

0-6748-P2

BEST PRACTICES FOR FLEXIBLE PAVEMENT STRUCTURE WIDENING: WORKSHOPS

Maria Burton Andre Smit Manuel Trevino Jorge Prozzi Mike Murphy

TxDOT Project 6-6748: Best Practice for Flexible Pavement Structure Widening Projects

JULY 2013

Performing Organization:	Sponsoring Organization:
Center for Transportation Research	Texas Department of Transportation
The University of Texas at Austin	Research and Technology Implementation Office
1616 Guadalupe, Suite 4.202	P.O. Box 5080
Austin, Texas 78701	Austin, Texas 78763-5080

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Table of Contents

Introduction	1
Workshop Webinar 1: Contractors and Suppliers Experience	1
Workshop Webinar 2: TxDOT Experience	2
Workshop Presentations and Materials	4
Summary and Conclusions	5
Appendix A: Workshop Agenda	
Appendix B: List of Attendees	

On accompanying CD:

Appendix C: Contractor and Supplier Presentations

Appendix D: TxDOT Presentations

Introduction

This document presents a summary of the two half-day workshops/webinars that took place at CTR July 2, 2013. The workshops constitute Product 2 (P2) of the research project and correspond to Task 3. The purpose of the workshops was to obtain expert opinions from TxDOT personnel, contractors, and construction equipment and materials manufacturers with experience in pavement widening projects. For logistical and practical reasons both workshops were conducted on the same day.

The workshop was conducted to facilitate face-to-face participation for those who could travel to Austin; the webinar component was added to increase the participation of those who could not attend due to limited travel budgets or time restrictions. The morning workshop focused on contractors and suppliers presenting their experience while the afternoon workshop focused on TxDOT experience. The details of the workshops and the workshop materials follow:

Workshop Webinar 1: Contractors and Suppliers Experience

The participants in the morning workshop included contractors, construction equipment and materials manufacturers and suppliers, and construction industry representatives. This workshop focused on construction methods and considerations, practical problems encountered during construction of narrow widening projects, modified or specialized equipment that has been successfully implemented, and suggested improvements to construction plan details, specifications, and standards. Discussion topics and points included the following:

- a. It would be beneficial in terms of project costs and construction duration for TxDOT to standardize widening project designs to fit the sizes and widths of existing equipment and materials (geotextiles, geogrid, etc.). Improve preliminary project testing to ensure that information such as pavement thicknesses and material types are up to date.
- b. Milling machines provide an excellent joint cut face that is clean and uniform; remove the scarified material from the cut trench and place the material into a dump truck using a conveyor system; and allow for adjustment of the cut width and depth depending on the machine type and size. In addition, milling machines can cut the trench along the entire length of the project as required by some districts or can stop the milling operation at drives or intersections, climb out of the trench, and cross to the road to begin the trench on the opposite side. Districts currently use both of these widening methods depending on circumstances.
- c. TxDOT currently sets the maximum construction distance at 1 mile for widening projects. Some contractors might be able to successfully construct more than 1 mile per day. It is recommended that TxDOT consider allowing the contractor to demonstrate their equipment and capabilities to maximize construction efficiency.

- d. TxDOT does not let a steady number of widening projects for statewide letting. For this reason, some contractors might be reluctant to invest in specialized equipment for constructing road widening projects, although the equipment could improve construction quality and efficiency.
- e. TxDOT has successfully used geotextiles, fabrics, and grids to reinforce subgrade and base courses. However, placement of these materials varies from district to district. TxDOT may want to consider further studies to evaluate the best placement of these reinforcing materials within the pavement structure.
- f. No guidance is provided regarding placement of geogrid or fabrics with regard to the vertical cut face of the widening section or overlap into the adjacent existing lane. It is suggested that further study address the benefits of wrapping the grid or fabric over the joint face and providing overlap within the lane to strengthen the joint and reduce the potential for reflective cracking.
- g. When constructing the widened section using a Weiler or Midland road widener, it is unclear whether the contractor should set the widener screed at an elevation that places an additional thickness of material to allow for compaction and densification of the base layer. Further guidance is needed in this regard.
- h. Manufacturers make narrow width steel wheel or pneumatic tired rollers that can fit in a narrow widening section to properly compact the subgrade and each subsequent pavement lift. Further study is needed to identify the appropriate type and weight of these smaller rollers, considering that the contractor will want to make use of this equipment for other applications.
- i. Widening the pavement with asphalt-stabilized base (ASB) is preferred by many districts and contractors since this material is easy to place and compact and can be opened to traffic at the end of each day's construction. However, TxDOT design guidance warns that ASB should not be placed full-depth against a flexible base layer due to blockage of sub-surface drainage. A test site has been constructed on SH 21 in the Austin District to investigate the use of drainage layer fabric placed under a 3-in. stone base layer to accommodate drainage under the ASB base layer. Further study and monitoring of this and similar sites is recommended to determine the value of this installation.
- j. The contractors and equipment suppliers requested additional information regarding the average widening amount on TxDOT projects, including the distribution of widening sections. This information would be helpful in determining equipment sizes during purchase.
- k. Additional guidance is needed regarding the optimum moisture content of various base types for use in geogrid applications.

Workshop Webinar 2: TxDOT Experience

The participants in the afternoon workshop included personnel from TxDOT and other transportation agency and industry representatives. The afternoon workshop focused on

design considerations, design details, standards and specifications, construction problem areas and solutions. Discussion topics included the following:

- a. Some districts have found that the cost of constructing a full-depth reclamation of the entire roadbed is from 15 to 22% higher than constructing a narrow widening section on each side of the roadway. Though slightly more expensive, full-depth reclamation results in total rehabilitation of the roadway and eliminates the widening joint lines and potential variability in material stiffness and moisture contents, which improves construction quality and pavement performance.
- b. TxDOT funding guidelines for Category (CAT) 8 Highway Safety Improvement Program (HSIP) funding may restrict best practices for widening projects. There is some confusion and disagreement whether rehabilitation of the existing lanes can be performed using CAT 8 funding during a widening project. For this reason, deteriorated roadways might be selected as widening project candidates, although deteriorated roadways are better candidates for full-depth reclamation or rehabilitation (including lane widening). Further study is needed to clarify the selection criteria for HSIP criteria and funding.
- c. Variations among districts regarding materials, climatic conditions, truck loading, and average daily traffic suggests that a more detailed study of recommended, standardized designs is needed to address these variations while providing consistency.
- d. Variations from district to district occur regarding whether projects are constructed through statewide letting by contractors, through routine maintenance contracts or by state maintenance forces. Due to variations in available equipment, materials, personnel, and other factors, the resulting variability in construction quality and performance of widening projects may occur. Further study is needed to determine how resources can be made available to all districts to ensure the best quality and performance of widening projects.
- e. Approximately 40,000 center line miles of FM roads exist on the state system. A large percentage of these roadways have narrow 9-, 10-, and 11-foot lanes and often do not have a paved shoulder. Districts in which oil and gas exploration is occurring are experiencing increased problems with pavement failures, rutting, edge-drop offs, cracking, and related distresses, raising concerns about safety and pavement structural capacity.
- f. Pavement widening projects funded with CAT 8 money do not qualify for structure widening. This limits the ability of the district to provide the safest possible road cross section and clear zone widths in some cases. Further consideration should be given to the criteria and conditions established for HSIP funding for widening projects.
- g. Some districts have purchased milling machines to construct narrow widening projects and to perform other functions in the district. Further consideration

should be given to the value of purchasing self-propelled pavement widening equipment for maintenance sections to further expand in-house capabilities.

- h. Further consideration should be given to the use of a water truck to control dust during construction. Often water trucks will spray the base material after placement in the trench, which might result in higher-than-optimum moisture content just prior to surface or prime placement. Higher-than-optimum moisture contents might result in later settlement, rutting, or dry land shrinkage cracking as the base dries out and/or moisture is drawn from the widened section into the existing pavement and subgrade layers.
- i. Further study is needed to evaluate the use of dust palliatives during full-depth reclamation and narrow widening projects to hold down dust and enhance safety. Contractors use motorized brooms on certain projects to remove dust after base placement, causing dust clouds that obscure the roadway and may cause safety concerns for traffic and construction workers within the work zone.
- j. Further work is needed to evaluate the specific mechanisms that cause cracking of the joint line within a narrow widening project. Failure of the joint line can occur due to poor joint construction, traffic loads, dry land shrinkage cracking, or a combination of these factors. Quite often extensive and continued maintenance activities are required to address joint failure problems.
- k. The most common joint design is a vertical cut joint face at the pavement widening line. Further study is needed to determine if other designs that involve tapers or a stepped construction might improve joint density and reduce the potential for reflective cracking. However, the joint design should also address contractor equipment capabilities and construction efficiency.

Workshop Presentations and Materials

Six presentations were made in the morning workshop and another six presentations were given in the afternoon workshop. In addition, a recap discussion took place at the end of the afternoon workshop. To start the workshop, the first presentation was given to introduce the topic of narrow widening and explain the purpose of the workshop. Morning presentations included perspectives from RoadTec (equipment manufacturer), APAC (contractor), Allen Keller (contractor), and Tencate and Tensar (geosynthetic materials manufacturers). Presentations during the second workshop included perspectives from TxDOT's Austin, Waco, San Angelo, Bryan, and Atlanta Districts and an overview of pavement widening equipment. The final portions of the workshops were reserved to recap and further discuss important issues identified during the presentations. Appendix A contains the agenda on the full day and Appendix B lists the individuals who attended both workshops, both in person and online. On the accompanying CD, Appendix C provides the industry presentations from Workshop 1 while Appendix D presents the TxDOT presentations from Workshop 2.

Summary and Conclusions

The workshops were organized to obtain opinions and additional knowledge about narrow widening projects from experienced professionals involved in the construction, equipment, materials, and design aspects of these projects. Presenters came from different areas of Texas; some suppliers came from out of state.

During the workshops, knowledge was shared on the types of equipment available for narrow widening projects and the advantages and disadvantages of different equipment pieces. The size of the equipment used should match the work being done, and there are different options for the different types of work. For example, to cut the joint of the existing pavement, a milling machine or a road saw (attached to a skid steer or front end loader) could be used. To spread the base material, a road widener (self-propelled or nonself-propelled) or a belly dump could be used.

Geosynthetic manufacturers discussed the products they offer that could be used for narrow widening projects. In particular, they emphasized how geosynthetics could help provide reinforcement for the road and retard movement of cracks rising to the surface. Geosynthetics could also help with drainage issues. Participants noted the lack of standards for the use of pavement inter-layers, and indicated a study is needed.

Contractors and TxDOT representatives from District offices shared their current practices that work well, as well as lessons learned from experiences that did not provide acceptable results. Flex base was compared to ASB in multiple presentations: flex base is cheaper and allows to better drainage, but ASB is faster (allowing the traffic to return to the road sooner) and reducing dust. A pilot car is usually needed for narrow widening projects, as the narrow width presents a safety issue. Some solutions for narrow widening issues depend on the source of funding (safety versus rehabilitation funds).

In summary, the workshop/webinar met the project objectives. Based on the sign-in sheet and number of webinar logins, 17 individuals attended the workshop in person and an estimated 70–90 TxDOT personnel attended all or a part of the webinar through the TxDOT Webex system.

The researchers plan to follow up on the issues and questions raised during the workshops and will document new information in the final project report.

Appendix A – Workshop Agenda

Webinar-Workshop Agenda

Project 0-6748 'Narrow Pavement Widening' University of Texas – at Austin Center for Transportation Research Large Conference Room 1616 Guadalupe, Suite 4.202 Austin, Texas 78701

<u>Tuesday July 2, 2013 9:00 – 4:30 PM</u>

The Texas Department of Transportation has initiated project 0-6748 to develop a compendium of best practices for narrow pavement widening. The project addresses design, construction, equipment, materials and related issues associated with projects involving widening of narrow pavements by from 1' - 6'.

The research team has conducted interviews of Districts, Construction Equipment manufacturers and sellers, Contractors and Material Suppliers to obtain first-hand information about the challenges and best practices associated with narrow pavement widening. The purpose of this Webinar-Workshop is to allow Districts, Contractors, Equipment and material suppliers to discuss their methodologies and products as applied to narrow pavement widening projects to facilitate discussion and share information about best practices and 'lessons learned'.

Webinar – Workshop Arrangements

Location

The Webinar – Workshop will be conducted from the University of Texas at Austin – Center for Transportation – Large Conference Room. Map attached to Email, park on the 10th floor of the parking garage – parking validated.

Webinar-Workshop Agenda

Project 0-6748 'Narrow Pavement Widening Webinar-Workshop'

PART I: 9:00 AM - 12:00 PM

1.	Introductions and Purpose of the Worksh	nop Mike Murphy 15 m
2.	<u>RoadTec</u>	David Zuehlke 25 m
	a. Discussion	dzuehlke@roadtec.com
	b. Lessons learned and 'take-aways'	(512) 638-2429
3.	APAC Trotti and Thompson	Maria Burton CTR 25 m
	a. Discussion	Manuel Trevino CTR
	b. Lessons learned and 'take-aways'	maria christina.86@hotmail.com
		Manuel.trevino@mail.utexas.edu
4.	<u>Allen Keller</u>	Kory Keller 25 m
	a. Discussion	kkeller@allenkellerco.com
	b. Lessons learned and 'take-aways'	(830) 997-2118
5.	Tencate Geosynthetics	<u>Mike Samueloff</u> 25 m
		Katie Strain
	a. Discussion	m.samueloff@tencate.com
	b. Lessons learned and 'take-aways'	(248) 302-8806
		k.strain@tencate.com
6.	Tensar	Stephen Archer 25 m

6. Tensar

- a. Discussion
- b. Lessons learned and 'take-aways'

Lunch Break 12:00 – 1:00 pm

sarcher@tensarsorp.com

PART 2: 1:00 - 4:30 PM

7. Austin District	Mike Arellano	25 m
a. Discussion	miquel.arellano@txdo	t.gov
b. Lessons learned and 'take-aways'	(512) 832-7093	
8. <u>Waco District</u>	<u>John Jasek</u>	25 m
	Don Miller	
a. Discussion	john.jasek@txdot.gov	
b. Lessons learned and 'take-aways'	(254) 867-2770	
	<u>Don.miller@txdot.gov</u>	
	(254) 867-2730	
9. San Angelo District	<u>Lewis Nowlin</u>	25 m
a. Discussion	lewis.nowlin@txdot.go	<u>v</u>
b. Lessons learned and 'take-aways'	(325) 446-9603	
10 Data Distaist	Davlara Cashl	25
10.Bryan District	Darlene Goehl	25 m
a. Discussion	Darlene.goehl@txdot.g	<u>zov</u>
b. Lessons learned and 'take-aways'	(979) 778-9650	
11. Atlanta District (Survey Summary)	<u>Andre Smit</u>	10 m
	Asmit@mail.utexas.ed	-
	(512) 906-5495	
12. Pavement Widening Equipment (overvie	ew) <u>Mike Murphy</u>	20 m
	Maria Burton	
13. Recap of presentations Questions & Answ	vers Jorge Prozzi	45 m
	Prozzi@mail.ute	<u>xas.edu</u>

(512) 905-2435

Appendix B – List of Attendees

Project 0-6748 'Narrow Pavement Widening'

Webinar/Workshop

Center for Transportation Research

University of Texas at Austin

Tuesday July 2, 2013

SIGN-IN SHEET

Γ		Name	Email	Affiliation	
ľ	1	nike Murph	Murphyma ctexas.	CTR	
	2	ANDRE' SMIT	ASMIT@MAILUTEXAS.EDU	CTR	
	3	Katie Strain	K.Strain@tencate.com	TenCate Mirafi	
F	4	DEREK WIATREK	dwiatrek@tensarcorp.com	TENSAR	
Ĩ	5	Dan Bakar	dbaker @ tansarcosp.com	Tensar	
	6	Steve Archer	sarcher @ tensor corp.com	Tenso-	
	7	Mark Mc Daniel	mark, medanie le tx dot. gn	TXDOT	
	8	Hagdy Mikhail	Hagdy. Mikhal studet. go	TXDOL	
	9	Bennett Closus	bennett @ closner. com	Closner Eovipment	
	10	DavidZvehlke	dzuehlle@roadtec.com		
	11	Jor 65 Prozzi	prozziomeil. utexas.edu	UTAUSTIN	
	12	Manuel Trevino	manuel. trevino @ mail. utexas. edu	CTR	
	13	thi Wy	phiromag @ great 1. com	CTR	
	14	Maria Byrton	maria_christina.86@ hotmo	UT Austin	
	15	DARRIN JENSEN	darrin jensen@ txdet. gov	TXDOT	
web	16	Joe Leidy	joe, leidyetxdot, pu		
web	17	Lewis Nowlin	Levis. Now in Otdot.		2d
web	18	Steve Smith	stephen. smith@frdat.	, TXDOT-OdessA	•
web	19	Tim Hertel	+m. herteletadot.		'n
Jelo	20	CAVOLYN Fink	CArolyn. Finle trdot, ja		J.
web	21	Peter Jungen	peter jurgenotration	Tyler District	1
hel	22	Michael Schnieder	michael schneider@-	Not Mer Distric	C
well	23	DAV leve Goehl	DArlene Joelle tradet	Ju Bizon Distan	
wels	24	Allan Moore	Allan moore trait. 10	of Widnith tails	
present		Jorge Zornber-	zornberge mail.	uterpas. e20 UI	
		- J	J ()		

		Name	Email	Affiliation	
web	25		Richad. holder@tredut.	SAN Angelo	
web	26		robert moy A@ tradet		
wer	27	John JAcel	john. jasche tadat	WALO	
web	28		tormas, sacuze txdot	1	
wer	29	Mille SameWlaft		Tencate	
webs	30	Kory Keller		Allen Kellon	
web	31	PAUL Norman	·	Abilene	
well	32	Romutido Meni	A	Phorr desig	
nels	33	SArAn Horner		Brown wood - GA	
weld	34	DANAyDeLeon		Corpus Christi	
weh	35	Don miller		WACO - CST	
web	36	Daniel Worden		San Antonio - De	sit
web	37	Lonnie RASSdale		SAN Antonio - CS	
web	38	Jose Craytian		corpus Onristi-	CS
well	39 40	Larry Smith			
well		Monlyaning Area Office DALLAS District	L		
webs	42				
	L	Andrew Kissiy		Fort Worth - 8	
weh	44	Brown wood Distric	T		503.
veb wer	45				
wer	46	Pharr District			
wen		-			
web	48	Atlanta Distric			
well	49	Kyle			
web	50	Grege Granato		SAN ANTONIO	C
lr	51	wendy <u>Simmons</u>		District Desi Tyler District Maintenance En	E. Cul
wel	0 SZ	Robert MoyA I		» LAredo - Const	ructur
wel	D53	Scott	-		
		Tony Moran	N .	Son Antoniol	(constrais)
	1/55	Felix Lerma		2000 LAN 1 000100	•
wer	056	Richard 12	2.20	CST-Soil	15 TAJSC

SAN Antonio (MAINT) 57. Ken Davenport 58. Hui. Wu plutoing @ gmail.com_ CTR 59. Hundo 60. Michaelvan Winkle SAN Angelo MAINT Sect Su pervisor

Appendix C – Contractor and Supplier Presentations

0-6748: Best Practice for Flexible Pavement Structure Widening Projects Introduction

THE UNIVERSITY OF TEXAS AT AUSTIN

Project Purpose

 Objective: identify best practices for improving pavement performance on projects involving widening of narrow pavement structures

THE UNIVERSITY OF TEXAS AT AUSTIN

Reasons for Widening

• <u>Reasons</u>:

Improve safety

- Edge failures & vehicle control
- Greater traffic separation

Enhance pavement performance

- Edges deteriorating from softening due to poor drainage
- Reduce rutting due to tire loads at edges

Other Reasons?

