -44% 

TX San Antonio -6% -8% -40% -41% 

TX El Paso 9% 5% -44% -41% 

UT Salt Lake City -11% -1% -46% -50% 

WA Seattle 3% -4% -52% -39% 
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11.4.3. Trip-length Distribution 

Trip-length distributions are another meaningful way to view Atrucks’ effects on travel patterns. 

Figure 11.7 shows such distributions for total rail shipments, total truck shipments, and Atruck 

versus Htruck shipments. Figures 11.7(a) and 11.7(b) illustrate mode splits between Atrucks and 

Htrucks, across domestic trade-flow distances. Htrucks appear to still dominate up to about 250 

miles of distance, while Atrucks appear to clearly dominate after about 500 miles of travel distance. 

Htruck flows fall as distance increases, while Atruck flows are quite robust across all distances. 

Atruck trade volumes appear to peak at 1000 to 1500 miles, which is approximately the distance 

from Seattle, Washington to Los Angeles, California, or from Dallas, Texas to San Francisco, or 

from New York to Miami. These are major OD pairs for many commodities (like finance, 

insurance, and service goods).  

Figures 11.7(c) and 11.7(d) show how ton-mile truck flows are predicted to rise for all trip 

distances, excepting those over 3,000 miles. Trade increments by truck peaks at 100-249 miles, 

indicating that trade flows are also predicted to transport more within counties. It is interesting to 

see that the trade value decreases for both truck and rail at smaller distance, showing that trade 

flows are moving towards longer distances. Rail flow values appear to drop at distances up to 

3,000 mi, with a slight increase for very long rail distances—over 3,000 miles. This is likely 

because Atrucks are quite competitive for mid- and long-distance trade. However, when input 

access distances exceed 3000 miles, railway’s lower costs prove very competitive, for many 

commodities (e.g., those that are less time-sensitive, low value per ton, and/or perishable). There 

is also a 6.6% increase of rail flow of ton-mile at 1,000 to 1,499 miles. This is probably due to the 

specific demand of a certain commodity for some interstate OD pairs.  
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(a) Trade flows in ton-miles vs. trade distance  

 
(b) Trade flow in value by distances by HTrucks and Atrucks  

 
(c) Trade flow change in ton-mile by distances before and after Atrucks  
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 (d) Trade flow change in value by distances before & after Atrucks 

Figure 11.7 Trip length distributions for U.S. rail and trucks flows, before and after Atrucks 

11.4.4. Commodity Analysis 

Table 11.6 shows commodity flow changes by mode, following the introduction of Atrucks, under 

the Base Case vs. reference Scenario 2. Introduction of automated trucking or “Atrucks” is 

expected to increase both total domestic flows and total export ton-mile and value flows, by 2% to 

4% respectively. Domestic truck flows (in ton-miles) are forecast to rise 11% (versus a BAU/no-

new-technology scenario) and rail flow values fall by 24%. Transportation equipment 

manufacturing and durable and non-durable manufacturing trade flows (between U.S. counties) 

are predicted to fall, while construction, food, beverage, tobacco products, primary and fabricated 

metal manufacturing are all predicted to see a small increase in their trade flows, as a result of 

automated trucking. Agriculture, forestry, fishing, hunting, chemicals, plastics, petroleum and coal 

products show some of the biggest relative increases (greater than 10%), presumably because 

Atrucks making trucking relatively more useful in these domains due to its’ advantages of safety 

and time efficiency. As expected, railway becomes a relatively less effective or efficient way to 

transport such commodities. Ten sectors see a decrease in total (domestic) value shipped by rail 

while only three sectors are predicted to rise. Although machinery manufacturing, computers, other 

electronic products and electrical equipment manufacturing transported by rail rise by more than 

500% following automated trucking’s introduction, this increment is still much less than the 

increases transported by truck. 

Finally, export truck flows are estimated to rise, from range of 5% to 47%, excepting only durable 

and non-durable manufacturing trades, which are forecast to shift almost all to rail. Total rail flows 

of 328 billion ton-miles/year headed for U.S. export zones remains stable, while total truck flows 

are expected to rise by 11%. Total ton-miles (sum of Truck and Rail or sum of Domestic and 

Export) increase by 3.1%. As readers can see, RUBMRIO’s system of trading equations (Figure 

11.3) deliver a wide array of meaningful predictions, the complexity of which would not be 

quantifiable without such programs. 
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Table 11.6 Change in U.S. trade flow ton-miles before and after Atrucks 

Million 

ton-

miles 

Domestic Truck Domestic Rail Truck Domestic 

Sector Before After % Before After % Before After % Before After % 

1 4,103 5,004 22 7 3 -54 4,203 5,126 22 4,110 5,007 22 

2 64,544 76,257 18 14,530 10,442 -28 71,482 84,572 18 79,075 86,699 10 

3 149,723 155,453 4 32,655 30,037 -8 156,662 162,741 4 182,379 185,490 2 

4 3,382 3,956 17 1,944 1,518 -22 35,715 42,644 19 5,326 5,474 3 

5 3,273 4,243 30 554 330 -40 9,170 11,937 30 3,827 4,573 19 

6 6,423 8,013 25 1,583 987 -38 18,189 23,070 27 8,006 9,000 12 

7 5,511 6,228 13 1,618 1,298 -20 8,157 9,255 13 7,129 7,526 6 

8 39,130 50,775 30 10,716 1,006 -91 47,617 61,961 30 49,846 51,781 4 

9 2,980 3,825 28 7 47 582 5,403 7,103 31 2,986 3,872 30 

10 2,372 2,855 20 15 91 512 6,770 8,454 25 2,387 2,946 23 

11 7,581 3,457 -54 3,392 5,630 66 30,145 36,587 21 10,973 9,087 -17 

12 203 0.01 -100 425 183 -57 16,701 0.02 -100 628 183 -71 

13 1,926 2,346 22 94 75 -19 6,470 8,088 25 2,019 2,422 20 

SUM 291,150 322,412 11 67,540 51,647 -24 416,683 461,539 11 358,691 374,059 4 

Million 

ton-

miles 

Export Truck Export Rail Rail Export 

Sector Before After % Before After % Before After % Before After % 

1 100 122 22 0.18 0.08 -55 7 3 -54 100 122 22 

2 6,937 8,316 20 1,739 1,257 -28 16,269 11,700 -28 8,676 9,573 10 

3 6,939 7,288 5 1,745 1,619 -7 34,400 31,656 -8 8,684 8,907 3 

4 32,333 38,688 20 18,153 14,542 -20 20,097 16,060 -20 50,486 53,230 5 

5 5,897 7,695 30 1,013 607 -40 1,567 937 -40 6,910 8,302 20 

6 11,766 15,058 28 3,029 1,769 -42 4,613 2,757 -40 14,796 16,827 14 

7 2,645 3,027 14 807 646 -20 2,425 1,943 -20 3,453 3,672 6 

8 8,488 11,186 32 2,396 163 -93 13,113 1,170 -91 10,884 11,350 4 

9 2,424 3,278 35 4.72 0.61 -87 12 47 309 2,429 3,279 35 

10 4,398 5,599 27 29 0.46 -98 44 92 110 4,427 5,599 26 

11 22,563 33,129 47 17,816 6,256 -65 21,208 11,886 -44 40,379 39,385 -2 

12 16,498 0.01 -100 284,834 301,447 6 285,259 301,629 6 301,332 301,447 0 

13 4,544 5,742 26 226 96 -58 319 171 -46 4,769 5,838 22 

SUM 125,533 139,127 11 331,793 328,404 -1 399,333 380,051 -5 457,326 467,531 2 

 

11.5. Summary 

In this chapter, the RUBMIO trade model is used to anticipate the shifts in U.S. trade patterns due 

to the introduction of Atrucks. Lower-cost trucking operations will impact choice of mode and 

input origins, affecting production and flow decisions for domestic and export trades across states, 

nations, and continents. Here, 13 commodity types were tracked using the 2012 CFS and FAF4 
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data sets. Sensitivity analysis allows for variations in predictions, given the great uncertainty that 

accompanies shippers’ future cost-assessments, adoption rates, and use of Atrucks. Such 

predictions should prove helpful to counties and regions, buyers and suppliers, investors and 

carriers, as they prepare for advanced automation in our transportation systems.  

This early attempt to reflect self-driving trucks in LD freight systems relies on U.S. highway and 

railway networks as well as FAF4 trade data. Extensions of this work may wish to reflect other 

modes, like airlines, waterways, and pipelines, as well as multi-modal and inter-modal flows, local 

supply-chains, urban logistics, and local production capabilities and port capacities. In terms of 

the RUBMRIO model’s specification, reflecting the dynamic evolution of population and 

employment patterns (as in Huang and Kockelman [2010]), commuting and shopping trips, with 

intra-regional and inter-regional congestion, as well as seasonal variations in certain shipments 

(like agriculture and coal) may prove very helpful. Further extensions on random utility models 

employed here can come through different nesting structures, as well as operator awake hours, 

routing, and delivery scheduling.   
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Chapter 12. Agent-Based Population from Traditional 

Four-Step Data  

12.1. Need for Person-Level Data 

Observation of travel patterns is evolving in many aspects including the new operational strategies 

using existing transportation tools (e.g., vehicle/ride sharing) and upcoming transportation 

innovations (e.g., connected and autonomous vehicles). The emerging travel patterns may require 

advanced modeling techniques for traffic forecasting and evaluations of transportation policies and 

projects.  

Car-sharing is transforming the way people travel, live, and socialize (Cohen et al., 2016). 

Advanced communication technologies including the internet and smartphones provide a platform 

that allows individuals to be part of car-sharing, such as booking a car online at home or requesting 

a ride on the roadside. Including Uber, Car2go, Lyft, Zipcar, Hertz, and Enterprise, there were 

more than 35 major car-sharing industrial participants/competitors in North America that managed 

or operated more than 25 thousand shared vehicles in July 2015 (Martin and Shaheen, 2016). As 

reported, until 2015 the global car-sharing market size was over $126.1 million. A 34.8% 

compound annual growth rate is expected between 2016 and 2024; the car-sharing market size is 

projected to exceed $16.5 billion by 2024 (Global Market Insights, 2017). Car-sharing offers 

mobility to travelers without the burden of owning a vehicle and the car-sharing services are more 

flexible than transit (Liu and Kockelman, 2017). In addition, shared vehicles require fewer parking 

spaces (both on-street and off-street), as these vehicles only need a spot to pick up or drop off 

customers. Car-sharing may help lower traffic congestion and improve air quality, as car-sharing 

users are generally unlikely to own or buy a car (Martin and Shaheen, 2016).  

Emerging transportation tools such as connected and autonomous vehicles (CAVs) will further 

facilitate the growth of the car-sharing market. Existing car-sharing services either require a driver 

in the vehicle to pick up/drop off customers (e.g., Uber) or need the customer to make a trip to 

access the service at car-sharing stations (e.g., Car2go). CAVs can drive themselves to pick-

up/drop-off locations requested by customers.  

CAVs are expected to significantly improve surface transportation systems from three aspects: 

safety (Kockelman and Li, 2016), mobility (Fagnant and Kockelman, 2015a; Chen and 

Kockelman, 2016a; Fagnant and Kockelman, 2016), and sustainability (Bansal et al., 2015; Reiter 

and Kockelman, 2017). CAVs will improve conditions for safe travelling and decrease crash 

frequency and severity (Rau et al., 2015; Schoettle and Sivak, 2015; Kockelman and Li, 2016). 

CAVs are expected to reduce travel times and costs, mitigate traffic congestion, and offer a more 

convenient long-distance transport option for disabled travelers or those who are too young or old 

to drive (Anderson et al., 2014; Fagnant and Kockelman, 2015a; Chen and Kockelman, 2016a; 

Fagnant and Kockelman, 2016; Chen et al., 2016b; LaMondia et al., 2016). Regarding the 

sustainability benefits, CAV technologies are anticipated to help reduce energy consumption and 

emissions. These technologies include vehicle weight-lighting (Greene, 2008; Ford, 2012; Chapin 
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et al., 2013), fuel efficiencies, alternative fuels (Chapin et al., 2013; Liu et al., 2015; Reiter and 

Kockelman, 2017), and engine technologies (Paul et al., 2011; Folsom, 2012; Bansal et al., 2015; 

Reiter and Kockelman, 2017). 

Currently, most in-use state and regional travel models are “four-step” trip-based (NCHRP, 2012) 

and the information captured in these models is often aggregated at the level of traffic analysis 

zones (TAZs). New travel patterns require the modeling of individual trips (rather than aggregated 

trips between TAZs) at great spatial and temporal details. For example, the car-sharing system 

needs a model to capture how a service may connect two individual trips, such as modeling the 

shared car’s travel between the present customer’s drop-off location and next one’s pick-up 

location. If two trips are connected in the same TAZ, the four-step travel model is unable to capture 

such car-sharing patterns. Therefore, people are seeking advanced travel modeling approaches; 

activity-based modeling (ABM) is considered one of the most promising approaches. As compared 

with the widely used trip-based travel modeling, the activity-based approach is more sensitive to 

person-specific behavioral attributes (e.g., age, gender, value of time, and willingness-to-pay), 

capturing how individuals allocate their time for activities and travel though the day (Castiglione 

et al., 2015). The ABM approach is tour-based, capturing trips made by the same person during 

the course of a day and within the same tour. A tour is a chain of trips made by the same person to 

conduct activities throughout the day and typically a tour starts and ends at the same place. Trip-

based models replicate the TAZ-aggregated decisions, only considering trip characteristics (e.g., 

trip distance, speed, duration and cost, and mode availability), while the activity-based approach 

simulates individual decisions that account for characteristic of both trips and activities (activity 

duration, and value of conducting an activity). Therefore, ABM appears to be able to capture car-

sharing behaviors and answering questions regarding car-sharing operational strategies (e.g., 

evaluating car-sharing services or estimating the demand given one proposed car-sharing policies).  

The properties of ABM present a challenge to transportation planning practitioners, since the 

modeling input information must also be at the desegregated personal-level. ABM is a data-hungry 

approach that requires detailed input information about individuals instead of TAZs in trip-based 

model. For example, in a trip-based model, the origin-destination (OD) matrix is the key travel 

demand input in the procedure of traffic assignment; the OD matrix contains the number of trips 

between TAZs. In ABM, the travel demand is derived from the motivation of performing activities. 

Travel demand becomes a tour for conducting activities. Every individual has a unique tour (travel 

demand input in ABM) made up of chained trips and activities. In order to prepare the ABM travel-

demand input data, one may think of conducting a comprehensive travel survey that asks every 

person in a modeling region about their activity diary (key information should include the times, 

locations and types of activities). However, it sounds financially infeasible.  

Previous practices offer great insights in preparing data for ABM. For example, ARC’s (Atlanta 

Regional Commission, 2012) Activity-Based Travel Model created synthetic population and 

households based on the samples of persons and households in Public Use Microdata Areas 

(PUMA). The synthetic population and households are balanced to match the PUMA controls at 

both PUMA level (a collection of Census tracts within counties) and county level. The activity 
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patterns and trips in ARC model were generated based on the statistical analyses with travel survey 

data from Columbus, Atlanta, and the San Francisco Bay Area. The activity patterns and trip 

attributes are associated with the person types and household characteristics. Regarding the 

locations, ARC model used small TAZs to represent the locations of activities (trip origins and 

destinations). Therefore, in ARC model, the activities are embedded in zones, and are not assigned 

to specific locations. In 2015, the Transportation Research Board released a report that synthesizes 

well-agreed concepts and practices on activity-based travel demand models (Castiglione et al., 

2015). Generally, in existing practices, the method of preparing data for ABM may be regarded as 

the method of “start-from-scratch.” This method is to prepare data from the raw data that are 

related to travel demand, including PUMA, LEHD (Longitudinal Employer-Household 

Dynamics), land-use data, travel surveys, etc. As a matter of factor, existing trip-based travel 

models are also built upon such data through a rigorous process of data processing. Many 

metropolitan planning organizations or transportation planning organizations have developed such 

trip-based models for their jurisdictions. Trip-based models also have information about 

population/households and travel trips (by purpose) aggregated at TAZ level. Compared with the 

raw data, the information in trip-based models is more structured. Further, the data (including both 

the current- and future-year data) in trip-based models must be approved by officials before 

transportation practitioners use them for travel demand forecasting. In sum, the existing trip-based 

travel models use the familiar data sources for model input data; the information in trip-based 

models is more structured and cleaned; and the information in trip-based models is accepted and 

approved by local officials who have a good sense of the local situations and future developments.  

To this end, the objective of this study is to develop a methodology utilizing existing trip-based 

models to prepare the disaggregated travel demand data for ABM. Using existing trip-based 

models rather than “start-from-scratch” presents two advantages: 1) the information in trip-based 

models is structured, 2) trip-based models often contain data for future years that are accepted and 

approved by officials. Since trip-based models use the same raw data for inputs as the existing 

ABM practices, either the method proposed in this study or the “start-from-scratch” would result 

in the similar outcomes, as along as the data contained in trip-based models are valid.  

This study is particularly useful for transportation practitioners who develop and apply trip-based 

travel models in their jurisdiction since the input data used in this study are commonly available 

for them. The methodology offers insights in preparing the data for ABM that help simulate and 

understand the individuals’ travel patterns and evaluate the transportation policies/strategies under 

the environment of shared economy and new travel modes, e.g., shared connected and autonomous 

vehicles. This study presents an example of using data that are easily accessible by the public. 

Other data sources, such as transportation’s big data platforms like Streetlights 

(www.streetlightdata.com) and AirSage (www.airsage.com), which (may be private but provide 

great travel data) can also be helpful in preparing ABM input data. 

http://www.streetlightdata.com/
http://www.airsage.com/
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12.2. Methodological Framework 

ABM works at the disaggregated person/household level and provides great spatial and temporal 

details about the individuals’ travel patterns. The activity-based approach is tour-based, modeling 

individuals’ travel tours with a chain of trips and activities. ABM’s input data is required to be 

disaggregated at the person/household level, containing detailed spatial information and a schedule 

for chained travels and activities throughout a day. This study proposes a methodology of 

preparing the disaggregated input data for ABM. The input data may be summarized as “4Ws” for 

each traveler’s choices, as shown in Figure 12.1. The core of the framework consists of a series of 

algorithms that output “4Ws” by inputting the aggregated data at zone level. The framework starts 

with generating synthetic population and households based on land use and socioeconomic data. 

The output at this step provides information of “Who,” defining travelers individually based on 

age, gender, employment, car ownership, and household characteristics. The next step is locating 

of households and employments, the information of “Where”, taking advantage of the 

OpenStreetMap data that contains the layout of buildings in a region. These locations are 

designated areas for conducting activities. This study assumes that all activities are either 

household or employment-related. Home activities occur at household locations, while other 

activities are generally employment-related, though not all other activities are for work. For 

example, shopping activities are associated with the employment of salespersons, and school 

activities are linked with the work of teachers. The following two steps together output the 

information of “What,” a chain of daily activities that form a travel tour. Zone level travel demand 

is converted to person-level travel demand by chaining the trips between zones and assigning 

locations for trips’ origins and destinations (that are also the activity locations). The last step is to 

prepare the information of “When,” a tentative schedule for traveling or performing activities. This 

schedule is only a tentative timeline for an individual to travel and perform the planned activities. 

The travel plan may change during the ABM process in order to make the most optimized use of 

a person’s time (e.g., leaving the office early to avoid afternoon traffic congestions).  
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Figure 12.1 Methodological framework of outputting personal level travel demand at person level from 

zone-level travel demand 

12.3. Data Preparation 

Three data types were suggested for synthesizing a region’s population and generating their travel 

tours or itineraries: 1) travel demand data from trip-based or four-step travel models, 2) model 

equations’ parameter values, and 3) open-source map data. Table 12.1 lists the specific data sets 

used here, for method illustration.  

12.3.1. Travel Model Data 

Travel model data are extracted from Austin’s regional travel demand model, created by the 

Capital Area Metropolitan Planning Organization (CAMPO). The region covers over 5,000 square 

miles, including Bastrop, Burnet, Caldwell, Hays, Travis, and Williamson Counties in Texas. 

CAMPO’s 2010 Planning Model is a largely traditional four-step macroscopic travel demand 

model (CAMPO, 2015). This study used data in the model’s 2020 scenario, including TAZ land 

use data and trip tables. The TAZ land use data is important for population synthetization. In 

synthetic population, every person has an individual profile with their socio-economic information 

including age, gender, employment, car ownership, household members, household size, and 

household income. The synthetic population is the basis for generating tour data for individuals. 

Census data also provide land-use or socio-economic data, as an alternative source. This study 

used CAMPO model’s estimates for 2020. The trip table is also called the origin-destination matrix 

(OD matrix), offering a big picture of possible trips between/within TAZs (trips are not specified 

to a specific person in four-step models). Six types of trip purposes (implying a destination’s 

activity type) were considered in the tour generation process: home-based work (HBW), home-

based school (HBSc), home-based retail (HBR), home-based other (HBO), non-home-based work 

(NHBW), and non-home-based other (NHBO) trips. There are five associated activities including 
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home, work, school, shopping, and other activities. Time skims from CAMPO model represent the 

average travel time between TAZs. The data is critical for generating initial travel plans which 

include the duration a traveler may spend in a trip.  

Table 12.1 Data sources for preparing AMB inputs 

Source Data Key information Data source 

Travel 

model data 

TAZ land use data and 

its shape file  

 Population 

 Household size 

 Employment 

 Car ownership 

 Income level 

Regional travel demand models: 

https://www.campotexas.org/  

 

Alternative sources:  

Longitudinal Employer-Household Dynamics 

https://lehd.ces.census.gov/data/  

Census Demographic and Economic Data 

https://www.census.gov/geo/maps-data/data/tiger-data.html  

Trip table (i.e., OD 

matrix) 

 Trip purpose  

 Number of trips 

between TAZs 

Regional travel demand models: 

https://www.campotexas.org/  

Time skims  Travel time 

between TAZs 

Regional travel demand models: 

https://www.campotexas.org/ 

Parameter 

data 

Population age 

distribution 

 Age 

 Percent 

Census: 

https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml  

Trip departure time 

distribution  

 Trip purpose  

 Time of day 

 Percent  

Regional travel demand models: 

https://www.campotexas.org/ 

 

Alternative source:  

NCHRP Report 716 

http://www.trb.org/Publications/Blurbs/167055.aspx  

Trip patterns   Number of trips in 

a daily tour 

 Percent 

NHTS datasets: 

http://nhts.ornl.gov/download.shtml  

Map data OpenStreetMap data  Road network  

 Building/housing 

footprint 

OpenStreetMap data: 

http://www.openstreetmap.org/  

12.3.2. Parameter Data 

Parameters are used to shape the attributes of generated data (e.g., synthetic population and tours). 

The age distribution parameter is used to control population age structure in a model region. A 

person’s age is related to many travel characteristics, including the number of trips in a daily tour, 

trip purposes, travel mode (and car ownership), etc. Some assumptions in the tour generation 

process are related to the traveler’s age. For example, a person younger than 5 years old or older 

than 85 years old is likely to make zero trips in a day; and a person whose age is between 5 and 24 

is likely to have a trip to school on a weekday basis. Further, it may be impossible that all members 

in a household are minors (< 16 years old), and minors are rarely permitted to own a car or drive 

(alone). The trip pattern parameter informs that how many trips a person may make in one day. 

Such information is not available in the four-step travel models. Therefore, this study used the data 

of the 2009 National Household Travel Survey (NHTS). According to NHTS, the average number 

of daily trips for Texans is 3.76 trips (or 3.78 trips-per-day nationally). Figure 12.2(a) presents the 

distribution of daily trips per person, with 15.7% of Texans making zero trips on any given day, 

and 22.6% making exactly two trips in one day.  

https://www.campotexas.org/
https://lehd.ces.census.gov/data/
https://www.census.gov/geo/maps-data/data/tiger-data.html
https://www.campotexas.org/
https://www.campotexas.org/
https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml
https://www.campotexas.org/
http://www.trb.org/Publications/Blurbs/167055.aspx
http://nhts.ornl.gov/download.shtml
http://www.openstreetmap.org/
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Figure 12.2 Parameter data: (a) trip count in daily travel tours and (b) time-of-day distributions 

The trip departure time shows how many trips (in percent) may start at certain times. This 

parameter is important for observing the time-of-day (TOD) variation of travel demand. Four-step 

models often take into account four TOD periods including morning peak, afternoon peak, mid-

day, and night. The CAMPO model has the hourly TOD factors to simulate temporal variations of 

travel demand. Figure 12.2(b) shows TOD factors for trip departure times used in CAMPO’s 

model. Four trip purposes are considered in this study: HBW, HBSc, HBO (including HBR), and 

non-home-based (NHB, including NHBW and NHBO). NCHRP Report 716 is an alternative 

source for this parameter data (NCHRP, 2012).  

12.3.3. Map Data 

In trip-based models, location-related information is aggregated at the TAZ centroids. For 

example, trip generators and attractors are at TAZ centaurs, and a trip starts from or ends at a TAZ 

centroid. ABM requires the information for specific locations for activities, i.e., origins and 

destinations. This study used the OpenStreetMap data from www.openstreetmap.org to generate 

specific locations for individuals and their activities. The data contain the road networks and the 

house/building footprints. The road networks are composed of nodes and links. The nodes are 

identified by their IDs, longitudes, and latitudes. The link attributes are identified by link IDs, from 

and to node IDs. In addition, the links have attributes such as link length, link capacity, free flow 

speed, number of lanes, and travel mode. Link length can be calculated based on the geo-

coordinates of two nodes. Link capacity and free flow speed are determined according to the 

roadway types indicated in OpenStreetMap. The number of lanes is also available in the data. All 

public drivable roadways are included in the modeling network. The house/building footprint data 

provide information about possible locations for performing activities and receiving or starting a 

trip. 

http://www.openstreetmap.org/
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12.4. Program Outputs 

12.4.1. Synthetic Population 

The program was designed to use the surveyed data and projected demographics used in travel 

models (summarized at TAZ level) to generate a synthetic population, though the randomness is 

included in the generation process. The data outputted from the program is supposed to match the 

statistics of input data at a large extent. Minor differences (<1%) are found between the outputted 

synthetic population and the inputs (socio-demographic data of CAMPO travel model). The 

differences are mainly due to the randomness and number rounding. Using the CMAPO’s 2020 

model inputs, the program generated a synthetic population of 2,325,116 individuals of 895,082 

households in the model region. Each individual is generated with age, gender, employment, and 

car ownership. In addition, individuals are also linked with their household characteristics 

including household size, household income level, number of employed members, number of 

vehicles and household locations (longitude and latitude). All these factors are important in 

activity-based travel modeling process. Figure 12.3(a) and (b) presents the example data of 

synthetic population at household and person level. From the spatial perspective, the synthetic 

population is also expected to mirror the aggregated input data. Figure 12.3 also presents (c) the 

input data of population and households aggregated at TAZ level from the CAMPO’s 2020 Travel 

Model, (d) the spatial distribution of synthetic households, and (e) the density map of synthetic 

population.  

 
Figure 12.3 Synthetic population and households 
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12.4.2. Activities and Synthetic Locations 

The trip-based travel models offer information about trip purposes which are associated with the 

activity types at the trip origins and destinations. Five major activity types were generated in the 

program proposed in this study, including home, work, school, shopping, and other activities. 

Besides home activities, the program generated about 1.5 million work activities, 0.46 million 

school activities, 2.5 million shopping activities, and 2.4 million other activities. Synthetic 

locations are needed to house these activities in the model region. The household locations are for 

home activities. For the other types of activities, the program generated employment-based 

locations to house them, though people may not go there for work but for other purposes such as 

shopping or taking classes. Figure 12.4 presents the example data of generated facilities for 

activities and the locations for four types of activities. Compared with the household locations (as 

shown in Figure 12.4), the school and shopping locations are more likely to concentrate to the 

urban centers; locations for other activities are close to how households are spatially distributed in 

space.  
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Figure 12.4 Example data of synthetic facilities and spatial distributions of facilities for different types of 

activities (except home activity) 

12.4.3. Trip Chains 

Travelers make trips to perform activities. An activity can be regarded as a chain or linkage 

between two sequential trips, and therefore travelers make a tour to perform a series of activities 

planned for the day. The program proposed in this study took advantage of the existing CAMPO’s 

travel model (which is trip-based) to generate the daily travel tours for each individual in the model 

region. The core procedures of tour generation involved chaining the trips between TAZs 

(estimated in CAMPO’s model) to form a tour for an individual, according to this traveler’s 

demographics and NHTS’s survey about the daily tour-making patterns (i.e., the number of trips 

made by a person, as shown in Figure 12.5). The program generated in total 1.96M tours that chain 

8.7M trips for 1.96M individuals who actually travel on a daily basis (which leaves 0.36M persons 
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who do not travel during 24 hours and are assumed staying at home for the whole day). The output 

resulted in about 3.9 trips per traveler in model region. Figure 12.5 presents the example data of 

synthetic trip chains, and two example tours in space: a four-trip tour with HBO  NHBO  

NHBO  HBO trips, and a five-trip tour with HBW  NHBO  NHBW  NHBO  HBR trips.  

 
Figure 12.5 Example of synthetic tours or trip chains 

12.4.4. Travel Plans  

The travel plans provide critical information about when a trip may depart from its origination. 