 Narrow widening: adding 1 - 6 ft. width to shoulder

THE UNIVERSITY OF TEXAS AT AUSTIN what starts here changes the world

Construction Challenges

- Narrow work areas
- Variable subgrade support
- Surface and subsurface drainage

- Keeping time short per task to maintain traffic flow
- Narrow widening equipment not worth purchase
- Project choices can depend on funding source
 - CAT1, CAT8, RMC, In House

THE UNIVERSITY OF TEXAS AT AUSTIN

- Difference between old and new structure
 - Differences in thickness, material properties, and compaction
 - <u>Can result in:</u>
 - Rutting in existing or new pav't
 - Uneven settlements
 - Cracking

(Varin & Saarenketo, 2012)

• Different load bearing capacities for both structures

THE UNIVERSITY OF TEXAS AT AUSTIN

- Joint construction and location
 - Should not be placed under/near wheel path
 - Traffic loading can cause <u>reflection cracking</u>

THE UNIVERSITY OF TEXAS AT AUSTIN

• Settlement

Sufficient compaction of new structure else,
 <u>differential settlement</u> could occur

(Varin & Saarenketo, 2012)

THE UNIVERSITY OF TEXAS AT AUSTIN

• Moisture penetration

– Should:

(Varin & Saarenketo, 2012)

- Maintain lateral drainage within pavement structure
- Proper Selection of base materials key
- Good Construction Inspection
- Else, can cause:
 - Moisture penetration base, subgrade softening
 - Swelling and heave of heavy clays

THE UNIVERSITY OF TEXAS AT AUSTIN

Drainage

- Maintain sufficient pavement surface drainage
- Can result in:
 - decreased bearing capacity
 - Edge deformation
 - Ponding of water (accelerates deformation safety)

THE UNIVERSITY OF TEXAS AT AUSTIN

Slope stability

- Should ensure stability of side slopes (inner & outer)
- Problems if ROW space is limited

- If steep inner slope:

- Could result in poor compaction of widened section
 - cause shear failure & edge deformation
 - Structure widening a challenge

THE UNIVERSITY OF TEXAS AT AUSTIN

Workshop Webinar

- Webinar Purpose:
 - Obtain expert opinions
 - Experience in pavement widening projects
 - TxDOT personnel & transportation agencies
 - Industry representatives
 - Contractors
 - Construction equipment manufacturers

THE UNIVERSITY OF TEXAS AT AUSTIN

Workshop Webinar

- Contractors, construction equipment manufacturers & suppliers, & construction industry representatives
 - Identify construction projects performed well/not well
 - Good practices
 - Guidelines, specifications, standards
 - Equipment

• TxDOT Districts

- Discuss projects that performed well/not well
- Good practices
- Guidelines, specifications, standards

THE UNIVERSITY OF TEXAS AT AUSTIN

Equipment for TXDOT Shoulder Widening

David Zuehlke, Roadtec Inc.

AGENDA

Introduction

Historical Equipment

Current Equipment

Challenges

Family of Companies

CHATANOOGA, TN

Manufacturers Road – 216,500 sq. ft. – Company HQ New equipment manufacturing

Riverside Drive Location - 54,009 sq. ft. -Parts, Rebuild, and Used Equipment

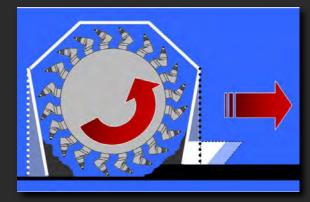
359 Employees Total

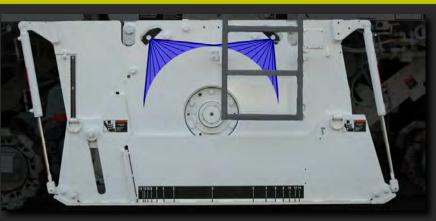
ROADTEC PRODUCT LINES

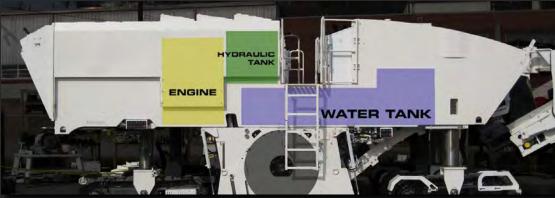
Historical – Custom Equipment

SIDE-CUTTER ATTACHMENT

- Old Option none in Texas
- RX-60C now RX-900
- Soft Shoulders / Deeper Cuts
- Economic Feasibility
- Lane Closure


SHUTTLE BUGGY WIDENER


- Limited number
- Buggy Utilization 2000 vs. Now


ROADTEC MILLS

MILLING CONCEPT

AUTOMATED GRADE & SLOPE

RX-400e

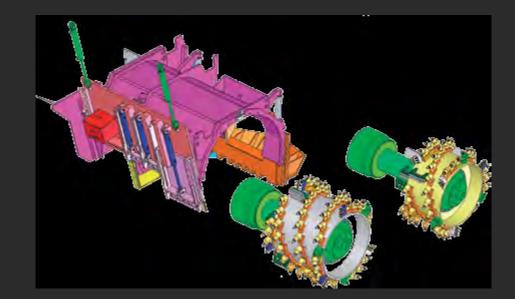
CUTTER OPTIONS

- I. I2" Max Depth
- 2. Standard 4' Fixed Width
- 3. Variable Cutter System VCS

Variable Cutter System - VCS

VCS 1 Housing – 3 Widths

24" Cutter


36" Cutter

48" Cutter

AUTOMATED GRADE & SLOPE

One Person Operation

Exceptional visibility and controls allow the machine to be operated by one person

RX-400e

- Right Hand Flush Cut
- Rear Flush Cut
- No legs in cut
- Minimal lane intrusion

RX-400e

12" Deep Cut - 24" Wide

RX-400 District Usage

Atlanta Beaumont Bryan Houston Lufkin Paris Waco

RX-600e

RX-600e

6' 7" or 7' 2" Cutter
VCS Capable with 24" Cutter
36" Cutter
48" Cutter

Real County – FM 336


Real County – FM 336

Grade depth set on the left side Slope set on the right

Slope matched to existing grade

Real County – FM 336

SHOULDER MILLING ADVANTAGES

- Clean Joints & Sub-Grade Surface
- Accurate sub-grade depth and slope
- Full Recovery and Recycle RAP & Aggregates
- More productive faster construction cycle
- One machine operation allows for tighter job footprint

SHOULDER WIDENING CHALLENGES / ISSUES

SHOULDER WIDENING CHALLENGES / ISSUES

- Contractor Work Volume & Timing
- In-consistent widths among Districts
 - Example 2' 6" vs. 2', 3', or 4'
 - Max Depth 12"
- Most common size mill cut width is 6' 7" followed by 7' 2"
- Under/Over cut vs. specialty size cuts

THANK - YOU

QUESTIONS

0-6748: Best Practice for Flexible Pavement Structure Widening Projects

APAC Site Visit & Commentary (Beaumont District – FM 1414)

Maria Burton Manuel Trevino

THE UNIVERSITY OF TEXAS AT AUSTIN

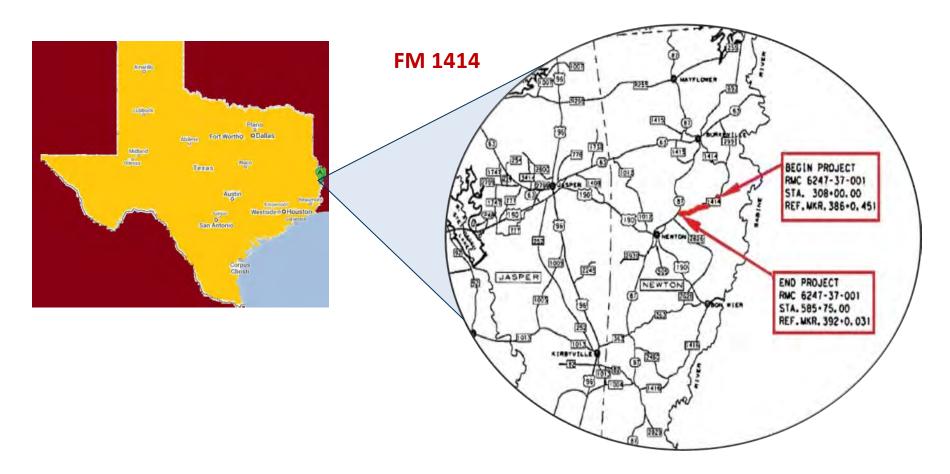
Project Description

- APAC Ashland Paving and Construction
 - Regional Office in Beaumont, TX

Highway Routine Maintenance Contract:

- Beaumont District Newton County
- FM 1414
- Type/Work:

Pavement Widening (4 ft), Structure
 Extension, Seal Coat and Restripe


• Project Length: 5.260 miles

THE UNIVERSITY OF TEXAS AT AUSTIN

- Limits of Work:
 - From 10.439 miles South of SH 63 in Burkeville, South to SH 87

THE UNIVERSITY OF TEXAS AT AUSTIN

Reasons for Widening

This Project: widening for Safety

- Roads tight on traffic, 10.5' 11' wide
- Collisions
- Logging trucks too long for turning on road
 - put slope on it to help

(East Texas logging trucks)

Common narrow widening projects:

- FM roads
- Widening for safer access to mailboxes for mail carriers

(FM 1414)

THE UNIVERSITY OF TEXAS AT AUSTIN

Challenges with Narrow Widening

Tighter area to work in

- Use smaller equipment
 - smaller mill with variable drum
 - smaller roller to proof roll
 - smaller dozer

(photos from this project)

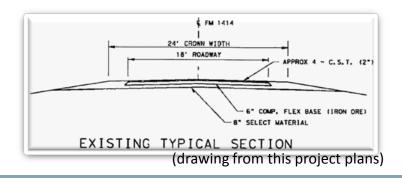
THE UNIVERSITY OF TEXAS AT AUSTIN

- Challenges widening with traffic; it is already narrow as-is
 - <u>Curves & line of sight issues</u>: use pilot car (this project)
 - If flat: use flagger station

THE UNIVERSITY OF TEXAS AT AUSTIN

Sometimes dust problem

- Have to spray with water
- Asphalt stabilizer base better than flex base get compaction & don't have to worry about dust control



(photo from this project)

THE UNIVERSITY OF TEXAS AT AUSTIN

Narrow Widening – Past Experiences

- Previous projects:
 - <u>Lesson Learned</u>: should seal joint so don't have base failures
 - Roots discovered in original material after milling caused base failures
- Information desired in plan set:
 - Need existing road condition (sometimes information unknown)
 - e.g. Challenge making slope on something already there
 - Condition of existing road based on surveys done years in advance
 - Road changed since surveys (wheel ruts, etc.)

THE UNIVERSITY OF TEXAS AT AUSTIN

Narrow Widening – Practices

• Work on a mile at a time, one side at a time

• For Good Results:

- Use quality materials
- Use modern machines
- Check grades as go
- Check compaction (TxDOT does it as well)

<u>Safety & Training</u>:

- Safety meeting every morning
- All signs put up etc. before machines come out
- Training class for machines

HE UNIVERSITY OF TEXAS AT AUSTIN

• Will make sure **residents have access** to their driveways – will tell them ahead of time

(FM 1414)

THE UNIVERSITY OF TEXAS AT AUSTIN

- <u>Drainage</u>:
 - Box Culverts: TxDOT Standards, Standard Width
 - Match existing slopes of roads
 - make drain naturally
 - some cross-structures need to be extended

(photo from this project)

- **Subgrade** prior to base placement typically proof-roll it
- Compaction process: smaller roller to compact subgrade
 - calculate to get one pass

(photo from this project)

THE UNIVERSITY OF TEXAS AT AUSTIN

Narrow Widening - Materials

- All material shipped in (Brownwood for this project)
- All material tested and TXDOT-approved

(photo from this project)

- Don't have option of choosing base material; just bid what's specified in plans
 - Sometimes use <u>flex base</u> (this project)
 - Sometimes use <u>black base</u> from hot mix plant
 - Quicker
 - Better ride
 - Get public back on sooner

HE UNIVERSITY OF TEXAS AT AUSTIN

Narrow Widening - Equipment

- **Sawing existing pavement**: milling machine cuts smooth edge
- Excavating or cutting trench: milling machine
- **<u>Treating</u> subgrade**: don't do it
- Compacting subgrade: double drum asphalt roller, 4'
- <u>Cleaning</u> trench prior to base placement: maintainer with custom-made piece on mouldboard
- Placing new base material: road widener/shoulder machine, self-propelled, levels & spreads at same time
- Treating base with stabilizer: don't do it
- Compacting base: 12-ton roller
- **<u>Placing</u> hot mix**: asphalt paving machine
- Compacting hot mix: asphalt roller
- Other: backhoe, broom, water truck, dozer for edges

THE UNIVERSITY OF TEXAS AT AUSTIN

Equipment for <u>first</u> process:

- Milling Machine
- Maintainer
- 4' Asphalt Roller

THE UNIVERSITY OF TEXAS AT AUSTIN

- Smooth edges cut
- Widened section subgrade compacted

THE UNIVERSITY OF TEXAS AT AUSTIN

<u>Next</u> process, following in order:

- Dump truck
- Road Widener
- Front Loader Backhoe
- Water Truck
- Broom
- 12-ton Roller
- Dozer

THE UNIVERSITY OF TEXAS AT AUSTIN

- Dump truck applying base material
- Road Widener spreading material
- Backhoe replacing dropped material

THE UNIVERSITY OF TEXAS AT AUSTIN

• Road widener continuing to spread new base, as backhoe follows behind

THE UNIVERSITY OF TEXAS AT AUSTIN

- Water truck follows behind backhoe
- Water is sprayed on new base

THE UNIVERSITY OF TEXAS AT AUSTIN

- Broom is following close to Water truck
- Broom sweeping excess material

THE UNIVERSITY OF TEXAS AT AUSTIN

- 12-ton roller follow behind water truck
- Roller making multiple passes to compact base

THE UNIVERSITY OF TEXAS AT AUSTIN

• Dozer following last for edges

THE UNIVERSITY OF TEXAS AT AUSTIN

Erosion control
 – culvert

THE UNIVERSITY OF TEXAS AT AUSTIN

Acknowledgement

Thanks to:

- APAC
- Scott Blanchard,
- Ace Mathews
- Mike Weible

THE UNIVERSITY OF TEXAS AT AUSTIN

Thank You!

(FM 1414)

Questions?

THE UNIVERSITY OF TEXAS AT AUSTIN

Narrow widening projects

Kory Keller Allen Keller Company

Intro

Ranch Road, and Farm to Market experience.

Parameters
Constructability
Efficiency
Construction Safety

• Safety Slopes

• Flex Base vs. HMAC

Aggregate Prime

• Widening vs. Rehabilitation

Safety slopes – the enemy

 Work that is not gainful to the progress of the project.

Quality Control issues

Permeates Runoff

Slopes (cont)

 While safety slopes are an obvious and necessary hazard abatement, the elimination of the hazard is even better.

How can we avoid the safety slope hazard?

 Avoid the use of multiple layers in pavement design

 Multilayer Example: 6 in flex base, prime, and 2" hmac How can we avoid the safety slope hazard (cont)?

 Consider using a single layer, or "monolithic" approach.

 Monolithic example, 6 or 8" of flex base over subgrade, or 4-8" of hmac that fills to final surface.

• The need for the safety slope is eliminated.

Flex base vs. hot mix

 Flex base is considerably cheaper, especially as we move farther away from the hmac plants.

HMAC is seasonal

• Unsuitable subgrade risk

Benefits of aggregate prime

Quick and reliable protective cover

• Finished base under Traffic

Adheres very well to base course

 Low maintenance under traffic in comparison

Protects ride quality on finished base

Benefits of aggregate prime (cont)

 Traffic uses the widened road immediately

Cheap base slope protection

All season application

Aggregate prime recommendations

• RC-250 with Grade 5 aggregate

• 0.2-0.23 g/sy

Grade 5-Grade 6
dry screened
Non-coated

Widening vs. Rehabilitation

Benefit/Cost Ratio

Labor
Equipment
Project Duration

is comparable between widening and Rehabilitation

Widening vs. Rehabilitation

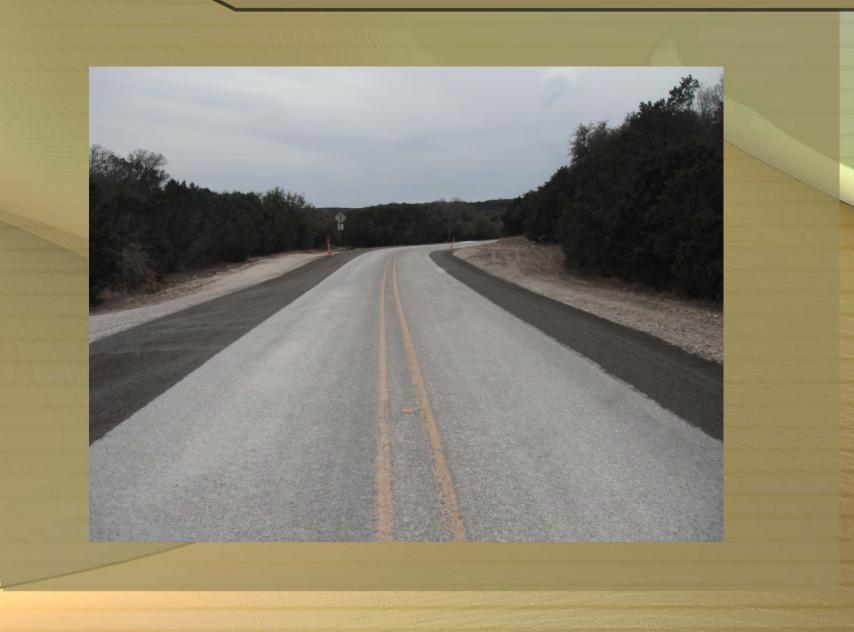
Major components of increase

• Cement

• extra base

second full width chip seal

RM 336 Real


Completed Project RM 783 Gillespie

Rehabilitation Project US 83 Kerr

Widening RM 336 – Post Agg. Prime

Widening RM 336 – Post Agg. Prime

Widening RM 335 –Before Agg. Prime

Typical Milling Machine

Finishing Base RM335 Real

WELCOME

materials that make a difference

Katie StrainTenCate Mirafi – Roadway ReinforcementEnhancing the Performance and Design Life of RoadwaysMichael SamueloffTenCate Mirafi - Pavement SolutionsNarrow Pavement Widening Using Interlayers