The outputted travel plan contains information about the person’s age, employment status, and a 

chain of activities with a tentative schedule. Figure 12.6 shows two example travel plans. The 

scheduled times were determined by considering the three pieces of time information: 1) activity 

durations, 2) trip duration, and 3) distributions of trip departure times. The travel plan is the core 

input of ABM. The travel plan reveals a typical schedule for travel and activities. During the 

modeling process, the travel plan may be modified given constraints of one-day time and space in 

roadway network. Late arrival, early departure, or cancelling an activity will cause loss of utility, 

while being stuck in traffic will also negate the production of values. Therefore, travelers will tend 

to stick with the schedule but may also adjust the schedule to avoid excessive waste of time on 

road owing to the traffic congestions.  
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Figure 12.6 Example travel plans 

12.4.5. Spatial Details 

The program proposed in this study generates specific physical locations for individuals to perform 

activities and these locations are the origins and destinations of trips (rather than TAZ centroids in 

four-step travel models). These locations are scattered in TAZs, as shown in Figure 12.7 (a). There 

are two types of scatter patterns. One type has quite clear patterns, shown in Figure 12.7(b), along 

the road links, as these locations are known places for households and employments according to 

the open-source data. The other type seems to be irregular patterns, shown in Figure 12.7(c). These 

locations were generated according to the road link/node locations and the number of households 

and employments in a TAZ. The irregularity is due to the limitations in open source data (e.g., 

incomplete records) and the need for understanding future travel patterns.  
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Figure 12.7 Spatial details for activity locations 

12.5. Limitations and Summary 

The accuracy of synthetic data generated in this study is heavily dependent upon the accuracy of 

inputs, including the travel demand data, parameter data, and map data. The travel demand model 

data in future years may contain inaccurate predictions about regional population growth and 

economic development. The parameter data include the age distributions, tour patterns, and trip 

departure times. The age distribution parameter may cause inaccuracy in the vehicle ownership 

assignment and trip-making characteristics (as the kids cannot own a vehicle, and seniors are 

expected to make fewer trips than young people do). The tour pattern parameter affects the number 

of trips in a daily travel tour. The inaccurate time parameter in the trip-departure model may not 

reflect Austinites’ actual schedules. In addition, the program presented in this study generates 

synthetic activity and travel data according to limited data sources with a number of assumptions. 

The validity of these assumptions remains unknown, and surveys are needed to validate these 

assumptions in the future. If using a desktop level computer or laptop, the generation of synthetic 

data using the current program may be a computational burden for large-scale travel model regions 

(population > 1 M), due to the massive searching cases (e.g., assigning a location for an activity), 

and matching requirements (the disaggregated synthetic data are required to match the aggregated 

data at TAZ level from various prospects, e.g., the total population, household, vehicle ownership, 

employments, etc.). The use of workstation level computers may facilitate the run of the program. 

New travel patterns, e.g., car-sharing behavior, present an opportunity and also a challenge for 

transportation planners and researchers to explore the disaggregated travel demand at person level, 

in addition to the aggregated demand at zone level which has been well modeled using trip-based 
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approach. This opportunity allows planners and researchers to confront the new questions 

regarding the new travel patterns and emerging transportation modes (e.g., autonomous vehicles), 

while the challenge may hold them back due to difficulty of obtaining disaggregated input data for 

advanced travel demand modeling at person level. This study offers a methodological framework 

to prepare input data for ABM, one of the most promising modeling approaches for person-level 

travel demand. The core of this framework is composed of a series of algorithms that take 

advantage of publicly available data sources (that are often aggregated at zone level) and produce 

the disaggregated data at person-level for ABM. The data sources used in this study include land 

use and socio-economic data, household travel surveys, OpenStreetMap, and regional trip-based 

models.  

This study summarized ABM data into “4Ws” regarding an individual’s daily travel: who this 

person is, where this person lives and works, what daily activities this person does, and when this 

person plans to perform activities. A program, consisting of a series of algorithms, was designed 

to generate the data that provide information about the “4Ws”. First, the program generated 

synthetic population based on the zone-level land use and socioeconomic data. Every individual 

in the modeling region is included in synthetic population; generated attributes include age, gender, 

employment, car ownership, and household characteristics. Second, places for households and 

employments were generated to answer where a person lives and works. OpenStreetMap data 

provide the information about possible locations/places for households and employments. Then 

the program converted the zone-level travel demand (i.e., trips between zones) to person-level 

demand (i.e., a unique chain of activities, forming a travel tour which connects specific physical 

locations instead of zone centroids in trip-based models). The program gave answers to what 

activities a person does. Last but not least, a schedule for traveling or performing activities was 

generated by the program to tentatively answer when a person plans to perform activities. Example 

outputs are shown. The outputs show great temporal and spatial details about individuals’ travel 

patterns.  

This study offers both methodological and practical contributions. The framework proposed in this 

study offers theoretical insights about the “4Ws” as the input components for constructing activity-

based travel models and from what public data sources can be used to prepare the “4W” 

information. This study delivers a practical tool that can help transportation planners and 

researchers to prepare the “4W” information for ABM. The tool is a computer-based program 

developed in R environment, composed of a series of algorithms that take advantages of the 

publicly available data sources and produce person-level information for ABM. This study is 

particularly useful for transportation planners who already have developed trip-based regional 

travel models which contain most of the key inputs of the program. Continuing efforts are needed 

for integrating other data sources, such as transportation’s big data, such as Streetlights and 

AirSage, into this program. 
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Chapter 13. Potential for Dynamic Ride-Sharing with 

SAVs: Study with Cellphone Data 

13.1. Background and Motivation 

Traffic safety and congestion are key transportation issues for many regions around the world. 

Driver error remains the predominant reason for vehicle crashes (NHTSA, 2015), and rising 

vehicle-miles traveled (VMT) is worsening traffic congestion (FHWA, 2017). The introduction of 

autonomous vehicles (AVs) for personal use may dramatically reduce vehicle collisions by 

eliminating driver error. AVs will also improve mobility options for many travelers, especially 

those without driver’s licenses. 

Several transportation network companies (TNCs) offer a dynamic ride-sharing (DRS) option, like 

uberPOOL and Lyft Line. These services offered by TNCs attempt to match riders with similar 

trip plans so that the overall cost of travel is minimized for the rider and the operator/driver makes 

a greater profit. However, a small delay is introduced to the riders’ trips as they will have to wait 

to accommodate other riders needing to be dropped off or picked up. This is often referred to as 

ridesplitting as noted by Shaheen et al. (2016b), but this report will resort to DRS as it is more 

widely used in the literature. Ride-sharing is not a new concept (Chan and Shaheen, 2012), with 

carpooling often being feasible for those with common origins and destinations, and stable, similar 

departure times on both ends of a round-trip (e.g., for many school trips within a neighborhood 

and for certain work trips). In practice, only casual carpooling or ‘slugging’ tends to serve real-

time demands of flexible departure times (Ma and Wolfson, 2013; Dai, 2016), and is limited to 

very special corridors (where high toll and time savings induce many drivers to open their doors 

to different, unknown passengers every day). 

Smartphone technology is fundamental to more widespread use of DRS, since it enables real-time 

access to traveler (and vehicle) locations (Amey et al., 2014). Shaheen et al.’s (2016a) FHWA 

report notes how important smartphone technology has been in improving travel information 

access for transit (Transit App), providing shortest paths in real time for many modes (Waze and 

Google Maps), and increasing carpool-use (Carma). Exploiting this feature, TNCs have designed 

user-friendly ride-sourcing platforms that interface passengers and drivers, at any time of day and 

in any region the TNCs serve. By selecting the DRS option, travelers’ costs (but not travel times) 

are lowered, thanks to TNCs working to match two or more travelers with overlapping real-time 

routes. Such matches add some travel time but deliver significant trip-cost savings and often good 

conversations among those sharing the ride, who had been strangers (alongside a TNC driver also 

on board). 

AVs will be expensive, at least initially, and not be available for personal ownership for many 

years (Bansal and Kockelman, 2017). Fleet operators may profitably invest in a fleet of AVs and 

manage them as TNCs currently manage their (driver-supplied) fleets, but with lower labor costs 

and complete control of plans and routes. Safer technologies should eventually bring down 

insurance costs, making shared AVs, or SAVs, more economically viable. In terms of congestion, 
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SAVs offering DRS can increase average vehicle occupancy (AVO) and reduce regional VMT 

(Fagnant and Kockelman, 2016; Rodier et al., 2016). It is useful to quantify the level of opportunity 

for such services, across a range of settings.  

This chapter studies the DRS potential for trip-making across the Orlando metropolitan area in 

Florida, as serviced by a fleet of SAVs. It relies on trip tables derived from cellphone data, as 

provided by AirSage across a period of 30 consecutive days, to provide a sense of day-to-day trip-

making variations. The remaining chapter summarizes related work, describes the AirSage dataset, 

and then explains the methodology used to match distinct vehicle trips or traveling parties and 

simulate a fleet of SAVs. 

Over the past 10 years, several contributions have been made to optimize and/or implement DRS, 

with various researchers suggesting that DRS is a key method for reducing future roadway 

congestion (Levofsky and Greenberg, 2001; Berbeglia et al., 2010; Ma et al., 2013; Farhan and 

Chen, 2017; Levin et al., 2017). More recently, DRS has been successfully demonstrated using 

agent-based models (see, e.g., Fagnant and Kockelman, 2016; Bischoff et al., 2016; Loeb et al., 

2017; and Hörl, 2017), such as MATsim (Horni et al., 2016) and a synthetically generated dataset 

of people and journeys to simulate dynamic traffic conditions.  

When it comes to actual trip-making, mode choices, and traffic patterns, DRS has been 

investigated for cities like Atlanta, Georgia, Taipei, Taiwan, and New York City. DRS applications 

include the entire U.S. state of New Jersey and the nation of Singapore, using travel demand model 

trip-making predictions, publicly available taxi datasets, and/or synthetically generated itineraries. 

Investigations demonstrate system feasibility and/or assess the computational efficiency of 

different methods for assigning vehicles and/or matching travelers in shared rides. (See Agatz et 

al., 2011; Santi et al., 2014; Alonso-Moro et al., 2016; Brownell and Kornhauser, 2014; Bhat, 

2016; Tao, 2007; and Spieser et al., 2014.) 

Agatz et al. (2011) developed a sophisticated algorithm to match riders to their drivers and 

conducted a simulation using person-trip data obtained from Atlanta’s travel demand model. Their 

results suggest that DRS works well not only in high-density, high-use settings, but also in 

sprawling suburbs and at low rates of utilization. However, they focused on driver (and thus TNC 

vehicle) unavailability, which can hamper sharing and dilute DRS opportunities. Brownell and 

Kornhauser (2014) focused on SAV system performance for the state of New Jersey. Employing 

a gridded-network for the entire state, along with synthetic trip-making data, valuable precision, 

accuracy, and applicability may have been lost in assessing optimal fleet requirements.  

Santi et al. (2014) and Alonso-Moro et al. (2016) overcame both these issues by using publicly 

available taxi datasets for New York City and real networks (via OpenStreetMaps, an open-source 

platform for map data). Alonso-Moro et al. observed that 98% of the City’s 3 million taxi trips 

could be served with just 2,000 vehicles and low waiting times (averaging just 2.8 minutes), 

backing DRS capabilities. Bhat (2016) confirmed those New York City taxi results, and added a 

vehicle repositioning algorithm. Tao (2007) also used a taxi data set, but for the city of Taipei. He 

developed a heuristic DRS algorithm using real-time taxi movements (not just trip calls by 
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travelers) to test its efficiency in a realistic network setting. Tao (2007) achieved 60% ride matches 

and concluded that a higher matching rate could be obtained across larger networks with greater 

density of trip-making.  

Of course, taxis do not represent all person-trips in any region. Such trips tend to be shorter than 

household-vehicle trips (due to their cost), more often for business reasons or those without 

parking access (again due to their cost), and for visitors (due to their unfamiliarity with the region). 

DRS investigations of more representative trip-making are desired. By using a population-

weighted cellphone dataset, as done here, one overcomes the drawbacks of faked or taxi-based trip 

patterns. However, certain details are lost (such as trip-to-trip connections throughout the day), in 

order to protect travelers’ privacy, over space and time. Thus, cell-phone-based trips or other forms 

of extensive diary data tend to be aggregated by traffic analysis zones (TAZs) or neighborhoods, 

to obscure home and work addresses. To keep data size manageable (for dataset sharing), trips are 

often aggregated into hourly or multi-hour time-of-day bins as well. More detailed trip ends and 

trip schedules can be simulated/faked and disaggregated, while preserving the population’s basic 

trip patterns. This process ensures that matches are less obvious (with trips coming from all over 

a zone and hour, rather than from its centroid or mid-point, for example), and so was used here. 

But it comes at the expense of some accuracy and precision (versus the reality of actual trip 

locations and times, which are rarely available to anyone, for any large population). 

13.2. Cellphone Dataset 

The cellphone-based dataset employed here was generated by AirSage for the month of April 2014 

and for travel across the Orlando metropolitan area in Florida. AirSage uses the regular location 

pings of cell phones that are turned on and carried by customers of its partner companies (like 

Verizon and Sprint). Cellphone trips observed were aggregated based on six factors: each trip’s 

inferred origin and destination TAZs, the hour and day in which most of the trip was made (e.g., 

0100-0200 on April 4 or 1600-1700 on April 20), inferred trip purpose, and cell-phone subscriber 

class. All trips (and basic demographics) inferred from phone pings (of the carriers’ cell towers) 

were then expanded to reflect all trip-making in the region using population-weighted trip counts 

(including travel by persons who do not own cell phones or carry theirs with them, turned off). 

This type of cellphone data has been proven to represent origin-destination (OD) flows to a 

reasonably high-degree of accuracy by capturing activity-based individualistic data (Calabrese et 

al., 2011; Alexander et al., 2015) but it is acknowledged that there are limitations based on market 

share of the phone-operator whose data is used for OD flow determination and the size of the TAZs 

considered. 

The Orlando region’s metropolitan planning agency models travel across 1,267 TAZs (with 1,261 

of them representing metropolitan area and the remaining 6 representing external TAZs). External-

zone trips can be very long, with ambiguity in their true destination or origin, so all external trips 

were removed from the dataset before seeking matches. The remaining 1,261 TAZs have a mean 

area of 2.22 sq. mi., a standard deviation of 9.92 sq. mi., and a median of 0.53 sq. mi. Traveler 

type based on work-type (such as, someone who works from home, works within the study area, 
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commutes to the study area for work, or commutes away from the study area for work) also is not 

relevant, so it is not used here, in making matches. The population-weighted dataset obtained from 

AirSage lacks mode-specific classification, but since this study attempts to prove the viability of 

DRS considering all trips, this information can be neglected for the purposes of this study. 

MetroPlan Orlando, the region’s metropolitan planning organization, provided a detailed network, 

with nearly 24,000 nodes and around 61,000 links. Shortest-path travel times between each TAZ 

were used while disaggregating the trips, as discussed in the next section. 

13.3. Methodological Framework 

13.3.1. Data Disaggregation 

Since AirSage provided an anonymized, spatially and temporally aggregate dataset (with trips 

classified into hourly bins and their origins and destinations by TAZs), smaller time steps, and 

more detailed locations (instead of centroids) were needed for a DRS application of intra-regional 

trips. Also, the departure times of these trips need not always be in the hourly bin that AirSage 

indicated for each trip, because trips (within this region) can begin many minutes earlier (or can 

end many minutes later). This is because only the majority of the trip’s duration had to have 

occurred in the hour bin to which the trip was assigned by AirSage. Keeping these in mind, the 

data was disaggregated as explained below. 

A time-step of one minute was used here, to facilitate computation while preserving dataset 

integrity, and origins and destinations were randomly sampled from within the origin and 

destination TAZs. To simplify the process, the trips occurring within an hourly bin were uniformly 

distributed within the bin. Then, to account for the variability in departure time as mentioned 

above, 30 minutes of overflow was permitted into the previous and next hour bin, obtained by 

randomizing the minute-level departure time. The origins and destinations for these trips, with 

varying departure times, were then sampled with equal probability from within their respective 

TAZs. Once a start time was assigned for these spatially disaggregated trips, the shortest-path 

travel times for that time of day, as obtained via Caliper Corporation’s TransCAD software, a 

travel-demand modeling tool, were used to sample individual trip travel times from a normal 

distribution, whose mean equaled this shortest-path travel time and had a standard deviation of ±2 

minutes.  

Thus, the original 30-day 24-hour dataset was disaggregated resulting in smooth, minute-by-

minute trip-request files for each of the 30 days, with higher spatial detail and natural looking 

departure and arrival time patterns throughout each of the 30 days. The uniform disaggregation in 

time and space employed here would serve as conservative estimates of the actual DRS 

capabilities. One day in this disaggregated dataset contains nearly 6.2 million person-trips. Figure 

13.1 illustrates the Orlando network and nodes. 
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a) Orlando network separated by TAZ gridlines b) Centroids used in aggregated data c) 

Nodes available for spatial disaggregation. 

Figure 13.1 The Orlando network and nodes used for spatial disaggregation 

13.3.2. Day to Day Variability in Travel Patterns 

The cumulative trip distribution for each of the 30 days was obtained by time of day, as shown in 

Figure 13.2. It is evident that trip patterns are similar between weekdays and weekends. 

Variability, and consequently correlation, between each day was assessed using R software’s 

statistical tool. Table 13.1 shows correlation coefficients for trip counts across all OD pairs and 

across all 30 days of the month, with shading to highlight correlation patterns. This table indicates 
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that high correlation exists for trip patterns on Saturdays and Sundays, and for those made on 

weekdays, as one would expect (since weekdays have high shares of work and school trips, starting 

early in the day, while weekends have more flexible departure times and more recreational trip-

making). Given these similarities, the following results are presented for a single weekday and a 

single weekend day. Results are very similar for other days of the 30-day dataset.  

 
Figure 13.2 Orlando trip distribution differences, by time of day, between weekdays and weekends 

13.3.3. Trip Matching 

An analysis of these trip patterns suggests how many single-person trips can be matched with other 

trips, enabling ride-sharing, under different trip-delay and re-routing assumptions. A MATLAB 

code was developed to identify trips whose rides (in an SAV, for example) can be shared. An 

assumption of four-person maximum vehicle occupancy was made, along with various travel delay 

thresholds, before running the code, for various maximum-delay scenarios (ranging from 5 

minutes of extra travel time, to a maximum of 30 minutes). 

Figure 13.3 illustrates how travel times under DRS conditions is calculated for this exploratory 

analysis, with ride-sharing en route, as compared to those sharing an origin zone and a destination 

zone and having similar departure times. As noted above, the OD DRS program matches individual 

trip-makers so that the earliest departing traveler (in a group of matched travelers, all having the 

same O and D zone pair) does not experience a wait time greater than the pre-determined limit. 

The en route DRS is more complex in matching travelers, in that it anticipates travelers arriving 

from different origins and destinations such that they have an intersecting path where each of their 

wait times between pick-up and drop-off are within the same predetermined limits. This is more 

in line with services available currently (with a human driver, of course). 
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Including the entire dataset of trips would mean that trips that are already shared/performed 

together, like family members travelling together for dinner, inflate the trip-sharing percentages. 

The Florida DOT (2013) estimates that over 50% of all automobile trips in that state are driven 

alone and 90% of all person-trips are driven in an automobile. Thus, only the person-trips in the 

AirSage dataset that may have been single-occupancy were used here, to perform matching (of 

solo travelers with one another, rather matching those already in traveling parties). This resulting 

data subset was found to contain nearly 2.8 million single-occupancy vehicle trips. 

 
Figure 13.3 Illustrations of fleet-sharing of OD DRS and DRS en route
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Table 13.1 Correlation between hourly trip-count vectors between all days for the month of April 

  

Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed

Tue 1.0000 0.9979 0.9984 0.9955 0.9346 0.9143 0.9979 0.9942 0.9986 0.9988 0.9954 0.9410 0.9248 0.9984 0.9972 0.9976 0.9974 0.9832 0.9351 0.9166 0.9979 0.9987 0.9988 0.9986 0.9953 0.9450 0.9235 0.9972 0.9961 0.9977

Wed 0.9979 1.0000 0.9991 0.9980 0.9476 0.9305 0.9984 0.9956 0.9989 0.9989 0.9978 0.9526 0.9394 0.9982 0.9984 0.9985 0.9988 0.9889 0.9482 0.9305 0.9982 0.9977 0.9989 0.9990 0.9976 0.9563 0.9382 0.9972 0.9943 0.9971

Thu 0.9984 0.9991 1.0000 0.9984 0.9451 0.9262 0.9979 0.9955 0.9987 0.9995 0.9982 0.9500 0.9357 0.9982 0.9980 0.9980 0.9990 0.9879 0.9452 0.9258 0.9982 0.9978 0.9986 0.9996 0.9982 0.9536 0.9342 0.9966 0.9940 0.9967

Fri 0.9955 0.9980 0.9984 1.0000 0.9534 0.9356 0.9963 0.9958 0.9963 0.9971 0.9997 0.9567 0.9436 0.9956 0.9975 0.9958 0.9978 0.9918 0.9537 0.9319 0.9962 0.9943 0.9958 0.9979 0.9989 0.9597 0.9424 0.9949 0.9908 0.9938

Sat 0.9346 0.9476 0.9451 0.9534 1.0000 0.9941 0.9411 0.9415 0.9423 0.9419 0.9531 0.9986 0.9966 0.9432 0.9467 0.9526 0.9541 0.9768 0.9990 0.9917 0.9414 0.9287 0.9384 0.9445 0.9531 0.9981 0.9955 0.9352 0.9218 0.9296

Sun 0.9143 0.9305 0.9262 0.9356 0.9941 1.0000 0.9258 0.9292 0.9227 0.9220 0.9341 0.9896 0.9989 0.9244 0.9311 0.9353 0.9370 0.9683 0.9958 0.9952 0.9261 0.9096 0.9195 0.9254 0.9332 0.9910 0.9990 0.9201 0.9061 0.9128

Mon 0.9979 0.9984 0.9979 0.9963 0.9411 0.9258 1.0000 0.9975 0.9970 0.9976 0.9961 0.9453 0.9344 0.9984 0.9992 0.9975 0.9973 0.9886 0.9422 0.9266 0.9996 0.9980 0.9977 0.9980 0.9946 0.9505 0.9342 0.9995 0.9979 0.9979

Tue 0.9942 0.9956 0.9955 0.9958 0.9415 0.9292 0.9975 1.0000 0.9933 0.9944 0.9950 0.9436 0.9361 0.9934 0.9977 0.9935 0.9949 0.9908 0.9441 0.9253 0.9970 0.9943 0.9945 0.9959 0.9935 0.9487 0.9367 0.9976 0.9956 0.9965

Wed 0.9986 0.9989 0.9987 0.9963 0.9423 0.9227 0.9970 0.9933 1.0000 0.9993 0.9963 0.9489 0.9330 0.9978 0.9968 0.9986 0.9982 0.9849 0.9427 0.9252 0.9970 0.9983 0.9995 0.9989 0.9970 0.9524 0.9313 0.9959 0.9935 0.9974

Thu 0.9988 0.9989 0.9995 0.9971 0.9419 0.9220 0.9976 0.9944 0.9993 1.0000 0.9970 0.9477 0.9321 0.9983 0.9974 0.9983 0.9986 0.9857 0.9420 0.9234 0.9980 0.9986 0.9992 0.9995 0.9976 0.9513 0.9307 0.9966 0.9944 0.9972

Fri 0.9954 0.9978 0.9982 0.9997 0.9531 0.9341 0.9961 0.9950 0.9963 0.9970 1.0000 0.9568 0.9424 0.9958 0.9973 0.9957 0.9976 0.9910 0.9529 0.9310 0.9957 0.9942 0.9957 0.9978 0.9988 0.9595 0.9411 0.9945 0.9905 0.9934

Sat 0.9410 0.9526 0.9500 0.9567 0.9986 0.9896 0.9453 0.9436 0.9489 0.9477 0.9568 1.0000 0.9939 0.9494 0.9508 0.9586 0.9586 0.9768 0.9974 0.9907 0.9456 0.9349 0.9448 0.9498 0.9574 0.9988 0.9921 0.9394 0.9269 0.9354

Sun 0.9248 0.9394 0.9357 0.9436 0.9966 0.9989 0.9344 0.9361 0.9330 0.9321 0.9424 0.9939 1.0000 0.9345 0.9395 0.9451 0.9457 0.9730 0.9977 0.9970 0.9349 0.9202 0.9296 0.9351 0.9421 0.9952 0.9993 0.9290 0.9155 0.9224

Mon 0.9984 0.9982 0.9982 0.9956 0.9432 0.9244 0.9984 0.9934 0.9978 0.9983 0.9958 0.9494 0.9345 1.0000 0.9981 0.9986 0.9977 0.9861 0.9430 0.9281 0.9984 0.9977 0.9980 0.9985 0.9951 0.9535 0.9334 0.9973 0.9956 0.9963

Tue 0.9972 0.9984 0.9980 0.9975 0.9467 0.9311 0.9992 0.9977 0.9968 0.9974 0.9973 0.9508 0.9395 0.9981 1.0000 0.9974 0.9974 0.9907 0.9477 0.9309 0.9988 0.9967 0.9973 0.9983 0.9960 0.9550 0.9393 0.9984 0.9962 0.9972

Wed 0.9976 0.9985 0.9980 0.9958 0.9526 0.9353 0.9975 0.9935 0.9986 0.9983 0.9957 0.9586 0.9451 0.9986 0.9974 1.0000 0.9986 0.9894 0.9531 0.9390 0.9974 0.9966 0.9983 0.9984 0.9961 0.9621 0.9437 0.9961 0.9931 0.9962

Thu 0.9974 0.9988 0.9990 0.9978 0.9541 0.9370 0.9973 0.9949 0.9982 0.9986 0.9976 0.9586 0.9457 0.9977 0.9974 0.9986 1.0000 0.9914 0.9543 0.9374 0.9976 0.9962 0.9978 0.9988 0.9974 0.9621 0.9445 0.9956 0.9925 0.9953

Fri 0.9832 0.9889 0.9879 0.9918 0.9768 0.9683 0.9886 0.9908 0.9849 0.9857 0.9910 0.9768 0.9730 0.9861 0.9907 0.9894 0.9914 1.0000 0.9787 0.9647 0.9886 0.9809 0.9841 0.9877 0.9892 0.9807 0.9736 0.9866 0.9804 0.9825

Sat 0.9351 0.9482 0.9452 0.9537 0.9990 0.9958 0.9422 0.9441 0.9427 0.9420 0.9529 0.9974 0.9977 0.9430 0.9477 0.9531 0.9543 0.9787 1.0000 0.9930 0.9425 0.9297 0.9392 0.9447 0.9531 0.9976 0.9972 0.9368 0.9237 0.9313

Sun 0.9166 0.9305 0.9258 0.9319 0.9917 0.9952 0.9266 0.9253 0.9252 0.9234 0.9310 0.9907 0.9970 0.9281 0.9309 0.9390 0.9374 0.9647 0.9930 1.0000 0.9273 0.9125 0.9215 0.9259 0.9306 0.9931 0.9969 0.9212 0.9084 0.9141

Mon 0.9979 0.9982 0.9982 0.9962 0.9414 0.9261 0.9996 0.9970 0.9970 0.9980 0.9957 0.9456 0.9349 0.9984 0.9988 0.9974 0.9976 0.9886 0.9425 0.9273 1.0000 0.9982 0.9975 0.9981 0.9948 0.9511 0.9346 0.9990 0.9973 0.9974

Tue 0.9987 0.9977 0.9978 0.9943 0.9287 0.9096 0.9980 0.9943 0.9983 0.9986 0.9942 0.9349 0.9202 0.9977 0.9967 0.9966 0.9962 0.9809 0.9297 0.9125 0.9982 1.0000 0.9988 0.9980 0.9942 0.9402 0.9191 0.9981 0.9972 0.9983

Wed 0.9988 0.9989 0.9986 0.9958 0.9384 0.9195 0.9977 0.9945 0.9995 0.9992 0.9957 0.9448 0.9296 0.9980 0.9973 0.9983 0.9978 0.9841 0.9392 0.9215 0.9975 0.9988 1.0000 0.9990 0.9963 0.9485 0.9283 0.9969 0.9952 0.9985

Thu 0.9986 0.9990 0.9996 0.9979 0.9445 0.9254 0.9980 0.9959 0.9989 0.9995 0.9978 0.9498 0.9351 0.9985 0.9983 0.9984 0.9988 0.9877 0.9447 0.9259 0.9981 0.9980 0.9990 1.0000 0.9980 0.9533 0.9339 0.9970 0.9946 0.9976

Fri 0.9953 0.9976 0.9982 0.9989 0.9531 0.9332 0.9946 0.9935 0.9970 0.9976 0.9988 0.9574 0.9421 0.9951 0.9960 0.9961 0.9974 0.9892 0.9531 0.9306 0.9948 0.9942 0.9963 0.9980 1.0000 0.9595 0.9403 0.9929 0.9884 0.9928

Sat 0.9450 0.9563 0.9536 0.9597 0.9981 0.9910 0.9505 0.9487 0.9524 0.9513 0.9595 0.9988 0.9952 0.9535 0.9550 0.9621 0.9621 0.9807 0.9976 0.9931 0.9511 0.9402 0.9485 0.9533 0.9595 1.0000 0.9941 0.9454 0.9333 0.9401

Sun 0.9235 0.9382 0.9342 0.9424 0.9955 0.9990 0.9342 0.9367 0.9313 0.9307 0.9411 0.9921 0.9993 0.9334 0.9393 0.9437 0.9445 0.9736 0.9972 0.9969 0.9346 0.9191 0.9283 0.9339 0.9403 0.9941 1.0000 0.9291 0.9161 0.9222

Mon 0.9972 0.9972 0.9966 0.9949 0.9352 0.9201 0.9995 0.9976 0.9959 0.9966 0.9945 0.9394 0.9290 0.9973 0.9984 0.9961 0.9956 0.9866 0.9368 0.9212 0.9990 0.9981 0.9969 0.9970 0.9929 0.9454 0.9291 1.0000 0.9988 0.9981

Tue 0.9961 0.9943 0.9940 0.9908 0.9218 0.9061 0.9979 0.9956 0.9935 0.9944 0.9905 0.9269 0.9155 0.9956 0.9962 0.9931 0.9925 0.9804 0.9237 0.9084 0.9973 0.9972 0.9952 0.9946 0.9884 0.9333 0.9161 0.9988 1.0000 0.9976

Wed 0.9977 0.9971 0.9967 0.9938 0.9296 0.9128 0.9979 0.9965 0.9974 0.9972 0.9934 0.9354 0.9224 0.9963 0.9972 0.9962 0.9953 0.9825 0.9313 0.9141 0.9974 0.9983 0.9985 0.9976 0.9928 0.9401 0.9222 0.9981 0.9976 1.0000
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13.3.4. Fleet Simulation 

A fleet simulation was carried out to assess the optimal SAV fleet requirement for the metropolitan 

region of Orlando to cater to all the trips with pre-specified service characteristics (such as, 

maximum waiting time or maximum additional in-vehicle travel time). Here, practicality is defined 

from an operator’s perspective: a practical fleet is one with fewest variables able to serve the most 

(single-person) trips possible while adhering to these pre-specific characteristics. A framework 

was developed in MATLAB to simulate a fleet of SAVs for a typical day. The trip request file 

generated from data disaggregation served as an input to the framework, along with the 

characteristics that are expected of the fleet. This included fleet size, maximum allowable waiting 

time before an SAV is assigned to a passenger, maximum allowable time an SAV can take to reach 

the passenger, maximum additional time that is imposed on passengers who will be detoured for a 

new pick-up, and maximum additional time that a newly picked-up passenger has to wait while 

the previous occupants are dropped off. Table 13.2 states all these variables along with their 

abbreviations and this will stay consistent in definition for the remaining sections of the chapter. 