Geosynthetics In Construction

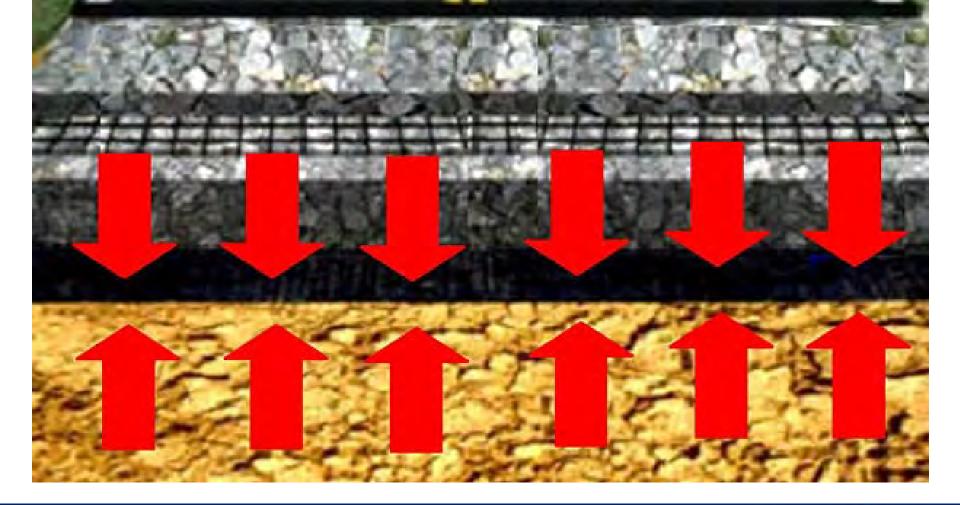
materials that make a difference

Mirafi[®] HP-Series

Mirafi[®] HP-Series

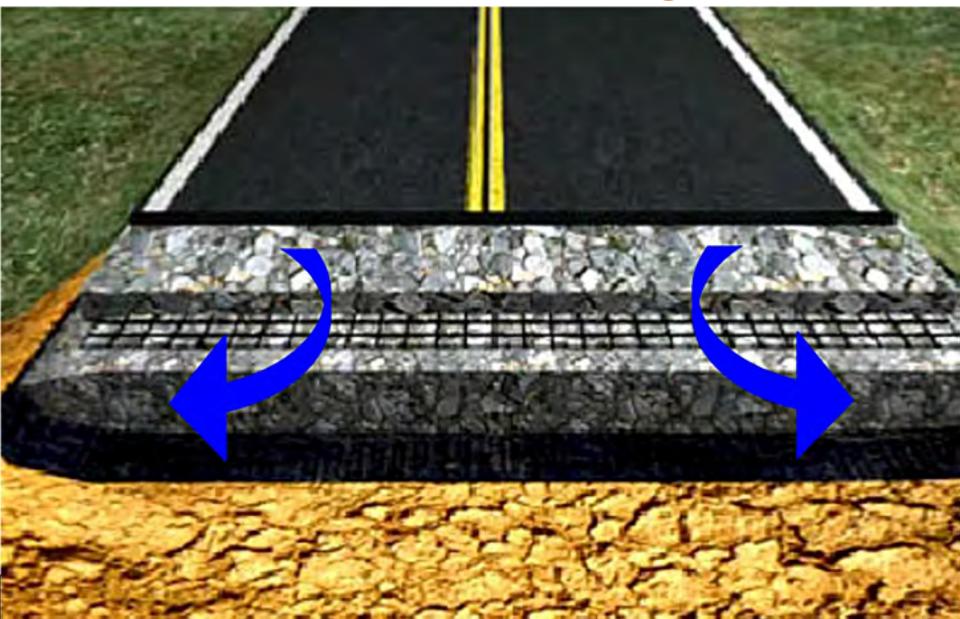
Geosynthetic Functions

Confinement

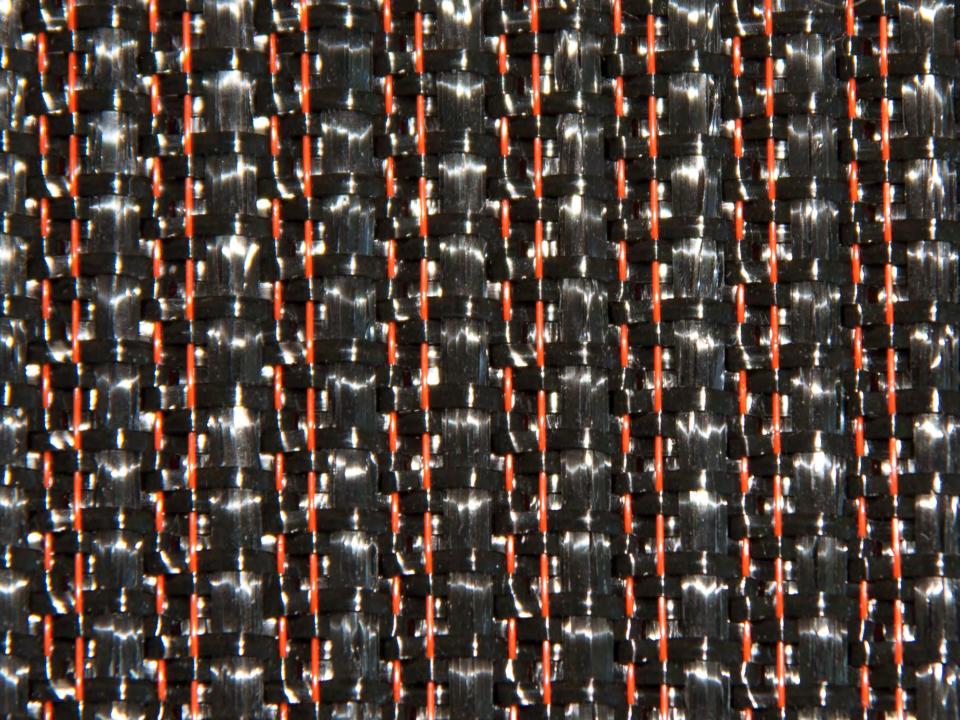


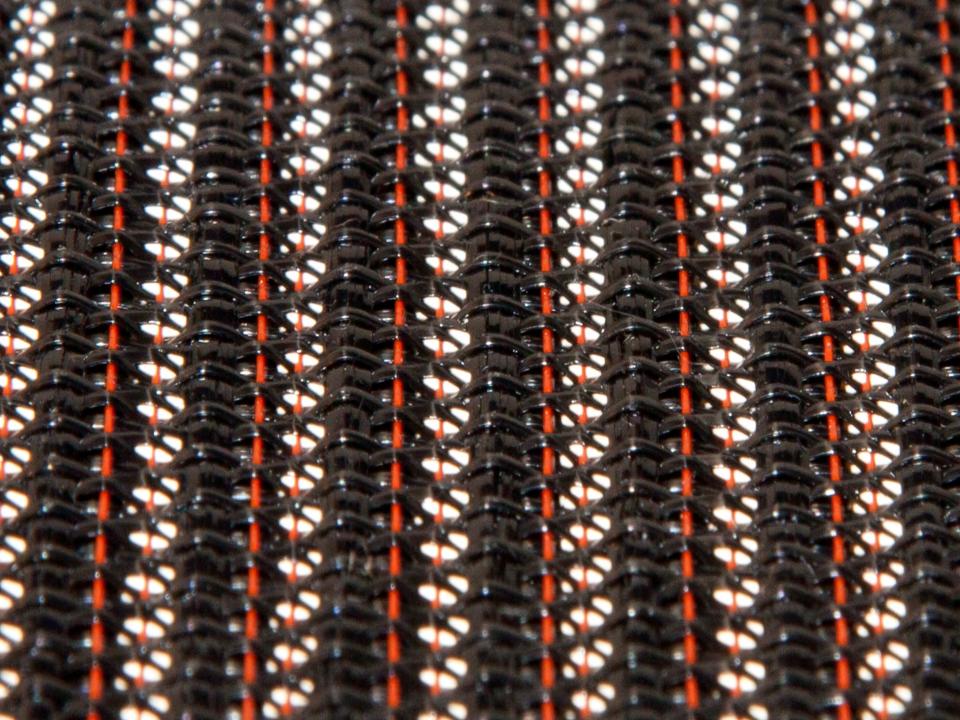
Separation

Geotextile placed between dissimilar materials so that the integrity of both can remain intact or be improved.

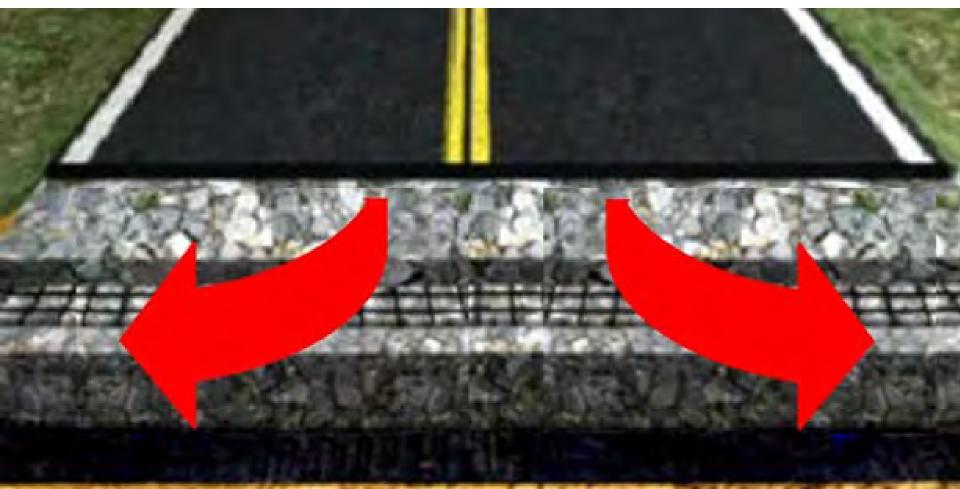


Mirafi RS280i


Filtration / Drainage



Product Comparisons

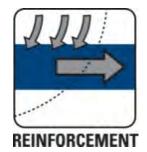

	RS580 <i>i</i>	RS380 <i>i</i>	HP570	HP270	600X
AOS	40	40	30	30	40
Flow Rate	75	75	30	50	4
Permittivity	1.0	0.9	0.4	0.7	.05

Confinement

Depends on the fill, but usually is a function of interlock for geogrids and friction for geotextiles

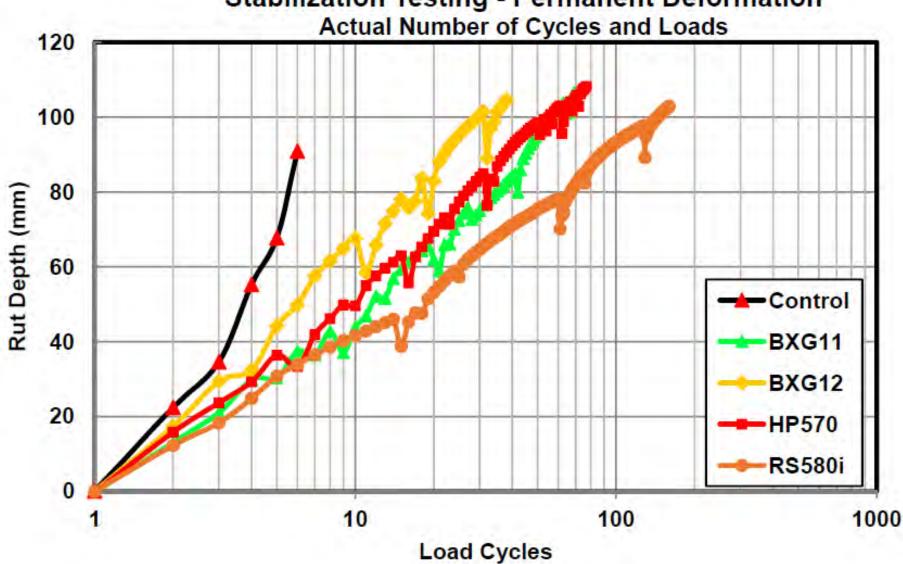
Product Comparisons

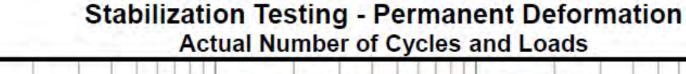
	RS580 <i>i</i>	RS380 <i>i</i>	HP570
Ci	.90	.89	.85


Mirafi RS580i

Reinforcement

Improvement of the system strength created by the introduction of a geosynthetic into a soil/aggregate system




Product Comparisons

	RS580 <i>i</i>	HP570	RS380 <i>i</i>	HP370
2% XD (#/ft)	1800	1320	1020	540
5% XD (#/ft)	4380	2700	2255	1560

17 | Road Show

Mirafi[®] RS580i, RS380i & RS280i

Integration of 5 Key Properties for Base Reinforcement and Subgrade Stabilization

- High Modulus especially in CMD
- High Water Flow/Permittivity
- Separation (US sieve #40)
- High Interaction Coefficient (Confinement)
- Product Identification

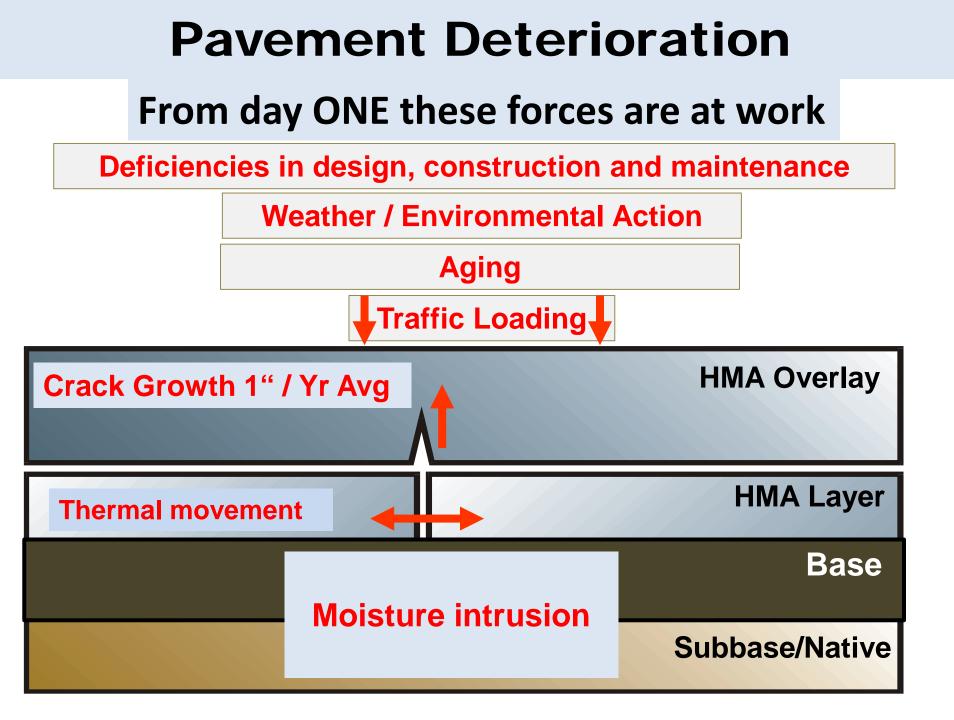
Geosynthetics Pavement Interlayers

Base Preservation – Crack Mitigation

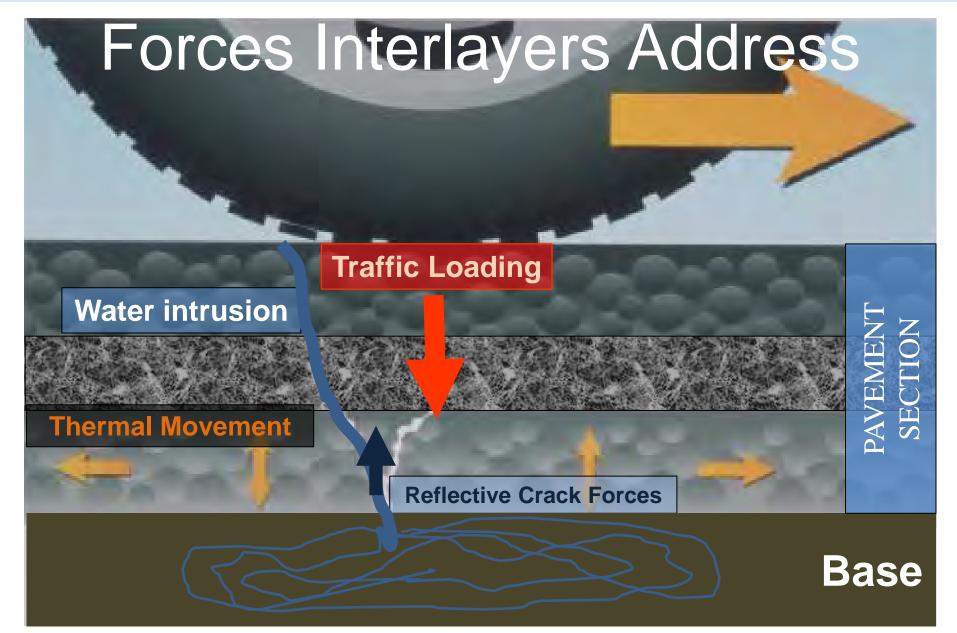
Geosynthetic Pavement Interlayers

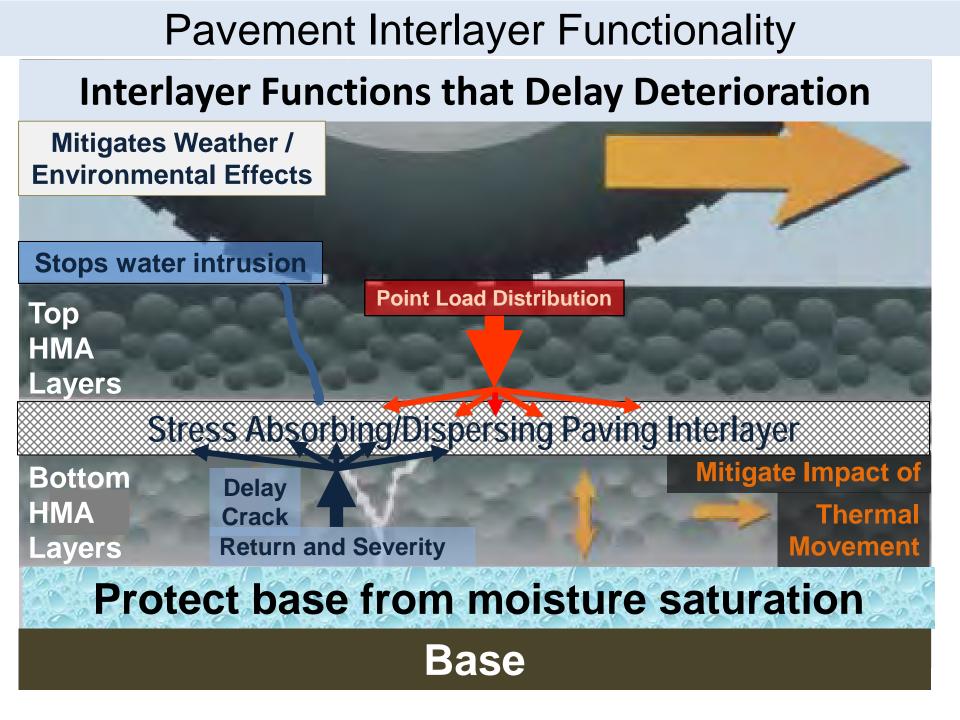
* Deterioration Causes & Delay

Interlayer Types & Functionality


* Cost/Benefit

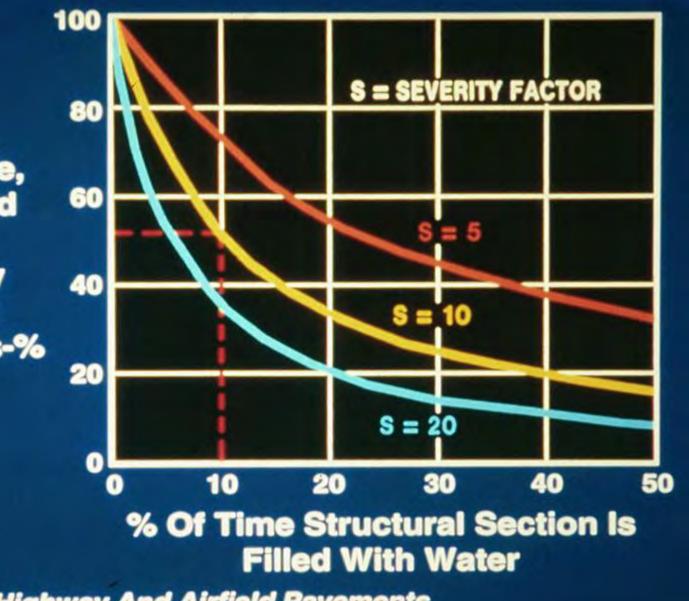
1-1 2 Contraction


Pavement Deterioration



Distressed Pavements

Pavement Deterioration



"One major factor that degrades a roadbed's ability to function is the infiltration of water into the base material."

> Caltrans Pavement Evaluation Manual Pavement Condition Survey John Poppe

Deteriorating Impact of Moisture Intrusion

Useful Life, Compared With Perfectly Drained Pavements-%

From <u>Drainage Of Highway And Airfield Pavements</u> By Harry R. Cedergren

Deteriorating Impact of Moisture in Base

AASHTO DESIGN: IMPACT OF WATER ON AGGREGATE BASE

Drainage Quality Time Drainage Coefficient

Excellent	2 hours	1.2
Good	1 day	1.0
Fair	1 week	0.8
Poor	1 month	0.6
Very Poor	Doesn't drain	0.4

Pavement Interlayer Value

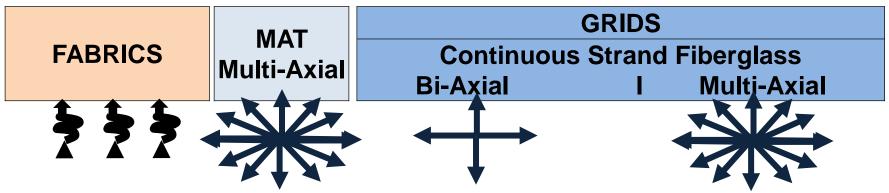
... Extend Life: ✓ Preserve base structural value ✓ Delay crack return & severity Add flexural strength to HMA ... Greater Value: **Reduce impact of asphalt cost** i.e In Dec. 07, \$175/ton, today...\$650+ **Greater benefit at less cost**

Pavement Interlayer Evolution

NEW?...Interlayer evolution to higher levels of performance to multifunctional, Moisture barrier *Plus* reinforcement **to multi-axial reinforcement** / to focus on in-place functionality

Pavement Interlayer Functionality

How Interlayers Work



STRESS DISSIPATING

Mass to soak up (Snonge) Tighter bond, thicker/more mass = greater ability to absorb = better reflective crack retardation Tensile strength and efficiency to disperse low strain crack energy (Rebar) Multi-Axial strong all directions

Tighter bond, higher, more efficient tensile strength, more homogeneous the structure = greater ability to dissipate crack energy = better reflective crack retardation

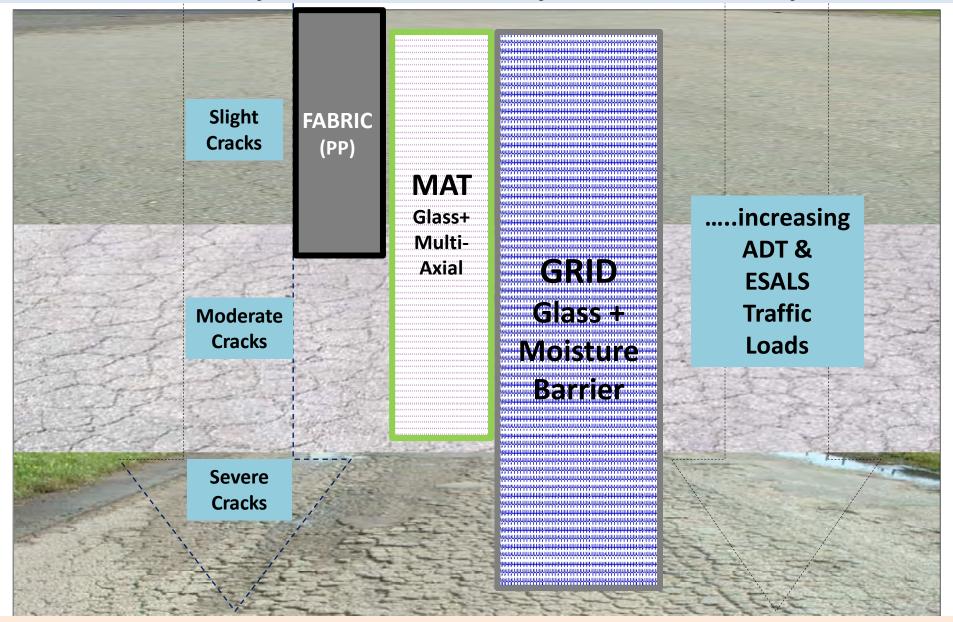
Interlayers Types

Pavement Interlayer Functionality

Description

Mills completely and can be added back into new mix

Inction



Interlayer Functionality Summary

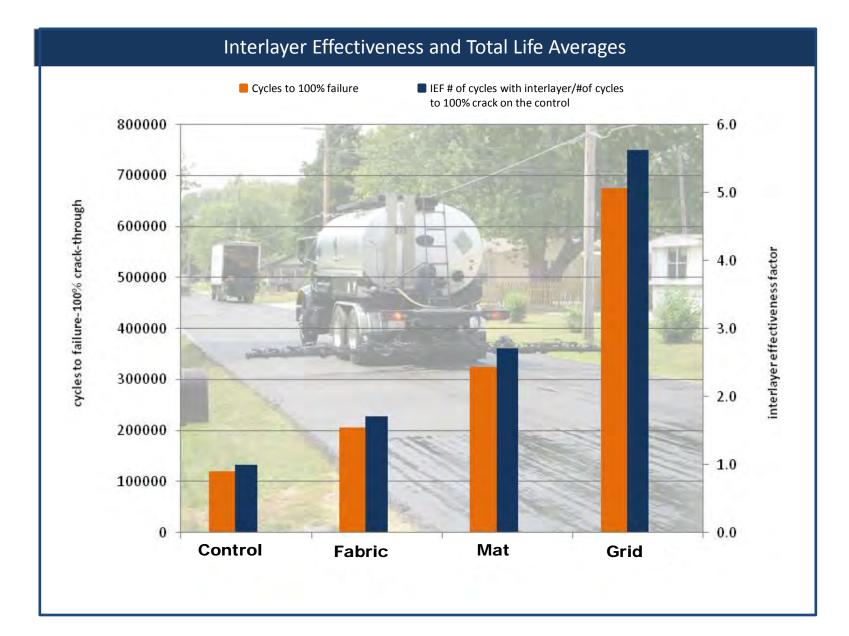
TenCate Products	F	UNCTIONALITY	SEALING	STRESS RELIEF		REINFORCEMENT		R	Eas	uctibility e of llation
Te Pro		Description	Moisture Barrier Membrane	Crack Stress Absorbing	Stress Relief an Tensile to Bi-Axial	•	Monolithic bond	Mills + Recycles into new mix	Wide Vs Narrow Rolls	Uncoated, Flexible Rolls
			Stres	s Absorb	ing Geosy	nthetic Inte	rlayer			
MPV	р Э Э	lypropylene Fabric	YES	YES	NO	NO	YES	Can Be	YES	YES
		Fib	erglass T	ensile Re	inforcing G	Geosynthet	ic Interla	yers		
Tru Pave	Mat i-Axial	Multi-Axial Mat	YES	YES	YES	Up to 80N	YES	YES	YES	YES
PGM G4	Multi	Multi-Axtel Composite	YES	YES	YES	Up to 100kN	YES	YES	YES	YES
PGM G2	a is	cornposile	YES	YES	Up to 100kN	NO	YES	Can Be	YES	YES
FG ¹	i-Axia	PreCeated Self Stick/Scrim	NO	NO	Up to 100kN	NO	NO	YES	NO	NO
FGC ²		PreCoated Composite	YES	YES	Up to 100kN	NO	YES	Can Be	NO	NO
1 Replaced by G4, Replaced by G2										

Interlayer Selection by Functionality

Over Stable Base

Pavement Interlayer Installation

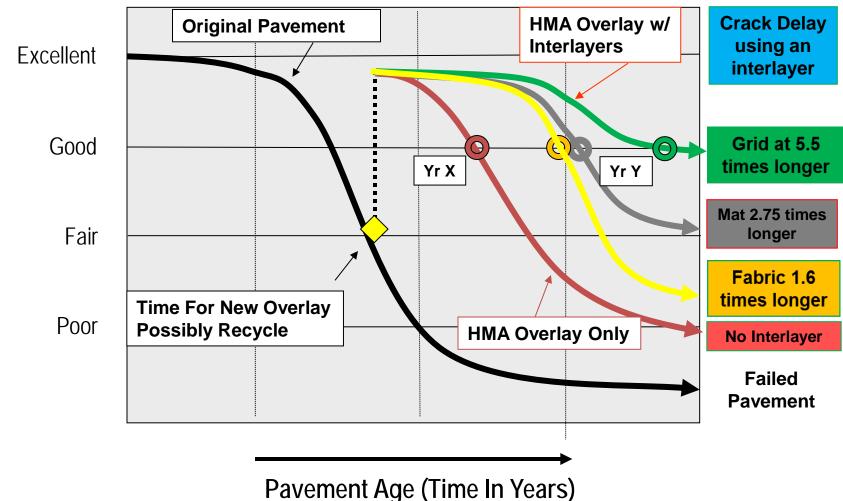
NEW EXTENDED LIFE ASPHALT SURFACE


Interlayer Functionality Study

The Asphalt Pavement Analyzer - Wheel Track

Figure 5: Asphalt Pavement Analyzer – Wheel Track

Interlayer Functionality Capability



Selection by Type/Functional Impact

Interlayer Impact on Pavement Deterioration Curve

REHAB – OVERLAY PAVEMENT

Delay Deterioration - Extend Life (Yr Y – Yr X):

Pavement Condition

Interlayer Cost/Benefit Calculation

Crack Mitigation

Cost of Hot Mix Asphalt

HMA Cost:	\$75.00	Ton	HMA Density	140	Lbs/Inch	Tons	0.07	Inch/ SY	\$5.25	Cost
				% Added Cost	IEF^*	Yrs to Crack	% Added Perf.	SY Cost Per		
					\$SY	COSC		Return^	-	Year
Hot Mi	x Aspha	alt	Inch Thickness:	2.0	\$10.50	0	1	2		\$5.25

Added Value of Crack Mitigation							
Interlayer Type AVG Total Added value based on performance Vs cost				Vs cost			
MPV500 4.1 Oz PP Fabric	\$2.10	\$12.60	20%	1.6	3.2	60%	\$3.94
TruPave Multi-Axial Fiberglass Mat	\$2.50	\$13.00	24%	2.75	5.5	175%	\$2.36
PGM 64 Multi Axial Fiberglass Grid	\$6.00	\$16.50	57%	5.5	11	450%	\$1.50
© 2013 TenCate Geosynthetics Americas							

Interlayer Cost/Benefit Calculation

Crack Mitigation PLUS Base Saturation Protection

Pavement interlayers that provide crack delay AND added preservation of base structure by creating a moisture barrier to prevent base saturation can add over 50% life over one with base saturation as little as 10% of the time, per theCedergren study. There is also less maintenance cost for crack filling and less road closure.

Cost of Hot Mix Asphalt											
HMA Cost: \$7	5.00 Ton	HMA Density	140	Lbs/Inch	Tons	0.07		Inch/SY	\$5.25	Cost	
					% Added	IEF^*		50%	Yrs to	% Added	SY Cost
					Cost		Added	Crack	Perf.	Per	
				\$/SY	COSL		Life	Return^		Year	
Hot Mix A	sphalt	Inch Thickness:	2.0	\$10.50	0	1	0	2	0	\$5.25	
Added Value of Crack Mitigation BLUS Base Protection											
Added Value of Crack Mitigation PLUS Base Protection											
Interlayer Type AV			AVG	Total	Added	value k	pased o	on perfoi	mance V	/s cost	
MPV50	0 4.1 Oz I	PP Fabric	\$2.10	\$12.60	20%	1.6	2.4	4.8	140%	\$2.63	
TruPave Mu	lti-Axial F	iberglass Mat	\$2.50	\$13.00	24%	2.8	4.1	8.25	313%	\$1.58	
FGM-G4 Ma	Li Axial	iberglass Grid	\$6.00	\$16.50	57%	5.5	8.3	16.5	725%	\$1.00	
50% Added life of keeping base structure dry and protection load bearing capacity					city		150%		-		
© 2013 TenCate Geosynthetics Americas											

Interlayer Performance Compromised

Expectation Not Met

1. Incomplete Interlayer System: Includes Interlayer WITH asphalt

2. Installation quality

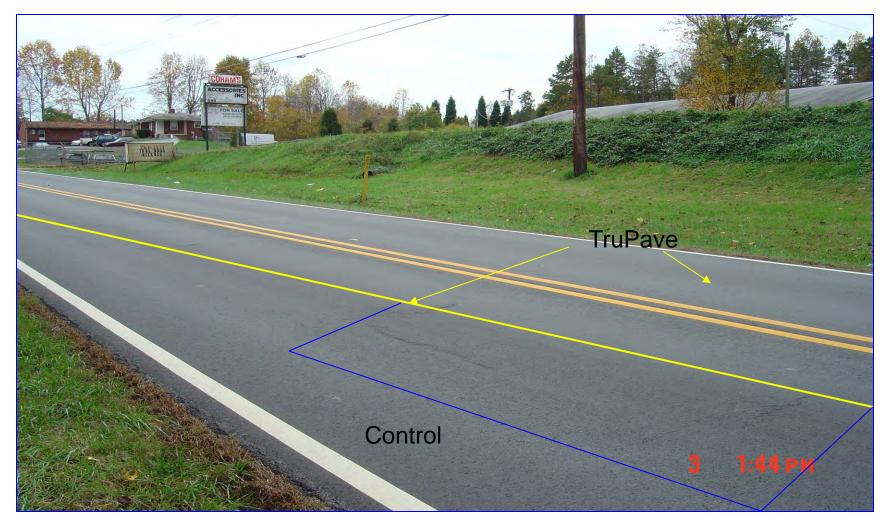
a. Asphalt tackb. Overlay too thinc. Lack of base prepd. Uncut wrinkles

3. Site selected exceeds functionality

- a. Unstable base
- b. Unstable underlying surface
- c. Wide cracks with excessive thermal movement

Performance Compromised: Site Selection Extreme Pavement and Base Failures

Extreme fatigue cracking/unstable base



Caution! Not all conditions interlayer appropriate!

NC Old Rt. 52

NC Rt. 52 April 19, 2005 (14 months)

Expansion crack "reflected" through.....after 14 mo.

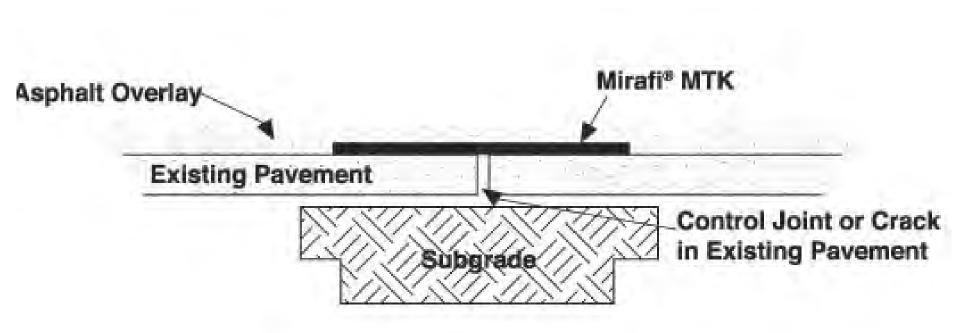
Original Pavement Concrete on 10'centers...widened to 12'-0"

Level-up w/ 100kN bi-axial grid

Interlayer Use Summary

CHEAPEST INSURANCE TO:

* Extend pavement life
* Maximize base performance
* Delay crack return & severity
* Reduce impact of asphalt cost
* Reduce maintenance & road closure


Mirafi® MTK Crack Solution

- Seals crack Keeps water out
- Flexes to keep cracks sealed
- Delays reflective cracking
- Slows pavement deterioration
- Fast, easy to install
- Adheres to cleaned surface
- Used in wide temperature range
- Reduces traffic disruption

Mirafi® MTK Roll Dimensions .30 m x 15.2 m (12 in x 50 ft) .46 m x 15.2 m (18 in x 50 ft) .60 m x 15.2 m (24 in x 50 ft) .91 m x 15.2 m (36 in x 50 ft)

Mirafi® MTK Crack Solution

Thank You

QUESTIONS? TenCate Mirafi

Katie Strain

Roadway Engineer Cell: (512) 534-9028 k.strain@tencate.com

Michael D. Samueloff

Pavement Engineer Cell: (248) 302-8806 m.samueloff@tencate.com

www.tencate.com

Geosynthetic Reinforcement for Shoulder Widening & Rehabilitation Project 0-6748 Best Practices

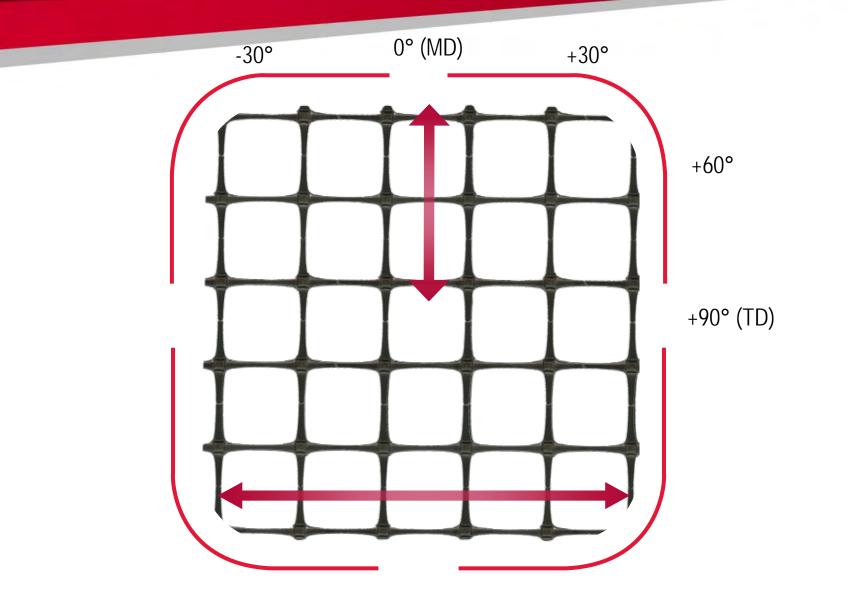
Texas Department of Transportation Austin, TX

July 2, 2013

Tensar International Corporation Stephen Archer, P.E. – Frisco, TX

Agenda

- Product Description/Historical Usage
- Geogrid Mechanisms
- Application Definition
- TxDOT Specifications for Geogrids in Roadways
- TxDOT Narrow Widening Examples Typical Sections
- Pavement Interlayers for Narrow Widening


Rib Profile- Typical Biaxial Geogrid

Tensile Stiffness in Two Directions

Lateral Restraint - TEXAS Aggregate Sources

Uvalde, TX Limestone - Source Material

Tensar.

Laredo, TX Caliche - Source Material

TxDOT Departmental Material Spec (DMS) DMS 6240 – Geogrid for Base/Embankment Reinforcement

GEOGRID FOR BASE / EMBANKMENT REINFORCEMENT

Tensar.

Geogrid Requirements

Property	Туре 1	Туре 2					
Aperture Size, mm (in)	25 - 51 (1.0 - 2.0)	25 - 51 (1.0 - 2.0)					
Percent Open Area, %	70 minimum	70 minimum					
Thickness, mm (in)	0.77 (0.03) minimum	1.27 (0.05) minimum					
MD ribs	0.64 (0.025) minimum	1.15 (0.045) minimum					
CMD ribs	1.50 (0.06) minimum	2.54 (0.10) minimum					
Junctions							
Tensile Modulus @ 2%	204,260 minimum	291,000 minimum					
elongation *, N/m (lb/ft)	(14,000) minimum	(20,000) minimum					
MD & CMD							
CMD							
Junction Efficiency, % of rib ultimate tensile strength	90 minimum	90 minimum					
MD & CMD							
*Determined as a secant modulus without offset allowances.							

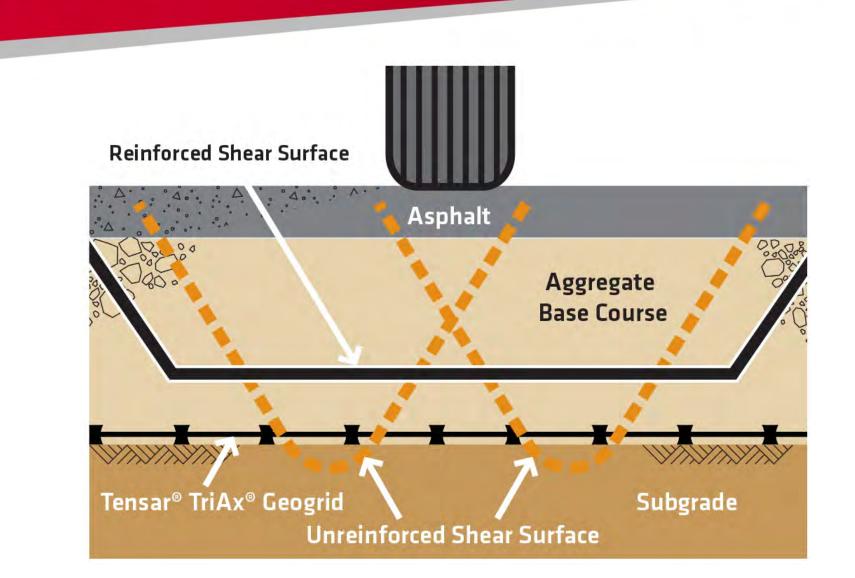
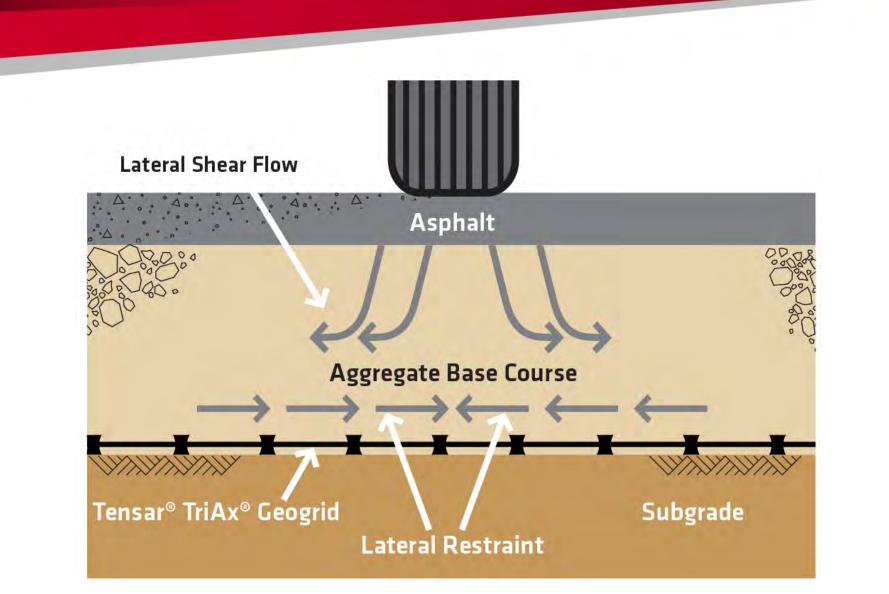


Table 1

Geogrid Requirements

Property	Test Method	Requirements		
Ultimate Tensile Strength (lb/ft) MD ² and CMD ²	Tex-621-J	850 minimum		
Tensile Strength at 2% strain (lb/ft) MD and CMD	Tex-621-J	270 minimum		
Junction Strength (lb/junction) MD and CMD	Tex-621-J	20 minimum		
Aperture Size (in.) Range in either MD or CMD	Tex-621-J	0.5–2.0		
Percent Open Area	Tex-621-J	60% minimum		
Resistance to Installation Damage a. Ribs b. Junctions c. Retained tensile strength ratio	Tex -629-J	≤ 2 ruptured ≤ 2 displaced or ruptured 75%		


Mechanisms – Improved Bearing Capacity

Tensar.