In addition to this, Orlando’s network was converted into a MATLAB directional graph (digraph) 

and used to analyze shortest-path routes and times taken by SAVs. 

Table 13.2 List of abbreviations used in reference to the simulation framework 

Abbreviation Description Values Considered 

noOfSAVs Total number of SAVs used in the fleet {5k, 10k, … 30k, 60k, 

120k} 

maxExtraTripTime Minimum time imposed on travelers sharing 

their trips 

{5 minutes, 10 minutes, 

… 30 minutes} 

maxWaitingTime Maximum time that a passenger had to wait 

before an SAV reached them 

5 minutes 

maxSearchTime Maximum time that a trip was stored on the 

waitlist before being rejected 

{0 minutes, 1 minute, 3 

minutes, 5 minutes} 

unserviced Total trips that could not be serviced under 

the above restrictions 

Internally calculated 

ETA Estimated time of arrival for an SAV to either 

pick up or drop off a passenger 

Internally calculated 

 

The framework was composed of three distinct blocks: SAV allocation, SAV update, and waitlist 

management. The SAV allocation block allocates the nearest SAV to a trip request based on the 

maxWaitingTime criterion. If no SAV was found satisfying this criterion, the trip request is stored 

in the waitlist. If an SAV with an existing occupant is located, the maxExtraTripTime criterion is 

checked prior to allocation, to minimize delays imposed on the travelers. After all the trips in a 

particular time step are either allocated to an SAV or stored in the waitlist, the SAV update block 

for the next time step is executed. In the SAV update block, the current location, destination and 

ETA of an SAV is monitored. If the SAV has not reached its destination for either a pick-up or a 

drop-off operation, then its current location and ETA are updated. If the SAV has reached its 

destination for pick-up, the drop-off operation is initiated. If a drop-off was executed, the second 
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destination for drop off of shared rides is processed, or the SAV stays idle, waiting for the next 

request. Once the update block has executed, all previously waitlisted trip requests are checked for 

SAV allocation before moving on to the next time step of trip requests. If the trip requests have 

been on the waitlist for more than maxSearchTime, they are removed from the waitlist and 

unserviced is updated to reflect the same. The flowchart for the process described is shown in 

Figure 13.4. Fleet sizes varying from 5,000 to 25,000 SAVs, in intervals of 5,000, were used for 

these simulations and the results are discussed in the next section.  

 
Figure 13.4 The flowchart describing the main modules of the simulation framework 

13.4. Results 

13.4.1. Infinite-fleet-based Trip Matching 

Trips matched assuming availability of an infinite fleet provided optimistic results. As shown in 

Table 13.3, even after removing a large share of trips that reflect traveling parties (and thus 

focusing only on Orlando trips undertaken by a single person), nearly 60% of all such single-

person trips can be shared with less than 5 minutes of added total travel (for each of the ride-

sharing travelers, including any wait time added). This percentage reaches 86% matching or shared 

when travelers are willing to wait (or delay their destination arrivals, for example) up to 30 

minutes. Of course, not all travelers need to be willing to wait that long; most of the matches are 

made with added delays of under 5 minutes. It is interesting to note that OD DRS remains almost 

a constant for trips with maximum allowed travel time greater than 10 minutes. This is due to the 
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spatial constraint on these trips which restricts scope for matches after a point in temporal 

flexibility. 

Table 13.3 Percentage of Orlando trips that can be shared with OD DRS and DRS en route for a 4-
passenger SAV under different maximum-delay assumptions 

Maximum added travel 

time (including wait 

time) 

Percentage of trips 

that can be shared 

(OD DRS) 

Percentage of trips 

that can be shared 

(DRS en route) 

5 min 18.48% 56.82% 

10 20.56 74.15 

15 20.55 80.56 

20 20.57 83.57 

25 20.65 85.29 

30 20.65 86.23 

13.4.2. Fixed-fleet-based DRS Simulation 

A fixed fleet assumption offers reliable results in terms of ready applicability. A simulation based 

on a fixed fleet size and given service characteristics were simulated to obtain optimal fleet sizes 

for each permutation and combination that was found to be practically valid. Table 13.4 shows the 

different fleet sizes assumed in different scenarios, as well as the different service characteristics. 

The percentage demand served, percentage VMT reduction observed, percentage empty VMT, and 

the average number of trips served by an SAV has been shown as metrics to assess the best fleet. 

A conventional vehicle replacement ratio is also calculated, just as done by Loeb and Kockelman 

(2017) and Fagnant and Kockelman (2016). The average number of trips made by a conventional 

vehicle in one day is 3.05 according to the NHTS. Since the average SAV focused on solo travelers 

in the Orlando region serves 17.99 person-trips/day, it appears that nearly 6 conventional vehicles 

can be replaced by 1 SAV. The change in VMT was calculated relative to the VMT observed by 

the trips on the network without the fleet. Naturally, larger fleets had lower reductions in VMT.  
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Table 13.4 DRS potential based on fleet size and service characteristic 

Maximum 

search time 

Maximum 

waiting time 

Maximum 

added trip time 

No. of 

SAVs 

% trips 

unserviced (by 

SAVs) 

% demand 

captured (by 

SAVs) 

0 min 5 min 5 min 5,000 54.15% 4.07% 

   10,000 53.55 5.14 

   15,000 51.84 8.17 

   20,000 46.20 18.65 

   25,000 38.45 32.38 

   30,000 32.59 42.57 

0 min 5 min 10 min 5,000 54.92% 2.71% 

   10,000 53.07 5.99 

   15,000 51.06 9.61 

   20,000 49.35 12.58 

   25,000 43.63 23.12 

   30,000 39.20 31.02 

0 min 5 min 15 min 5,000 54.78% 2.96% 

   10,000 52.81 6.45 

   15,000 50.88 9.87 

   20,000 48.97 13.25 

   25,000 45.76 19.14 

   30,000 40.29 29.05 

1 min 5 min 5 min 5,000 55.16% 2.29% 

   10,000 53.57 5.10 

   15,000 51.86 8.13 

   20,000 46.16 18.70 

   25,000 38.73 31.91 

   30,000 33.24 41.45 

13.5. Conclusions 

This study anticipates the fraction of single-person trips that appear easily matched with one 

another, making them excellent candidates for DRS across the Orlando metropolitan area. Several 

studies have simulated the operations of SAV fleets but without the comprehensive nature of this 

cellphone-based dataset (e.g., taxi datasets do not reflect other modes of travel) and/or without 

other key data (e.g., actual travel times). With such data in hand, and a new setting for simulation 

(a Florida city and major destination for many vacationers), the results obtained here may be 

relevant for many interested in encouraging SAV use and DRS, to keep travel costs, VMT, 

emissions, and congestion down, as self-driving vehicles start making travel easier. 

The trip-matching algorithm employed here suggests that nearly 60% of all single-person trips 

occurring each weekday in Orlando appear matchable to other trips taking place (for those 

traveling solo), with less than 5 minutes of added total travel time (including any wait time). Any 

added willingness to wait (up to 10 minutes or 15 minutes, maximum, for example) brings this 
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percentage up (to 74.2% and 80.6%, respectively), suggesting substantial opportunities for VMT 

reduction and shared-fleet activities in many (and probably all) cities around the U.S. and 

presumably around the world. The second part of the chapter used a fleet simulation algorithm to 

gauge the fleet size requirements to achieve the above predicted levels of ride-sharing. Results 

indicated that a fleet size of around 30,000 SAVs were sufficient to cater to less than 45% of 

Orlando’s 2.8 million single-traveler trip demands (i.e., not counting existing carpools by family, 

friends, and colleagues). This means that one SAV can replace nearly 13 conventional vehicles. 

Under slightly relaxed trip delays and search times, such as a maximum of 15 and 2 minutes, the 

optimal fleet size required can be significantly reduced, thus increasing the replacement ratio. 

One important limitation arising here is the assumed disaggregation of trips, over space and time. 

Uniform temporal and spatial disaggregation was used to spread AirSage cellphone trip ends over 

time and space. In reality, many trips may be more concentrated, increasing the likelihood of trip-

matching, especially during peak times of day. Real-world implementations may be even more 

successful. 

In addition, average vehicle occupancies form an integral part of determining how effective the 

fleet is at matching and sharing trips. To do this, vehicle occupancies need to be computed at each 

leg and averaged over distance or time. The complexity involved in tracking the fleet with limited 

information from the network has reduced the scope of the study to understanding only the number 

of trips served. However, the framework can be modified as a next step to compute this AVO. In 

addition to this, although it is true that shared trips can significantly reduce the number of vehicles 

using the road infrastructure, it cannot be said with 100% certainty that congestion will fall. This 

is because of the induced demand from lower-cost transportation and the intensity with which a 

shared fleet with a limited size will have to operate. The effect of fleet operations can be captured 

by computing the VMT of this fleet and comparing it with the literature. Again, this can be 

included in the simulation framework to achieve more comprehensive results. Regardless of such 

changes to this work, the results deliver very strong evidence of DRS as a highly viable way to 

reduce vehicle use and VMT in a metro region. All it requires is travelers’ willingness to share 

rides with people they do not yet know. Hopefully, that will not pose a challenge long-term, so 

that our cities and nations can reduce fossil fuel reliance, emissions, congestion, and travel costs.  
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Chapter 14. Pricing Strategies with CAVs in the Mix 

14.1. Background 

The rate of development of autonomous vehicles (AVs) made in the last few years is generating a 

great deal of discussion both inside and outside the scientific community. Considerable progress 

has been in made in AV-technologies thanks to the investment of auto manufacturers (Muoio, 

2017) and the support of public institutions (Kang, 2016). 

Since the introduction of driverless cars represents an additional option for travelers, some of the 

trips made with “traditional modes” like car, public transit, and bike will be replaced by trips with 

autonomous and shared-autonomous vehicles (SAVs). While the benefits of AV implementation 

are evident from a road safety and energy-consumption perspective (Fagnant and Kockelman, 

2015), it is very difficult to predict their effects on mobility and traffic (Litman, 2017; Wadud et 

al., 2016). 

On one hand, automated technologies are likely to improve the traffic performance of road 

networks, as they will increase the traffic throughput thanks to tighter headways and they will 

reduce traffic incidents. On the other hand, AVs and SAVs might increase the number and the 

distance of trips because of the increased comfort and lower value of travel time (VOTT). These 

changes might ultimately yield to higher levels of congestion. Since infrastructure solutions (such 

as increasing capacity) are usually inadequate and traffic management strategies can only partially 

solve the problem (Litman, 2016), it is important to consider demand management options such 

as congestion pricing (CP). 

Charging drivers for the congestion they cause is a well-known concept among economists, traffic 

engineers, and transport professionals. Many studies have been conducted to explore and better 

address this issue and in the last twenty years the first CP schemes have finally been implemented 

in some cities (Singapore, London, Stockholm, Milan, and Gothenburg). Although several models 

and strategies have been proposed from a theoretical perspective, in reality, CP practices in cities 

have been limited to cordon and area-based schemes. AVs and SAVs offer the opportunity to 

implement more efficient and effective strategies, thanks to advanced communication capabilities 

and fast information sharing. 

In this report, we investigate two different CP strategies in possible future scenarios characterized 

by a large presence of AVs and SAVs. 

The topic of CP in scenarios with conventional and autonomous vehicles (shared and private) is 

relatively unexplored, with the exception of a few theoretical studies (described below). 

Experiments within this study are performed using the multi-agent transport simulation MATSim. 

Such typology of model is particularly suitable for large simulations of CP strategies (involving 

thousands of agents), as it considers important behavioral aspects of traveling such as travel time 

departure, route and mode choice, and trip chains. Furthermore, MATSim allows for a realistic 
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representation of innovative travel modes such as AVs and SAVs from both the demand and supply 

perspective of the traffic congestion problem. 

14.2. Modeling AVs, SAVs, and Traditional Modes in an Agent-
based Model 

In this section after providing a brief overview of the agent-based model MATSim, we present a 

description of our modeling framework. We then focus on the modeling of AVs and SAVs.  

14.2.1. General Framework of MATSim 

MATSim simulates an entire daily plan of every single user and it considers endogenous mode 

choice, departure time choice and route choice into a fully dynamic model. As opposed to models 

that use single trips, this model allows for predictions on reactions to demand management 

strategies, such as tolls during the span of a day, accounting for a higher level of realism. In fact, 

trips are typically linked to each other as a part of a daily plan and not that meaningful just as 

stand-alone trips (Balmer et al., 2006). Activities often have higher importance in the daily 

schedule than trips that simply represent connections among them. Since MATSim represents 

traffic behavior at a highly disaggregated level by modeling individual agents (with different socio-

demographic characteristics), it is possible to investigate the effects of transport policies on travel 

behavior and traffic more in depth than in traditional four-step models (Kickhöfer et al., 2011). 

The overall process (Figure 14.1) can be summarized in the following stages: 

 Each agent independently develops a plan that expresses its preferences in terms of 

activities, trips and their schedules during the day (Initial demand). 

 The agents simultaneously perform all the plans in the physical system in the mobility 

simulation (Mobsim). Congestion phenomena are modeled using a queue model, which 

takes both the physical storage capacity and the actual throughput (flow capacity) of a link 

into account. 

 To compare the performance of different plans, each one is associated to a score given by 

a utility function (Scoring). 

 Agents are able to memorize their plans and improve them during the simulation by means 

of a learning algorithm (Replanning). During the implementation the system iterates 

between plan generation and traffic flow simulation. 

 The cycle continues until the system has reached an equilibrium where no agent can 

improve anymore his score (Analyses). 
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Source: Horni et al., 2016 

Figure 14.1 MATSim cycle 

The choice model generally adopted in MATSim is equivalent to the standard multinomial logit 

model. Since the number of plans in the memory of agents is limited, the worst performing one is 

replaced by a new one at each iteration. Thanks to this feedback mechanism agents are able to 

improve their plans over several iterations until the system reaches the “relaxed” state when agents 

cannot significantly improve their plans and the outcome of the system becomes stable. This state 

is also referred as agent-based stochastic user equilibrium (Nagel and Flotterod, 2009). For further 

information about the simulation framework MATSim, see Horni et al. (2016). 

14.2.2. Choice Dimensions and Parameters 

Plans can be improved by changing the time of departure, varying the route, and choosing different 

a transport mode through modules. Agents’ travel choices are modeled in MATSim through an 

iterative learning mechanism based on a quantitative score, referred to as utility. For each iteration 

agents choose from an existing set of daily plans according to a multinomial logit model. 

Every daily plan is associated with a utility, accounting for a trip-related disutility and a performing 

activity utility: 

𝑉𝑝𝑙𝑎𝑛 =∑(𝑉𝑎𝑐𝑡,𝑖 +𝑉𝑡𝑟𝑖𝑝,𝑖)

𝑛

𝑖=1

 
(14.1) 

where Vplan is the total utility of a daily plan; n is the total number of activities or trips; Vact,i is the 

utility for performing activity i; and Vtrip,i is the utility of the trip to activity i. The first and the last 

activity are wrapped around the day and handled as one activity. Thus, the number of activities 

and trips is the same. The trip-related utility for each mode is calculated as follows: 

𝑉𝑞,𝑖 = 𝛽0,𝑞 + 𝛽𝑡,𝑞
∙ 𝑡𝑖,𝑞 + 𝛽𝑐 ∙ 𝑐𝑖,𝑞 (14.2) 

where 𝛽0,𝑞 corresponds to the alternative specific constant of mode q; 𝑡𝑖,𝑞 corresponds to the travel 

time of leg i traveled with mode q; 𝛽𝑡,𝑞 corresponds to the marginal utility of traveling by mode q; 

𝑐𝑖,𝑞 corresponds to the monetary cost of leg i traveled by mode q; and 𝛽𝑐 corresponds to the 

marginal utility of monetary cost. 

To calculate the positive utility gained by performing an activity, a logarithmic form is applied 

(Charypar and Nagel, 2005; Kickhofer et al., 2011): 
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𝑉𝑎𝑐𝑡,𝑖(𝑡𝑎𝑐𝑡,𝑖) = 𝛽𝑎𝑐𝑡 ∙ 𝑡𝑖
∗ ∙ ln (

𝑡𝑎𝑐𝑡,𝑖
𝑡0,𝑖

) 
(14.3) 

where tact is the actual duration of performing an activity (when the activity is open), ti
* is an 

activity’s ‘typical’ duration, and βact is the marginal utility of performing an activity at its typical 

duration. In the equilibrium, all activities at their typical duration are required to have the same 

marginal utility; therefore, βact applies to all activities. t0,i is a scaling parameter linked to an 

activity’s priority and minimum duration. In this study, t0,i is not relevant, since activities cannot 

be dropped from daily plans.  

The value of travel time saving (VTTS) is derived as follows: 

𝑉𝑇𝑇𝑆 =
𝛽𝑎𝑐𝑡 − 𝛽𝑡,𝑞

𝛽𝑚
 

(14.4) 

where 𝛽𝑚 corresponds to the marginal utility of money. 

The travel options modeled in this study include car, public transit, bike and walk (modeled 

jointly), AV, and SAV. The behavioral parameters for car and public transit used in this study are 

based on the work of Tirachini et al. (2014) and Kaddoura et al. (2015) and have been adjusted to 

reflect more realistically current travel costs in the U.S. (2017). The parameters used for the 

simulation are summarized in Table 14.1. In order to account for aspects such as parking and 

walking times of car users we have derived an alternative specific constant 𝛽0,𝑐𝑎𝑟 = −0.1. In 

addition to that, car users pay a monetary cost proportional to the distance traveled corresponding 

to $0.20 per mile. Since, waiting, egress and access times are not modeled in these experiments, 

public transit (PT) has been recalibrated yielding an alternative specific constant 𝛽0,𝑃𝑇 = −1.5. 

This value also accounts for the average ticket cost and for the particular reluctance of American 

society in using public transit. In similar fashion, the alternative specific constant for 

walking/biking has been set to 𝛽0,𝑎𝑐𝑡𝑖𝑣𝑒 = −0.2. Similar to Kaddoura et al. (2015), the marginal 

utility of traveling by car is set to zero. Even if this value is set to zero, traveling by car will be 

implicitly punished by the opportunity cost of time (Horni et al., 2016). In this study, the marginal 

utility of money 𝛽𝑚 is equal to 0.79 such that the VTTS for car users corresponds to about $18 per 

hour. This value has been obtained according to the recommendations from the USDOT (2011).  

The parameters for AVs have been mainly derived based on (Kockelman et al., 2017). The 

monetary costs are estimated to be around $0.30 per mile. The operating costs might be higher 

than conventional cars because of the initial purchase cost, but would be partly compensated by 

increased efficiency and better insurance premiums. We assume AVs to have a null alternative 

specific constant in order to account for parking and walking time reductions. The marginal 

disutility of traveling equal to +0.48 to reflect a marginal cost of traveling equal to 50% of those 
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of car users (corresponding to a VTTS of about $9 per hour), in line with Gucwa (2014) and Kim 

et al. (2015)28.  

As for SAVs, we assume the same alternative specific constant and marginal cost of traveling of 

AVs. Unlike AVs, SAVs are characterized by waiting times depending on the availability of 

vehicles. We assume the monetary costs to be composed of a flat fee, a distance fare that change 

depending on the scenario. 

Table 14.1 Adjusted mode parameters used in this study 

Travel Mode 𝜷
𝟎
 𝜷

𝒕
 

Car -0.1 0 

Public Transit -1.5 -0.36 

Walk/Bike -0.2 0 

AV 0 +0.48 

SAV 0 +0.48 
 

In addition to travel choices, agents can modify their activities’ scheduling decisions by shifting, 

extending, or shortening activities considering aspects like the optimal duration, and 

opening/closing times of the facility (Table 14.2). Activities performed outside opening times do 

not yield any positive gain of utility. Furthermore, agents are subject to schedule penalty costs for 

being early or late accordingly to the well-known Vickrey’s parameters α, β, and γ (Arnott et al., 

1990). 

Table 14.2 Activity attributes 

Activity Type Optimal duration Opening time Closing time 

Home 14 undefined undefined 

Education 5 08:00 22:00 

Work 7 07:00 undefined 

Shopping 1 09:00 01:00 

Leisure 2 09:00 01:00 

14.2.3. Simulation Scenarios 

The impacts of different pricing schemes are investigated for three different scenarios. The first 

one, to which we will refer as “Base Scenario” corresponds to a realistic simulation of the city of 

Austin and surroundings (Figure 14.2), comprising a considerable portion of the Austin 

metropolitan area (Greater Austin). The studied region includes a series of satellite cities such as 

Round Rock, Cedar Park, and Pflugerville. The road network used in the simulation consists of a 

high-resolution navigation network including about 211,000 road segments (links). The population 

and its plans have been obtained by adjusting those from Liu et al. (2017) who used CAMPO’s 

households’ data for Austin 2020. Although the plans have not been formally validated, resulting 

trip distances and durations are reasonably realistic. Normally, each agent needs to travel at least 

once per day to execute his plans. Instead of simulating the full population, a sample of 5% 

                                                 
28 Note that, in MATSim, setting a positive marginal disutility of traveling does not imply a gain of score from the trip. 
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(equivalent to 45,000 agents) is used for the experiments of this study. Link capacities are 

downsized to match these with the sample size. The available transportation modes are car, public 

transit, and walk/bike (modeled jointly). In order to reflect current trends in availability of car as 

a travel option, we assume 90 percent of agents to have access to car (either as driver or passenger).  

 
Source: Google Maps 

Figure 14.2 Simulation network 

The two additional scenarios correspond to possible future scenarios characterized by the presence 

of AVs and SAVs. Currently, it is not clear whether AVs will mainly replace privately owned 

vehicles or if they are going to be adopted as shared taxis. On one hand, the auto industry is moving 

quickly to provide the first “partially autonomous” models (Level 3) by 2020 and full autonomous 

models by 2030 (Level 4 and Level 5) (Kockelman et al., 2017). Conversely, car-sharing 

companies (Uber, Lyft, Didi) are already running tests (Kang, 2016; Hawkins, 2017), making 

considerable investments (Buhr, 2017), and developing important partnerships (Russell, 2017) to 

put driverless fleets on the road within a few years. Hence, we include an “AV-oriented” Scenario 

and a “SAV-oriented” Scenario, representing these two opposite trends. In the AV-oriented 

scenario, we assume a large portion of the population to switch from car to AV (90% of agents 

having accessibility to car in the Base Scenario). SAVs are available too, but the fleet size is 

relatively small (1 vehicle every 30 agents) and they are characterized by prices in line with current 

shared mobility services and predicted costs of SAVs ($0.5 flat charge, 0.4 $/mile distance charge 

and 0.1 $/min time charge). In the SAV-oriented scenario, SAVs are largely available (1 vehicle 

every 10 agents), whereas most of the population is still car-dependent (only 10 % has access to 

privately owned AVs). Furthermore, we assume a decrease of availability of privately owned 

vehicles to 60% in order to reflect a decrease of ownership (Litman, 2014). Autonomous vehicle 

implementation predictions (Victoria Transport Policy Institute, 28). In this case, SAVs are 
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characterized by lower prices than in the AV-oriented scenario (reduction by 50%), assuming that 

main companies and local authorities would stipulate agreements on prices concerning the 

provision of shared autonomous services. 

Results of MATSim simulations in terms of modal shift are reported in Figure 14.3. In the Base 

Scenario car clearly appears as the dominant travel option, in line with current situation. In the 

AV-Oriented Scenario and SAV-Oriented Scenario, the introduction of two additional travel 

options (SAVs and AVs) generates significant changes. SAVs replace a considerable amount of 

PT trips that decrease to 0.5% and 1.8% respectively in the AV-Oriented Scenario and SAV-

Oriented Scenario. Also “active trips” are reduced: 1.0% and 4.0% respectively in the AV-

Oriented Scenario and SAV-Oriented Scenario. As result of this shift, congestion measured as 

daily total vehicle-miles traveled (VMT) and daily total travel delay increase in both the scenarios 

(Table 14.3). Particularly in the SAV-oriented Scenario, the large presence of SAVs seems to 

determine a considerable increase of delay (about 35% higher). Interestingly, a considerable source 

of congestion can be identified in empty SAV trips that account for 1.7% and 11.6% of the total 

VMT in the AV-oriented Scenario and SAV-oriented Scenario.  

   

Figure 14.3 Modal share for the three different scenarios  

Table 14.3 Traffic conditions of the three different scenarios 

 
Base 

Scenario 

AV-oriented 

Scenario 

SAV-oriented 

Scenario 

Total Daily VMT 2,845,406 2,889,913 3,032,629 

VMT by Empty SAVs 2,845,406 2,106 201,828 

Total Travel Delay 

(veh-hours per 

weekday) 

437,887 948,845 523,594 

14.3. Pricing Strategies and Impact 

Facility-based tolls are probably the most common form of CP since they do not require 

particularly advanced technologies for implementation. In the past, this typology of scheme has 

been applied mainly to tunnels, bridges, and highway facilities that represent major bottlenecks. 

In this study, a “Link-based Scheme” is applied to the one thousand most congested links during 
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the morning peak hours (7–9 AM) and evening peak hours (5–7 PM). The tolled links are selected 

based on the volume/capacity (V/C) ratio calculated on hourly basis and aggregated for the peak 

hour periods. A minimum threshold V/C ratio of 0.9 is chosen to identify the most congested links, 

resulting in the selection of about 2 to 4% of the road network (3,911 links in the Base Scenario, 

5,100 links in the AV-Oriented Scenario, and 3,820 links in the SAV-Oriented Scenario). As 

Figure 14.4 demonstrates, the tolled links include the most important segments of road 

infrastructure of the region such as Interstate 35 and the Texas State Highway Loop 1. A flat toll 

rate of $0.2 is set to all the selected links regardless of the amount of congestion and the 

characteristics of the link. 

Distance-based fee consists of charges that varies (linearly or not) with the distance traveled. Such 

type of scheme could be implemented relatively straightforwardly with the support of GPS. In this 

study, we investigate the effects of a linear “Distance-based Scheme” of $0.2 per mile operating 

between 7AM and 8PM.  

 
Source: VIA:Senozon 

Figure 14.4 Selected links in the Link-based Scheme for the base scenario 

14.4. Results and Implications 

The impacts derived from the different CP schemes in each scenario are discussed in this section. 

The evaluation of the schemes is carried out by means of a set of commonly used performance 

indicators such as mode shift, change of traffic delay, and motorized trips. 
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14.4.1. Mode Choice 

All the schemes succeed in reducing car, AV, and SAV trips to a different extent. In all the 

scenarios PT and slow modes witness a considerable increase of mode share (Tables 14.4 and 

14.5). 