Source: USACOE ETL 1110-1-189

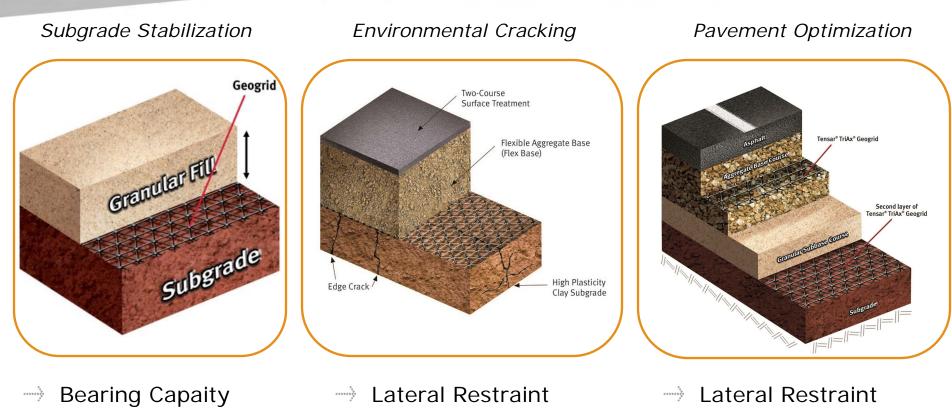
Mechanisms – Lateral Restraint

Tensar.

Source: USACOE ETL 1110-1-189

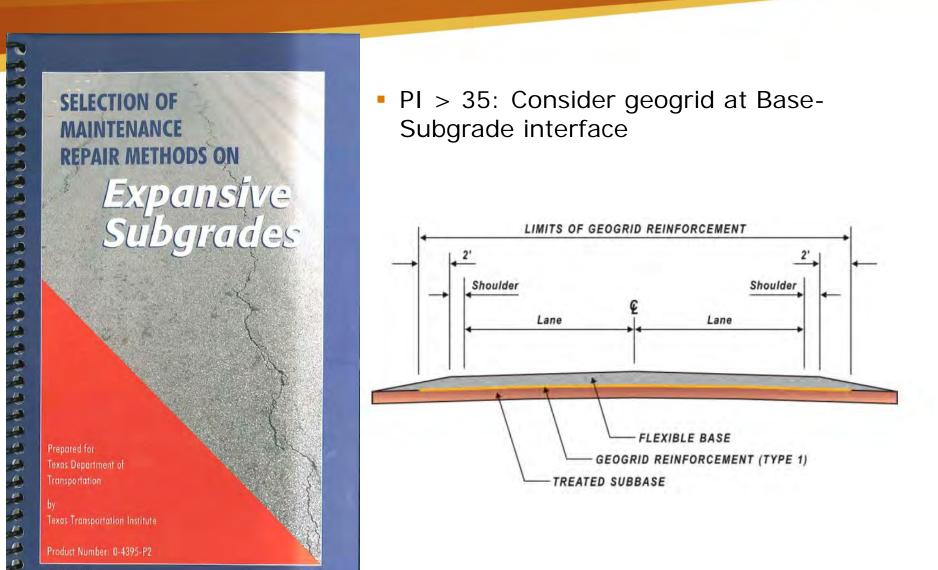
TxDOT Usage Protocol

Texas does not have a formal guideline for the use of geogrid. We have had a significant usage
of geogrid in three primary applications: reduce environmental cracking from subgrade
desiccation, construction platforms in subgrade soils with high sulfate content, and
construction expediency over soft soils.


Geogrid has been used to mitigate the effects of cracking due to soil movement. **One rule of thumb that has been applied is to place grid where the PI of the subgrade has exceeded 35**. This has reduced desiccation cracking often observed on shoulders or in the roadway if shoulders are not present or are narrow. Grid has also been placed between stabilized base (recycled roadway materials) and new granular base to reduce cracking from both soil movement and shrinkage cracking often observed in stabilized bases.

Until we have more experience and better control of techniques to incorporate calcium based stabilizers into subgrade soils with high levels of sulfates, **some regional offices have chosen to use geogrid as a substitute to provide a working platform if not a support layer substitute**. There are also the projects of the more typical construction expediency application, establishment of a construction platform.

Texas has taken a cautious approach to geogrid application to ensure there is a measurable benefit to installation. **No structural credit is offered in pavement design at this time** and is not anticipated until there is more research and quantification of its structural benefits.


Mechanisms Differ for Application Types

ightarrow Bearing Capacity

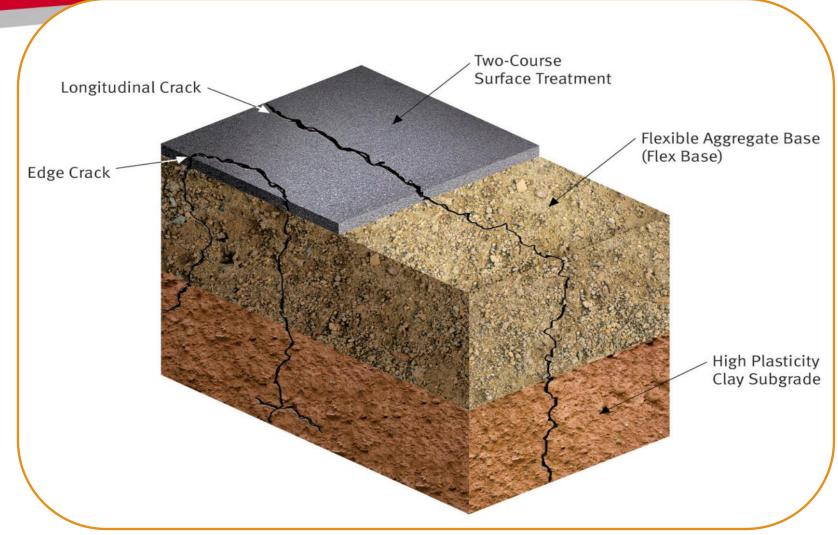
Tensar.

TxDOT Guidance – Environmental Cracking

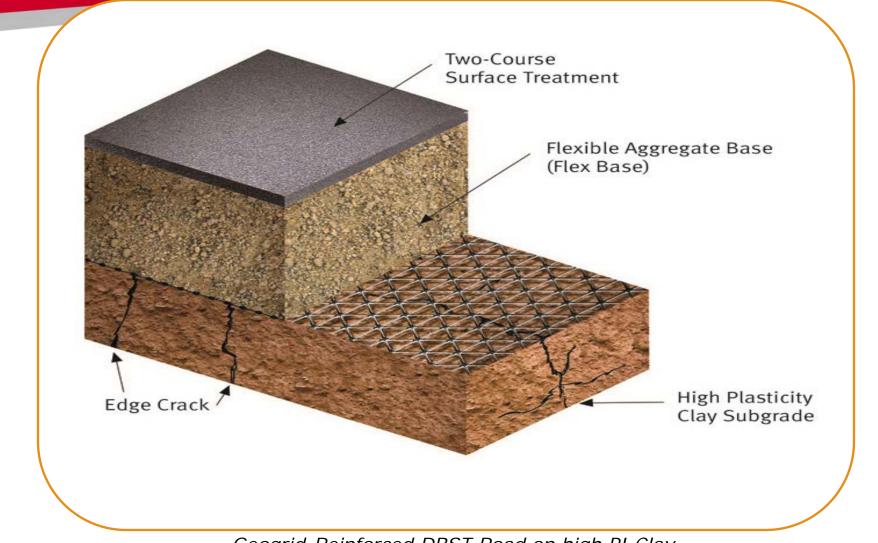
Tensar.

March 2004

Environmental Cracking


FM 1563 – Hunt Co. (Sept 2012)

Environmental Cracking



Unreinforced Road on high PI Clay

Practical Application in Narrow Widening

Geogrid-Reinforced DBST Road on high PI Clay

Materials Cost Snapshot

(Source: TxDOT Average Low Bid Unit Price – Jul 2012 through Jun 2013)

─→<mark>Geogrid:</mark>

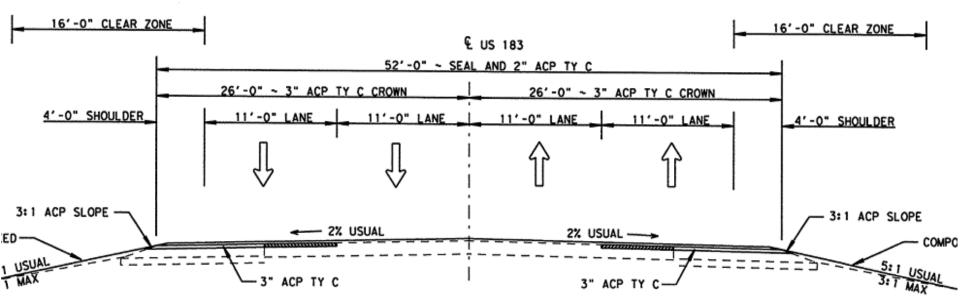
\$1.58 / SY

Cost Benefit – Environmental Cracking

Pavement sub-layers cost:
 (10" x \$1.12/SY-in) + (6" x \$0.54/SY-in) + (\$1.58 / SY) =
 \$16.02/SY (w/ geogrid)
 \$14.44/SY (w/o geogrid)

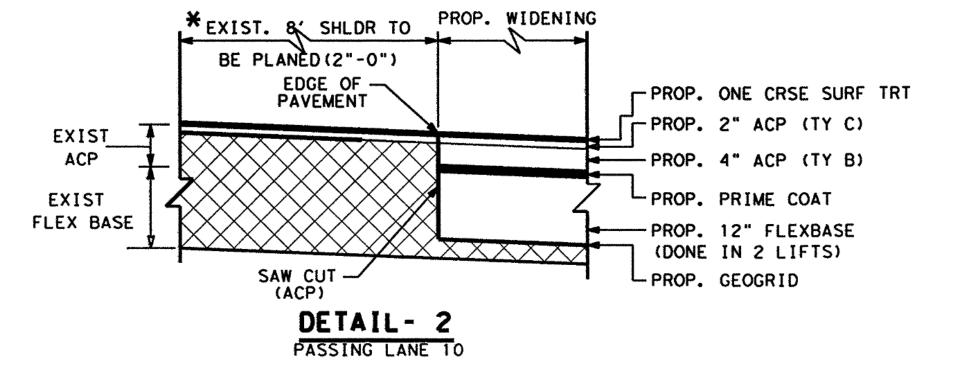
Tensar.

Life-Cycle Cost Analysis:
 Design Life: 15 years
 Discount Rate: 4%
 Maintenance Cost: \$85,000
 Rehabilitation Cost: \$170,000
 PWOC (Life-Cycle Cost Savings): \$196,000


(Calculations based upon 1993 AASHTO Empirical Pavement Design Method)

Pavement Profiles

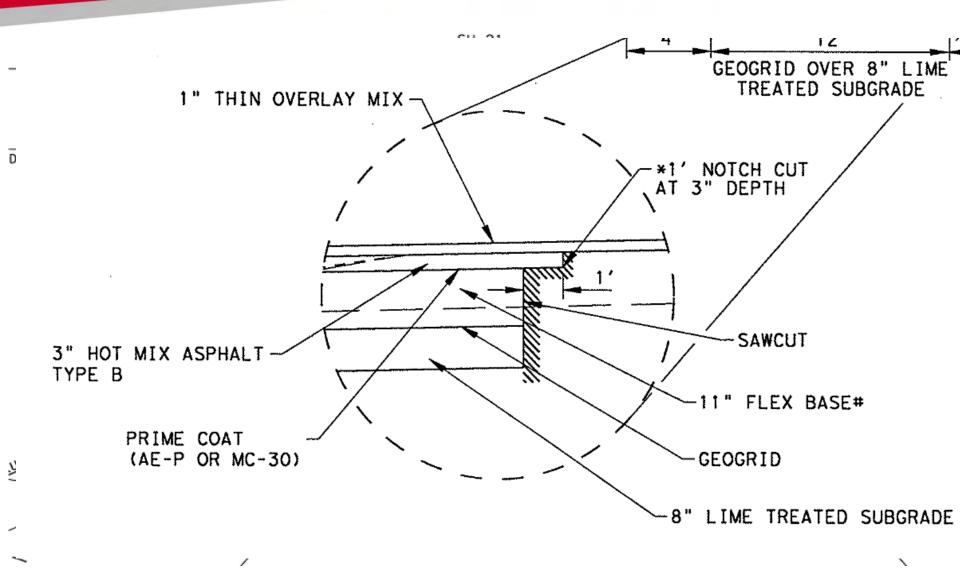
Recent installations of Geogrid for Narrow Widening Applications


US 183 – Caldwell Co.

Tensar.

PROPOSED ACP & COMPLETED SECTION

US 277 – Maverick Co.



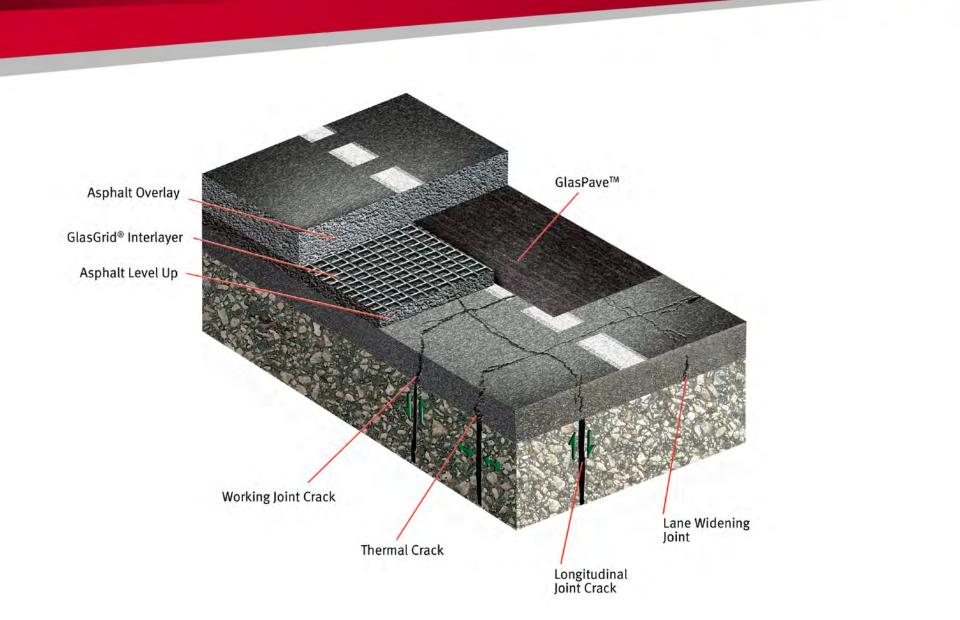
Tensar.

PLANING MUST FOLLOW EXISTING TRAVEL LANE CROSS SLOPE WHICH VARIES REFER TO CROSS SECTIONS SHEET(S) FOR MORE INFORMATION

SH 21 – Hays Co.

`

SH 76 – Carter Co., OKDOT



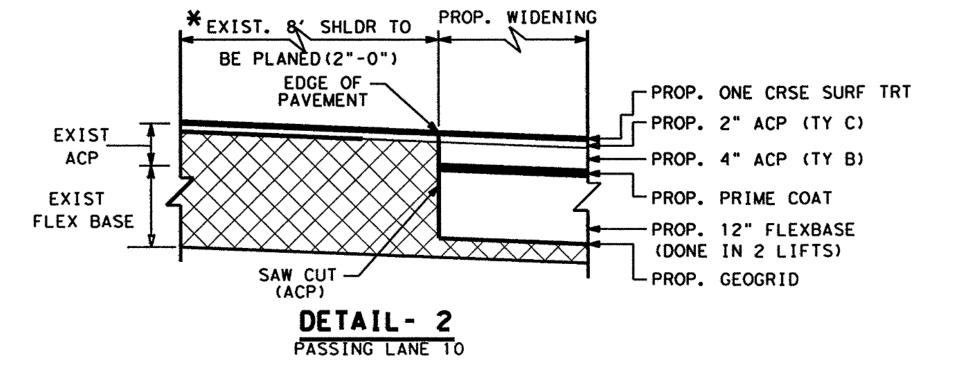
Pavement Interlayers for Narrow Widening

Geosynthetic Interlayers for Pavement Rehabilitation Applications

Introduction to Pavement Interlayers

Tensar.

Geosynthetic Interlayers for Pavements



Conventional Overlay

Overlay w/ Geosynthetic

US 277 – Maverick Co.

Tensar.

PLANING MUST FOLLOW EXISTING TRAVEL LANE CROSS SLOPE WHICH VARIES REFER TO CROSS SECTIONS SHEET(S) FOR MORE INFORMATION

Texas Case Studies – Shoulder Repair

Texas Case Studies – Shoulder Repair

Agenda

- Product Description/Historical Usage
- Geogrid Mechanisms
- Application Definition
- TxDOT Specifications for Geogrids in Roadways
- TxDOT Narrow Widening Examples Typical Sections
- Pavement Interlayers for Narrow Widening

Geosynthetic Reinforcement for Shoulder Widening & Rehabilitation Project 0-6748 Best Practices

Texas Department of Transportation Austin, TX

July 2, 2013

Tensar International Corporation Stephen Archer, P.E. – Frisco, TX

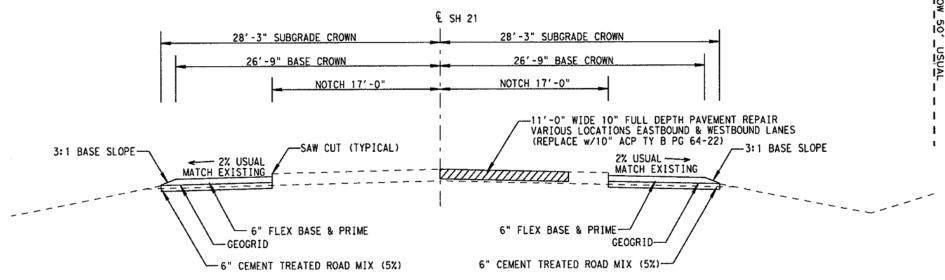
Appendix D – TxDOT Presentations

Austin District Pavement Widening

Project 0-6748, "Narrow Pavement Widening Webinar-Workshop" July 2, 2013 Mike Arellano, P.E.

Historical Practices

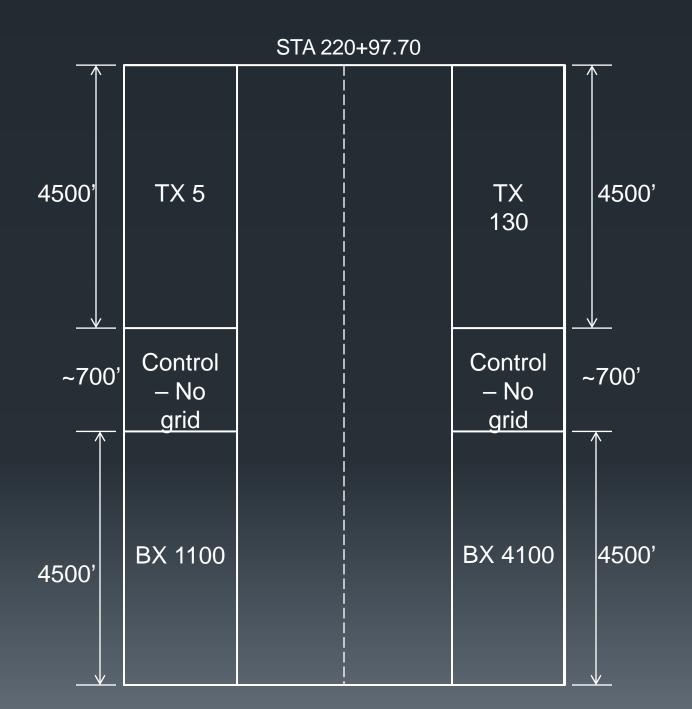
- "Narrow Widening": 3 to 6 foot safety widening
 - Flexible Pavement
 - Match adjacent section with HMA and flexible base
 - Compaction issues equipment wider than the section
 - Differential consolidation of pavement between existing and widened section
 - Differential consolidation or movement of subgrade
 - Start to use geogrids for reinforcement and improve compaction

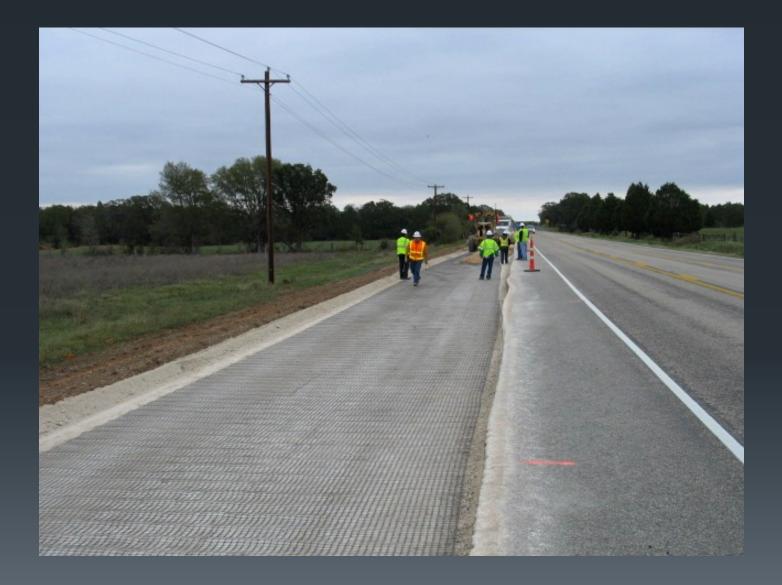

Historical Practices

- Full Depth HMA or Cement Treated Base (Plant)
 - No lateral drainage
 - With stiffer shoulder ~ load transfer issues with less stiff existing pavements
 - Impermeable barrier, especially in super elevation sections
 - Water infiltration at construction joint
 - Use underseals, but water always finds a way
 - Accelerated damage to existing section
 - Long-term issues = Full rehabilitation
 - Still use deep HMA, but not full depth,
 - Insure drainage at depth with good subgrade conditions
 - In urban areas (super-street or turn-lanes) with thick pavement structures

Current Practices

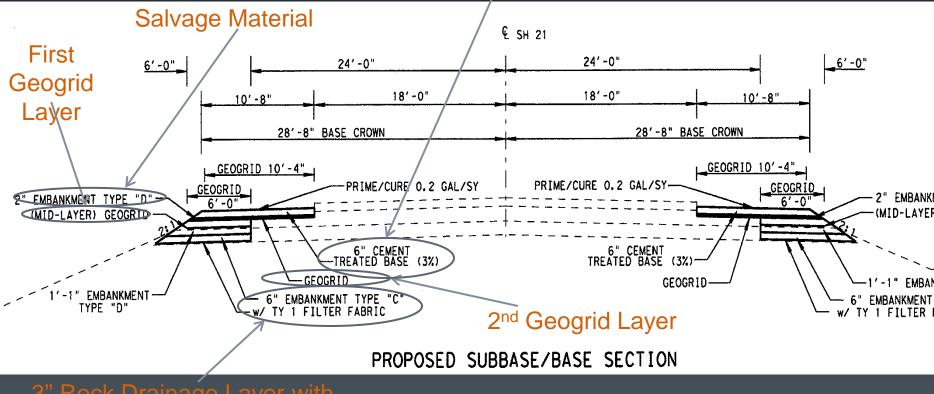
- No narrow widening...if possible
 - Benefit/Cost ratio better to rehab or widen wider than widen narrow and incur long-term maintenance costs
- Widen wider!
 - Uniformity
 - Better Construction = High Probability of Success
 - Salvage Existing Material
 - Address other issues like edge failures from drought damage


PROPOSED SUBGRADE, BASE & REPAIR SECTION



Conventional Widening

SH 21 – Lee County

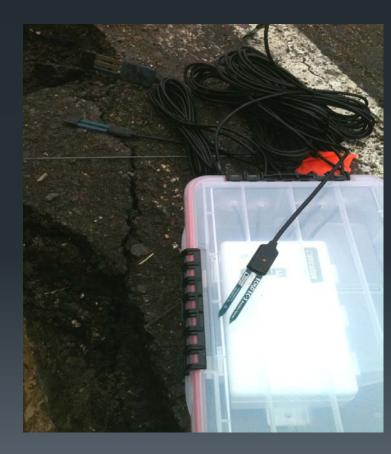


Alternative Widening

- Accelerated Construction Section
 - Urban areas
 - Alternate to Full Depth HMA
 - Flexible Pavement with inverted prime coats (RC-250 w/ Grade 5)
 - Use of geosynthetic (separation/reinforcement layer)
 - 3" Aggregate (Similar to TY D Backfill)
 - Maintain lateral drainage
 - Easy compaction with little to no secondary consolidation, especially in a 3-4 foot trench
 - Widen section move similar to the adjacent existing section

Cement Treated Salvage

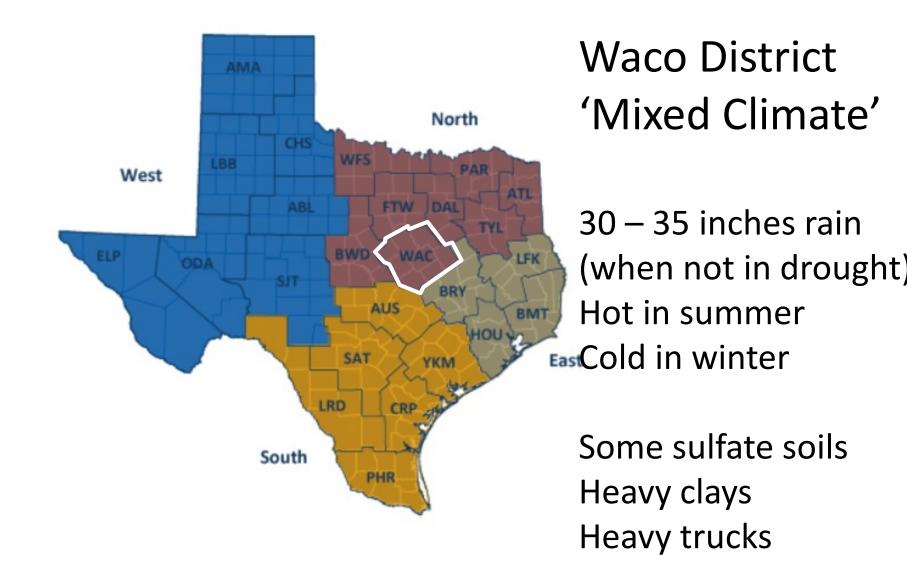
3" Rock Drainage Layer with Geosynthetic Separation


SH 21 – Bastrop County

- TenCate Mirafi[®] woven geosynthetic
- Wicking Capability
- Special hydrophilic and hygroscopic yarn that provides wicking action through the plane of the geosynthetic.

SH 21 – Bastrop County

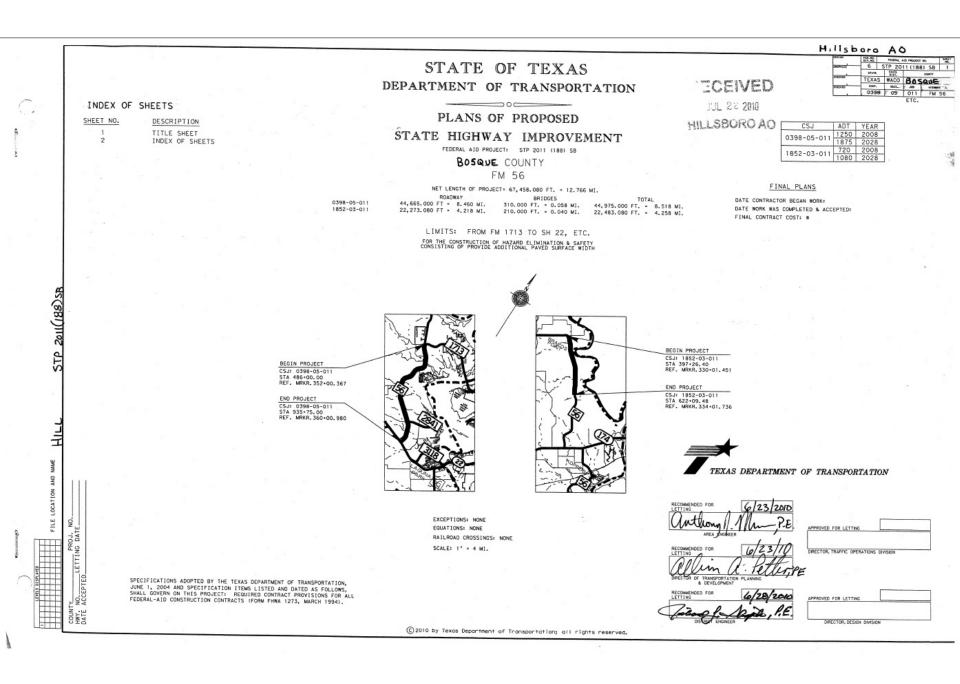
- CTR is monitoring the moisture levels and migration in this test section using moisture probes.
- Goal is to see if there is any benefit to this new woven geosynthetic product
- If the moisture can be controlled, this may diminish the soil movement at the edge of pavement.
- May allow denser material adjacent to the existing pavement

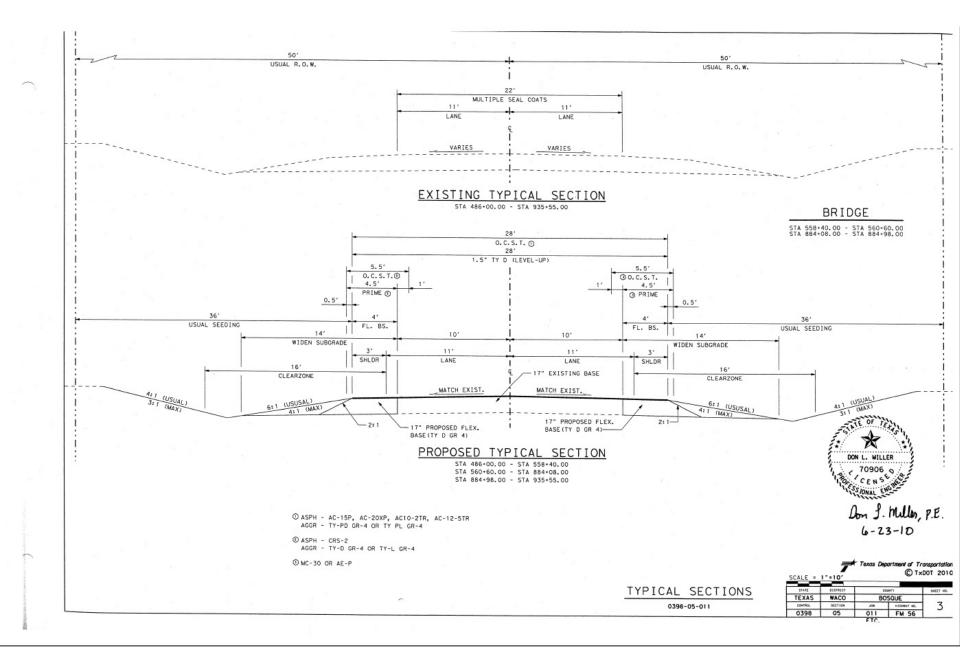


Waco District Experience

Project 0-6748: Narrow Pavement Widening

Don Miller, P.E. – Waco Design John Jasek, P.E. – Director Construction





FM 56 Bosque County

FM 56 Before Widening

FM 56 Before Widening

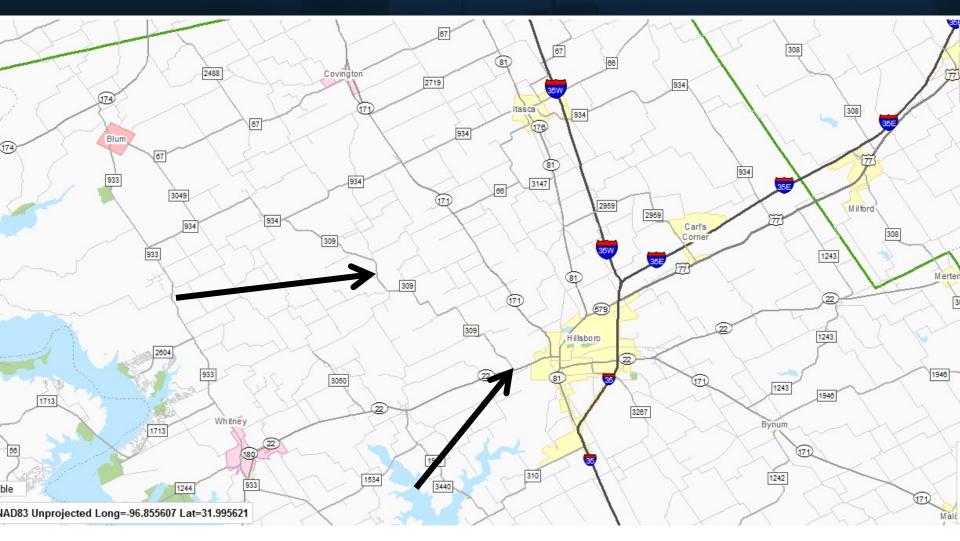
FM 56 Before Widening

FM 56 During Construction

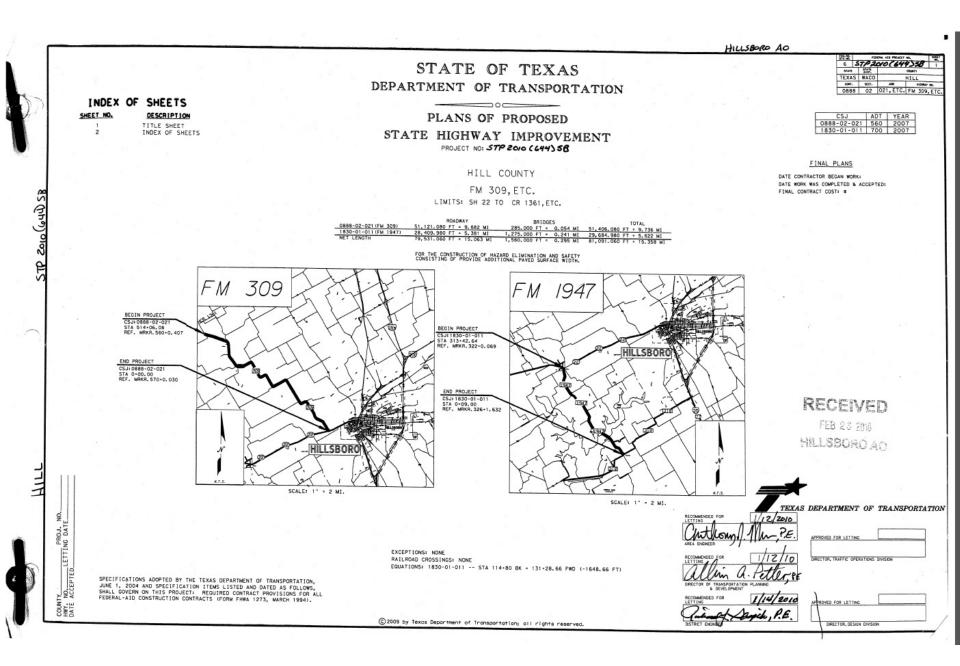
After level-up

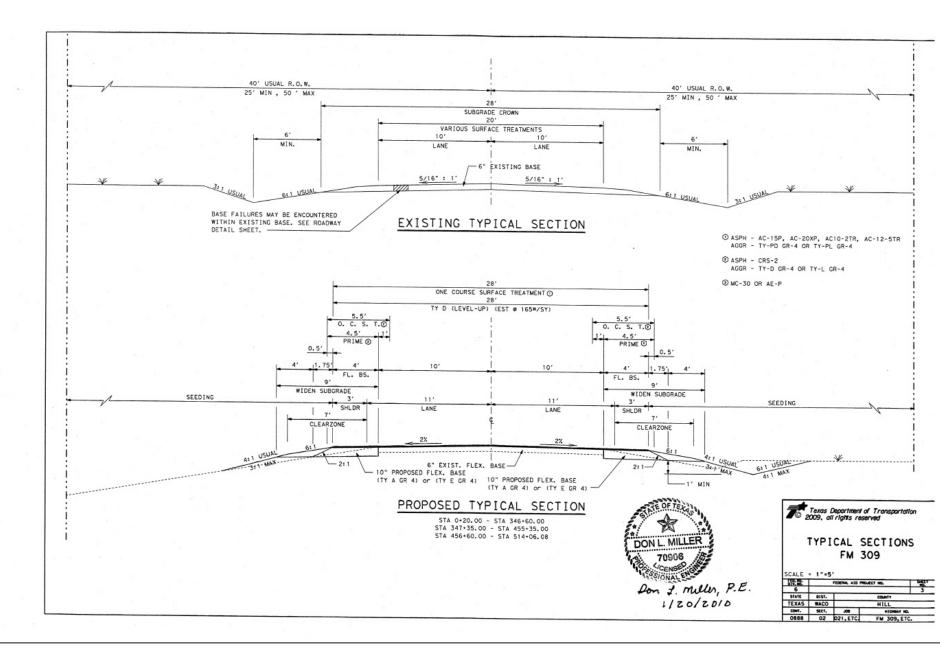
After Seal Coat

FM 56 Finished Product

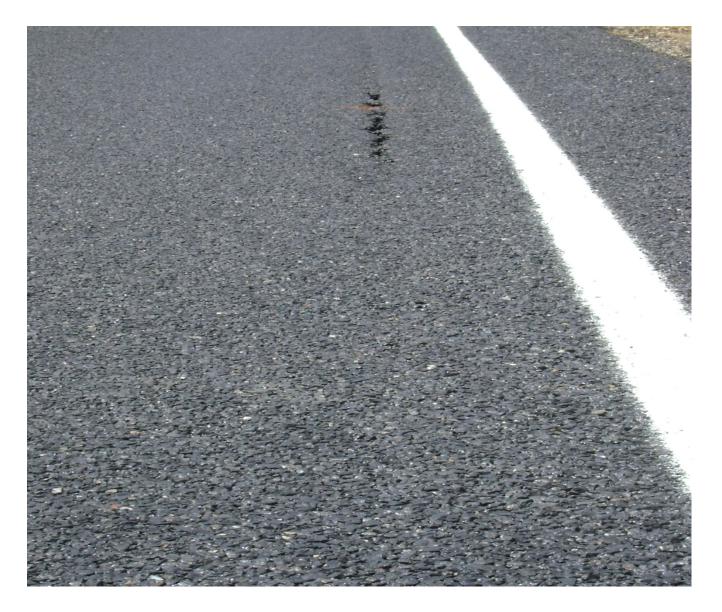


FM 56 Finished Product


Have Experienced Problems with pavement failures



FM 309 Hill County



FM 309 Finished Product

FM 309 Finished Product

FM 309 Experiencing joint cracking due to drought

FM 309 Experiencing joint cracking due to drought

Questions ???