Overall, the demand for SAVs and AVs seem more elastic than the demand for car given the higher 

modal shift achieved for all the CP strategies. Because of their higher initial costs, AV and SAV 

travelers are more incentivized than car travelers to adopt PT or slow modes in presence of tolls. 

For this reason, CP strategies seem to be more effective in AV-oriented and SAV-oriented 

scenarios. 

Among the traditional schemes, as expected the distance-based scheme generates larger changes 

in travelers’ mode choice than the link-based scheme, particularly for the base scenario. The results 

are in line with previous studies about distance-based schemes (Litman, 1999). Only in the SAV-

oriented scenario, the link-based scheme yields results comparable to the ones of the distance-

based scheme. This is an interesting outcome, since the two schemes are conceptually very 

different from each other and might have different effects in terms of economic gains, 

distributional effects, and public acceptability. 

Table 14.4 Modal shift from the link-based scheme 
 

AV oriented SAV oriented Base (no SAVs-AVs) 

Change of car trips (%) -0.8 -7.92 -6.81 

Change of PT trips (%) 28.07 16.2 5.89 

Change of walk/bike trips (%) 10.73 7.5 0.91 

Change of AV trips (%) -37.94 -2.3 0.0 

Change of SAV trips (%) -0.05 -13.48 0.0 

 

Table 14.5 Modal shift from the distance-based scheme 

  AV oriented SAV oriented Base (no SAVs-AVs) 

Change of car trips (%) -3.97 -7.31 -14.1 

Change of PT trips (%) 35.55 14.74 2.89 

Change of walk/bike trips (%) 11.11 5.74 11.29 

Change of AV trips (%) -42.62 -1.07 0 

Change of SAV trips (%) -0.06 -12.1 0 

14.4.2. Traffic Performance of the Network 

Both traditional and advanced CP strategies determine a significant reduction of trips traveled by 

AVs, SAVs, and cars (Figure 14.5). Schemes with a distance-dependent fee component achieve 

the highest reduction of trip given the larger scale of population affected and the high average trip 

length in the original scenarios (around 15 miles). The CP schemes seem to yield much higher 

improvements in the AV-oriented and SAV-oriented scenario because of higher elasticity.  
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However, this is just a single perspective to evaluate the effects of the strategies, as the changes in 

terms of network daily travel delay show (Figure 14.6). Interestingly, in the AV-oriented scenario 

all the CP strategies generate a considerable reduction of delays (above 80%). In the SAV-oriented, 

results significantly vary according to the scheme.  

 
Figure 14.5 Reduction of motorized trips for the different scenarios according to the CP scheme 

 
Figure 14.6 Reduction of traffic delay for the different scenarios according to the CP scheme 
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Chapter 15. Technologies for Congestion Pricing 

15.1. Introduction 

Traffic congestion is a major problem in all major urban areas, costing citizens valuable time. 

Congestion is caused by an excess of vehicles on part of a roadway at a given time, leading to 

vehicle speeds that are slower than the normal “free flow” speeds of that roadway (FHWA 2017). 

Congestion costs the U.S. economy over $100 billion a year, and this number is rising over time 

(Cebr 2014, Shrank et al. 2015, Burfeind 2017). This includes the direct costs of the value of fuel 

and time wasted as well as the indirect costs from the increased cost of doing business. As 

economies and populations continue to grow, congestion is expected to increase. In order to 

combat increasing gridlock, it is important to develop policies and implement technologies that 

reduce congestion. 

Roadways are limited by their capacity, which is the maximum flow of traffic that can be handled 

by a given roadway section. Capacity flow values are affected by the number and width of lanes, 

median and merge area designs, intersection or interchange frequency, presence of stop signs or 

signal lights, curvature, grade, and other design variables (FHWA 2017). When demand for travel 

rises, congestion sets in, slowing travel speeds and lengthening travel times. Congestion can be 

recurring or non-recurring. Recurring congestion is the result of normal traffic volumes in a typical 

environment (Hallenbeck et al. 2003), such as peak times of day every weekday upstream of key 

bottlenecks (like bridge crossings) in urban environments. Non-recurring congestion is caused by 

unusual events or conditions that result in capacity losses or added demand. Vehicle collisions, 

construction zones, inclement weather, and special events (like professional football game days) 

can all result in non-recurring congestion by temporarily reducing capacity or exceeding existing 

corridor capacities. While transportation network capacities are rather limited by existing 

infrastructure investments, travel demands fluctuate minute to minute and day to day. Travel 

demand can be influenced via public policy, special events, and weather, among many other 

factors.  

Without regulation and pricing, the demand-supply equilibrium for roadway space settles at a 

suboptimal point, because users only consider the direct costs of congestion on their personal travel 

time (Komanoff 2017). Users ignore the additional marginal cost of their travel on the 

transportation network, which adds to the travel time of all road users (Kockelman and Kalmanje 

2005). This phenomenon is represented in the supply and demand curves shown in Figure 15.1.  
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Figure 15.1. Traffic Supply and Demand Curves, for Tolled and Un-tolled Conditions 

Congestion pricing is one potential solution to this issue. Such pricing or road tolling involves 

incentivizing certain link and thus route choices for drivers, to improve the overall efficiency of a 

congested corridor’s or congested network’s roadways. By charging a higher price to travel on 

highly-congested roadway sections or offering tax credits for traveling through less-congested 

areas, system managers can encourage choices that decrease system-wide costs and improve social 

welfare or net community benefits. By confronting users with the true cost of their travel (reflecting 

the delays they impose on other travelers, behind them, essentially), congestion pricing pushes the 

supply-demand equilibrium point to the left, decreasing traffic volume. Lower volume means less 

congestion and lower travel times on that link. Without congestion pricing, drivers face only the 

directly experienced or average cost of travel, resulting in over-consumption of what truly is a 

socially more expensive good than they realize. With appropriate pricing in place, travel choices 

become less sub-optimal, and ideally reflect the full cost of added vehicles on each roadway 

segment, at each time of day.  

Recent and emerging developments in communication and computation technology make 

widespread implementation of congestion pricing systems feasible and potentially highly cost-

effective. This paper examines the technologies and policies that could be implemented in a 

congestion pricing system. With information gathered from various expert sources, this work 

provides recommendations for the best mix of technology and policy in several transport settings, 

as well as a roll-out strategy for congestion pricing. 

15.2. Policy Implementation 

In order to deliver a successful and maximally cost-effective roadway pricing system, an 

appropriate policy structure is needed. A few major pricing policies are a vehicle-miles-traveled 

(VMT) tax, cordon- or area-based congestion pricing, and credit-based congestion pricing 

(CBCP). A VMT tax is simplest, and can fittingly recover general infrastructure investment and 

maintenance costs, for example; but it does not address congestion directly. Cordon-based and 
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area-based tolling reduce travel within high-traffic areas by charging for ingress during specific 

times of day, but they are broad-based and do not reflect over-use or under-use of specific links. 

Rationing by license plate and day of week or time of day has also been studied and used (see, 

e.g., Nakamura and Kockelman [2002]), but can lead to perverse outcomes (Nie 2016). CP and 

CBCP can directly and efficiently (in an economic sense) address congestion costs by location and 

time of day. Variations in tolling can influence trip generation by time of day, mode choices, 

destination and route choices; but only CBCP is designed to directly address congestion costs in 

time and space while addressing equity implications, thereby delivering greater societal benefits.  

Both a VMT Tax and CBCP offer the opportunity to decrease congestion and collect additional 

funding. With the rise of autonomous vehicles (AVs), many sources of public funding may 

decrease. The 25 largest cities in the U.S. reported $5 billion in auto-related revenues in 2016 

(Maciag 2017). If users opt for shared autonomous vehicles (SAVs), the need for parking may 

decrease as vehicles pick up new passengers. Parking fees and parking tickets make up a large 

portion of local government revenue used for infrastructure improvements in many cities. AVs 

will not violate traffic laws as often, decreasing revenues from traffic citations, which average $8.5 

million in the largest cities (Maciag 2017). Additionally, the rise of electric vehicles will decrease 

revenue generated from motor fuel taxes, which accounted for $16 billion spent on local 

infrastructure or transit in 2015 (Maciag 2017). The implementation of a VMT tax or CBCP could 

help local governments to maintain the necessary infrastructure budgets. Additionally, decreased 

congestion would help to limit the need for infrastructure maintenance and construction costs while 

benefitting citizens through time savings.  

15.2.1. Vehicle-Miles-Traveled (VMT) Tax 

The concept of a VMT tax involves charging users for the number of miles traveled on roads within 

the state. VMT taxes have arisen as an alternative to the gas tax, which is a means for states to 

collect funding. In most states, the gas tax is applied on the cost of a gallon of gas when travelers 

fill their tanks at gas stations. The increased fuel efficiency of electric and hybrid vehicles has 

enabled some users to use roadways without contributing to the funding for roadway maintenance, 

for which costs are increasing (Caltrans 2016). Automakers will continue to improve the fuel 

efficiency of vehicle fleets, so these challenges will only become more difficult over time. A VMT 

fee is one way to collect appropriate taxes from all vehicles to gain sufficient funding for roadways 

and, potentially, to discourage excessive vehicle travel. 

One way to charge users for the number of miles traveled is through odometer readings at yearly 

vehicle inspections. However, this policy assumes all miles traveled are within the state, and some 

users would be getting double charged if they traveled and purchased gas out of state. A VMT tax 

can be applied only within the state operating the program by sending Global Positioning System 

(GPS) data to calculate the number of miles traveled within the state by each vehicle. This can be 

accomplished by using either dedicated short-range communications (DSRC) or cellular 

communication to send the GPS data to a central database, where a public or private entity would 

calculate the amount of money owed by each driver. 
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California, Washington, and Oregon have started pilot programs to test the feasibility and efficacy 

of a VMT tax program. These programs track all miles driven on public roads and charge users 

accordingly. The California Road Charge Pilot program plans to analyze a variety of means for 

collecting road usage data, with and without the need for electronic vehicle location data (Caltrans 

2016). Users can choose from four types of monitoring systems: time permit, mileage permit, 

odometer charge, and automated mileage reporting. The automated mileage reporting option 

requires in-vehicle equipment, which reports location data collected from vehicle telematics, 

smartphone apps, or OBD-II port devices (Caltrans 2016). An advantage of this more advanced 

option is that participants will not be charged for out-of-state or private road travel (Caltrans 2016). 

Enforcement of this advanced method can be somewhat challenging, since it would require 

vehicles to have operational hardware that has not been modified (to reduce toll totals). Participants 

would need to be randomly audited to ensure they are not misrepresenting their travel data to save 

money. The Oregon Department of Transportation (ODOT) has implemented a similar pilot, which 

involves actual payment rather than simulated payment, with a program called OreGO. The 

permanent program currently accepts 5,000 volunteers, who are also given an option between a 

GPS tracking and a series of non-tracking options such as odometer readings.  

While VMT tax policies are currently in their infancy, they may become increasingly necessary 

with the rise of more fuel-efficient vehicles. Additionally, they enable more equitable charges for 

road usage for all types of vehicles. The development of pilot and permanent VMT fee programs 

that use GPS tracking could lay the foundation for the development of more advanced 

transportation management policies that would require this location and communication 

technology.  

15.2.2. Cordon-Based Tolling 

Cordon-based tolling involves charging users for entry into an enclosed area, commonly 

downtown business centers, to ease traffic at peak hours. Cordon-based congestion pricing has 

been used in cities around the world as a means to reduce congestion and emissions in urban 

centers.  

Singapore, London, Stockholm, and Milan have all implemented some form of congestion pricing 

(Brown 2011). Singapore first introduce a manually-enforced Area Licensing Scheme in 1975, 

which charged drivers a flat fee to enter into the central business district during peak hours (ITDP 

2015). Users showed their purchased license to enforcers at the gantries to ensure compliance. In 

1998, Singapore replaced the manual Area Licensing Scheme with Electronic Road Pricing (ITDP 

2015). This system requires installation of an in-vehicle unit with a smart card and a DSRC system. 

The Singapore cordon-based congestion pricing system has resulted in lower traffic volumes, 

higher average vehicle speeds, and lower carbon dioxide emissions (ITDP 2015). London also 

employs a cordon-based congestion charging system in the central downtown area between 7:00 

AM and 6:30 PM on weekdays. Payments can be made at retail outlets or through electronic means 

on the same day, or users can purchase weekly, monthly, and annual passes (Litman 2011). Video 

cameras installed throughout the city record license plates, and the user pays a fine if they do not 
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pay for downtown road usage. Automobile usage has decreased, public transport usage has 

increased, and average vehicle speeds have increased in urban centers (Litman 2011). Stockholm 

and Milan have reported similar results (Croci 2016). 

These successful programs around the world suggest that cordon-based congestion pricing is a 

viable and valuable program to implement in cities with large traffic volumes in dense urban 

centers. As seen in these examples, cordon-based congestion pricing can be implemented with 

different technologies that have been around for years. An advantage of this type of system is that 

installations are only needed at entry points to the congested area. While overall traffic volume 

may decrease, the users who choose to enter the restricted area may still choose routes that are 

suboptimal to the congestion of the roadway system. However, cordon-based pricing is an effective 

means to decrease the general travel volume within highly congested areas during peak hours.  

15.2.3. Credit-Based Congestion Pricing (CBCP) 

Credit-based congestion pricing (CBCP) involves charging road users a fee that accounts for the 

marginal cost of congestion they cause (Nie and Liu 2009). Current drivers make route decisions 

based on the shortest path or time to their destination, and these decisions do not take into account 

the externality of the cost of vehicle travel to the rest of the transportation network. CBCP adds 

this cost into the decision-making process, making users aware of their impact on the roadway 

congestion, and decreasing the volume of traffic along the most congested stretches of road 

(Kockelman and Kalmanje 2005). CBCP would require a more complex system than a VMT tax, 

as additional technology would need to be coordinated to communicate vehicle position to a central 

system and the pricing of travel to vehicle drivers or occupants. However, CBCP would more 

effectively accomplish the goal of changing user behavior to alleviate congestion, because it would 

incentivize more optimal route choice rather than incentivizing reduced total miles traveled. Such 

a system would require effective two-way communication, a fair pricing policy that attracts users, 

and an auditing procedure that ensures compliance.  

CBCP requires communication of vehicle location and velocity data to a database, where vehicle 

speeds are used to evaluate the state of congestion along a given stretch of roadway. This 

information is then used to price routes. When certain routes are more congested, the price to travel 

along these routes increases. In order to alter user behavior and ensure fairness and transparency 

of the congestion pricing system, the toll operator will communicate the pricing of alternative 

routes to the users via DSRC or cellular communication. This information can be displayed on a 

smartphone or other device early enough to allow human operators to alter their route based on 

this information. The vehicle location data can indicate when individual automobiles pass 

checkpoints along a route in order to toll each user. Reliable communication and accurate location 

data are important to ensure the consistency and fairness of those tolls. 

Based on the value of each individual’s value of time and the time constraints of their travel, users 

can choose to take an alternative route in exchange for a lower cost or continue on the same path 

for a larger fee. While many people may choose to continue along their route and pay the fee, 
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others will be influenced by this charge and opt to take a different route or travel at off-peak times, 

which will alleviate congestion along the most congested roadways.  

One major challenge with establishing a CBCP program is the attraction of users. Many citizens 

are averse to being tolled in any way. There would have to be sufficient incentives to the volunteers 

to encourage them to opt in. One way to do this is to provide users a tax deduction that would 

offset the cost of tolls collected through CBCP. With that monetary incentive, users would realize 

some value in joining the program.  

One possible issue with congestion pricing is that lower income users and people with inflexible 

schedules could be tolled excessively (Gulipalli et al. 2008). Equity can be improved by allocating 

a flat budget to each individual to spend on congestion pricing over a certain period of time 

(Gulipalli et al. 2008). Gullipalli et al. (2008) detail more specific policy recommendations for 

effective CBCP management. It is essential that the policy be set appropriately to ensure 

efficiency, equity, and effectiveness. 

15.3. Technology Solutions 

Research has been conducted on the potential technology solutions for a congestion pricing system 

through a review of previously-published interviews and a series of expert interviews. Based on 

the information collected during this research, three leading concepts have been identified for use 

in a congestion pricing solution: video, DSRC, and cellular. Each of these solutions requires a 

different mix of technologies, and each has its own advantages and disadvantages. The 

specifications, cost, and value of each of these systems are discussed below. 

15.3.1. Video-Based System 

Video is one technology that could be employed to measure congestion and price routes 

accordingly. Video cameras are already installed in many locations along highways and at 

intersections, so these feeds could be harnessed to create a real-time model of traffic congestion. 

The system would consist of a series of video cameras on poles along major roadways, a data 

connection to send the information to a central system, and algorithms to analyze the video feed. 

This system would then need a means to communicate and toll users based on the pricing of each 

route. This could come through the DSRC or cellular networks previously discussed or through 

license plate recognition and electronic signs indicating the toll for upcoming routes. 

The major infrastructure installations would be the camera, cable, and pole along the roadside. 

Installations including all three of these major components could cost $20,000-50,000, depending 

on the quality of the camera and pole height (Lange 2017). The camera can differ based on which 

features are included, such as the ability zoom and pan. The pole could be anywhere from 20 to 50 

feet, and taller poles would allow for greater range but also would increase cost (Lange 2017). 

Based on the average range of cameras, one could be placed approximately every half-mile, 

depending on the road curvature, buildings, and other obstructions (Lange 2017). A large portion 

of the cost is the pole itself, and the individual video cameras themselves can be purchased for 
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$800-1,200 (Lange 2017). In order to toll individual users, the video feed would need to be of high 

enough quality to capture license plate numbers of passing vehicles. This may require multiple 

cameras at one location, or a very high-quality, high-speed camera. The processing of these 

characters from varying angles and speeds would also need to be incorporated into the software 

evaluating the video feed. 

One major challenge with a video-based solution is that the pricing information cannot be 

communicated to travelers through the same system with which traffic data is collected. 

Communication of pricing to travelers is essential, as the goal of a congestion pricing system is to 

alter travel behavior to alleviate congestion. The DSRC or cellular solutions described in the 

following sections could be combined with the video feed for a comprehensive solution, but this 

would result in multiple expensive and somewhat redundant infrastructure investments. 

Alternatively, tolls could be implemented only at a limited number of locations and the pricing 

could be communicated via electronic signs on the side of the road or above highways. While this 

additional infrastructure investment limits the number of locations that tolls can be placed, it 

increases the number of users that can participate in the program because it requires no in-vehicle 

installation. 

One advantage of a video-based solution is that the video infrastructure is already installed in many 

places in major cities. Another advantage of a video-based solution is the relative ease of obtaining 

higher levels of market penetration without every user needing a communication device in his/her 

vehicle. Despite these advantages, additional infrastructure to communicate the real-time pricing 

to users will be required. Such infrastructure can be prohibitively expensive if added everywhere, 

so it normally would be implemented in a limited number of locations. The challenge and cost of 

installing two separate systems for information collection and transmission ultimately render a 

video-based solution less viable.  

15.3.2. DSRC-Based System 

Another possible solution is a congestion pricing system that uses Dedicated Short-Range 

Communication (DSRC). DSRC is a spectrum of 75 MHz in the 5.9 GHz band that has been 

reserved for use in vehicle safety and mobility applications (ITS 2017). DSRC is currently being 

used in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) applications to alert drivers 

of potential hazards, such as stopped traffic or collisions. The low latency communication of two-

way messages makes DSRC useful in time-sensitive situations (ITS 2017). Fast communication is 

essential for safety applications such as crash avoidance, and it would also be useful for adaptive 

pricing schemes in which the cost of traveling certain routes changes often. Since the DSRC band 

is reserved for mobility applications, congestion pricing would be a useful allocation of this 

bandwidth.  

A DSRC system will require roadside units (RSUs) installed along roadways, along with on-board 

units (OBUs) installed in vehicles. As vehicles pass the RSUs, a message is sent from the vehicle’s 

OBU to the RSU indicating the vehicle’s position and speed, and data from all vehicles’ messages 

is compiled to model the amount of congestion in a certain area. With this information, incentives 
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for certain routes can be generated, and this information can be sent back to the vehicles’ OBUs 

via RSU messaging. Vehicle operators decide which route(s) to take based on travel times and 

dynamic tolls. Using cloud-based tolling information, travelers can also delay their trips or choose 

different destinations and modes.  

Currently, most vehicles on the road are not equipped with DSRC communication. However, 

DSRC is beginning to be incorporated into some new vehicles, and it is possible it will be required 

in all new vehicles in the future along with GPS. Some experts expect that both may be required 

by the National Highway Traffic Safety Administration (NHTSA) within the next 5-7 years 

(Sturgeon 2017). A mandate for DSRC to be included in all new vehicles was proposed in 

December 2016, but the plans were discontinued in November 2017 (Lowy 2017).  

Conventional vehicles could take advantage of a congestion pricing system by adding DSRC 

connectivity through installation of an OBU. An on-board DSRC unit can be small, lightweight, 

and it can be mounted on the windshield of a vehicle with Velcro or other simple fasteners (Kapsch 

n.d.). An OBU would cost about $1,500 currently, but this price is likely to decrease as technology 

improves and production volume increases. OBUs can communicate position and speed, and 

relatively accurate traffic flow speed can be gathered from a limited number of vehicles. As the 

number of vehicles equipped with DSRC increases, the accuracy of this data and the benefits of a 

congestion pricing system will increase. 

The other major component of a DSRC-based congestion pricing system is the installation of 

RSUs. RSUs have a line-of-sight range of about one kilometer. Due to the short range of DSRC 

RSUs, a high density of these devices would be required. Since communication is limited by line 

of sight, dense urban environments would require RSUs to be more compact or placed higher, with 

longer poles and leads. Billboards, buildings, and other objects could block the signal even within 

a short distance. Currently, RSUs are in the prototype stage and cost around $3,500. With 

improvements in technology and mass production, that price could go down to $500 to 800. In 

addition to the cost of producing the RSU, the installation and maintenance costs would add up 

quickly. The installation cost could vary from $1,000 to tens of thousands of dollars based on a 

variety of factors. Higher leads and poles for RSUs would cost more money. Connection to a 

communication network will also increase costs, especially if a data link backbone does not yet 

exist. RSUs will need routine maintenance for updates or replacement if weather or other external 

factors cause damage.  

While a DSRC-based congestion pricing system would allow for fast communication between 

vehicles and infrastructure, it does require a large capital investment. DSRC communication is 

well-suited for transmitting small packets of data accurately in short periods of time. Pairing this 

communication with a smartphone or device for route decisions would enable an effective 

congestion pricing system. However, a DSRC-based system is limited by the cost of installing 

DSRC units both in vehicles and in dense urban environments. Furthermore, the installation and 

penetration of DSRC devices in infrastructure and vehicles will take a long time. For this reason, 

some experts believe that connected vehicles may leapfrog DSRC and go straight to using 5G 
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cellular communication. Benefits can be realized with the installation of a limited number of RSUs 

at highly congested areas, but the long time frame is an important consideration.  

The large monetary and time investments make a DSRC-based congestion pricing system 

challenging to implement throughout an entire transportation network. However, DSRC solutions 

are viable for installation at major bottlenecks. A pilot program could be implemented on bridges 

or stretches of highways that are often highly congested at certain hours. Vehicles could be 

informed of an upcoming toll and given an alternate route option when passing the DSRC unit. 

This initial installation would allow testing of an adaptive tolling scheme and route choice data 

could be collected in response to congestion pricing 

15.3.3. Cellular-Based System 

A congestion pricing system could also be created with the use of cellular data. Information could 

be communicated via a smartphone or a device installed in the on-board diagnostic (OBD) port in 

the vehicle. Each of these solutions would take advantage of the already-widespread cellular 

network, but use different devices which each have distinct advantages and disadvantages. 

A smartphone solution would require an app that would allow users to opt-in to the service. This 

acceptance of the agreement would allow the user’s location to be tracked in order to toll users and 

gain information about traffic conditions. The communication to the cell tower and to the toll 

operator would be included in the user’s cellular data service plan. This type of system would 

allow for faster market penetration because many people already own smartphones. Users could 

download the application that connects them to the congestion pricing system, rather than needing 

to install additional hardware. Location data would be collected from the phone’s GPS and sent to 

the tolling entity. One potential issue is with the accuracy of the GPS currently installed in 

smartphones. Smartphone GPS is usually accurate enough to identify the road a user is on, but it 

can decrease in accuracy in dense urban environments. Smartphone GPS is not accurate enough to 

monitor lane-by-lane traffic reliably (Claudel 2017). While such a system could be implemented, 

there would likely be some issues with ensuring appropriate tolling if incorrect location 

information is used in determining a user’s toll.  

One potential solution to the location accuracy issue would be to combine the smartphone 

application with the installation of an inertial measurement unit (IMU) in the vehicle (Claudel 

2017). An IMU is a single unit that incorporates an accelerometer and a gyroscope. The 

accelerometer measures the linear acceleration along three axes (University of Maryland n.d.). The 

gyroscope, also known as an angular rate sensor, outputs three signals describing the angular rate 

about each of the axes (University of Maryland n.d.). The IMU data allows the device to calculate 

its position based on the acceleration measurements, and it can bridge the gap between position 

estimates when the signal is blocked (Godha and Cannon 2005). While this does improve the 

location accuracy to improve the likelihood of fair congestion pricing, it also would require an 

additional installation, possibly deterring potential users. 
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The final cellular solution involves installing an OBD-II dongle in the onboard diagnostic (OBD) 

port. A dongle is a small electronic device that traditionally collects emissions and malfunction 

data (Moran and Baker 2016). Such a device could be configured to receive GPS location data and 

communicate using cellular data (Moran and Baker 2016). The dongle could be outfitted with a 

more accurate GPS system to improve the resolution of the congestion pricing system. A GPS unit 

with lane-by-lane accuracy would cost around $200, while one with road-level accuracy would be 

less than $50 (Dorfman 2017). The OBD-II dongle would also need a cellular communication 

modem. A mobile chip costs around $200 at low volume, but this price would decrease at higher 

volumes (Sturgeon 2017). The major issue with this data cost is determining who will pay the fee. 

Users may be willing to pay for the monetary or time benefit they gain from opting in to the 

program. Original equipment manufacturers (OEMs) may accept the cost in order to collect more 

data on the users. Departments of transportation (DOTs) could enter into agreements with cell 

carriers to provide this service to improve the efficiency or gather funding from their transportation 

network. The cost of a small data plan purchased at high volume by an OEM or DOT is estimated 

to be $3 to 4 per month (Dorfman 2017). This may increase at higher volumes of data 

communicated, but advances in technology could also decrease the cost of data. Alternatively, a 

third-party vendor may see an opportunity in providing the service and take on the cost of data 

communication.  

The OBD-II dongle solution improves the problem of low-accuracy GPS included in current 

smartphones. This solution would allow for increased standardization and ensure greater fairness 

of a congestion pricing system. The use of OBD-II dongles does present some challenges, 

however. Users would need to purchase and install the hardware to enable this system, and they 

could unplug the device to avoid tolling. Additionally, the entity that would be willing to pay for 

the cellular connection is not clear, and sufficient incentives to encourage that additional cost 

would need to exist. Another issue is that the inclusion of OBD ports by OEMs is mandated by 

emissions standards, so many electric vehicles do not come equipped with the appropriate 

hardware (Dorfman 2017). So, if congestion pricing was implemented only through OBD 

installations, electric vehicles would either need to start including a similar port or their users could 

not participate in the congestion pricing program. Additionally, older vehicles predating the OBD 

requirements would not be able to use this program. 

15.4. Additional Technology Considerations 

15.4.1. 5G Network 

While some level of congestion pricing could be implemented with current 4G or LTE cellular 

communication, the development of a 5G network will increase the effectiveness of congestion 

pricing. Applying congestion throughout an urban transportation network would put a large load 

on the current networks and may challenge the available bandwidth (Claudel 2017). While the 

development of a functioning, widespread 5G network is many years down the line, it will further 

improve the performance of connected vehicles (CVs) and congestion pricing. 
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A 5G network is expected to begin to be available 5-10 or more years from now, and there are a 

few major differences between 5G and current cellular communications. New, unlicensed 

frequencies of the electromagnetic spectrum, such as millimeter wave spectrum (> 25GHz), are 

expected to be released by the FCC for use in 5G networks (Andrews 2017). 5G would allow for 

information to pass between individuals and between vehicles without having to connect through 

a cell tower. Information about upcoming traffic, hazards, or road pricing on routes ahead could 

be passed backwards along sequences of vehicles on a roadway. Additionally, 5G will allow for 

high throughput (> 10 Gigabit per second per user) and low latency (< 1 ms RTT) communication 

(Fettweis 2015). Faster, larger data transfers can allow important, time sensitive travel information 

to be communicated more quickly and reliably. Vehicles can receive congestion, safety, and road 

pricing information in a timely manner, and the network will be able to handle the communication 

required for connected vehicles and congestion pricing more easily. 

There are many challenges with the development and adoption of a 5G network. First, a business 

model must be developed for the distribution of a 5G network. The public value of safety-critical 

applications in CVs will provide value for government entities to invest in 5G. The private 

telecommunications sector will need to provide the service, however, and their investment will 

need to be profitable. Telecommunications companies could charge individual users, automobile 

OEMs, or government entities depending on the value to each of these groups. The ideal way in 

which to structure a profitable case for 5G is unclear at this point, but will need to be determined 

before benefits can be realized. Different people and companies differ in their opinions on 5G for 

CV applications, independently and in comparison to DSRC. GM has installed DSRC in some 

vehicle models, while Daimler (Mercedes-Benz) has focused more on preparing its vehicles for 

5G (Sturgeon 2017). The debate between 5G and DSRC will continue, and it is important to stay 

informed about the developing value of each when considering CVs and congestion pricing. 