San Angelo District Experience

Project 0-6748:

Narrow Pavement Widening

Maintenance Experience

Construction Projects

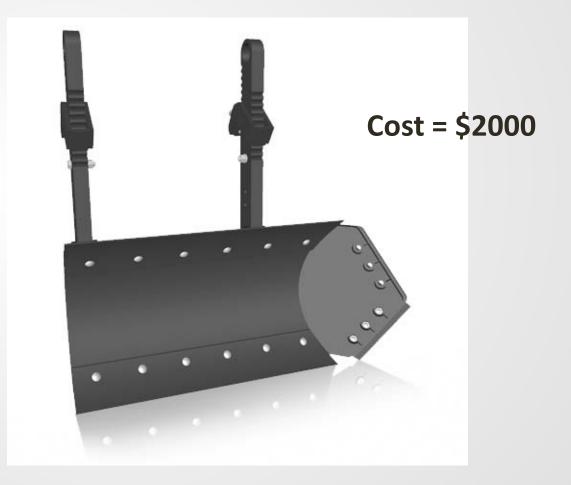
San Angelo District

Energy Sector

Energy Sector

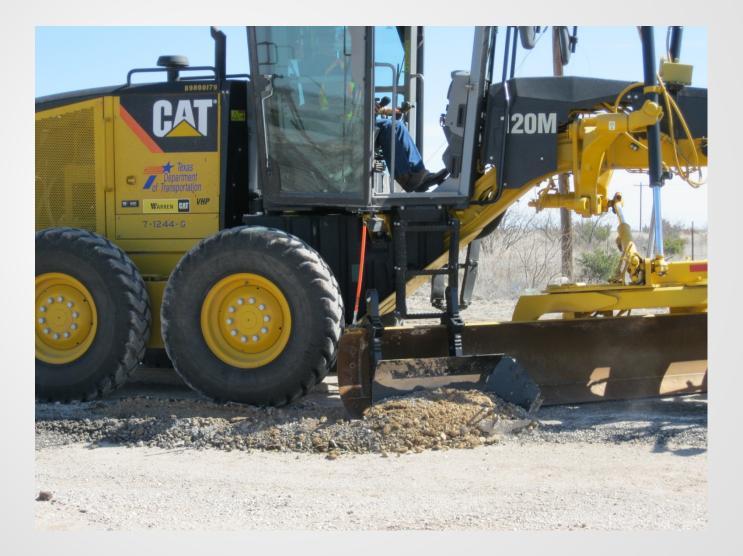
Edge Drop Offs

Edge Drop Offs


Traditional Method

Scope of Work

Bonnell Road Widener


Road Widener

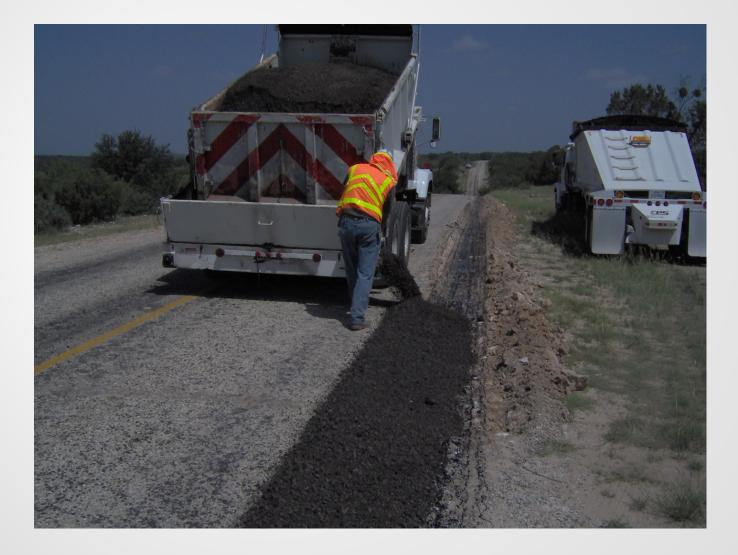
In-House Device

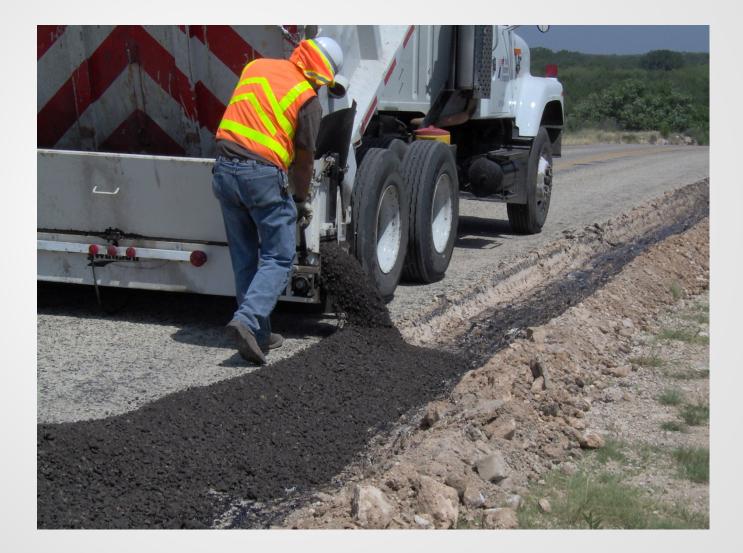
Road Widener

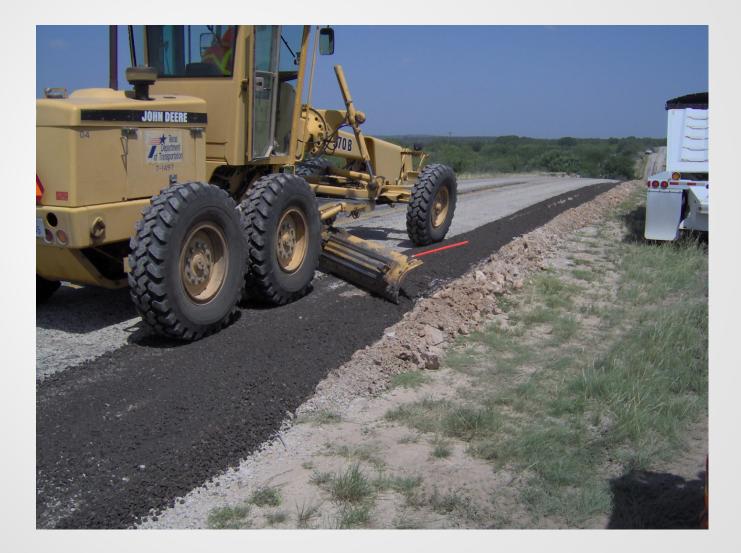
Road Widener

In-House Device

In-House Device



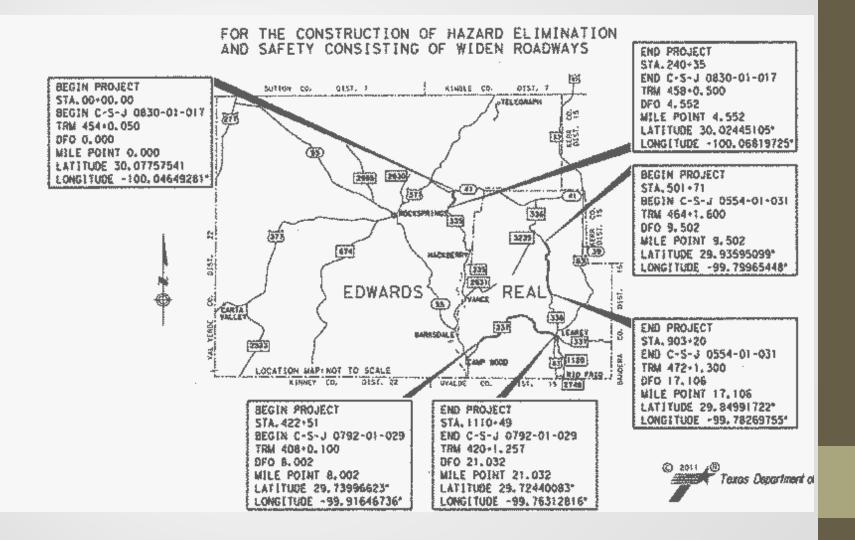

Belly Dump



Level Material

Finished Product

Finished Product



Maintenance Experience

Material Cost: \$20,000 / Lane Mile

Production: ½ Lane Mile / Day

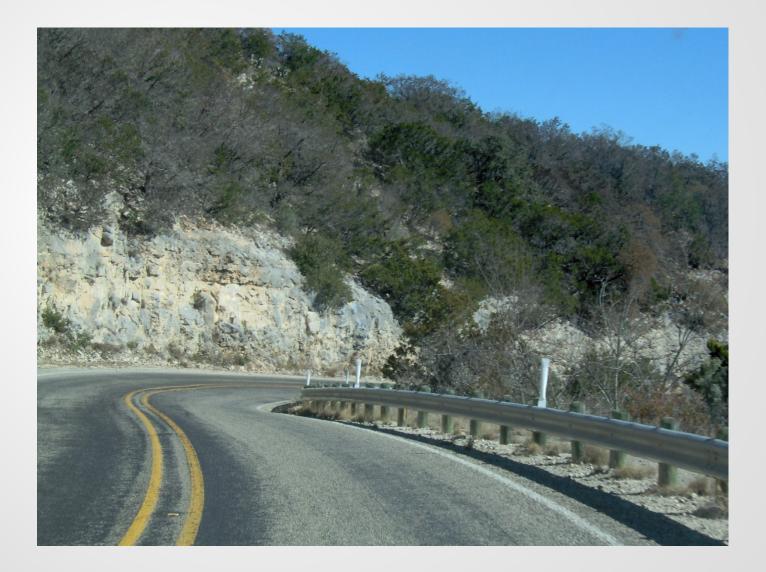
Construction Project

Project STP 2012(456) HRR, ETC.

CSJ: 0554-01-031, ETC.

Highway: RM 336, ETC.

County: Real

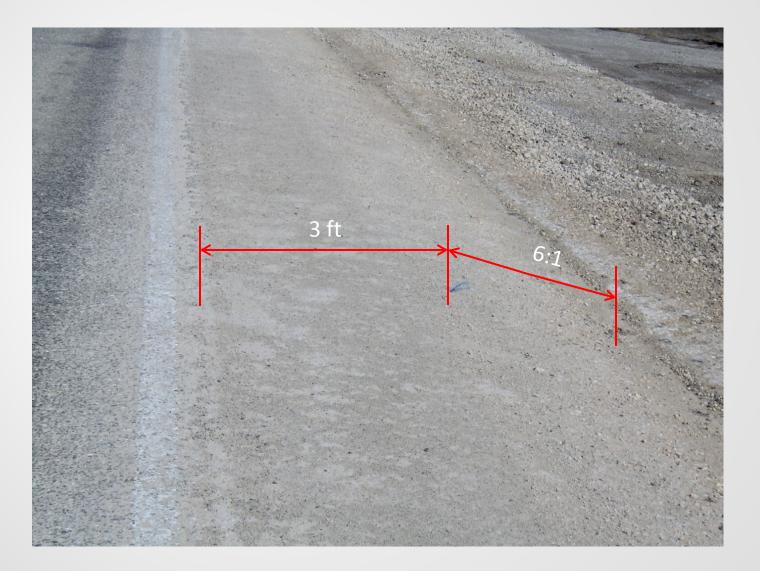

Length: 24.673 mi

Cost: \$3,573,173.63


Area Engineer: R. Lewis Nowlin, P.E.

Contractor: Allen Keller Company

Limited Work Area


Limited Work Area

Existing: 18 ft to 20 ft Wide

Scope of Work: Add 3' w/ 6:1 Base Taper

ROADTEC RX-600e

Step 1: Mark Cut Line

Step 2: Mark Cross Slope

Step 3: Blade Existing Grass Off

Step 4: Remove Existing Material 6" Deep and 6.5' Wide

ROADTEC Miller in Operation

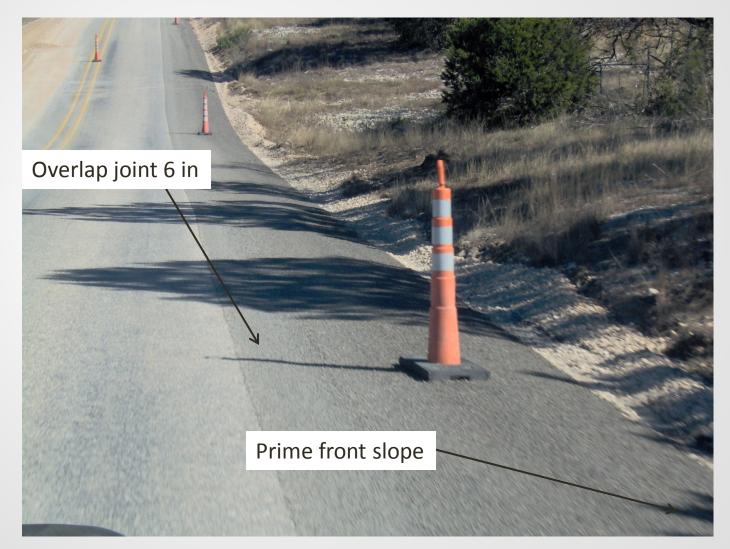
Provides Clean Cut

Mills Through Existing Rock

Mills Through Existing Rock

Step 5: Haul Off Excavated Material

Step 6: Compact Existing Subgrade


Step 7: Dump Pre-Wet Flexbase

Step 8: Process Flexbase

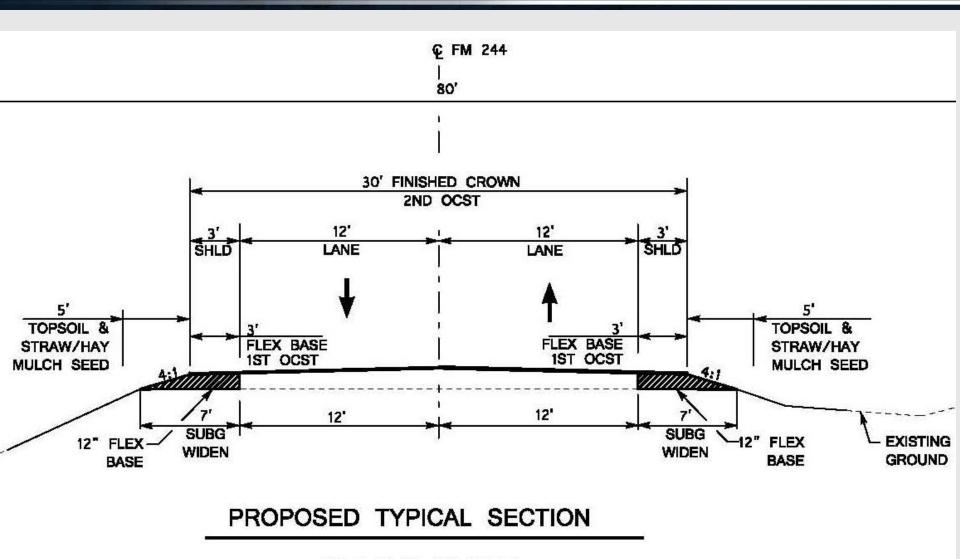
Step 9: Prime with RC-250 Asphalt and Gr 5 Aggregate

Remaining Work: Place Final Seal Coat

Remaining Work: Place Final Seal Coat

Project STP 2012(456) HRR, ETC.

Project Cost: \$145,000 / Mile


BRYAN DISTRICT -PAVEMENT WIDENING

Project 0-6748, "Narrow Pavement Widening Webinar-Workshop" July 2, 2013 Darlene Goehl, P.E.

- Widening Projects
 - -3' Shoulders for safety projects
- Initial Design philosophy
- Problems during construction
- Cost Analysis and Design Change
- Current design Philosophy

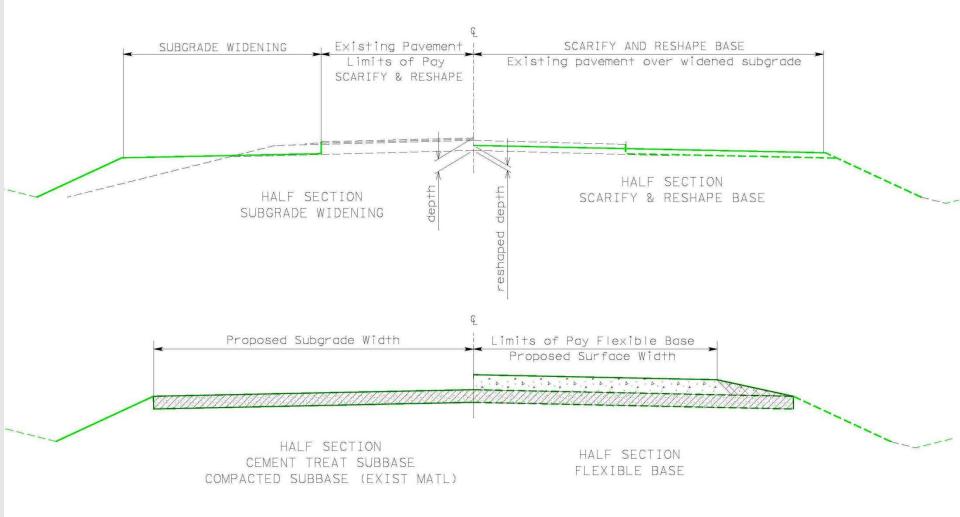
- Select Roadways with good existing pavement condition
- Widen to each side with thick flexible base
 - Widening with denser material than existing causes "bathtub" effect, which increases the deterioration rate of the existing pavement.
 - Future rehabilitation projects would recycle the new base into the old pavement
 - Minimize subgrade and front slope work

Typical Section – FM 244

STA 0+00 TO STA 125+00

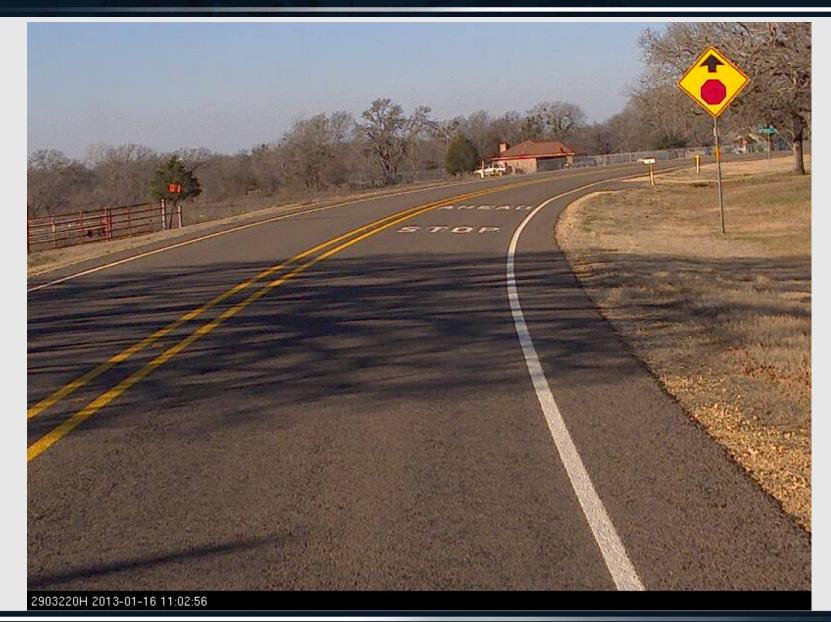
Construction Problems

Construction Problems



- Compacting narrow widening
- Early Maintenance of deteriorated construction Joint
- Can we design a cost effective widening that is competitive with the other projects in the State based on the benefit-cost ratio?

Pavement Design


- Uniform Pavement Structure
- Eliminate the narrow area compaction problems
- Cost competitive design

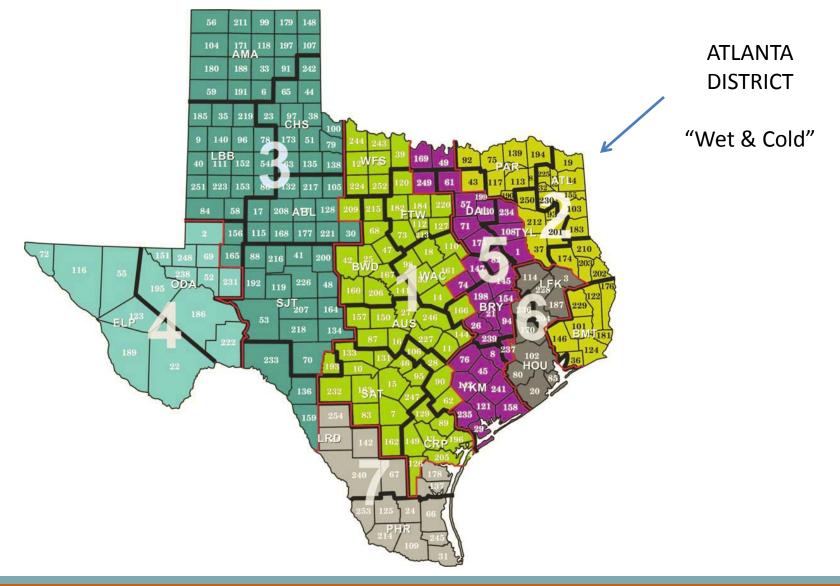
County	Highway	csj	LOW BID	SY	cost/sy	miles	Тур Ѕес	comments
Milam	FM1712	0210-03-021	\$ 1,046,654.75	56047.79	\$ 18.67	3.412	Uniform	
Milam	FM487	0210-03-022	\$ 276,144.74	17313.71	\$ 15.95	1.054	Narrow	Additional Maintenance
Milam	FM1600	1519-01-030	\$ 1,064,841.04	58528.21	\$ 18.19	3.563	Uniform	
				Avg Uniform	\$ 18.43			
				Narrow	\$ 15.95			
				Difference	\$ 2.48	~\$ 40,750 per mile more for Uniform pavement structure		

PROPOSED TYPICAL SECTION

Uniform Pavement Structure

Uniform Pavement Structure

Questions


0-6748: Best Practice for Flexible Pavement Structure Widening Projects

Atlanta District Experience

André de Fortier Smit Miles Garrison

THE UNIVERSITY OF TEXAS AT AUSTIN

THE UNIVERSITY OF TEXAS AT AUSTIN

Widening Construction

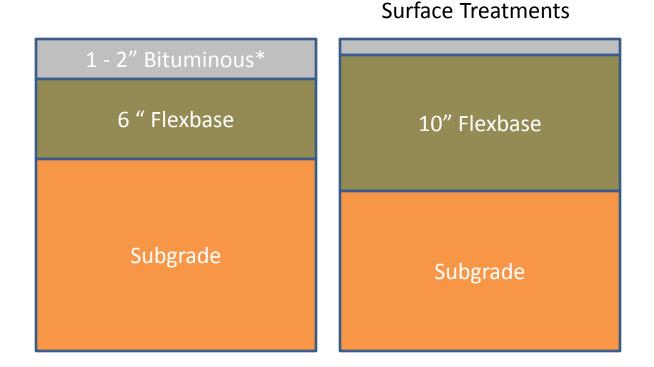
- Fast moving:
 - Subgrade + Flexbase = 0.5 mile/day/side
 - Flexbase + Prime = 1 mile/week
- No pavement drop-off at the end of the day
- Equipment (contractor) :
 - Modify grader for subgrade widening
 - Use smaller milling machine
 - Don't disturb existing side slope

HE UNIVERSITY OF TEXAS AT AUSTIN

Widening Construction

- Longitudinal construction joint:
 - Compaction issues
 - Flexbase settlement
 - Patch prior to OCST
 - If severe, overlay problem areas with HMA using drag box
- Not always possible to extend or widen existing drainage structure with road widening due to timing of funding

THE UNIVERSITY OF TEXAS AT AUSTIN


District Interview

- Most of the widening of roads in Atlanta district is completed, 95% - 98%, so very few projects are planned or ongoing
- Atlanta is particularly wet (compared to other districts) with very few HMA plants, hence their widening projects differ significantly from their neighbor, Tyler, which uses a lot of HMA for widening.