15.4.2. Global Positioning System (GPS) 

Accurate location information from global positioning systems (GPS) is key to an effective 

congestion pricing system. The accuracy of this data is important for obtaining a good 

understanding of the traffic conditions and tolling individual users fairly for road usage. The 

communication between satellites and GPS devices can often be interrupted or obstructed, 

especially in dense urban areas. This phenomenon often causes a wider location radius or 

inaccurate estimation of the user. High accuracy is important for congestion pricing, and there are 

varying types of GPS that offer different levels of accuracy. 

Road-level accuracy is relatively easy to achieve with the current standard of GPS, and it should 

be sufficient for most forms of congestion pricing. Road-level accuracy would allow users to be 

tolled for travel on a certain route or stretch of road. Lane-level accuracy would enable greater 

precision and allow for specially assigned lanes, which could incentivize high-occupancy travel. 

While this would be a nice feature to add in some areas, it is not essential to effective congestion 

pricing. 
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There are four combinations of GPS satellites and technologies that carry increasing levels of 

accuracy. The standard GPS (SPS) included in most smartphones has 1-sigma accuracy of 

approximately 3 meters. The standard lane is also around 3-meters, so this provides enough 

accuracy for roads that include at least two lanes in either direction (Humphreys 2017). 31 SPS 

satellites are currently in orbit, providing sufficient coverage. With the addition of an antenna, 

wide area augmentation service (WAAS) enables 1-sigma accuracy of approximately 1.5 meters 

(Humphreys 2017). This service allows for nearly lane-level accuracy, but there would be 

significant potential error.  

Additionally, the United States-built GPS system does not offer as wide a bandwidth or as high 

accuracy as the Galileo satellite system being built by the European Union. With WAAS and good 

visibility, the Galileo GPS offers 1-sigma accuracy of 1 meter (Humphreys 2017). This system is 

sufficiently accurate to collect lane-level accuracy but could present some issues in dense urban 

areas with poor visibility. There are currently 11 Galileo satellites in orbit, and 30 satellites are 

expected to be in orbit within five years. The ideal GPS system would be GPS L2C, which allows 

the GPS to communicate with a smartphone over Bluetooth. 19 of the 31 SPS satellites are 

currently equipped with L2C capability, and all 31 are expected to be L2C compatible within 5 

years (Humphreys 2017). GPS L2C allows for 1-meter accuracy even in poor visibility, making 

lane-level congestion pricing possible even in dense urban centers. The current GPS systems are 

capable of road-level accuracy that would allow for some level of congestion pricing, and the 

advancement of GPS technology will allow for lane-level accuracy. While high accuracy is 

possible, the solutions do require an installation of a GPS antenna in addition to a smartphone or 

other device. So, the accuracy of location information is a challenge to congestion pricing, but 

current technology is sufficiently accurate for a basic system. With the correct systems in place, 

congestion pricing can be implemented fairly and accurately.  

15.5. Privacy & Security 

Privacy and security are major concerns when handling personal location data of a large pool of 

users. The privacy and security issues with each solution differ based on the method of data 

collection and communication used. These potential problems are important when evaluating the 

reliability and safety of congestion pricing applications. 

For a video-based system, there is some concern about capturing images of users and non-users 

along roadways at all times. Monitoring users who do not opt in to the congestion pricing service 

seems to be a small invasion of privacy. However, cameras are installed along many roadways, 

and are not an illegal invasion of privacy in many places (Claudel 2017). While video cameras 

may cause some backlash from citizens who are especially concerned about privacy, the concern 

is not as great as applications using GPS location data. 

For cellular and DSRC solutions that use GPS location data to track the routes of users, the privacy 

concern is greater. For these location-based applications, it would be essential to offer users the 

opportunity to opt in rather than mandating sharing of location information. Allowing the 
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government to handle personal location information at all times would likely deter some users. A 

private-sector, third party service provider could handle the data, which may ease the worries of 

some consumers, but data privacy would still be a concern.  

Cellular communication would carry the same risks that current cellular service does. 3G has 

known security issues, and it can be spoofed relatively easily (Sturgeon 2017). 4G is more secure 

and is the most common technology insurance companies and OEMs currently use for vehicle 

monitoring (Sturgeon 2017). While location and speed information are anonymized for many 

DSRC safety applications, applications that toll individual users cannot be truly anonymous. 

Encryption and decryption of user information would be necessary to prevent hacking, and this 

would add to the overhead cost of implementing a congestion pricing system (Sturgeon 2017).  

Malicious users could gain access to sensitive personal location information if the CP 

communications are not robustly designed or monitored properly. Concerns about people hacking 

into and assuming some control of automated vehicles are unlikely to be valid in CP applications, 

since in-vehicle installations for data remittance should be designed to be only “push” (rather than 

receive) information and should be partitioned from vehicle controls (Claudel 2017). In other 

words, as with connected vehicles, communications should and will be separated from vehicle 

control programs. Security and privacy are important concerns of a location-based congestion 

pricing application, and they must be priorities during implementation and operations. Fortunately, 

many systems exist, in Singapore and New York, Copenhagen and Southern California, with third 

party account managers and scrambled IDs providing meaningful privacy protections. 

Furthermore, creating a centralized system for managing CP policy creates a single point of 

vulnerability that could be subject to attack on a system-wide level. To mitigate this, a CP system 

can be designed with great care to allow for decentralization, i.e. distributing the responsibilities 

of the system across multiple hardware units in multiple locations. In doing so, a system-wide 

attack becomes more difficult for a malicious agent, and any such attack would likely disable only 

a small portion of the system at any given time. 

15.6. Compliance & Auditing 

In order to ensure compliance with a congestion pricing system, an auditing process would need 

to be created. Users could tamper with the GPS location or communication devices in order to 

avoid toll payment. At the state level, vehicle inspections required by some states for registration 

offer the opportunity to ensure correct operation of the devices. If a congestion pricing user is not 

compliant with the required standards, he could be denied vehicle approval and the incident would 

be reported. 

While inspection may catch some malfunctioning devices, users who are intentionally avoiding 

fees would likely fix their vehicles before taking them into registration. An auditing process with 

an external check on location could be added to the congestion pricing policy. Video cameras are 

one possible check on a vehicle’s location. A few video cameras at major bottlenecks could capture 

vehicle license plates, and this information could be matched with the location data transmitted by 
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the vehicle. If the GPS data does not indicate the same vehicle location at the time and date the 

video was captured, the user would be noncompliant with the congestion pricing system. The 

vehicle would then be investigated for tampering, and a fine would be issued to the user of that 

vehicle if it is found to be illegally altered. 

While it is not economically feasible to audit every vehicle regularly, a selection of vehicles could 

be audited periodically. A portion of license plate numbers would be chosen, and this number 

would be searched for in video footage. While this would not necessarily catch all people using 

GPS or communication jammers, it would likely deter people due to the chance of being caught 

and fined. 

15.7. A Hardware Migration Path Forward 

For an implementation of a policy such as is recommended in this paper to be successful, it is 

necessary that the implementation plan be as straightforward as possible. Consider the three facets 

necessary for a successful management scheme: impact measurement, agency communication, and 

driver interaction. This section proposes a potential migration path that improves these facets 

incrementally. With careful design, the technology required for the various schemas discussed in 

this paper can be made modular, allowing for the development of a migration plan such as is 

detailed in Figure 15.2. This plan allows for the reuse of hardware until such point as it becomes 

obsolete, when it can be replaced by technology that can provide for more advanced management 

methodologies.  

As illustrated in this figure, the most basic (“bare-bones”) form of VMT discussed in this paper 

depends on an odometer keeping track of the miles driven by a vehicle, which informs the driver 

of how much of an impact their driving has and must be read in person by an agent. This method’s 

drawbacks, discussed above, can be a significant disincentive for those that regularly drive in such 

a way that an odometer-based method would overcharge for their driving behavior. 

To improve upon these flaws in impact management, a “headless” (i.e. without a display) GPS 

system can be implemented which would track users without any form of telecommunication 

equipment. The position tracking equipment can be of various degrees of accuracy at this point in 

such a plan, as lane-level accuracy is not yet needed (however, such hardware will be needed later 

in this process, and sufficient planning should allow for an easy upgrade to achieve this). In this 

“low-end” VMT scenario, an in-person reading of the vehicle’s mileage is still necessary, but the 

accuracy of such a measurement will be much more reflective of a driver’s impact on the road 

network. On the other hand, the drawback to this is that there is no method in place at this time for 

vehicle owners to be made aware of how many miles the GPS system has recorded until such time 

that a reading is taken, either by an agent or by the owner themselves. 
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Figure 15.2 Technology Migration Plan for VMT and CBCP Tolling Schemas 

The drawbacks of necessitating an in-person reading to discover the logged mileage are addressed 

in the next phase of this plan—the “high-end” VMT system. This next step provides for a 

telecommunications module (DSRC, cellular) such as is discussed above, thus allowing for 

agencies and vehicle owners to be updated regularly regarding a vehicle’s mileage. This can be 

accomplished using an application or through regular email updates. These methodologies can 

limit the data usage needed based on the update frequency provided and can assist in automating 

the auditing process by reducing the human element in the process. However, these would not 

provide a manner for the driver to be updated in real time regarding their mileage, so the driver 

must use the odometer to measure their mileage approximately while mid-trip.  

This drawback also prohibits a CBCP system, as drivers must be able to see road prices in real 

time. To address this, the final addition to the system is a display mounted in the vehicle that can 

provide pricing information to the driver as necessary for a CBCP implementation. Such a display 

removes the need for an old-fashioned odometer display, as this functionality can be handled by 

the GPS system and display. However, the amount of data transmitted through this system will be 

substantially higher than that of the VMT systems. Additionally, while the added accuracy of more 

advanced GPS modules as discussed above becomes imperative at this point, such an advanced 

module could be considered optional for the VMT phases as well and could be rolled out as 

resources become available. 
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15.8. Conclusion 

VMT fees and CBCP are related, but they are separate types of policies. VMT fees primarily help 

state and local governments gain funding for roadways with declining revenue from the gas tax, 

with a small possible congestion benefit. Some users may opt to travel fewer miles with their VMT 

being monitored, but this does not alter the routes they would take. CBCP would be far more 

effective in alleviating congestion, as this policy is focused on route selection based on the 

congestion at a given time. However, the technologies and systems required for each program are 

similar. 

VMT fees and CBCP could both be implemented with DSRC or cellular technology. VMT fees 

are a simpler system, so they could be implemented first. This would allow DOTs to gain additional 

revenue, gain experience with collecting vehicle location data, and identify potential compliance 

challenges. If DSRC units are placed along major roadways, the location data held in the vehicle 

can be transferred to the central database periodically to charge VMT fees. The funds collected 

from VMT fees can be used to improve roadways or invest in additional technology. With this 

experience, the same entities could move into implementing CBCP for additional benefits to the 

transportation network. The same DSRC units could be used to collect information on vehicle 

speed and location and communicate route pricing at these highly congested locations. If the CBCP 

program proves valuable, it could be expanded through cellular communication. VMT fees would 

be a good first step in technology-based roadway management, and CBCP could take advantage 

of the technology in place to further improve the efficiency of the transportation network. 

15.8.1. Technology Recommendation 

Analysis was conducted on the viability of DSRC, cellular, and video technologies for use in 

congestion pricing. The value of each of these technologies is based solely on its value for 

congestion pricing, rather than use in connected vehicles generally. The technologies were 

evaluated based on their effectiveness for this application, current level of market penetration, and 

the scalability throughout a transportation network. These criteria were evaluated on a scale 

representing their relative values. The ability of each technology to be applied to the major policies 

of VMT fees and CBCP was also taken into account. First, the effectiveness of each technology 

when applied to congestion pricing was considered. DSRC and cellular solutions are both similarly 

effective in transferring information to and from vehicles. Both systems are able to transfer small 

data packets known as basic safety messages (BSMs), which include vehicle location and speed. 

DSRC currently allows for lower latency communication, but this is not as important for 

congestion pricing as it is for vehicle safety applications because routing decisions are not as time-

sensitive as collision avoidance maneuvers. Video can collect congestion information in order to 

price roads, but it lacks the ability to communicate information back to the users, which is required 

to change user behavior and reduce congestion. A video solution would need to be combined with 

electronic signage indicating the price of upcoming routes or with DSRC or cellular 

communication. This limits the scope of a video-based solution since it requires costly, redundant 

technology. Therefore, cellular or DSRC solutions will be most effective for the longer term. 
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Cellular technology is widespread in urban centers, as it employs cell towers that enable long-

distance communication. The infrastructure is already in place for 4G communication, and it is 

currently used to transfer data between smartphones and other connected devices. Video cameras 

are installed along some stretches of roads and intersections, but they are not widely installed along 

roadsides throughout cities. DSRC is also not widely available, and RSUs would need to be 

installed densely along roadways. Additionally, both video and DSRC systems would require 

installations at short intervals along the roadways, while cellular communication has much longer 

range. Both DSRC units and video cameras are recommended about every half-mile, so installing 

these throughout a transportation network could be costly (Lange 2017).  

DSRC is recommended to be implemented at locations with high congestion in the short term, as 

a pilot system. Bridges, major highways, and other commonly congested stretches of roads are 

terrific locations for such pilots. RSUs could be placed a mile or two before these major bottlenecks 

to communicate route and pricing options to arriving travelers, and then again at section entrance, 

to notify on-board devices of toll charges. The use of congestion pricing at each region’s most 

congested points and corridors will encourage use of alternative routes, driving at off-peak times 

of day, and/or changes in trip destination, mode and generation decisions, in order to reduce the 

travel costs. In the long term, however, cellular systems will be more effective in tolling entire 

urban transportation networks. With the ability to toll large areas using cellular networks, 

congestion pricing can be effectively scaled to decrease congestion throughout rather than just a 

few key nodes.  
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Chapter 16. Traffic Flow Estimation Using Fast-

Algorithms for Fast Forward Simulations of 

Macroscopic Traffic Flow Models 

16.1. Introduction 

Traffic flow models are commonly used to describe the propagation of traffic on transportation 

networks. Depending on the scale of the problem and on the type of traffic phenomena that need 

to be reproduced by the model, it is possible to identify three main classes of traffic flow models: 

microscopic, mesoscopic, and macroscopic (Peeta and Ziliaskopoulos, 2001). In macroscopic 

models, traffic is modeled as a fluid stream described by a density and flow function, defined on 

all points of a road network, and for all times. Macroscopic models encode both the propagation 

of traffic on network links (resulting in macroscopic link models), as well as the splitting and 

merging of vehicle flows at junctions (resulting in junction models, or node models). One of the 

most commonly used macroscopic link model used in the literature is the Lighthill–Whitham–

Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956). This model is based on 

two main assumptions: the conservation of vehicles and the existence of a univocal flow-density 

relationship (fundamental diagram). Assuming that links can be described by space-independent 

parameters (homogenous problem), the propagation of queues and shockwaves can be then 

modeled by means of a partial differential equation (PDE), known as the LWR PDE. The LWR 

model is often used for studies involving large simulations since it is relatively straightforward 

and robust, depending on a low number of model parameters that are easy to calibrate. 

Furthermore, its computational time that is independent of the number of vehicles to model 

(Wageningen-Kessel, 2016), unlike microscopic or mesoscopic models. Junction models have also 

been studied extensively to reproduce traffic behavior at merges/diverges (Daganzo, 1995), to 

investigate the propagation of kinematic waves (Garavello and Piccoli, 2006), and to identify 

general methods (Tampère et al., 2011; Flötteröd and Rohde, 2011; Jabari, 2016). 

In the past two decades, a considerable number of numerical schemes have been proposed to solve 

the LWR model on networks, striving for higher computational efficiency and accuracy. The most 

popular ones include the cell transmission model (CTM) (Daganzo, 1994), a particular case of 

Godunov discretization (Godunov, 1959), and the link transmission model (LTM) (Yperman et 

al., 2006; Yperman, 2007), based on earlier work by Newell (Newell, 1993). Among the event-

based numerical schemes, the wave-front tracking methods (Bressan, 2000; Garavello and Piccoli, 

2006) reproduce the propagation of expansion waves and shocks using Riemann solvers and the 

Rankine Hugoniot formula (Baiti and Jenssen, 1998). Raadsen et al. (2016) propose another 

promising event-based algorithm suitable for large simulations, based on semi-analytical solutions 

of the LWR PDE. Event-based approaches can be very fast; however, their efficiency and accuracy 

depend on the initial and boundary conditions and flux function of the problem to solve. 

Alternative computational methods are based on the Hamilton-Jacobi formulation of the LWR 

model. Dynamic programming (DP) methods (also referred as variational principle in the 
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transportation literature) solve a network least cost problem (through DP) on space-time grid, 

resulting in the so-called variational method (Daganzo, 2005; Daganzo 2006). Alternatively, the 

Lax-Hopf (LH) algorithm (Lax, 1957; Hopf, 1969) uses a specific structure of the DP problem to 

decompose the solution into the minimum of a finite number of explicit functions, resulting in an 

exact computational method to compute the solution on a single link, and a faster computational 

time than DP. Unfortunately, the LH algorithm does not perform well over large time horizons and 

is in general slower than most of the traditional link models. 

In this study, we propose a modification of the LH algorithm, referred as Fast Lax-Hopf (FLH) to 

solve the LWR model more efficiently while retaining the exactness of the LH. We show that its 

computational performance is comparable to the LTM, which is used, together with the CTM and 

the original LH, as a benchmark for our study. 

Given known initial conditions in all links of the network, and given traffic demand and supply 

functions at the boundaries of the network, the objective of the present algorithm is twofold. First, 

compute the boundary conditions (inflows and outflows) on each of the link as fast as possible. 

Second, once these boundary conditions are computed, the solution can be found at any point in 

space and time required by the particular problem (for example at a precise point of space and time 

where a measurement data point is generated for estimation problems, or at a given time horizon 

for forward simulation problems), by minimizing explicitly computed functions. For this present 

task, we restrict our algorithm to triangular fundamental diagrams, which are widely used in the 

literature. This specific fundamental diagram allows the original formulation of the LH algorithm 

to be considerably simplified. 

The FLH algorithm, which is particularly suitable for network simulations, requires lower number 

of operations than the original version of LH without compromising its accuracy. Furthermore, we 

show that the FLH can be further simplified for specific space-time discretizations, while 

remaining exact. The resulting formulation shares similarities (in terms of the formulation) with 

the LTM, though it is slightly slower than the latter. Nonetheless, the solution computed by the 

FLH algorithm can be computed everywhere in the computational domain, for arbitrary initial 

conditions, unlike the former. In some situations, such as network loading problems with zero 

initial conditions, the LTM also provides a solution inside the computational domain, and retains 

a slight computational advantage over the FLH scheme. 

The rest of this chapter is organized as follows. First, we describe some of the main computational 

methods available, and discuss their advantages and drawbacks. We then derive the FLH algorithm 

using a set of theorems that simplify the original LH formulation for triangular fundamental 

diagrams. We also show that the FLH algorithm can be further simplified for specific 

discretizations, and show that the resulting algorithm has a similar (but not identical) expression 

as the original LTM. In the second part of the chapter, we provide numerical validation of this 

algorithm by means of network traffic simulations, and comparisons with the original LH, CTM, 

and LTM formulations. Finally, we present some considerations and conclusions based on the 

results.  
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16.2. Background: Link Models 

Network simulation algorithms require a link model to reproduce traffic flow on each link. In this 

study, we focus on computational methods that solve the LWR model with triangular fundamental 

diagrams on each link of the domain (the parameters of the fundamental diagram can change across 

the links of the network). In this section, after introducing the LWR model, we provide an overview 

of some of the main computational methods: LTM, CTM, variational theory, and LH (going 

through the details of each formulation is beyond the scope of the study). 

16.2.1. The LWR Model and the Hamilton-Jacobi PDE 

For a given time t and position x, we define the local traffic density k(x,t) as the number of vehicles 

per unit length, and the instantaneous flow Q(x,t) in vehicles per unit time. The conservation of 

vehicles on the highway is formulated as the following PDE (Lighthill and Whitman, 1956; 

Richards, 1956): 

𝜕𝑘(𝑡, 𝑥)

𝜕𝑡
+
𝜕𝑄(𝑡, 𝑥)

𝜕𝑥
= 0 

  (16.1) 

In the LWR model, the fundamental diagram relates the flow and density; in this work, we consider 

the triangular fundamental diagram (Daganzo, 1994). The fundamental diagram  is a positive and 

concave function defined on [0,kj] where kj is the maximal density (jam density). It ranges between 

[0,qmax] where qmax is the maximum flow (capacity). The triangular fundamental diagram, which 

is a concave function with derivative 𝑄′(𝑘) = 𝑣 (free flow speed) for 𝑘 < 𝑘𝑐 (critical density) and 

𝑄′(𝑘) = 𝑤 < 0 (congested wave speed) for 𝑘 > 𝑘𝑐. Hence, the triangular fundamental diagram  

is defined as follows: 

𝑄(𝑘) = {
𝑣 𝑘         ∶  0 ≤ 𝑘 ≤ 𝑘𝑐

−𝑤 (𝑘 − 𝑘𝑗) ∶  𝑘𝑐 ≤ 𝑘 ≤ 𝑘𝑗
 

     (16.2) 

   

Since the fundamental diagram is concave, it is continuous in the interior of its domain of 

definition, and therefore its parameters satisfy 𝑣𝑘𝑐 = −𝑤(𝑘𝑐 − 𝑘𝑗).  

While the flow of traffic can be described by the density function 𝑘(⋅,⋅), it can alternatively be 

described using the Moskovitz function 𝑁(𝑥, 𝑡) that expresses the cumulated vehicle count through 

a location x, at time t. The Moskowitz function (also called cumulative number of vehicles 

function) is defined as follows. All vehicles on and entering the road link are labeled by increasing 

integers as they pass the entry point x0 of a highway section, and are assumed not to pass each 

other. The Moskowitz function at location 𝑥 and time 𝑡 is defined as 𝑁(𝑥, 𝑡) = 𝑛, where 𝑛 

corresponds to the label of the vehicle closest to 𝑥 at time 𝑡. The derivatives of the Moskowitz 

function are related to the density and flow functions (Daganzo, 2006). 

Replacing k and q with N yields to the following Hamilton-Jacobi PDE (Newell, 1993; Daganzo, 

2005a, 2006; Claudel and Bayen, 2010a, b): 
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𝜕𝑁(𝑥, 𝑡)

𝜕𝑡
− 𝑄 (−

𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
) = 0 

     (16.3) 

16.2.2. Computational Methods 

The LWR PDE is a first order hyperbolic scalar conservation law that can be solved using a number 

of computational methods.  

In the CTM both time and space are discretized, as each link is divided into a given number of 

cells of size Δ𝑥. This size is constrained by the Courant-Friedrichs-Lewy (CFL) condition (Bretti 

et al., 2006), according to which, for a given time discretization Δ𝑡 the inequality Δ𝑥 ≥ 𝑣Δ𝑡 must 

hold, where 𝑣 is the free flow velocity. The CTM is essentially a Godunov discretization of the 

original LWR equation, and assumes that the density of vehicles in each cell is constant across 

space. For every time interval the number of vehicles leaving a given cell and entering in the cell 

immediately downstream is computed using the Godunov flux. The maximum number of vehicles 

that can fit into a cell is a function of the jam density. The CTM requires calculating flows for all 

the cells of the link in order to compute the upstream and downstream boundary conditions of this 

link. In addition, the CTM does not yield exact solutions to the LWR model in general, due to 

numerical diffusion errors (Leclercq et al., 2007). The discretization in cells leads to an 

approximation in the speed of shockwaves that can propagate over the network, and ultimately can 

yield considerable cumulated errors. Several extensions of the CTM have been proposed to model 

other properties of traffic, such as the capacity drop (Schreiter et al., 2010; Srivastava and 

Geroliminis, 2013), different shapes of the fundamental diagram (Lo, 1999), and to reduce the 

discretization error (Daganzo, 1999; Szeto, 2008). Although the CTM allows to fairly reproduce 

important traffic phenomena like the forming and propagation of queues, the spatial discretization 

of links represents a main limitation in terms of efficiency and accuracy (Gentile, 2010). 

Instead, the LTM only requires time to be discretized. The main feature of this model based the 

simplified theory of Newell (1993a; b) consists in using the characteristic speeds (free-flow and 

congested flow) to derive the upstream and downstream boundary conditions. Recently, a close 

variant of the original LTM formulation has been proposed by Himpe et al. (2016) to allow for 

larger time steps. In recent years, the LTM has become very popular for the dynamic network 

loading procedure within the dynamic traffic assignment (DTA), where simulations can involve 

thousands of links, and where the solution only needs to be computed on the link boundaries. 

However, a limitation of the LTM is that the solution cannot be computed inside each link, which 

makes it unsuitable to problems involving estimation and calculation of traffic indicators inside 

the links (e.g., in estimation, traffic optimization or control problems). In some specific situations, 

in which no expansion wave is present (for example, in a constant initial density scenario) the 

LTM allows computation of the solution inside the link, though this procedure does not converge 

towards the solution of the LWR model for general initial conditions. 

The Variational Theory introduced by Daganzo (2005) consists in applying DP to solve the 

Hamilton-Jacobi PDE [Equation (16.3)] through the classical LH formula. The solution can 
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equivalently be computed using the viability theory (Aubin et al., 2008). Both approaches are 

similar, with the exception that the viability approach allows more general (discontinuous) initial 

conditions to be considered, and allows the computation of lower-constrained solutions to the 

Hamilton-Jacobi PDE.  

The LH algorithm exploits a particular structure of the DP problem used in the Variational Theory 

to compute the solutions more efficiently in the case where the fundamental diagram is space and 

time independent. In this situation, the solution can be obtained without discretizing the 

computational domain, and it corresponds to the minimum of a finite number of functions 

associated to the initial and boundary conditions. By definition, this method is analytical and yields 

exact results in simulations of single links. In the network simulations errors can occur due to the 

temporal discretization of the boundary conditions, since boundary conditions are not necessarily 

constant over a given time step. 

 Because it uses an additional structure of the DP problem, the LH algorithm is always faster than 

the Variational Theory (although it has less general applications since it cannot handle situations 

in which the fundamental diagram depends on space or time). Nevertheless, its computational 

performance is comparable (if not worse) to that of the CTM (Mazare et al., 2011) and thus offers 

no speed improvement over the abovementioned algorithms (unless the boundary conditions are 

known in advance). 

The FLH described in the following section allows one to compute solutions (at the boundaries) 

with lower computational requirements than the original LH. Its performance is similar to the 

LTM, but, unlike the former, it converges towards the solution of the LWR model inside the link, 

in network simulations, and for any given initial conditions. We achieve this by proving that some 

initial condition blocks appearing in the minimization problem (considered in the original LH) can 

be neglected to save time, without affecting the results. We demonstrate that these excluded blocks 

cannot theoretically influence the solution, and thus, the solution computed by this algorithm 

remains exact (for single link problems), as in Mazare et al. (2011). Once the sets of upstream and 

downstream boundary conditions have been derived, they can be used to solve Equation (16.3) in 

any point of the computational domain, without relying on a computational grid like in the original 

LH. This a particularly important aspect for estimation and control applications. For example, in 

estimation problems, one only needs to compute the solution on the space-time points 

corresponding to sensor measurements, which are in general considerably less than the total 

number of grid points (assuming a uniform grid in space and time). 

16.3. FLH Algorithm for Computing Solutions to the LWR Model 
on Networks 

In this section, we describe the main features of the LH algorithm used to compute the solutions 

of the LWR model semi-analytically. We then derive the FLH algorithm using a set of theorems 

that can be used to reduce the number of calculations compared with the original LH algorithm.  
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16.3.1. The Generalized LH Formula and Boundary Conditions 

Let a value condition function 𝑐(⋅,⋅) be defined. This value condition can encode for example 

initial and boundary conditions. Aubin et al. (2008) showed that the solution associated with the 

value condition 𝑐(⋅,⋅), denoted here by 𝑁𝑐(⋅,⋅), is the solution to the following optimization 

problem involving the value condition: 

𝑁𝑐 = 𝑖𝑛𝑓{𝑐(𝑡 − 𝑇, 𝑥 − 𝑇𝑢) + 𝑇𝑅(−𝑢)}  

𝑠. 𝑡. (𝑢, 𝑇) ∈ [𝑤, 𝑣] × ℝ+ 𝑎𝑛𝑑 (𝑡 − 𝑇, 𝑥 − 𝑇𝑢) ∈ 𝐷𝑜𝑚(𝑐) 

 (16.4) 

The value condition 𝑐(⋅,⋅) corresponds to initial, upstream, and downstream boundary condition 

functions: 

𝑐(𝑥, 𝑡) = {

𝑁𝑖𝑛𝑖(𝑥)   𝑡 = 0

𝑁𝑢𝑝(𝑡)     𝑥 = 𝑥0
𝑁𝑑𝑜𝑤𝑛(𝑡)   𝑥 = 𝑥𝑛

 

 

 (16.5) 

The optimization problem (4) involves the function 𝑅(⋅), which is defined as the convex transform 

associated with the fundamental diagram 𝑄(⋅): 

𝑅(𝑢) = sup
𝑘𝜖[0,𝑘𝑗]

(𝑄(𝑘) − 𝑢 ∙ 𝑘)  (16.6) 

Equation (16.4) is well known in the Hamilton-Jacobi literature and often referred to as Lax-Hopf 

(LH) formula (Lax, 1973; Evans, 1998; Daganzo, 2006; Aubin et al., 2008; Claudel and Bayen, 

2010 a,b). 

Assuming a triangular fundamental diagram (2), the calculation of its convex transform 𝑅(⋅) 

yields: 

∀𝑢 ∈ [−𝑤, 𝑣], 𝑅(𝑢) = 𝑘𝑐(𝑣 − 𝑢)  (16.7) 

The LH algorithm assumes that the initial and boundary conditions 𝑐𝑖𝑛𝑖(⋅,⋅), 𝑐𝑢𝑝(⋅,⋅) and 𝑐𝑑𝑜𝑤𝑛(⋅,⋅) 

are piecewise linear (Mazare et al. 2011), and can thus be written as: 

𝑐𝑖𝑛𝑖(0, 𝑥) = 𝑐𝑖𝑛𝑖
𝑖 (𝑥) = −𝑘𝑖𝑥 + 𝑏𝑖    𝑖𝑓 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 

𝑐𝑢𝑝(𝑥0, 𝑡) = 𝑐𝑢𝑝
𝑗 (𝑡) = 𝑞𝑗𝑡 + 𝑑𝑗       𝑖𝑓 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1 

𝑐𝑑𝑜𝑤𝑛(𝑥𝐿 , 𝑡) = 𝑐𝑑𝑜𝑤𝑛
𝑗 (𝑡) = 𝑝𝑗𝑡 + 𝑐𝑗      𝑖𝑓  𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1 

In this situation, the solutions associated with the 𝑐𝑖𝑛𝑖
𝑖 (𝑥), 𝑐𝑢𝑝

𝑗 (𝑡) and 𝑐𝑑𝑜𝑤𝑛
𝑗 (𝑡) can be computed 

explicitly (Appendix 1). The solution at any point (𝑡, 𝑥) of the space time domain can then be 

computed by taking the minimum of the solutions taken in (𝑡, 𝑥) and associated with each initial 
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and boundary condition block. This comes from the inf-morphism property, initially derived in 

Aubin et al. (2008).  

16.3.2. Fast Lax-Hopf Algorithm 

The primary objective of the proposed algorithm is to quickly compute the outflows and inflows 

at every time step, by using a minimum number of operations, and maintaining exactness. Once 

the boundary conditions are known on all links, the solutions inside the computational domain can 

be found by minimizing a number of explicitly computed functions. The FLH algorithm speeds 

both the computation of the boundary conditions, and the computation of the solution inside the 

computational domain. 

This algorithm relies on the specific structure of the partial solutions to the Hamilton-Jacobi PDE 

(Eq. 16.3) with triangular fundamental diagrams. From (Claudel and Bayen, 2010a, b), the partial 

solutions associated with affine blocks are convex (this property is valid for any concave 

fundamental diagrams) functions of (𝑡, 𝑥). Furthermore, (Daganzo 2005) showed that these 

solutions are Lipschitz continuous on their domain of definition for general diagrams. In the case 

of a Triangular diagram, it is easy to verify from the expression of the solutions (given in Appendix 

1) that these solutions are indeed Lipschitz continuous. 

Furthermore, the partial solutions associated with linear initial or boundary conditions, for a 

triangular fundamental diagram, are piecewise linear functions of space and time. This property is 

very important in the present situation, and would not be true for example in the case of a 

Greenshields fundamental diagram.  

In the present case, we consider a general mixed initial-boundary condition problem on a given 

stretch of highway limited by upstream and downstream boundaries. We also assume that the 

boundary conditions that apply on the domain are not known in advance, unlike in the LH case. 

These boundary conditions have to be computed at each time step through junction models relating 

the demands of the incoming links to the supplies of the outgoing links, across each junction. These 

junction models have the effect of coupling the solutions computed over adjacent links. To 

compute these boundary conditions, our objective is to compute the inputs to the junction models 

as fast as possible. These inputs are upstream demands and downstream supplies of each link (for 

a given time step). 

More precisely, let the initial condition be expressed as a piecewise linear function, with each 

linear piece on intervals (xi,xi+1) defined by: 

𝑐𝑖𝑛𝑖
𝑖 (𝑥) = {

−𝑘𝑖𝑥 + 𝑏𝑖             ∶ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
+∞                ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
                (16.8) 

Where 𝑖 ∈ { 0, … , 𝑛𝑖𝑛𝑖 − 1} . As described in (Daganzo, 2006), the initial condition has to satisfy 

some growth and continuity conditions, which can be expressed as: 

 0 ≤ 𝑘𝑖 ≤ 𝑘𝑗 for all 𝑖 ∈ {0,… , 𝑛 − 1}  (16.9) 
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 −𝑘𝑖𝑥𝑖 + 𝑏𝑖 = −𝑘𝑖+1𝑥𝑖 + 𝑏𝑖+1 , ∀𝑖 ∈ {1, … , 𝑛 − 1}  (16.10) 

The associated solutions on the upstream boundary are defined by: 

If  𝑘𝑖 ≤ 𝑘𝑐 , 𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡) = 𝑘𝑐(𝑡𝑣 − 𝑥0) + 𝑏𝑖 + 𝑥𝑖(𝑘𝑐 − 𝑘𝑖)  ∶  

𝑥𝑖−𝑥0

𝑤
≤ 𝑡   (16.11) 

If  𝑘𝑖 ≥ 𝑘𝑐, 𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡) = {

𝑘𝑖(𝑡𝑤 − 𝑥0) − 𝑡𝑘𝑗𝑤 + 𝑏𝑖         ∶
𝑥𝑖−𝑥0

𝑤
≤ 𝑡 ≤

𝑥𝑖+1−𝑥0

𝑤

𝑘𝑐(𝑡𝑤 − 𝑥0) − 𝑡𝑘𝑗𝑤 + 𝑥𝑖+1(𝑘𝑐 − 𝑘𝑖) + 𝑏𝑖   ∶  
𝑥𝑖+1−𝑥0

𝑤
≤ 𝑡 

 (16.12) 

The associated solutions on the downstream boundary are defined by:  

If  𝑘𝑖 ≤ 𝑘𝑐     𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥𝐿 , 𝑡) = {

𝑘𝑖(𝑡𝑣 − 𝑥𝑛𝑖𝑛𝑖) + 𝑏𝑖        ∶  
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑣
≤ 𝑡 ≤

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖

𝑣

𝑘𝑐(𝑡𝑣 − 𝑥𝑛𝑖𝑛𝑖) + 𝑏𝑖 + 𝑥𝑖(𝑘𝑐 − 𝑘𝑖)  ∶  
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖

𝑣
≤ 𝑡        

 (16.13) 

If 

𝑘𝑖 ≥ 𝑘𝑐      𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = 𝑘𝑐(𝑡𝑤 − 𝑥𝑛𝑖𝑛𝑖) − 𝑡𝑘𝑗𝑎𝑚𝑤 + 𝑥𝑖+1(𝑘𝑐 − 𝑘𝑖) + 𝑏𝑖 :  

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑣
≤ 𝑡

 (16.14) 

By the inf-morphism property (Mazare et al, 2011), the solution 𝑁(𝑥, 𝑡) associated with the 

Hamilton-Jacobi PDE (3) with triangular fundamental diagram [as in Equation (16.2)] can be 

computed at any point (𝑥, 𝑡) of the space-time domain by the following formula: 

𝑁(𝑥, 𝑡) = min(𝑚𝑖𝑛
𝑖
𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥, 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛

𝑘 (𝑥, 𝑡))    (16.15) 

In Equation (16.15), the indices 𝑗 and 𝑘 are respectively the index of the upstream boundary 

condition and the index of the downstream boundary condition influencing the chosen point (x,t), 

defined by 𝑗 = ⌊
𝑡−

𝑥−𝑥0
𝑣

Δ𝑡
⌋ and 𝑘 = ⌊

𝑡−
𝑥𝑛𝑖𝑛𝑖

−𝑥

𝑤

Δ𝑡
⌋, where the ⌊𝑎⌋ denotes the floor of a (largest integer 

that is lower or equal to a). Note that if 𝑗 < 0 (respectively 𝑘 < 0), the solution 𝑁(𝑥, 𝑡) does not 

depend upon the upstream (respectively downstream) boundary condition.  

To compute the upstream boundary block for a given time interval [𝑡, 𝑡 + Δ𝑡], we first need to 

determine the supply of this particular link over the time interval [𝑡, 𝑡 + Δ𝑡], defined by 

𝑠(𝑡, 𝑡 + Δ𝑡) =
𝑁(𝑥0,𝑡+Δ𝑡)−𝑁(𝑥0,𝑡)

Δ𝑡
. The actual flow over the time interval [𝑡, 𝑡 + Δ𝑡] is then 

determined using the other demand and supplies acting on this junction, through the junction 

model.  

Hence, assuming that 𝑁(𝑥0, 𝑡) is known, and using the classical LH algorithm (Mazare et al., 

2011), we can compute 𝑁(𝑥0, 𝑡 + ∆𝑡) as: 



307 

𝑁(𝑥0, 𝑡 + ∆𝑡) = min (𝑚𝑖𝑛𝑖≤𝑗≤𝑛𝑖𝑛𝑖𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡 + ∆𝑡), 𝑁𝑑𝑜𝑤𝑛

[𝑡+∆𝑡−
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
]
(𝑥0, 𝑡 + ∆𝑡), 𝑁(𝑥0, 𝑡 + ∆𝑡) +

𝑣 ∙ 𝑘𝑐 ∙ 𝑡)  (16.16) 

The process required to compute the upstream boundary condition block at time 𝑡 + Δ𝑡 is shown 

in Figure 16.1. 

 
Figure 16.1: Required operations to determine the entering flow (upstream) over the time interval 

[𝒕, 𝒕 + 𝜟𝒕] using the classical LH algorithm 

Equation (16.15) requires the minimization of (𝑛𝑖𝑛𝑖 + 1) explicitly computed functions to derive 

the upstream supply of the link. The objective of the Fast Lax Hopf algorithm is instead to decrease 

the required number of operations, while still computing the average demand and supply functions 

exactly. 

To decrease the set of required operations to compute the solution at the boundaries of the 

computational domain, we shall introduce four theorems: Theorems 1 through 4.  

Theorem 1: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in Equation (16.8), with Lipschitz 

continuity constraints from Equations (16.9) and (16.10). Let us further assume that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤ 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) for a time 𝑡′ ≥
𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑣
, with 𝑖 < 𝑗. Then: 

∀ 𝑡 ≥ 𝑡𝑠, 𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥𝐿 , 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡)  (16.17) 

Proof: using the structure of the solutions 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) , we have that 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) =

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′)  + (𝑡′ − 𝑡)𝑣 𝑘𝑐 if 𝑡
′ ≥

𝑥𝑛𝑖𝑛𝑖−𝑥𝑖+1

𝑣
 and 𝑖 < 𝑗, irrespective of the value of 𝑘𝑗. We also 

have that: 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡
′) + (𝑡𝑠 − 𝑡)𝑣 𝑘𝑐. Since 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡

′), we have that: ∀ 𝑡 ≥ 𝑡′, 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡).  

This theorem implies that at the downstream boundary, if the solution associated to a particular 

initial condition piece i is lower than the solution associated with another piece of initial condition 
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j (with i<j), for a time t, then the solution associated with piece j cannot influence the solution (at 

the downstream boundary) for subsequent times. Indeed, the solution associated to the piece j is 

always greater or equal than the solution associated with piece i. Hence, the piece 𝑁𝑐𝑖𝑛𝑖𝑗(𝑥, 𝑡) can 

be ignored from Equation (16.15) for times greater than t. 

Theorem 2: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints from Equations (16.9) and (16.10). Let us further assume that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡𝑠) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡

′′) for some 𝑡′′ ≥ −
𝑥0−𝑥𝑖

𝑤
, with 𝑖 > 𝑗. Then: 

∀ 𝑡 ≥ 𝑡′′, 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑗 (𝑥0, 𝑡)   (16.18) 

Proof: using the structure of the solutions 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡) , we have that 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡) =

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡

′′)  + (𝑡′′ − 𝑡)𝑣 𝑘𝑐 if 𝑡
′′ ≥ −

𝑥0−𝑥𝑖

𝑤
 and 𝑖 > 𝑗, irrespective of the value of 𝑘𝑗. We also 

have that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥0, 𝑡
′′) + (𝑡′′ − 𝑡)𝑣 𝑘𝑐. Hence, we have that ∀ 𝑡 ≥

𝑡′′, 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡).  

This theorem implies that at the upstream boundary, if the solution associated to a particular initial 

condition piece i is less than the solution associated with another piece of initial condition j (with 

j<i), for a time 𝑡′′, then the solution associated with piece j cannot influence the solution (at the 

upstream boundary) for subsequent times. Indeed, the solution associated to the piece j is always 

greater or equal than the solution associated with piece i. Hence, the piece 𝑁𝑐𝑖𝑛𝑖𝑗(𝑥, 𝑡) can be 

ignored in Equation (16.15) for times 𝑡 ≥ 𝑡′′. 

Theorem 3: Let 𝑡𝑀 = ⌈
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
⌉. For any time 𝑡 > 𝑡𝑀, we have that  

∀ 𝑖 ∈ {1, 𝑛𝑖𝑛𝑖}, 𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) ≥ min (𝑁𝑐𝑢𝑝𝑗(𝑥0, 𝑡), 𝑁𝑑𝑜𝑤𝑛

𝑘(𝑥0, 𝑡)) ,     (16.19) 

Where 𝑗 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖
−𝑥0

𝑣

Δ𝑡
⌋ and 𝑘 = ⌊

𝑡−
𝑥𝑛𝑖𝑛𝑖

−𝑥0

𝑤

Δ𝑡
⌋ 

Proof: for any 𝑡 ≥ 𝑡𝑀, we have that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡) = 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥0, 𝑡𝑀)  + (𝑡 − 𝑡𝑀)𝑣 𝑘𝑐, 

irrespective of the value of 𝑘𝑖 and 𝑏𝑖. Since 𝑁(𝑥0, 𝑡𝑀) =

min (𝑚𝑖𝑛
𝑖
𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡𝑀), 𝑁𝑐𝑢𝑝𝑗(𝑥0, 𝑡𝑀), 𝑁𝑑𝑜𝑤𝑛

𝑘(𝑥0, 𝑡𝑀)), we have in particular that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡𝑀) ≥ 𝑁(𝑥0, 𝑡𝑀) for all 𝑖 ∈  {1, 𝑛𝑖𝑛𝑖}. We also have by Lipschitz continuity of the 

upstream boundary condition that 𝑁𝑐𝑢𝑝𝑗(𝑥0, 𝑡) ≤ 𝑁(𝑥0, 𝑡𝑀) + (𝑡 − 𝑡𝑀)𝑣𝑘𝑐. Hence, we have that 

𝑁
𝑐𝑢𝑝
𝑗 (𝑥0, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡), which concludes the proof. 
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This theorem implies that the initial condition blocks has no influence on the upstream condition 

after time 𝑡𝑀, and can thus be discarded for computations of the upstream boundary condition past 

𝑡𝑀. 

Theorem 4: Let 𝑡𝑁 = ⌈
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣
⌉. For any time 𝑡 > 𝑡𝑁, we have that  

∀ 𝑖 ∈ {1, 𝑛𝑖𝑛𝑖}, 𝑁𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≥ min (𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑑𝑜𝑤𝑛

𝑘(𝑥𝑛𝑖𝑛𝑖 , 𝑡)) ,  (16.20) 

Where 𝑗 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖
−𝑥0

𝑣

Δ𝑡
⌋ and 𝑘 = ⌊

𝑡−
𝑥𝑛𝑖𝑛𝑖

−𝑥0

𝑤

Δ𝑡
⌋ 

Proof: for any 𝑡 ≥ 𝑡𝑁, we have that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁)  + (𝑡 − 𝑡𝑁)𝑣 𝑘𝑐, 

irrespective of the value of 𝑖, 𝑘𝑖 and 𝑏𝑖. Since 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁) =

min (𝑚𝑖𝑛
𝑖
𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁), 𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁), 𝑁𝑑𝑜𝑤𝑛

𝑘(𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁)), we have in particular that 

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁) ≥ 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁) for all 𝑖 ∈  {1, 𝑛𝑖𝑛𝑖}. We also have by Lipschitz continuity of the 

upstream boundary condition that 𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑁) + (𝑡 − 𝑡𝑁)𝑣𝑘𝑐. Hence, we have 

that 𝑁
𝑐𝑢𝑝
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), which concludes the proof. 

This theorem implies that the initial condition blocks has no influence on the downstream 

condition after time 𝑡𝑁, and can thus be discarded for computations of the downstream boundary 

condition past 𝑡𝑁. 

Using the above four theorems, we can significantly reduce the number of operations required to 

compute the solution at both the upstream and downstream boundary. This extension of the LH 

algorithm for computing the evolution of the upstream boundary condition (a similarly of the 

downstream boundary condition) is illustrated in Figure 16.2 and corresponds to: 

𝑁(𝑥0, 𝑡 + ∆𝑡) = min (𝑚𝑖𝑛𝑖≤𝑗≤𝑛𝑖,𝑚𝑎𝑥𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡 + ∆𝑡), 𝑁𝑑𝑜𝑤𝑛

[𝑡+∆𝑡−
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
]
(𝑥0, 𝑡 + ∆𝑡), 𝑁(𝑥0, 𝑡 +

∆𝑡) + 𝑣 ∙ 𝑘𝑐 ∙ 𝑡)  (16.21) 
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Figure 16.2: Required computations to determine the entering flow (upstream) during the interval 

[𝒕, 𝒕 + 𝜟𝒕] according to the FLH algorithm 

Furthermore, the number of required operations required to compute the solution at an arbitrary 

point (𝑡, 𝑥) of the computational domain can also be reduced, using the following two theorems: 

Theorems 5 and 6.  

Theorem 5: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints from Equations (16.9) and (16.10). Let us further assume that 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑠) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡𝑠) for a time 𝑡𝑠 ≥

𝑥𝑖+1−𝑥

𝑤
, with 𝑖 < 𝑗. Then: 

∀ 𝑡 ≥ 𝑠, 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡)    (16.22) 

Proof: using the structure of the solutions 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) , we have that 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑠)  + (𝑡𝑠 − 𝑡)𝑣 𝑘𝑐 if 𝑡𝑠 ≥

𝑥𝑖+1−𝑥

𝑤
 and 𝑖 < 𝑗, irrespective of the value of 𝑘𝑗. We also have 

that 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡) = 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥, 𝑡𝑠) + (𝑡𝑠 − 𝑡)𝑣 𝑘𝑐 . Since 𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥𝐿 , 𝑡𝑠) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡𝑠), we have that 

∀ 𝑡 ≥ 𝑠, 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥𝑛𝑖𝑛𝑖 , 𝑡).  

This theorem implies that inside the computational domain, if the solution associated to a particular 

initial condition piece j is lower than the solution associated with another piece of initial condition 

𝑖 (with 𝑖 < 𝑗), for a location 𝑥 and time 𝑠 such that 𝑡𝑠 ≥
𝑥𝑖+1−𝑥

𝑤
, then the solution associated with 

piece 𝑖 cannot influence the solution (at the same location) at subsequent times.  
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Theorem 6: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints from Equations (16.9) and (16.10). Let us further assume that 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑉) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡𝑉) for some 𝑡𝑉 ≥

𝑥−𝑥𝑖

𝑣
, with 𝑖 > 𝑗. Then: 

∀ 𝑡 ≥ 𝑡𝑉 , 𝑁𝑐𝑖𝑛𝑖
𝑗 (𝑥0, 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖

𝑖 (𝑥0, 𝑡)    (16.23) 

Proof: using the structure of the solutions 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) , we have that 𝑁

𝑐𝑖𝑛𝑖
𝑖 (𝑥, 𝑡) =

𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑉)  + (𝑡𝑉 − 𝑡)𝑣 𝑘𝑐 if 𝑡𝑉 ≥

𝑥−𝑥𝑖

𝑣
 and 𝑖 > 𝑗, irrespective of the value of 𝑘𝑗. We also have 

that 𝑁
𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡) ≤ 𝑁

𝑐𝑖𝑛𝑖
𝑗 (𝑥, 𝑡𝑉) + (𝑡𝑉 − 𝑡)𝑣 𝑘𝑐. Hence, we have that ∀ 𝑡 ≥ 𝑡𝑉 , 𝑁𝑐𝑖𝑛𝑖

𝑗 (𝑥0, 𝑡) ≤

𝑁
𝑐𝑖𝑛𝑖
𝑖 (𝑥0, 𝑡).  

This theorem similarly allows us to exclude a priori some terms from Equation (16.16), to speed 

up computations inside the computational domain. 

16.3.3. Formulation of the FLH Algorithm for Specific Spatio-temporal 
Discretizations 

In this section, we assume that the domains of the initial condition satisfy 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 (where 

𝑖 ∈ 𝑁), that is, that the initial conditions are piecewise constant on domains of constant size Δ𝑥. 

We further assume that the space and time steps satisfy the CFL condition: Δ𝑡 ≤
Δ𝑥

𝑣
 . In this 

situation, we can prove the following two theorems (Theorems 7 and 8), which further simplify 

the computation of the solution at the upstream and downstream boundaries: 

Theorem 7: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in (8), with Lipschitz continuity 

constraints from Equations (16.9) and (16.10). Let us further assume that 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 and Δ𝑡 ≤
Δ𝑥

𝑣
. For any discrete time 𝑡 = 𝑖 ⋅ Δ𝑡, 𝑖 ∈ 𝑁 we have that: 

𝑁(𝑥0, 𝑡) =

{
 
 

 
 min (𝑁𝑐𝑖𝑛𝑖

𝑙 (𝑥0, 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙−1(𝑥0, 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡)  𝑖𝑓 𝑡 ≤

𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤

min (𝑁𝑐𝑢𝑝𝑗(𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑑𝑜𝑤𝑛
𝑘(𝑥0, 𝑡))                     𝑒𝑙𝑠𝑒

 

 (16.24) 

where 𝑗 = 𝑖 − 1 , 𝑘 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖
−𝑥0

𝑤

Δ𝑡
⌋, 𝑙 = ⌊

𝑤𝑡

Δ𝑥
⌋ 

Proof: The first case corresponds to the situation where only initial components and 

upstream boundary condition components can influence the upstream condition (𝑡 ≤
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
). In 

this situation, we have that 𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥0, 𝑡) = +∞ if 𝑘 > 𝑙. Hence, we can write that 𝑁(𝑥0, 𝑡) =
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 min (𝑁𝑐𝑖𝑛𝑖
0 (𝑥0, 𝑡), … , 𝑁𝑐𝑖𝑛𝑖

𝑙−1(𝑥0, 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙 (𝑥0, 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡). However, by 

the structure of the initial condition solution components (12), we have that for any 𝑘 ∈ [0, 𝑙 − 2], 

𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥0, 𝑡) = 𝑁𝑐𝑖𝑛𝑖

𝑘 (𝑥0, (𝑖 − 1)Δ𝑡) + 𝑣𝑘𝑐(𝑡 − (𝑖 − 1)Δ𝑡). By the inf-morphism property 

𝑁
𝑐𝑖𝑛𝑖
𝑘 (𝑥0, (𝑖 − 1)Δ𝑡) ≥ 𝑁(𝑥0, (𝑖 − 1)Δ𝑡), and thus, since 𝑁(𝑥0, 𝑡) ≤ 𝑁(𝑥0, (𝑖 − 1)𝛥𝑡) + 𝑘𝑐𝑣(𝑡 −

(𝑖 − 1)𝛥𝑡) , we have that 𝑁(𝑥0, 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖
𝑘 (𝑥0, 𝑡) for any 𝑘 ∈ {0,… , 𝑙 − 2}, which shows that only 

𝑁
𝑐𝑖𝑛𝑖
𝑙−1 or 𝑁

𝑐𝑖𝑛𝑖
𝑙 can influence the solution in (𝑥0, 𝑡).The proof of the second case is the result of 

Theorem 3.  

Theorem 8: Let a set of 𝑛𝑖𝑛𝑖 initial conditions be defined as in Equation (16.8), with Lipschitz 

continuity constraints from Equations (16.9) and (16.10). Let us further assume that 𝑥𝑖 = 𝑥0 + 𝑖Δ𝑥 

and Δ𝑡 ≤
Δ𝑥

𝑣
. For any discrete time 𝑡 = 𝑖 ⋅ Δ𝑡 (𝑖 ∈ 𝑁) we have that: 

𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡)

=

{
 
 

 
 min (𝑁𝑐𝑖𝑛𝑖

𝑙 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙+1(𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡)  𝑖𝑓 𝑡 ≤

𝑥𝑛𝑖𝑛𝑖 − 𝑥0

𝑣

min (𝑁𝑐𝑑𝑜𝑤𝑛𝑗(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡, 𝑁𝑢𝑝
𝑘(𝑥𝑛𝑖𝑛𝑖 , 𝑡))                 𝑒𝑙𝑠𝑒

    

 (16.25) 

where 𝑗 = 𝑖 − 1 , 𝑘 = ⌊
𝑡−

𝑥𝑛𝑖𝑛𝑖
−𝑥0

𝑣

Δ𝑡
⌋, 𝑙 = ⌊

𝑣𝑡

Δ𝑥
⌋ 

Proof: The first case corresponds to the situation where only initial components and 

upstream boundary condition components can influence the upstream condition (𝑡 ≤
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑣
). In 

this situation, we have that 𝑁𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = +∞ if 𝑘 > 𝑙. Hence, we can write that 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) =

 min (𝑁𝑐𝑖𝑛𝑖
0 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), … , 𝑁𝑐𝑖𝑛𝑖

𝑙−1(𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑖𝑛𝑖
𝑙 (𝑥𝑛𝑖𝑛𝑖 , 𝑡), 𝑁𝑐𝑢𝑝𝑗(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣 ⋅ 𝑘𝑐 ⋅ Δ𝑡). 

However, by the structure of the initial condition solution components (12), we have that for any 

𝑘 ∈ [0, 𝑙 − 2], 𝑁𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) = 𝑁𝑐𝑖𝑛𝑖

𝑘 (𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) + 𝑣𝑘𝑐(𝑡 − (𝑖 − 1)Δ𝑡). By the inf-

morphism property 𝑁𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡) ≥ 𝑁(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)Δ𝑡), and thus, since 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤

𝑁(𝑥𝑛𝑖𝑛𝑖 , (𝑖 − 1)𝛥𝑡) + 𝑘𝑐𝑣(𝑡 − (𝑖 − 1)𝛥𝑡) , we have that 𝑁(𝑥𝑛𝑖𝑛𝑖 , 𝑡) ≤ 𝑁𝑐𝑖𝑛𝑖
𝑘 (𝑥𝑛𝑖𝑛𝑖 , 𝑡) for any 𝑘 ∈

{0, … , 𝑙 − 2}, which shows that only 𝑁
𝑐𝑖𝑛𝑖
𝑙+1 or 𝑁𝑐𝑖𝑛𝑖

𝑙 can influence the solution in (𝑥𝑛𝑖𝑛𝑖 , 𝑡). The 

proof of the second case is the result of Theorem 4. 

The above theorems imply that, when computing the upstream and downstream conditions in the 

initial phase of the computation, the computation of their associated solutions can be restricted to 

just two consecutive blocks (Figure 16.3a-b). According to Theorem 3 and Theorem 4, the 

subsequent computations of the solutions at the upstream and downstream boundaries (outside of 
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the area of influence of the initial conditions) can be reduced to those in the classical LTM 

formulation. The FLH scheme thus computes the boundary conditions with a slightly higher 

computational cost as the LTM during the initial phase of the simulation, requiring just two 

additional operations to account for the initial conditions. For subsequent times both formulations 

(LTM and FLH) are identical, and thus have the same computational cost. 

 
(a) 

 
(b) 

Figure 16.3: Initial conditions considered for computation of flows upstream (a) and downstream (b) 
according to Theorem 5 and Theorem 6 
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16.3.4. Theoretical Comparison of FLH Computational Complexity and 
Accuracy with Other Methods 

The computational time required by the different algorithms outlined in the previous section 

depend on the type of problem that needs to be solved. In this study, we consider two different 

problems: 

1. Computing the solution to the LWR model at the boundaries of each link within a road 

network, with temporal step Δ𝑡, over some time horizon T. 

2. Computing the solution to the LWR model inside the link, on a uniform grid of spatial 

resolution Δ𝑥 and temporal resolution Δ𝑡, over some time horizon T. 

The first problem is typically encountered in forward simulations involving network loading, or 

network control when the objective function depends only upon the state computed at the 

boundaries of each computational domain. In contrast, the second problem is common in the 

applications such as traffic estimation (Cristiani et al., 2011), control (Ferrara et al., 2015), and 

estimation (Work et al., 2008). In some of these problems the solution only needs to be computed 

at specific points of the space-time grid, which are known in advance (for example, in estimation 

problems the solution only needs to be computed on points corresponding to sensors’ locations). 