HE UNIVERSITY OF TEXAS AT AUSTIN

Pavement Widening Design

* Seal coats, blade on LRA and ACP

THE UNIVERSITY OF TEXAS AT AUSTIN

Widening

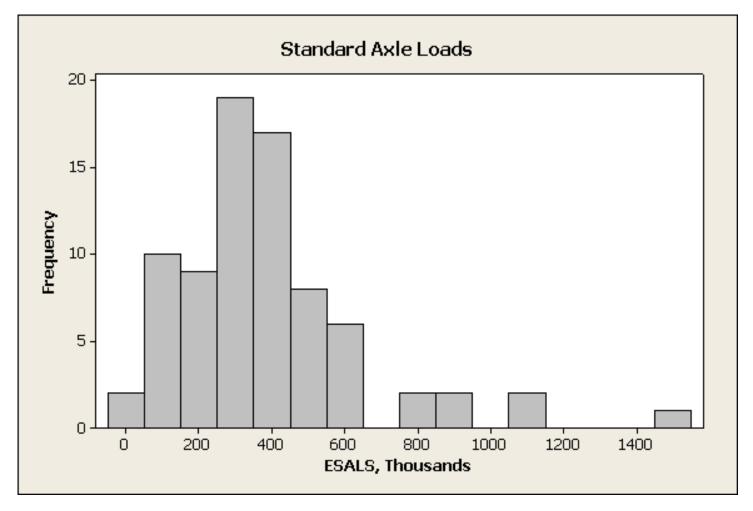
- Widening typically involves 10 inches of unstabilized flexbase, a level-up and seal coat covering the entire roadway - decision could be dictated by age of last seal and when scheduled for next District Wide seal.
- 6" to 8" of cement stabilized subgrade when widening 4 feet or more. Helpful when widening out over old ditch line. When used minimum width of cement treatment is 7 feet.

HE UNIVERSITY OF TEXAS AT AUSTIN

Widening

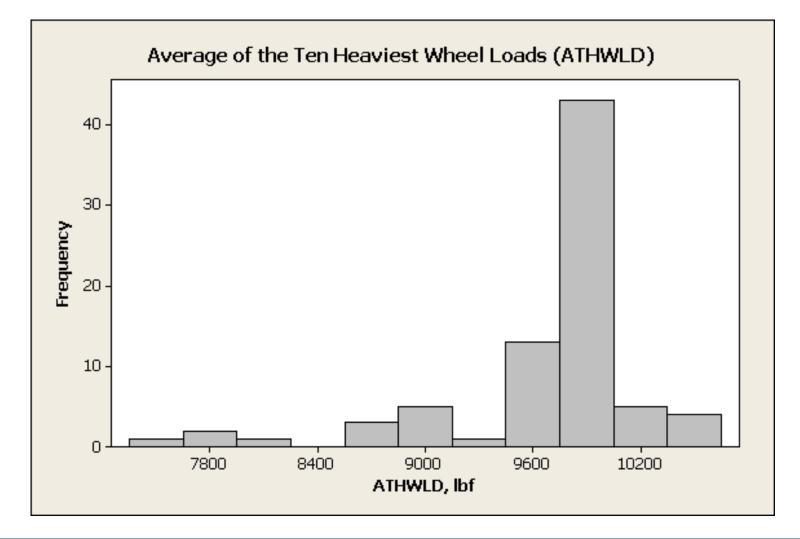
 If the road is under the district wide seal coat program then the widening will receive a second surface treatment as well. Lots of attention to ensure adequate drainage – Atlanta is a wet district!

THE UNIVERSITY OF TEXAS AT AUSTIN

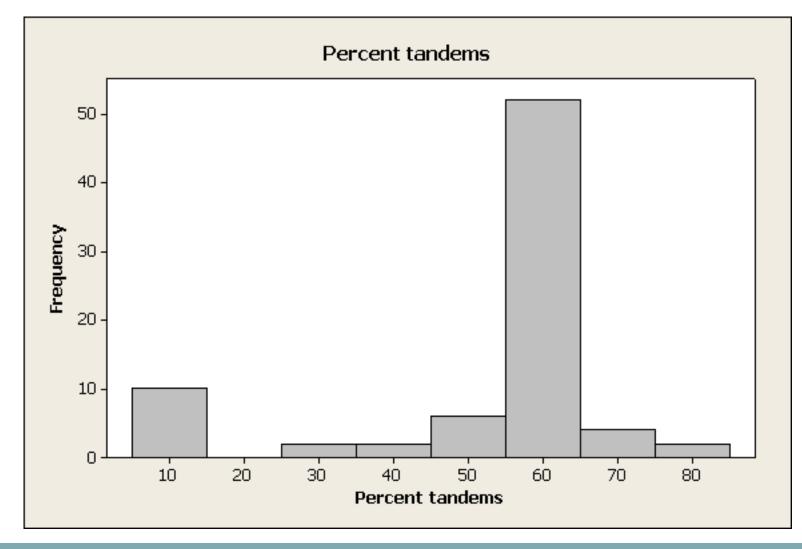

Design per Funding

		ESALS (1,000s)	ATHWLD (lbf)	% Tandems	Texas Triaxial, in
Safety	AVG	384	9,682	53	15
Bond (78	MIN	41	7,600	10	10
projects)	MAX	1,519	10,500	80	28
	AVG	469	9,941	58	16
HES (60 projects)	MIN	41	7,600	10	10
projectoj	MAX	1,335	11,500	90	25

THE UNIVERSITY OF TEXAS AT AUSTIN

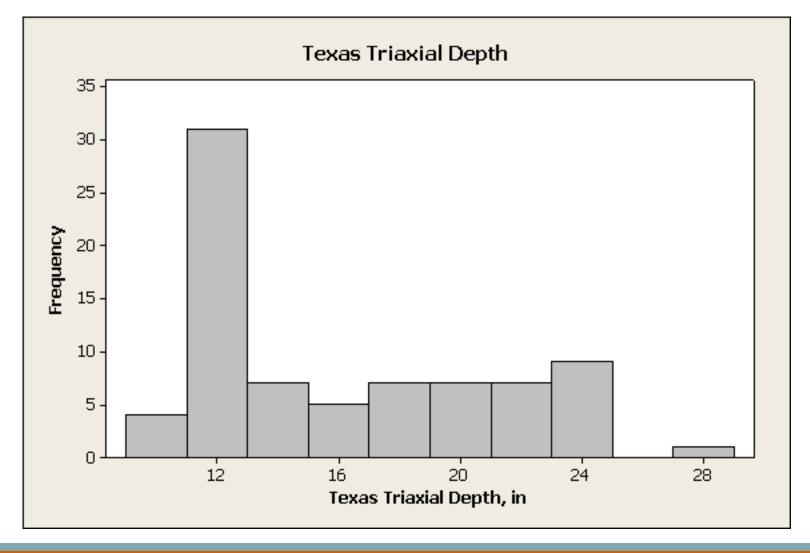

Safety Bond: Design ESALS

THE UNIVERSITY OF TEXAS AT AUSTIN

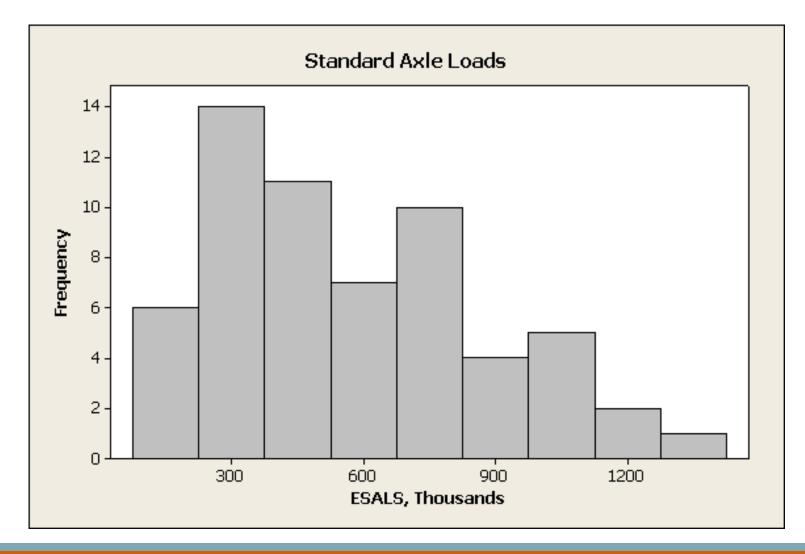

Safety Bond: ATHWLD

THE UNIVERSITY OF TEXAS AT AUSTIN

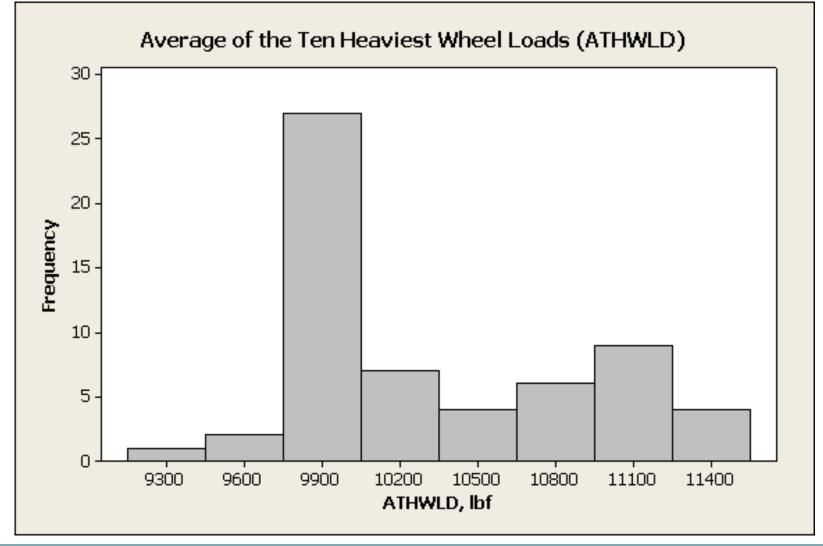
Safety Bond: Percent tandems


R

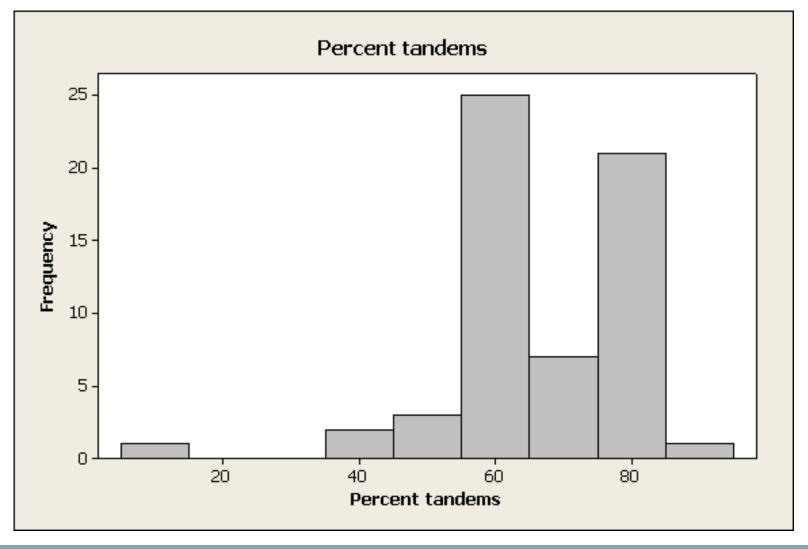
THE UNIVERSITY OF TEXAS AT AUSTIN


Safety Bond: Texas Triaxial

THE UNIVERSITY OF TEXAS AT AUSTIN

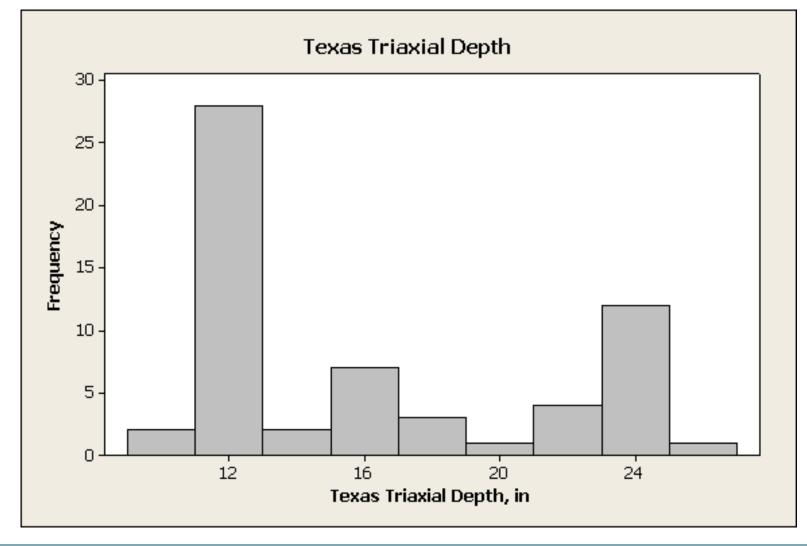

HES: ESALs

THE UNIVERSITY OF TEXAS AT AUSTIN



HES: ATHWLD

THE UNIVERSITY OF TEXAS AT AUSTIN


HES: Percent tandems

THE UNIVERSITY OF TEXAS AT AUSTIN

HES: Texas Triaxial

THE UNIVERSITY OF TEXAS AT AUSTIN

o-6748: Best Practice for Flexible Pavement Structure Widening Projects

Pavement Widening Equipment

Mike Murphy Maria Burton

THE UNIVERSITY OF TEXAS AT AUSTIN

Pavement Widening Equipment

Equipment types:

- Milling machines
- Attachments for skid steer and front end loaders
- Road wideners
 - Non self-propelled & self-propelled
- Full depth reclamation equipment
- Small compactors and other devices to ensure good quality projects

THE UNIVERSITY OF TEXAS AT AUSTIN

Milling Machines

Roadtec RX-400e Cold Planer

Roadtec RX-700 Cold Planer

Caterpillar PM-201 Cold Planer

Roadtec RX-600e Half-Lane Cold Planer

Roadtec RX-900 Cold Planer

Wirtgen Cold Milling Machine W 150/W 150i

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Skid-Steer Loaders)

Skid steer with Road Hog Self Power Cold Planer attached

- Hydraulic tilt, depth, and sideshift controls
- Options for narrower drums
- Models 18" 40" cutting width

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Skid-Steer Loaders)

Skid steer with a Road Widener attached

- Easy to maneuver around obstructions (e.g. guardrails, sign posts)
- Shoulder widths 1 3.5'
- Trench repairs
- Bicycle trails and paths

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Skid-Steer Loaders)

RoadHog Road Saws

PowerAttachments – Zanetis Cold Planers (Spain)

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Front-End Loaders)

Front-end loader with <u>Road Hog</u> Self Powered Cold Planer attached

- Models 30" 72" cutting width
- Shoulder milling, pothole milling
- cuts for utility pipe installation
- •In place pavement recycling
- •Full depth reclamation

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Front-End Loaders)

Front-end loader with Asphalt Zipper attached

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Road Graders)

- Some districts / contractors use:
 - motor graders to cut the trench
 - a plow mounted to the front of the grader to clear the trench
 - a belly dump to place the base material

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Road Graders)

Road grader with a **Bonnell** Road Widener attachment

Road grader with a **Bonnell** Flow Gate attachment

THE UNIVERSITY OF TEXAS AT AUSTIN

Attachments (for Road Graders)

Road grader with a Maddock rotary cutter attachment

CAT Motor Grader Scarifier

THE UNIVERSITY OF TEXAS AT AUSTIN

Midland Machinery Widener Attachment

- Spread width: 1' 8'
- Spread depth: 12' above to 12' below grade
- Heavy duty caster wheels don't deflect under load as pneumatic tires do

THE UNIVERSITY OF TEXAS AT AUSTIN

Lessons Learned:

- Non self propelled & skid steer/front end loader equipment:
 - Used successfully for short projects, edge repairs & patching
 - Not of sufficient strength to handle a full size (longer) construction project
 - Front end loader devices are mounted too far away from the operator
 - Hard to feel cutting depth
 - Hard to control line of cut

THE UNIVERSITY OF TEXAS AT AUSTIN

Lessons learned:

- Important to match the size of the self propelled road widener to the project
 - light weight machines might not provide adequate quality or may break down due to overload

THE UNIVERSITY OF TEXAS AT AUSTIN

Model SP-12

SPD-10

Midland Machinery Co. Self Propelled Road Wideners

•spread width: 1 to 12' max, 10' max., 8' max.

- •12" above to 12" below grade
- Trench fill option, broom option

•Converts left or right side spreading

THE UNIVERSITY OF TEXAS AT AUSTIN

Model W430

W530

Weiler Road Wideners

- 1' 8' widening
- optional weight kits can widen up to 10'
- working depth: 12" above to 12" below grade
- optional rear steering for maneuverability

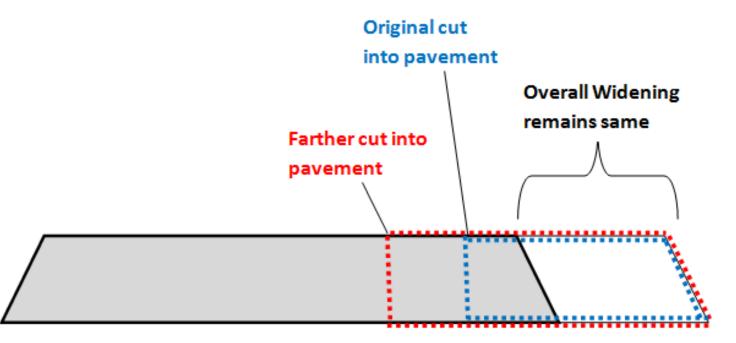
THE UNIVERSITY OF TEXAS AT AUSTIN

<u>Mid-State Equipment Company</u> – Wilspread road widening machine

- Build road shoulders 1' 5' width
- Operator controls flow of materials and spread speed

THE UNIVERSITY OF TEXAS AT AUSTIN

Blaw Knox RW-100B Road Widener


Franex (France) Self-Propelled Road Widener EL1000

THE UNIVERSITY OF TEXAS AT AUSTIN

Full Depth Reclamation (FDR)

Lessons Learned:

- Recommended: cutting the joint further into the pavement
- Gain more good base material and to stabilize the pavement with emulsion
- Overall added width remains same
 - Amount used in widening will be greater
 - End product of higher quality

Full Depth Reclamation (FDR)

Example:

Narrow widening project:

- Reclaimer linked to Emulsion Tank Truck
- Included larger portion of existing pavement
 - ensured base material available for widening
- Additional material added, scarified with Wirtgen with Emulsion
- Worked with a grader, rolled with a sheep's foot, then flat wheel and pneumatic tired roller
- Overall added width remained same
 - but allowed use of full size equipment & got better quality

THE UNIVERSITY OF TEXAS AT AUSTIN

Full Depth Reclamation (FDR)

• Some Districts own a BOMAG or CAT tiller which can be used to perform Full Depth Reclamation on narrow widening projects.

BOMAG Recycler

CAT RM300 Road Reclaimer

THE UNIVERSITY OF TEXAS AT AUSTIN

Other Equipment - Rollers

Mauldin Paving Products 4700 Pneumatic Roller

Broons Square Impact Rollers

(Australia) Broons BH-1300 Impact Roller

Hamm (German) CompactLine HD 8 – HD 14, The flexible all-rounder

Sakai SW/TW300-1 Series Vibratory Asphalt Rollers

Sakai R2H-2 Series Three-Wheel Static Roller

THE UNIVERSITY OF TEXAS AT AUSTIN

More Equipment (from around the world)

(Germany)

(Sweden)

Dynapac - Equipment (Compact Planer – PL350T shown)

Flocon (Australia) Road Base Grader Attachment

Midland Europe (SPR 6 shown)

(Australia)

Sharpe Brothers Sidewinder

UK Sidewinder Widening Machine

THE UNIVERSITY OF TEXAS AT AUSTIN