In this type of situation, the FLH can be used to solve the solution just at these specific locations 

without relying on the entire grid like in the second problem, unlike CTM and Variational Theory. 

The computational performance of all algorithms is illustrated in Table 16.1, where 𝑛𝑖𝑛𝑖 represents 

the number of initial conditions (or the number of grid points in the 𝑥 axis), and 𝑛𝑡 represents the 

number of time steps (𝑛𝑡 =
𝑇

Δ𝑡
). 

In the first problem, although the algorithms differ by their accuracy and computational cost, they 

all converge to the true solution to the LWR model when Δ𝑡 → 0 (and when both Δ𝑡 → 0 and 

Δ𝑥 → 0 for the CTM and DP). The LTM is the fastest algorithm, requiring 2 calculations per time 

step. In contrast, the CTM requires at least 4 ⋅ 𝑛𝑖𝑛𝑖 calculations (computing demand and supplies, 

and computing the Godunov flux) per time step. The LH algorithm and DP both require on the 

order of 𝑛𝑖𝑛𝑖 computations per time step (less during the first time steps), and are thus not 

significantly improving over the CTM. In contrast, the FLH algorithm requires three calculations 

per time step when 𝑡 ≤
𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
, and two calculations per time step when 𝑡 >

𝑥𝑛𝑖𝑛𝑖−𝑥0

𝑤
. It thus has 

a computational complexity comparable to that of the LTM. 

The second problem can be solved by all algorithms except the LTM, which is designed by 

definition for computations only at links’ boundaries and it is not convergent whenever the initial 

condition contains expansion waves (see Section 16.1 for further explanations). Similarly to the 

first problem, the CTM requires 4 ⋅ 𝑛𝑖𝑛𝑖 calculations per time step. DP methods require a number 

of calculations on the order of 𝑛𝑖𝑛𝑖
2  per time step, while the classical LH algorithm requires on the 

order of 𝑛𝑖𝑛𝑖 ⋅ (𝑛𝑖𝑛𝑖 + 2) calculations per step, which is similar to the DP. In contrast, the FLH 

algorithm requires less than 3 ⋅ 𝑛𝑖𝑛𝑖 calculations per time step, which is a considerable 
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improvement, and on par with the classical CTM. Note that in practice the FLH can be 

considerably faster than the CTM when the solution does not have to be computed in all cells (for 

example, in most estimation, control, or optimization problems). 

Table 16.1: Computational performance and accuracy of different algorithms 

Numerical 

scheme 
DP LH  FLH  CTM LTM 

Computational 

complexity (1) 
~𝑛𝑖𝑛𝑖 ⋅ 𝑛𝑡 ~𝑛𝑖𝑛𝑖 ⋅ 𝑛𝑡 

2 ⋅ 𝑛𝑡 ≤
≤ 3 ⋅ 𝑛𝑡 

~𝑛𝑖𝑛𝑖 ⋅ 𝑛𝑡 ~2 ⋅ 𝑛𝑡 

Computational 

complexity (2) 
~𝑛𝑖𝑛𝑖

2 ⋅ 𝑛𝑡 ~𝑛𝑖𝑛𝑖
2 ⋅ 𝑛𝑡 ~𝑛𝑖𝑛𝑖 ⋅ 𝑛𝑡 ~𝑛𝑖𝑛𝑖 ⋅ 𝑛𝑡 X 

Accuracy Convergent 

Exact on 

single links 

problems 

Exact on 

single links 

problems 

Convergent 

Convergent 

on boundary 

conditions 

simulation 

problems 

16.4. Numerical Implementation 

In this section, we numerically implement the FLH algorithm presented in Section 16.3, and 

compare it to the LH, LTM, and CTM, when possible. We show that the FLH algorithm has 

favorable characteristics in comparison with existing algorithms, particularly when solutions do 

not need to be calculated everywhere. The interested reader may refer to Mazare et al. (2011) for 

a comparison between LH, CTM, and DP.  

16.4.1. Single Link Case 

We now illustrate the problem of computing the solution in a single link problem, where upstream 

demand and downstream supplies are arbitrary functions. We consider the example of Yperman 

(2008), and illustrate the cumulative curves obtained with the different algorithms in Figure 16.4. 

The example corresponds to a two-hour simulation of a single homogeneous link with length L = 

10 km, with a triangular fundamental diagram of parameters 𝑞𝑚𝑎𝑥 = 𝑣 ⋅ 𝑘𝑐 = 3600 𝑣𝑒ℎ/ℎ , 𝑣 =

120 𝑘𝑚/ℎ and jam density of 𝑘𝑗 = 225 𝑣𝑒ℎ/𝑘𝑚. The road is affected by a full blockage 

downstream that prevents any vehicle to leave (zero supply) and is fed by a constant flow entering 

the link at capacity rate (constant demand equal to link capacity). Furthermore, the link is initially 

assumed to be empty. The LH, LTM, and the FLH use a time step of 1 minute while the CTM is 

characterized by a time step of 30 seconds. As it possible to see from the cumulative numbers of 

vehicles at the upstream end of the link, for the chosen time interval, the LH, FLH, and LTM are 

more accurate than the CTM. The CTM, even for a relatively fine time discretization, yields a 

significant numerical error (shockwaves do not travel at the correct speed). This phenomenon is 

due to the assumption of homogeneous density in each cell (Daganzo, 1994; Yperman, 2007). 
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Figure 16.4: Cumulative curves at the upstream end of the link obtained with different algorithms 

With respect to computational times, we compare in Figure 16.5a-b the LH, FLH, LTM, and CTM 

algorithms for computing the solution at the boundaries of the link, with increasing time horizons, 

using time steps of 2 and 5 seconds. The simulation involves a link of 500 meters and two lanes. 

The parameters (per lane) of the fundamental diagram are the same as in the previous example. 

The upstream demands and downstream supplies are randomly chosen in the interval [0, 𝑞𝑚𝑎𝑥]. 

The initial condition consists in a single block, with random initial value. As expected, the results 

of this experiment show that the LTM has the lowest computation times, followed by the FLH, the 

LH and the CTM. However, the FLH’s computational performance is comparable to one of the 

LTM.  

As proved mathematically in the previous section, the FLH is faster than the original LH, thanks 

to the elimination of solution blocks through the computation process. This is illustrated in Figure 

16.6, where the computational cost is calculated for both models during a simulation of 200 

seconds. As the figure demonstrates, the FLH gains advantage over the LH over the simulation. 

The number of operations per time step required to compute the solution using the FLH algorithm 

decreases over time, as indicated by the changes of slope (around 15 and 60 seconds), as an 

increasing number of initial condition blocks can be discarded. 
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(a) 

 
(b) 

Figure 16.5: comparison of computation times for different models using a time step of 2 seconds (a) and 
of 5 seconds (b) 
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Figure 16.6 Computational cost calculated for both models during a simulation of 200 seconds 

16.4.2. Network Case Studies 

Also in case of network simulations, the higher accuracy of methods like the FLH and LTM 

compared to the CTM becomes apparent. As an example we show the simulation results of a five-

link highway network (Figure 16.7) composed of a three-lane major highway section (Links 1,2 

and 3), a two-lane off-ramp (Link 4) and a two-lane on-ramp (Link 5). A triangular fundamental 

diagram with capacity 𝑞𝑚𝑎𝑥=0.556 veh/s/lane, free-flow speed v=30 m/s, and jam density of 

𝑘𝑗=0.1297 veh/m/lane is adopted for all three models. All links are characterized by initial free-

flow density 𝑘1=0.004 veh/m, with the exception of Link 2; that is characterized by two initial 

condition blocks associated with densities 𝑘1=0.004 veh/m in the downstream half and 𝑘2 = 0.01 

veh/m in the upstream half of the link. 

In order to model traffic throughout intersections, there is need for a generic macroscopic node 

model that respects some critical conditions: satisfaction of links’ capacity constraints; 

conservation of flows; satisfaction of demand distribution constraints; maximization of flows 

(vehicles should proceed if there is available supply downstream); satisfaction of invariance 

principle (if the flows are restricted by demands, solutions cannot vary by increasing supplies and 

vice versa); and non-simultaneity of conflicting flows. In this study, we adopt the “I-HFS 

algorithm” by Jabari (2016), which respects the abovementioned properties and efficiently derives 

solutions by staging movements according to any arbitrary priory rules.  

As Figure 16.8 indicates, the results of the LTM and LH algorithms are close to the exact solution 

to the problem, while the solution computed by the CTM exhibits significant errors. We then 

compare the performance of all three schemes (CTM, LTM, and FLH) in computing the solutions 

at the boundaries of each link of the network, averaged over random initial conditions, and random 

boundary demand and supplies at the edge of the road network. The results are averaged over 100 

simulations, where the initial condition densities, demand, and supply flows are drawn 

independently from uniform distributions. The average root mean square error of all three schemes 
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is shown in Figure 16.9. As this figure demonstrates, FLH outperforms both the CTM and LTM 

in terms of error.  

 

 
Figure 16.7: Simulation of the highway network at t=0 seconds. 

 
Figure 16.8: Comparison of the outflows of link 2 with the three methods (using a time step of 1 second) 
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Figure 16.9: Accuracy of outflows calculated with the three different methods according to increasing time 

step 

The favourable computational time properties of the FLH appear also in large network simulations. 

To demonstrate the scalability of the algorithm, we present and discuss the results of its application 

to a subset of the Austin downtown network (Figure 16.10). The network is characterized by 201 

links and 110 nodes. Streets have between two to three lanes and the majority of the intersections 

is signalized (about 90%). For simplicity, in this study we only model green/red phases and we 

adopt the same triangular fundamental diagram for all links with: 𝑞𝑚𝑎𝑥=0.4625 veh/s, v=12.5 m/s, 

and 𝑘𝑗=0.1295 veh/m.  

We report in Table 16.2 and Table 16.3 the (average) computation times obtained for increasing 

simulation horizons, using different time steps for the four models. The simulations were 

performed on Matlab running on a laptop with a 2.8 GHz processor. The results are consistent with 

those obtained for single-link simulations. FLH and LTM have comparable performances when 

the initial conditions are explicitly considered in the computation. The CTM, for larger time steps 

(e.g., 5 seconds), is equivalent to the other methods since the links of this network are relatively 

short (resulting in a low numbers of cells). The numerical approximation of CTM, however, 

amplifies on large networks, leading to significant divergence from the exact solution after 

relatively short simulation horizons. We illustrate in Figure 16.11 the average densities across the 

links of the network, at a given time horizon, using either the CTM or the FLH algorithm. 
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Original source: Google Earth 

Figure 16.10 Austin downtown network 

Table 16.2: Comparison of computational times (in seconds) for different simulation lengths in 
Austin downtown network using a time step of 1 second 

 CTM LTM FLH 

Simulation 

Horizon (s) 

link 

model node model 

link 

model node model 

link 

model node model 

200 1.411 0.485 0.359 0.520 0.354 0.527 

500 3.582 1.159 0.938 1.368 0.856 1.309 

1000 8.334 2.562 1.888 2.570 1.799 2.596 

Table 16.3: Comparison of computational times (in seconds) for different simulation lengths in 
Austin downtown network using a time step of 5 seconds 

 CTM LTM FLH 

Simulation 

Horizon (s) 

link 

model node model 

link 

model node model 

link 

model node model 

200 0.066 0.110 0.074 0.106 0.079 0.113 

500 0.164 0.260 0.177 0.266 0.169 0.257 

1000 0.308 0.467 0.333 0.483 0.341 0.526 
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(a) 

 
(b) 

Figure 16.11 Average densities across the links of the network 
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16.4.3. Discussion 

An important difference among the discussed models is that, while at any point (𝑥, 𝑡), the solutions 

generated by the CTM and the FLH converge toward the solution of the LWR PDE, the solution 

generated by the LTM converges only in specific cases.  

We illustrate this in Figure 16.12, where we present a scenario in which we consider a triangular 

fundamental diagram of parameters 𝑘𝑐 = 0.037 𝑣𝑒ℎ/𝑚, 𝑘𝑗 = 0.1297 𝑣𝑒ℎ/𝑚, 𝑢 = 20 𝑚/𝑠, and 

𝑤 = 3.5 𝑚/𝑠. We assume that the upstream half of a link is congested (𝑘1 = 0.1297 𝑣𝑒ℎ/𝑚), 

while the downstream half of the link is free flow (𝑘2 = 0.01 𝑣𝑒ℎ/𝑚). In this specific case, 

calculating N at the point A (10,600) by using the LTM procedure (Newell’s method) would yield: 

𝑁𝐴 = min{𝑁𝐷 + (𝑥𝐴 − 𝑥𝐷) ∙ 𝑘𝑗; 𝑁𝑈} = −51.88. The correct solution, instead, would correspond 

to: 𝑁𝐴 = 𝑁𝑈′ = −63.65. 

A common procedure to avoid expansion waves would be partitioning the network by splitting 

links wherever an expansion wave would occur, that is, wherever the density would decrease over 

space. However, dividing the link presents two issues.  

First, this requires a modification of the topology of the network, which becomes a function of the 

choice of the initial conditions. This is problematic in case of unknown initial conditions (for 

example, in estimation, optimization, or robust control problems29). This would increase the 

computational overhead before the actual computation process. 

Second, splitting the link in two or more links would increase the computational time to find the 

solution by a factor of two or more, since the demand and supplies at the boundaries would have 

to be derived for each split link.  

The proposed FLH algorithm avoids these computational issues by imposing a minor 

computational penalty on the original LTM (three computations per time step instead of two 

computations per time step, while in the domain of influence of the initial conditions). Splitting a 

link in two for example would require four computations per time step. More than one split may 

be required, depending on the number of initial condition blocks and their configuration. 

It would still be possible to apply Newell’s method to derive the solution at the link boundaries as 

we did in previous examples. Because of that, the LTM would have a slightly increased 

computational time, comparable to the FLH. 

                                                 
29 In these situations, often a large number of random initial conditions is drawn according to a certain distribution and the simulation outcomes 

are used for the estimation or control process. Examples include Ensemble Kalman Filtering for the prediction step, or Model Predictive Control, 

or Particle Filtering.  
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Figure 16.12 Derivation of the solution at point A by using Newell’s method (solid lines) and correct 

approach (dashed line) 
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Chapter 17. Development of an IMU-based Traffic and 

Road Condition Monitoring System 

17.1. Introduction 

17.1.1. Traffic and Road Surface Monitoring 

As traffic congestion becomes an increasing burden all over the world, creation of real-time traffic 

monitoring system becomes an essential step in mitigating the effects of traffic congestion. Traffic 

monitoring is a critical component in traffic estimation and forecasting systems (Wang and Work, 

2014) that generate traffic maps (Canepa and Claudel, 2012), travel time estimates (Mazare et al., 

2014), optimal routes for vehicles, or optimal control policies (Li et al., 2014), for traffic control 

systems and help prepare roadway geometric, intersection, and pavement design.  

One important application of traffic monitoring is to estimate traffic conditions (congestion 

detection or trajectory estimation). Such applications need to estimate the present traffic situation 

and that of the near future at a forecasting horizon based on data that are available in real time 

(Canepa and Claudel, 2017). However, such sensing systems can be expensive, require high 

amounts of power, or have to be in range of satellites, which may degrade the accuracy in urban 

areas due to the reduction of the number of visible satellites caused by the urban canyon effect 

(Ojeda and Borenstein, 2007; Weiss et al., 2011; Bachrach et al., 2011). Road surface monitoring 

is another important application of traffic estimation systems, which aims at detecting any surface 

imperfections (such as road surface cracks) at early stages in order to apply road maintenance on 

time (Fendia et al., 2014). For this project, we developed a low-cost and high-accuracy traffic 

monitoring system based on use of inertial measurement units (IMUs). This system can realize 

both estimate traffic conditions and monitor road surfaces. Since IMUs do not generate the 

absolute position measurement data needed for traffic estimation or direct information to indicate 

road surface condition, some essential computational tasks should be operated to realize such 

functions, which requires the development of a new platform and new software capable of meeting 

these specifications. 

17.1.2. Lagrangian Sensing 

Traffic monitoring systems are often categorized as either fixed (Eulerian) or mobile/probe-based 

(Lagrangian) systems. The former often includes a variety of sensors, such as radars, inductive 

loop detectors, and traffic cameras (Alessandretti et al., 2007; Ki and Baik, 2006; Braberger et al., 

2004), which are always installed at a fixed point. In contrast, a Lagrangian-based system, such as 

GPS, relies on the data generated by vehicle themselves, which measure traffic conditions along 

the path of a vehicle. Over the past decades, Lagrangian sensing has become increasing prevalent 

in modern traffic monitoring systems.  
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As one of the Lagrangian sensing methods, vehicle probe technology is emerging as a viable means 

for traffic monitoring, delivering speed, location, and time information for the purposes of 

advanced traffic management systems (Zheng and Zuylen, 2013; Young, 2007). While probe data 

is relatively accurate and has an extremely low marginal cost, many issues remain associated with 

this technology—in particular the low penetration rate of participating users due to weak user 

privacy guarantee (for instance, a GPS-based system needs the users to share their location data). 

Other issues such as high power consumption (as with GPS in cellphones) or higher cost also 

prevent the large-scale deployment of such systems. Based on these concerns, our objective is to 

design a low-cost, low-power Lagrangian system, which at the same time guarantees the privacy 

of users.  

17.1.3. Wireless Sensor Network 

Wireless sensor networks have emerged as a solution for urban monitoring applications due to 

their computation, communication, and sensing capabilities. As for most of the urban sensing 

systems, the cost for deployment and maintenance is usually higher than the hardware cost, 

compared with which WSNs feature easier deployment and better flexibility of devices. Due to all 

these advantages, WSNs have been used for countless applications in many different fields such 

as environmental monitoring, structural health monitoring and seismic activity detection (Ye et al., 

2009; Kijewski-Correra et al., 2006; Lopes Pereira et al., 2014). In our case, the proposed system 

should also be fully wireless in order to meet the flexibility requirement of probe vehicles as well 

as to minimize the deployment cost. In other words, a wireless sensor network need to be built so 

that the data generated by the sensing device can be sent to a wireless sensor network for 

processing, then estimated information can be matched to real road network through the sensor 

network. At last, the sensor network will send the corresponding data to a traffic state estimation 

server. 

17.2. Computational Requirements  

Even though the low-cost IMU can generate high frequency and accurate sensing data, it does not 

generate speed or positioning data directly, which is necessary for most of the traffic related 

applications. Also, the data generated by IMU cannot indicate road surface condition directly 

without any further analysis. Thus, an efficient computational platform is needed for this proposed 

sensing system to generate the essential information through conduction of some mathematical 

algorithms. For the proposed system, each node has to carry out a number of computational tasks 

for traffic sensing purpose: 

1) Automatic calibration of IMU; 

2) Traffic estimation and sensor bias detection; 

3) Road surface condition monitoring based on IMU data, which is the focus of the present 

chapter. 
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17.3. Platform Architecture and Design 

In order to support a low-cost, distributed, and reliable traffic monitoring system to solve the 

aforementioned computational tasks in real time, we designed a hardware platform, on which we 

are porting an operating system to simplify programming. Following these requirements, the 

proposed platform should have some specific features in comparison with other reported hardware 

platforms: 

1) Low node and deployment cost, low operation power needed;  

2) Small size and straightforward installation for probe vehicles, to allow real-time sensing;  

3) Advanced computational capabilities, with enough free memory to allocate relatively large 

matrices required for self-calibration, attitude estimation, and other computational tasks 

needed for the application.  

 

Figure 17.1 shows the block diagram of the hardware platform. Figure 17.2 illustrates the third 

generation hardware platform over the hardware development period (September 2015 to 

December 2017). We now give a detailed description of this hardware platform by focusing on the 

following areas: processing unit (the core element), communications, data storage, sensors, and 

peripherals. 

Communication

Micro-Controller
STM32F407

32bit-RISC

192KB RAM

1 MB FLASH

SDIO SPI

Bluetooth

ADMP401

UART

Storage

SD Card
1 MB

FLASH

ZIGBEE 
XBEES2C/XBP2

4CZ7UIT-004

GPRS

SIM800C

UART

UART

First 

generation

Third 

generation

Sensors

IMU

LSM9DS0

UART
GPS

GPSBS-280

I2C

Microphone

ADMP401

ADC

 
Figure 17.1 Block diagram of the IMU platform (different versions) 
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Figure 17.2 Third-generation platform 

17.3.1. Core Element 

The core component of the sensing platform is the microcontroller unit (MCU), which handles 

sensing (analog-to-digital converter [ADC] and digital buses), computation, and control. We 

selected for this application the STM32F407, a 32-bit ARM Cortex-M4-based MCU from ST since 

it satisfies the requirements described above and best balances the tradeoff among computation, 

RAM, power consumption, and cost. We considered a wide range of MCUs, in which the 

ATmega1281 is on the low end (low performance, low power consumption) and the TI TMS570 

on the high end (high performance, high power consumption). The MCUs in the low end are not 

able to provide with sufficient internal data RAM (8 KB), program memory (128 KB), and 

computational power (16 MHz). On the other hand, while the high end exhibits a fast frequency 

(180MHz), they also have higher power consumption and higher prices, which are unsuitable for 

extensive deployment. In contrast, the STM32F407 provides a comparable performance with the 

TMS570 at only one-third of the price; it is even less expensive than an 8-bit ATmega1281. In 

addition, at its lowest frequency setting, its power consumption is comparable to the power 

consumption of the ATmega1281. 

The STM32F407 includes a 1-MB Flash memory and 196 KB of data RAM. It supports up to 17 

timers, a 24-channel ADC, and two 12-bit DACs for peripherals. 

On this platform, the MCU is configured to have three universal asynchronous 

receivers/transmitters for communication and positioning modules, and one I2C interface bus and 

one ADC interface for sensors. Furthermore, a SDIO and a USB OTG bus are configured to 

provide MicroSD Flash storage and USB host access. The STM32F407 supports a maximum 

frequency of 168 MHz, which is sufficient to run the envisioned traffic sensing and estimation 

algorithms in real time.  

17.3.2. Communications 

The transmission of data between different sensor nodes requires the use of radio transceiver. For 

the first generation, we choose XBEE S2C/XBP24CZ7UIT-004 from Digi working at 2.4 GHz, 

using the IEEE 802.15.4 standard. This transceiver is capable of generating signals up to +18 

dBmm, which is the maximal legally allowed transmission power in the 2.4-GHz band (equivalent 
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to 100-mW EIRP when combined with a 2-dB dipole antenna). While there are a number of 

802.15.4-compliant radio transceivers available, such as the TI CC2500, their maximal radiated 

power is insufficient for our application.  

In addition, a Bluetooth module is used for dynamic data transfer from the sensor to the mobile 

device. The selected module is SH-HC-06, which has the Blue Core4-Ext chip, and follows the 

Bluetooth V2.0 + EDR Bluetooth standard. The maximum transfer rate of this transceiver is 

2.1Mb/s, and the transmission distance is more than 20 meters. Compared with other possible 

choices, this module is low cost, small size, and with a high sensitivity—up to -80dBm at 0.1% 

BER (bit error rate). It supports AT commands to modify serial baud rate, device name, pairing 

passwords, and other parameters. As for the software, a mobile client was developed with an 

Android operating system for data transmission and storage (Figure 17.3).  

 
Figure 17.3 Transmission of data to an Android phone via Bluetooth 

For the third-generation platform, the GPRS SIM800C module is used for remote monitoring 

purpose and communicating the sensing data to remote server via the cellular phone network. This 

transceiver is selected mainly for its low power consumption and small size. The SIM800C is 

designed with power saving technique, and the current consumption can be as low as 0.6 mA while 

in sleep mode. It is with a tiny configuration of only 17.6*15.7*2.3 mm, which can meet the space 

saving requirement for our platform. This module supports 4G GSM/GPRS working on 

frequencies GSM850MHz, EGSM900MHz, DCS1800MHz, and PCS1900MHz. And the SIM 

card interface support 1.8V and 3.0V SIM cards. A micro SIM card is used in this transceiver for 

data storage and communication.  

17.3.3. Data Storage  

The MCU has an internal 1-MB Flash memory for storing the bootloader, firmware, the operating 

system, and a 196-KB internal SRAM for data during firmware execution. While this amount of 

memory is sufficient for real-time processing to perform their computations, we need additional 

storage for non-volatile data storage (for instance, measurement data needed for trajectory 

estimation, historical acceleration from IMU, and audio spectrum information from the Audio 
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Processing module needed for pavement condition monitoring). We thus added a microSD slot 

(MicroSD Flash Socket), which is accessed through a SDIO interface, and can support 8-GB 

microSD cards (FAT 16). 

17.3.4. Sensors 

The real-time traffic estimation and road surface condition monitoring is based on the use of IMUs. 

IMUs are based on a combination of accelerometers and gyrometers, which can be used to 

determine the accelerations and rotation rates of a vehicle. IMUs do not require any external 

infrastructure to work and do not receive or transmit data wirelessly. They just require an extremely 

low power to operate, considerably less than GPS or cellphone-based systems. Because they are 

much less complex than GPS systems, IMUs are less expensive to manufacture (Mousa et al., 

2015; Jimenez et al., 2009; Wan and Foxlin, 2001). They do not require an antenna for receiving 

signals, and are not at risk of losing connectivity with positioning satellites, which frequently 

happens with GPS systems, particularly if obstructions are present between the receiver and the 

satellites. They are also immune to environmental noise effects, in particular to the multi-path 

effect encountered in cities. Because of their very high accuracy (over short time windows), IMUs 

are very good at detecting and classifying the type of congestion encountered (such as traffic lights, 

stop-and-go waves, slow and continuous traffic) (Wan and Foxlin, 2001; Heng et al., 2015). In 

addition, such a system offers strong guarantee s for the privacy of the participating users when 

used in conjunction with a short-range wireless sensor network (Fuke and Krotkov, 1996; Canepa 

et al., 2014). Those features of IMUs make it more reliable than a GPS-based positioning system. 

In our platform, IMU GY-85 is used for the first generation, which consists of ITG3205, 

ADXL345, and HMC5883 chips. For the third generation we use the LSM9DS0 instead, which is 

of higher accuracy compared with GY-85. The LSM9DS0 is a system-in-package featuring a 3D 

digital linear acceleration sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor. 

It has a linear acceleration full scale of ±2g/±4g/±6g/±8g/±16g, a magnetic field full scale of 

±2/±4/±8/±12 Gauss and an angular rate of ±245/±500/±2000 degrees/s. The embedded self-test 

allows the linear acceleration sensor functionality to be tested without moving. This module is 

connected to the MCU with I2C serial interface and provides a 16-bit data output. 

The IMU is the main sensor used in our platform to obtain position data for traffic monitoring—

for instance, in the context of trajectory estimation. In order to verify the accuracy of the estimated 

results by IMU, the exact position information of the vehicle along its path is needed as validation. 

Thus, a GPS receiver is used in our platform for getting vehicles’ localization, which is used only 

for validation. The Beitian BS-280 GPS was selected for our platform for its relatively high output 

frequency with a low price and low power requirement. The module is integrated with the UBLOX 

G7020-KT chip, and can reach an output frequency of up to 10 Hz.  

For pavement condition monitoring purposes, one important computational task is to estimate and 

quantify the audio noise that could be a predictor of the road condition. Thus, an omnidirectional 

microphone was embedded in our platform for noise detection. The main computational task to be 

conducted for this module is to sample the sensing signal and divide it into different frequency 
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components through the Fast Fourier Transform (FFT) algorithm. The audio processing module 

selected for our platform is the ADMP401, which is designed as a 4.72 mm*3.76 mm*1.0 mm 

surface-mount package that can meet our space constraints as well. Besides, the signal-to-noise 

ratio of the ADMP401 can be as high as 60 dBA and the sensitivity is of -42 Dba with a relatively 

low price. Its current consumption is extremely low.  

17.3.5. Other Embedded Auxiliary Equipment/Peripherals 

The peripherals consist of several functioning blocks: a self-resetting circuitry, LEDs, and a USB 

monitoring unit. As the proposed platform works with high modularity, different modules works 

for different functions (sensing, communicating, or storage), it is also important to make sure each 

part is functioning well to support the overall functioning of the whole system. Thus, several LED 

lights were incorporated into our platform to indicate the normal functioning of each module in 

case of running error. In the first generation, three LED lights were embedded in our platform to 

indicate the functioning of Bluetooth, GPS, and IMU modules.  

Software bugs are a risk for every firmware, particularly in embedded systems. To anticipate the 

presence of software bugs, a self-resetting circuitry was included in our platform to prevent node 

failures. The functionality of the circuitry is to reset the whole system while any part of it is not 

functioning normally, and a reset button was designed on the platform for convenient resetting the 

system if any module does not function properly. For instance, if any of the LED lights associated 

with each peripheral does not blink as expected, we can use the reset button to restart the entire 

system.  

Since this platform is mainly designed for probe vehicles, it should be installed in a moving vehicle 

easily and get continuous power supply for real-time sensing. A USB port was added for powering 

the sensor, via a USB car charger. The USB port also plays the role of a structural support that 

maintains the device in a constant (albeit unknown) orientation with respect to the vehicle frame, 

despite the accelerations, turns, and presence of road bumps. 

17.4. Software 

This platform runs Keil RTX, which is a deterministic and high-speed real-time multitasking 

operating system for ARM and Cortex-M processor-based devices. It allows to create programs 

that simultaneously perform multiple functions and to create applications which are well structured 

and easily maintained with low interrupt travel time. Also, this system can manage unlimited 

number of tasks each with up to 254 priority levels as well as unlimited number of mailboxes, 

semaphores, mutex, and timers. The source code is mainly written by ANCI C; thus, developers 

can write the application code in ANSI, with no need to learn a specialized language for 

programing (such as NesC for Tiny OS). Compared with other event-driven embedded OSs such 

as Tiny OS or Contiki, an important advantage of Keil RTX is its flexible scheduling, which is 

round-robin, pre-emptive, and more collaborative. For our application, both traffic estimation and 

pavement condition monitoring require certain levels of real-time operation. Thus, the flexible task 

scheduling mechanism of Keil RTX is an appropriate selection for this platform.  
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17.5. Platform Cost Evaluation  

The costs and functions of some major components used for the proposed platform are listed in 

Table 17.1. The entire cost of the subsystems of our third version device is around $55, including 

all the sensing, communication, and storage modules. The proposed platform can be used for probe 

vehicles. It should be put into use with mass production in the future, which will make the cost 

reduce to less than $40 once the breakdown quantity is reached.  

Table 17.1 Cost of the major components in the different platforms (excludes manufacturing 
costs) 

Version Item Quantity Price 

$ 

Breakdown 

price $ 

Remarks 

1st STM32F407 1 11.05 7.18@1000 Micro-controller 

SH-HC-06 1 8.99 5.46@500 Bluetooth Transceiver 

Beitian BS-280 1 12.19 10.79@100 GPS  

XBP24CZ7UIT-004 1 10.403 8.53@500 XBEE Transceiver 

GY-85 1 8.45 5.82@300 IMU Sensor 

Total price $51.083 

2nd STM32F407 1 11.05 7.18@1000 Micro-controller 

SH-HC-06 1 8.99 5.46@500 Bluetooth Transceiver 

XBP24CZ7UIT-004 1 10.403 8.53@500 XBEE Transceiver 

GY-85 1 8.45 6.20@300 IMU Sensor 

Total price $40.23 

3rd STM32F407 1 11.05 7.18@1000 Micro-controller 

SH-HC-06 1 8.99 5.46@500 Bluetooth Transceiver 

SIM800C 1 8.75 5@500 GPRS Transceiver 

LSM9DS0 1 7.11 3.83@3000 IMU Sensor 

Beitian BS-280 1 12.19 $10.79@100 GPS Sensor 

ADMP401 1 6.99 4.12@500 Microphone 

Total price $55.08 

17.6. Applications of the Platform 

17.6.1. Automatic Calibration of the IMU 

The creation of this low-price and high-accuracy platform for traffic sensing and road surface 

monitoring is based on the use of IMU. However, IMUs do not generate absolute position 

measurement data compared with GPS, and the initial acceleration and rotation rate generated by 

the IMU is in its own frame, not in the frame of a vehicle. Thus, we needed to measure the 

acceleration along the longitudinal, lateral, and vertical axes of the vehicle to determine the 

orientation of the device with respect to the vehicle automatically, which is referred as automatic 

calibration of the IMUs (Mustafa et al., 2002). The automatic calibration is a basic computational 

task for our platform to conduct applications such as stop detection, congestion classification, 

trajectory estimation, and road condition monitoring.  
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In order to determine the orientation of the device in the vehicle (assumed to be constant, since the 

device is rigidly connected to an USB port), we need to compute a corresponding rotation matrix 

mapping the coordinates of the device to the coordinates of the vehicle. Fortunately, the dynamics 

of ground vehicles are constrained, which allows us to develop an algorithm that automatically 

computes the rotation matrix transforming the sensor coordinates to the vehicle coordinates 

(Gustafsson et al., 2017).  

Let ic, jc, and kc be the unit vectors associated with the longitudinal, lateral, and vertical axes of the 

vehicle, and let Rd/c (v1, v2, v3 are three column vector of the matrix) be the rotation matrix mapping 

the coordinates of the vehicle into the coordinates of the device. Then, we have:  
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Firstly, based on an average assumption that the attitude of the vehicle on Earth is flat (that is the 

vehicle has on average a zero pitch and roll angle), we can get the third column of the matrix by 

averaging the acceleration measurements of the IMU. 
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Then the first column of the matrix can be achieved though determining the orientation of the 

longitudinal axes of the vehicle in the sensor coordinates, which can be obtained by performing a 

linear fit on the values of residual acceleration vector. The residual acceleration vector is the 

projection of the acceleration vector on a plane perpendicular to v3.  

Having the first and the third column of the rotation matrix, the second column is obtained by cross 

product: v2= v3× v1, allowing us to determine the rotation matrix univocally. The complete process 

is outlined in Figure 17.4. Based on this algorithm, we imply the code within our proposed platform 

using Keil v5.0 from the ARM group.  
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Figure 17.4 The automatic calibration algorithm 

17.6.2. Road Surface Monitoring and PSR Estimation 

Road surface monitoring is the process of detecting the surface imperfections on paved or unpaved 

road surfaces, which plays a key role in ensuring safety and comfort to the various road users, from 

pedestrians to drivers. Furthermore, having information on infrastructure quality allows road 

managers to guarantee an adequate maintenance (Astarita et al., 2012; Wael et al., 2016). Pavement 

roughness is an important pavement characteristic used to indicate the condition of road surface, 

which is generally defined as an expression of irregularities in the pavement surface that adversely 

affect the ride quality of a vehicle (and thus the user). Pavement roughness affects not only ride 

quality but also vehicle delay costs, fuel consumption, and maintenance costs.  

Pavement roughness is typically quantified using some form of either present serviceability rating 

(PSR), international roughness index (IRI), or other index, with IRI being most prevalent. One of 

the earliest pavement condition indices developed at the AASHO Road Test, PSR is defined as 

“The judgment of an observer as to the current ability of a pavement to serve the traffic it is meant 

to serve.” To generate the original AASHO Road Test PSR scores, observers rode around the test 

tracks and rated their ride using the quantitative scale ranges from 5 (excellent) to 0 (essentially 

impassable). Since the PSR is based on passenger interpretations of ride quality, it generally 

reflects road roughness because roughness largely determines ride quality.  

Road surface condition monitoring is an important application of our proposed platform. In this 

chapter, PSR is used as the indicator of road surface condition. As shown in Figure 17.5, a series 

of routes in Austin area with certain PSR values are chosen as the test routes for vehicles equipped 

with our platform. Those routes are color-coded for different levels of PSR (Red: 1<PSR<2; Blue: 

2<PSR<3; Purple: 3<PSR<4; Green: 4=PSR). The tests were conducted with the same type of 

vehicle (the Ford F150) used to obtain the PSR value of these routes.  
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Figure 17.5 Routes with different levels of PSR in Austin Area 

17.6.3. Road Surface Monitoring with the Proposed Platform  

The main idea of road condition monitoring with our proposed platform is to detect the pavement 

roughness based on the use of IMU that includes accelerometer data. This is a continuous sensing 

approach that data is continuous sampled from the probe vehicle (without the explicit involvement 

of users). The main data we used for this process is the vertical acceleration of the vehicle along 

the route, and we tried to explore the possible relationship between the vertical acceleration rate 

and the PSR.  

The first computational task for our platform is to sample the acceleration data (mainly the vertical 

acceleration rate) and separate them into different frequency components through the FFT 

algorithm. In our case, we separate those samples into six different bands which are 0.5~1.5Hz, 

1.5~2.5Hz, 2.5~3.5Hz, 3.5~4.5Hz, 4.5~5.5Hz, 5.5~6.5Hz (as shown in Figure 17.6). We exclude 

the 0–0.5Hz band that mainly corresponds to fluctuations in the slope of the road, and is not related 

to the pavement condition.  
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Figure 17.6 The vertical acceleration rate along time (left) and the distribution of the sampled spectrum of 

the acceleration rate after FFT (right) 

Once we get the frequency distribution of the sampled acceleration, we can build the relationship 

between the data in different bands with the PSR. As running speed is a parameter that would 

affect the driver/passenger experience while defining the PSR value, we also considered the 

vehicle’s speed difference while running at different routes. If ‘az’ means the average value of 

vertical acceleration after FFT in one band, we tried to build the relationship between “az/(v2)” and 

the PSR, where ‘v’ stands for the average running speed along the route. Actually, during the test, 

we almost kept the same speed running through one route during the test (the route’s speed limit) 

as was used when obtaining the PSR value. Figure 17.7 shows some preliminary results after 

collecting the data for 37 routes in the Austin area.  

 

 

 

 
Figure 17.7 Preliminary results for the relationship between acceleration rate and PSR 
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In those preliminary results, we can easily see the trend that with lower vertical acceleration rate, 

the PSR value is higher, which means that the road surface condition is better (smoother). There 

are, however, several outlier points that have not been explained based on the measurement data.  
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Chapter 18. Cybersecurity Analysis of Connected 

Vehicles Using Deep Learning 

18.1. Introduction  

This chapter describes the research team’s efforts to meet two objectives: 1) solve an inverse 

modeling problem (predicting the vehicle dynamics from vehicle input commands, and from 

vehicle measurement data) and 2) use this dynamical model to detect input faults or spoofing, or 

sensor faults or spoofing (particularly for GPS position sensors). For the latter problem, the higher 

the precision of the dynamical model, the smaller the extent to which sensors can fail or be spoofed 

undetected.  

For this specific problem, we used the data generated by instrumented vehicles from SwRI. These 

vehicles monitor their states 20 times per second (with a 50-millisecond step). The measurement 

data is then extracted, read, and used to solve the two components of the problem.  

18.2. Data Description  

The data consists of a set of timeseries, containing a large number of vehicle parameters. To 

simplify the learning, we choose a subset of relevant parameters as predictors for the learning 

framework. For the present task, we have chosen the following predictors (inputs) and targets 

(outputs). 

 Inputs: Break, Throttle, Steering, and Initial Speed  

 Outputs: Speed and Location (x,y) (starting from local frame origin)  

18.3. Deep Learning for Modeling Vehicle Input-Output Response 

18.3.1. Deep Learning Review  

Deep learning is a subset of machine learning, which mainly focuses on the optimization of 

artificial neural networks (ANNs) to reproduce an input-output relationship. The ANN consists of 

neurons organized in layers. The hyperparameters of this neural model consist in the number of 

neurons, number of layers of neurons, and activation functions used to describe the nonlinear 

aspect of the activation of each neuron. The objective of the training phase is then to determine the 

neurons weights to find the best possible relationship between inputs and outputs. 

Deep learning focuses specifically on large ANNs that have a significant number of layers. They 

usually require large amounts of data and large computational power for the optimization of the 

neuron weights, since the associated computational cost is exponential in the number of layers. 
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In our approach, we use a type of recurrent neural network called LSTM (long short-term 

memory), which has the ability to memorize longer sequences in an encoded cell within it, called 

a memory cell (Figure 18.1). 

 
Figure 18.1 Layout of an LSTM cell 

One advantage of LSTM networks is that they are immune to vanishing and exploding gradients 

problems found in standard (‘plain vanilla’) RNNs (recurrent neural networks). 

18.3.2. Basic Deep Learning Principle  

Following the principle of ‘divide and conquer’ popular in the machine learning community, we 

used the following steps to find a suitable model: 

 First, we devised a model that overfits the training dataset, in that it is able to reproduce 

the input-output relationship of the training data, even if it also captures the randomness of 

this dataset (and thus loses robustness). 

 If we could not achieve overfitting, we turned to the following techniques: normalization, 

scaling, using different learning rates, or using different activation functions until 

overfitting is achieved 

 We then checked the behavior of the model on the validation dataset. If the behavior was 

unsatisfactory (high bias), we used different regularization techniques to reduce the number 

of free parameters of the model, or increased the training dataset if some features of the 

model were present in the validation dataset but not in the training dataset. 

18.4. Data Pre-Processing  

We used 250,000 samples from the vehicle original data, split into training and validation datasets. 
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The original data had specific problems, including missing readings by some sensors, which are 

replaced by interpolated values between the closest two valid readings, mis-synchronization 

problems, in which the data is not properly synchronized. We solved the latter issue by determining 

and using the average time step as a proxy for the actual time step.  

The training set was normalized and shifted to be above zero (nonnegative). Normalization is an 

important process used in machine learning, to ensure that data elements that have different orders 

of magnitude can be used simultaneously as predictors. 

This normalization is achieved by using the mean and standard deviation from the particular 

training dataset. Figures 18.2 through 18.5 provide examples of normalized data timeseries.  

 
Figure 18.2 Normalized input training timeseries data 
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Figure 18.3 Normalized output training timeseries data 

 
Figure 18.4 Normalized test timeseries data 
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Figure 18.5 Normalized output test timeseries data 

18.5. Deep Model Implementation  

As mentioned earlier, we used the LSTM deep model for this work. The model consists of three 

parts: a feature extraction layer, an LSTM layer, and two regression heads. We used a scaled 

exponential linear unit (SELU) activation function without the proper SELU initialization 

methodology, and also used a SmoothL1 Loss function. Adam optimization was used with a 

learning rate of 0.001, and the LSTM biases were set to 1.0 initially. This enhances the 

performance of LSTM.  

18.5.1. SELU Functions 

The SELU functions are defined as follows: 
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18.5.2. SmoothL1 Loss Function 

The SmoothL1 Loss is defined as follows: 

 

18.6. Errors 

The numbers contained in this section explain the rate at which errors occurred in running the 

LSTM deep model. 
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[Train] Speed loss = 0.0005266328640690547 , Location loss = 0.3718912093549646, Avg loss 

=0.37241784122682386 

 

[Test] Speed loss = 0.0005441447103207576 , Location loss = 0.6851853229223736, Avg loss 

=0.6857294662604256 

18.7. Spoof Detection Algorithm 

In this application, the spoof detection algorithm is based on determining the Euclidean distance 

between the predicted location and the GPS location. The predicted location is obtained using the 

initial state, and using the inputs of the driver (of the AV controller), and the dynamical model 

developed in the previous section. If the Euclidean distance difference is larger than a specific 

threshold, then spoofing is detected. This approach is preliminary, and has several disadvantages: 

 The choice of the threshold associated with the prediction error is complex, since the 

dynamical model of the vehicle is not perfectly known. Thus, a large prediction error is not 

necessarily caused by spoofing of the inputs and outputs, but could be also caused by 

modeling errors.  

 Even if the prediction error is caused by input output spoofing, there is no possibility to 

determine if this spoofing is accidental (sensor or actuator fault, for example GPS fault or 

pedal transducer fault) or intentional (malicious spoofing). 

Figure 18.6 illustrates the detection of output (sensor) spoofing on simulated positioning data. In 

this example, the GPS positioning data input into the system is spoofed (purple line, as opposed to 

the green line, on the top subfigure). The prediction error increases, and once a threshold is 

reached, the algorithm detects the spoofing.  
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Figure 18.6 Detection of output (sensor) spoofing on simulated positioning data  
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Chapter 19. Prototype Development and Limited 

Deployment of CAV Technologies on Texas 

Roadways 

19.1. Introduction  

The previous work performed under Project 0‐6838 included V2V applications for emergency 

vehicle alert, emergency electronic brake lights, and intelligent message propagation and V2I 

applications for static and dynamic wrong‐way driver (WWD) detection and road condition 

monitoring. Leveraging these systems and applications, two core primary tasks were performed 

under this phase of the project. The tasks included an extension to the WWD detection system and 

the porting and transition of UT Austin’s AIM system (detailed in Chapter 4) onto physical 

vehicles and infrastructure.  

19.2. Roadside and Vehicle DSRC Hardware  

Hardware utilized during this phase of the project included re‐use of the previous onboard units 

(OBUs) and roadside units (RSUs) from Phase 1 and the addition of a representative traffic 

management center (TMC) and two Southwest Research Institute (SwRI)‐owned AVs.  

19.2.1. Roadside Units  

The RSUs used for the demonstration were the latest release of the MK5 DSRC (dedicated short‐

range communications) radio from Cohda Wireless, shown in Figure 19.1. The equipment has 

been updated from the previous phase in order to be compliant with the currently accepted 2016 

SAE and IEEE standards. As before, the RSUs are connected via PoE (Power‐over‐Ethernet) to 

the backhaul network and/or TMC system as appropriate.  
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Source: www.cohdawireless.com 

Figure 19.1 An example of an RSU device, a Cohda MK5 RSU 

19.2.2. Traffic Management Center  

The representative TMC used for the demonstrations was a modified version of the TxDOT 

Lonestar Advanced Traffic Management System (ATMS). This included preliminary versions of 

a CV subsystem to facilitate handling basic safety messages (BSMs) from vehicles and sending 

alert messages back out to vehicles and a temporary module to execute the WWD detection 

algorithms.  

19.2.3. Onboard Units  

SwRI’s CV portable onboard devices (PODs) were used for rapidly turning traditional vehicles 

into CVs. Examples of these PODs are shown in Figure 19.2 and Figure 19.3.  
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Figure 19.2 SwRI-developed PODs with all of the components necessary to turn any vehicle into a 

DSRC‐enabled CV 

 
Figure 19.3 PODs ready for deployment 

The core component of the POD is the DSRC radio, shown in Figure 19.4. The DSRC OBU utilizes 

the same MK5 Cohda radio chipset as the RSU but is in a different form factor.  
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Figure 19.4 Example of an OBU, a Cohda Wireless MK5 DSRC unit 

19.2.4. Autonomous Vehicle Architecture  

Two SwRI‐owned AVs were used during testing and demonstration of this phase of the project: a 

Freightliner Century shown in Figure 19.5 and a Ford Explorer shown in Figure 19.6. Automation 

of the vehicles was facilitated by integrating aftermarket drive‐by‐wire systems along with SwRI’s 

existing AV software architecture to facilitate command and control of the vehicle.  

 
Figure 19.5 SwRI Freightliner Century 
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Figure 19.6 SwRI Ford Explorer 

19.3. Connected Vehicle Applications  

Two CV applications were demonstrated during this phase of the project: Wrong‐Way Driver –

Safe Disable and AIM.  

19.3.1. Wrong‐way Driving – Safe Disable  

The WWD Safe Disable demonstration builds upon the previous phase of work to detect and alert 

a WWD (and other nearby drivers) of the dangerous driving situation. In the previous phase, an 

alert was provided to the driver of the wrong‐way vehicle. In this phase, the alert was still present; 

however, another module also received the message and issued commands to the AV control 

architecture, steering the vehicle to a designated safe harbor location.  

Wrong‐way zones were configured in the backhaul infrastructure, specifically isolating simulated 

highway exit ramps and a portion of a simulated one‐way road. For this phase, the backhaul 

infrastructure was running the modified Lonestar ATMS described above. Vehicles were 

traversing the local area broadcast BSMs at the standard rate of 10Hz. BSMs were received by the 

RSU and forwarded to the ATMS, where they were processed and evaluated against the configured 

wrong‐way zones. Once a vehicle was determined to be driving the wrong way, an alert was 

generated and broadcast back to the vehicle via the RSU. A process onboard the vehicle displayed 

the alert to the driver and sent a command to the AV architecture that disables the driver’s control 

(steering, brake, and throttle) and steers the vehicle to a safe harbor location included in the WWD 

alert message.  

Figure 19.7 shows an example in which a vehicle was detected driving the wrong way up an exit 

ramp, from the right. Once detected by the infrastructure, an alert message was created that 

included the suggested route the vehicle should follow to the designated safe harbor location. The 

route was encoded using the message structure shown in Figure 19.8.  
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Figure 19.7 Waypoints with desired speed. Blue: 70+, Yellow: 55, Orange: 40, Red: 25, and the safe 

harbor location 

 
Figure 19.8 Waypoint message frame 

19.3.2. Autonomous Intersection Management  

The AIM demonstration is a part of the simulation system developed by UT CTR. The concept 

behind the AIM system is to demonstrate an infrastructure process that can manage vehicle flow 

through an intersection such that traditional signal controllers are not necessary.  

In this demonstration, a control interface was integrated into the SwRI AV architecture allowing a 

driver to request a trajectory through an intersection. A tablet displayed a map of the SwRI test 

track to the driver, seen in Figure 19.9, on which the driver selected a target destination. A process 

onboard the vehicle calculated a route based on a known underlying road network. The route was 

encoded into the trajectory request and sent to the infrastructure for evaluation. The request was 

sent via the DSRC OBU to the RSU, which forwarded the message to a backhaul process running 

the core AIM algorithms. The request message structure is shown in Figure 19.10.  
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Figure 19.9 In-vehicle AIM interface 

 
Figure 19.10 Abstract Syntax Notification (ASN) definition of a TrajectoryRequest 

Within the infrastructure process, the requested path is projected forward in time and evaluated for 

collisions against other previously approved trajectories. If a collision is detected, a message is 

sent to the vehicle indicating the rejection. The response message structure (both for approving 

and rejecting a request) is shown in Figure 19.11. Upon receiving the rejection, the driver can 

change the approach parameters (generally the current speed) and request passage again. This 

process is repeated until a rejection is not received. On the infrastructure, once the requested path 

is approved, it is added to a list of approved trajectories and is included in the list with which later 

requests from other vehicles are compared.  

 
Figure 19.11 ASN definition of a TrajectoryResponse 
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The proposed high‐level system architecture is shown in Figure 19.12. Up to the point of the 

demonstrations in December 2017, the AV control had not been integrated into the trajectory 

request and response process. Rather than autonomous control, a human driver would be provided 

speed and trajectory recommendations to follow once a route was approved. A rejected route 

request would be displayed to the driver as a red line overlaid on the map (following the calculated 

path that was requested), shown in Figure 19.13, while an approved route request would be 

displayed as a green line overlaying the path to the destination, shown in Figure 19.14.  

Unseen to the vehicle, the backhaul system also tracks the vehicle’s BSMs and compares them 

against the vehicle’s approved route to watch for deviations from the requested speed or path. No 

action was taken at this time in the system; however, an operator on the backhaul system would 

be notified of the deviation. It is expected that the system would generate a message to send to the 

vehicle when the deviation exceeded a defined threshold, revoking a previously approved route 

plan through the intersection if a situation was determined to be unsafe; i.e., a collision was more 

likely at that point due to the path and/or speed deviation.  
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Figure 19.12 System architecture using AIM on one of SwRI's automated vehicles 
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Figure 19.13 Route rejected 

 

 
Figure 19.14 Route approved 
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19.4. Conclusion  

The high‐level design and architecture was primarily completed for both systems and demonstrated 

in December 2017 at the SwRI test track.  

The WWD safe disable system, including integration into the AV control, was complete and only 

needed minor changes to resolve communications issues that presented themselves during testing 

and demonstration. The system was successfully able to monitor vehicle movement nearby and 

through the configured regions, identify specific vehicles driving the wrong way, alert nearby 

vehicles of the unsafe situation, and command the wrong‐way vehicle to drive to a safe location, 

which the vehicle was able to do.  

The AIM system involved more moving pieces and a more complicated architecture. The system, 

as demonstrated, included initial integration with the AV control architecture; however, it did not 

autonomously control the vehicle and instead provided information and guidance to a driver in the 

vehicle. At the driver’s request, the system would automatically calculate a route to a destination 

and send the route to the backhaul system for evaluation. The backhaul system successfully 

evaluated the requested route based on currently approved routes from other vehicles and provided 

the acceptance or rejection to the requesting vehicle, which was then presented back to the driver.  
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Appendix 1: Formulation of Boundary and Internal 

Conditions based on Triangular Fundamental 

Diagram 

Definition of Initial, Upstream, Downstream, and Internal 

Conditions 

The initial condition can be expressed as a piecewise linear function, with each linear piece defined 

by: 

𝑐𝑖𝑛𝑖𝑖(𝑥) = {
−𝑘𝑖𝑥 + 𝑏𝑖             ∶ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

+∞                ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (1) 

With the above definition, the initial condition can be written as 𝑐𝑖𝑛𝑖 = min
𝑖
𝑁𝑖𝑛𝑖𝑖 

Similarly, the upstream boundary condition is assumed to be piecewise linear, with each piece 

defined by: 

𝑐𝑢𝑝𝑗(𝑡) = {
𝑞𝑗𝑡 + 𝑑𝑗               ∶  𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1
+∞                   ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 (2) 

With this definition, the upstream boundary condition can be written as 𝑐𝑢𝑝 = min
𝑗
𝑁𝑢𝑝𝑗 

The downstream boundary condition is also assumed to be a piecewise linear function, with each 

piece defined by: 

𝑐𝑑𝑜𝑤𝑛𝑗(𝑡) = {
𝑝𝑗𝑡 + 𝑐𝑗               ∶  𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1
+∞                   ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 (3) 

This enables us to define the downstream boundary condition function as 𝑐𝑑𝑜𝑤𝑛 = min
𝑗
𝑁𝑑𝑜𝑤𝑛𝑗, 

One of the major results of Mazaré et al. (2011) is that the solutions associated with each linear 

piece of the initial, upstream, downstream, and internal boundary conditions can be computed 

analytically as follows: 

Solution to a Linear Initial Condition 

If 0 ≤ 𝑘𝑖 ≤ 𝑘𝑐, the initial condition imposes a free-flow state. 

𝑁𝑐𝑖𝑛𝑖(𝑥, 𝑡) = {
𝑘𝑖(𝑡𝑣𝑓 − 𝑥) + 𝑏𝑖        ∶ 𝑥𝑖 + 𝑡𝑣𝑓 ≤ 𝑥 ≤ 𝑥𝑖+1 + 𝑡𝑣𝑓 

𝑘𝑐(𝑡𝑣𝑓 − 𝑥) + 𝑏𝑖 + 𝑥𝑖(𝑘𝑐 − 𝑘𝑖)  ∶  𝑥𝑖 + 𝑡𝑤 ≤ 𝑥 ≤ 𝑥𝑖+1 + 𝑡𝑣𝑓        
 

 

(4) 
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else, if 𝑘𝑐 , ≤ 𝑘𝑖 ≤ 𝑘𝑗, the initial condition imposes a congested state 

𝑁𝑐𝑖𝑛𝑖𝑖(𝑥, 𝑡)

= {
𝑘𝑖(𝑡𝑤 − 𝑥) − 𝑡𝑘𝑗𝑤 + 𝑏𝑖               ∶ 𝑥𝑖 + 𝑡𝑤 ≤ 𝑥 ≤ 𝑥𝑖+1 + 𝑡𝑤 

𝑘𝑐(𝑡𝑤 − 𝑥) − 𝑡𝑘𝑗𝑤 + 𝑥𝑖+1(𝑘𝑐 − 𝑘𝑖) + 𝑏𝑖   ∶  𝑥𝑖+1 + 𝑡𝑤 ≤ 𝑥 ≤ 𝑥𝑖+1 + 𝑡𝑣𝑓 
 

 

(5) 

 

Solution to a Linear Upstream Boundary Condition 

For an upstream boundary condition 𝑁𝑢𝑝 defined as: 𝑁𝑢𝑝
𝑗(𝑡) = 𝑞𝑗𝑡 + 𝑑𝑗 with 𝑑𝑗 = −𝑞𝑗𝑡 +

∑ (𝑡𝑙+1 − 𝑡𝑙)
𝑗−1
𝑙=0 𝑞𝑗

𝑙, the solution component can be expressed as: 

𝑁𝑐𝑢𝑝𝑗(𝑥, 𝑡)

= {
𝑑𝑗 + 𝑞𝑗 (𝑡 −

𝑥 − 𝑥0
𝑣𝑓

)  ∶  𝑥0 + 𝑣𝑓(𝑡 − 𝑡𝑗+1) ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑓(𝑡 − 𝑡𝑗)

𝑑𝑗 + 𝑞𝑗𝑡𝑗+1 + 𝑘𝑐 ((𝑡 − 𝑡𝑗+1)𝑣𝑓 − (𝑥 − 𝑥0))  ∶  𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝑣𝑓(𝑡 − 𝑡𝑗+1)

 

 

(6) 

 

Solution to a Linear Downstream Boundary Condition 

For a downstream boundary condition 𝑁𝑑𝑜𝑤𝑛
𝑗, defined as 𝑁𝑑𝑜𝑤𝑛

𝑗(𝑡) = 𝑝𝑗𝑡 + 𝑏𝑗 with 𝑏𝑗 =

−𝑝𝑗𝑡 + 𝑁𝑖𝑛𝑖
(𝑛−1)

(𝑥𝑛) + ∑ (𝑡𝑙+1 − 𝑡𝑙)
𝑗−1
𝑙=0 𝑞𝑗

𝑙, the solution component can be expressed as: 

𝑁𝑑𝑜𝑤𝑛
𝑗(𝑥, 𝑡)

= {
𝑏𝑗 + 𝑝𝑗𝑡 − (

𝑝𝑗
𝑤
+ 𝑘𝑗) (𝑥𝑛 − 𝑥)  ∶  𝑥𝑛 + 𝑤(𝑡 − 𝑡𝑗) ≤ 𝑥 ≤ 𝑥𝑛 + 𝑤(𝑡 − 𝑡𝑗+1)

𝑏𝑗 + 𝑝𝑗𝑡𝑗+1 + 𝑘𝑐 ((𝑡 − 𝑡𝑗+1)𝑣𝑓 + 𝑥𝑛 − 𝑥)  ∶ 𝑥𝑛 + 𝑤(𝑡 − 𝑡𝑗) ≤ 𝑥 ≤ 𝑥𝑛

 
(7) 
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